1
|
Xu J, Li P, Xu M, Wang C, Kocher TD, Wang D. Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia. J Hered 2025; 116:101-112. [PMID: 38946032 DOI: 10.1093/jhered/esae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to the loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using the skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment, and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia.
Collapse
Affiliation(s)
- Jia Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mengmeng Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenxu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, United States
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Stavrovskaya I, Morin BK, Madamba S, Alexander C, Romano A, Alam S, Pavlov L, Mitaishvili E, Peixoto PM. Mitochondrial ROS modulate presynaptic plasticity in the drosophila neuromuscular junction. Redox Biol 2025; 79:103474. [PMID: 39721493 PMCID: PMC11732232 DOI: 10.1016/j.redox.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The elevated emission of reactive oxygen species (ROS) from presynaptic mitochondria is well-documented in several inflammatory and neurodegenerative diseases. However, the potential role of mitochondrial ROS in presynaptic function and plasticity remains largely understudied beyond the context of disease. Here, we investigated this potential ROS role in presynaptic function and short-term plasticity by combining optogenetics, whole cell electrophysiological recordings, and live confocal imaging using a well-established protocol for induction and measurement of synaptic potentiation in Drosophila melanogaster neuromuscular junctions (NMJ). Optogenetic induction of ROS emission from presynaptic motorneuron mitochondria expressing mitokiller red (mK) resulted in synaptic potentiation, evidenced by an increase in the frequency of spontaneous mini excitatory junction potentials. Notably, this effect was not observed in flies co-expressing catalase, a cytosolic hydrogen peroxide (H2O2) scavenging enzyme. Moreover, the increase in electrical activity did not coincide with synaptic structural changes. The absence of Wnt1/Wg release from synaptic boutons suggested involvement of alternative or non-canonical signaling pathway(s). However, in existing boutons we observed an increase in the active zone (AZ) marker Brp/Erc1, which serves as docking site for the neurotransmitter vesicle release pool. We propose the involvement of putative redox switches in AZ components as the molecular target of mitochondrial H2O2. These findings establish a novel framework for understanding the signaling role of mROS in presynaptic structural and functional plasticity, providing insights into redox-based mechanisms of neuronal communication.
Collapse
Affiliation(s)
- Irina Stavrovskaya
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Stephen Madamba
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Alexis Romano
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Samia Alam
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Lucas Pavlov
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Erna Mitaishvili
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Pablo M Peixoto
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA.
| |
Collapse
|
3
|
Xu T, Chen G. MPV17 Prevents Myocardial Ferroptosis and Ischemic Cardiac Injury through Maintaining SLC25A10-Mediated Mitochondrial Glutathione Import. Int J Mol Sci 2024; 25:10832. [PMID: 39409161 PMCID: PMC11476822 DOI: 10.3390/ijms251910832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Ferroptosis is a recently identified iron-dependent programmed cell death with lipid peroxide accumulation and condensation and compaction of mitochondria. A recent study indicated that ferroptosis plays a pivotal role in ischemic cardiac injury with the mechanisms remain largely unknown. This study demonstrates that when an iron overload occurs in the ischemia/reperfusion cardiac tissues, which initiates myocardial ferroptosis, the expression levels of mitochondrial inner membrane protein MPV17 are reduced. Overexpression of MPV17 delivered via adenovirus significantly reduced ferroptosis in both cardiomyocytes with high levels of iron and cardiac I/R tissues. Mitochondrial glutathione (mtGSH), crucial for reactive oxygen species scavenging and mitochondrial homeostasis maintenance, is depleted in myocardial ferroptosis caused by iron overload. This mechanistic study shows that MPV17 can increase mitochondrial glutathione levels through maintaining the protein homeostasis of SLC25A10, which is a mitochondrial inner-membrane glutathione transporter. The absence of MPV17 in iron overload resulted in the ubiquitination-dependent degradation of SLC25A10, leading to impaired mitochondrial glutathione import. Moreover, we found that MPV17 was the targeted gene of Nrf2, which plays a pivotal role in preventing lipid peroxide accumulation and ferroptosis. The decreased expression levels of Nrf2 led to the inactivation of MPV17 in iron overload-induced myocardial ferroptosis. In summary, this study demonstrates the critical role of MPV17 in protecting cardiomyocytes from ferroptosis and elucidates the Nrf2-MPV17-SLC25A10/mitochondrial glutathione signaling pathway in the regulation of myocardial ferroptosis.
Collapse
Affiliation(s)
| | - Guilan Chen
- Instrumental Analysis Center, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
4
|
Li X, Ma Y, Zhang Y, Zhang X, Li H, Sun Y, Niu Z. Porphyrin metabolism and carbon fixation response of Skeletonema costatum at different growth phases to mixed emerging PFASs at environmental concentrations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1465-1475. [PMID: 38973378 DOI: 10.1039/d4em00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially as emerging compounds, have been widely detected in coastal seawater. However, the awareness of the interaction between PFASs at environmental concentrations and marine diatoms is still limited. In this study, Skeletonema costatum was exposed to three co-existing PFASs, namely hexafluoropropylene oxide dimer acid (HFPO-DA), 6 : 2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES), and perfluoroethylcyclohexane sulfonate (PFECHS) (15-300 ng L-1 in total), for 14 days. In the 300 ng L-1 test group, the significant down-regulation of chlorophyllide a in porphyrin metabolism, light-harvesting capacity and carbon fixation were the main inhibitory mechanisms of photosynthesis by emerging PFASs at the 14th day compared to the 8th day, which indicated that they may have a shading effect on S. costatum. Additionally, mixed PFASs could also activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by up-regulating gene gp91 and down-regulating genes CaM4 and NDPK2 to generate excessive ROS. This resulted in a decrease in the algal biomass, which would further weaken the primary productivity of S. costatum. Our findings illustrated that mixed emerging PFASs at environmental concentrations may interfere with the carbon balance of marine diatoms.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyu Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Singh KA, Soukar J, Zulkifli M, Kersey A, Lokhande G, Ghosh S, Murali A, Garza NM, Kaur H, Keeney JN, Banavath R, Ceylan Koydemir H, Sitcheran R, Singh I, Gohil VM, Gaharwar AK. Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis. Nat Commun 2024; 15:8136. [PMID: 39289340 PMCID: PMC11408498 DOI: 10.1038/s41467-024-52276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Diminished mitochondrial function underlies many rare inborn errors of energy metabolism and contributes to more common age-associated metabolic and neurodegenerative disorders. Thus, boosting mitochondrial biogenesis has been proposed as a potential therapeutic approach for these diseases; however, currently we have a limited arsenal of compounds that can stimulate mitochondrial function. In this study, we designed molybdenum disulfide (MoS2) nanoflowers with predefined atomic vacancies that are fabricated by self-assembly of individual two-dimensional MoS2 nanosheets. Treatment of mammalian cells with MoS2 nanoflowers increased mitochondrial biogenesis by induction of PGC-1α and TFAM, which resulted in increased mitochondrial DNA copy number, enhanced expression of nuclear and mitochondrial-DNA encoded genes, and increased levels of mitochondrial respiratory chain proteins. Consistent with increased mitochondrial biogenesis, treatment with MoS2 nanoflowers enhanced mitochondrial respiratory capacity and adenosine triphosphate production in multiple mammalian cell types. Taken together, this study reveals that predefined atomic vacancies in MoS2 nanoflowers stimulate mitochondrial function by upregulating the expression of genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Kanwar Abhay Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - John Soukar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Anna Kersey
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Giriraj Lokhande
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Aparna Murali
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Natalie M Garza
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Harman Kaur
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Justin N Keeney
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Ramu Banavath
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Raquel Sitcheran
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Irtisha Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA.
| | - Vishal M Gohil
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA.
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Li Y, Yang J, Sun Z, Niu J, Wang G. Overexpression of MPV17/PMP22-like protein 2 gene decreases production of radical oxygen species in Pyropia yezoensis (Bangiales, Rhodophyta). JOURNAL OF PHYCOLOGY 2024; 60:928-941. [PMID: 38924097 DOI: 10.1111/jpy.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
The northward shift of Pyropia yezoensis aquaculture required the breeding of germplasms with tolerance to the oxidative stress due to the high light conditions of the North Yellow Sea area. The MPV17/PMP22 family proteins were identified as a molecule related to reactive oxygen species (ROS) metabolism. Here, one of the MPV17 homolog genes designated as PyM-LP2 was selected for functional identification by introducing the encoding sequence region/reverse complementary fragment into the Py. yezoensis genome. Although the photosynthetic activity, the respiratory rate, and the ROS level in wild type (WT) and different gene-transformed algal strains showed similar levels under normal conditions, the overexpression (OE) strain exhibited higher values of photosynthesis, respiration, and reducing equivalents pool size but lower intracellular ROS production under stress conditions compared with the WT. Conversely, all the above parameters showed opposite variation trends in RNAi strain as those in the OE strain. This implied that the PyM-LP2 protein was involved in the mitigation of the oxidative stress. Sequence analysis revealed that this PyM-LP2 protein was assorted to peroxisomes and might serve as a poring channel for transferring malate (Mal) to peroxisomes. By overexpressing PyM-LP2, the transfer of Mal from chloroplasts to peroxisomes was enhanced under stress conditions, which promoted photorespiration and ultimately alleviated excessive reduction of the photosynthetic electron chain. This research lays the groundwork for the breeding of algae with enhanced resistance to oxidative stresses.
Collapse
Affiliation(s)
- Yujie Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jiali Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhenjie Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianfeng Niu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Chen X, Tang Y, Zhang H, Zhang X, Sun X, Zang X, Xu N. Physiological, Transcriptome, and Metabolome Analyses Reveal the Tolerance to Cu Toxicity in Red Macroalgae Gracilariopsis lemaneiformis. Int J Mol Sci 2024; 25:4770. [PMID: 38731988 PMCID: PMC11083833 DOI: 10.3390/ijms25094770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 μM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Yueyao Tang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| |
Collapse
|
8
|
Tong F, Sun Z. Identification and validation of potential biomarkers for atrial fibrillation based on integrated bioinformatics analysis. Front Cell Dev Biol 2024; 11:1190273. [PMID: 38274270 PMCID: PMC10808641 DOI: 10.3389/fcell.2023.1190273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Globally, the most common form of arrhythmias is atrial fibrillation (AF), which causes severe morbidity, mortality, and socioeconomic burden. The application of machine learning algorithms in combination with weighted gene co-expression network analysis (WGCNA) can be used to screen genes, therefore, we aimed to screen for potential biomarkers associated with AF development using this integrated bioinformatics approach. Methods: On the basis of the AF endocardium gene expression profiles GSE79768 and GSE115574 from the Gene Expression Omnibus database, differentially expressed genes (DEGs) between AF and sinus rhythm samples were identified. DEGs enrichment analysis and transcription factor screening were then performed. Hub genes for AF were screened using WGCNA and machine learning algorithms, and the diagnostic accuracy was assessed by the receiver operating characteristic (ROC) curves. GSE41177 was used as the validation set for verification. Subsequently, we identified the specific signaling pathways in which the key biomarkers were involved, using gene set enrichment analysis and reverse prediction of mRNA-miRNA interaction pairs. Finally, we explored the associations between the hub genes and immune microenvironment and immune regulation. Results: Fifty-seven DEGs were identified, and the two hub genes, hypoxia inducible factor 1 subunit alpha inhibitor (HIF1AN) and mitochondrial inner membrane protein MPV17 (MPV17), were screened using WGCNA combined with machine learning algorithms. The areas under the receiver operating characteristic curves for MPV17 and HIF1AN validated that two genes predicted AF development, and the differential expression of the hub genes was verified in the external validation dataset. Enrichment analysis showed that MPV17 and HIF1AN affect mitochondrial dysfunction, oxidative stress, gap junctions, and other signaling pathway functions. Immune cell infiltration and immunomodulatory correlation analyses showed that MPV17 and HIF1AN are strongly correlated with the content of immune cells and significantly correlated with HLA expression. Conclusion: The identification of hub genes associated with AF using WGCNA combined with machine learning algorithms and their correlation with immune cells and immune gene expression can elucidate the molecular mechanisms underlying AF occurrence. This may further identify more accurate and effective biomarkers and therapeutic targets for the diagnosis and treatment of AF.
Collapse
Affiliation(s)
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Tan J, Xu W, Zhai X, Yan B, Luan T, Yang L. Time-course adaption strategy of Tetraselmis-based consortia in response to 17α-ethinylestradiol. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132854. [PMID: 39491996 DOI: 10.1016/j.jhazmat.2023.132854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Estuarine ecosystem constitutes a microenvironment where the abundant green microalga Tetraselmis sp. co-exists with 17α-ethinylestradiol (EE2) pollution. However, the adaption mechanisms of this microalga-based consortia under EE2 shock are rarely recognized. Using extracellular polymeric substance (EPS) characterization, flow cytometry and transcriptomic, this study reveals the time-course response of Tetraselmis-based consortia under EE2 stress. Compared to the insignificant effect of 0.5 mg/L, a high dose of 2.5 mg/L EE2 induces persistent production of reactive oxygen species (ROS) and transiently physiological damages (membrane, chloroplast, organelle morphogenesis, and DNA replication), resulting in cell cycle alteration and division inhibition. These damages could be recovered through active DNA repair and persistently detoxifying processes of enhanced metabolism and ROS quenching. The enhanced EPS production is observed and in line with the significant up-regulation of most key enzymes involved in precursor synthesis and polysaccharides assembling. However, the up-regulation of glycoside hydrolases and most glycosyltransferases, down-regulation of flippases and changed expression of ABC family members indicate the changed EPS composition and synthesis strategy. The resulting increased colloidal polysaccharide is further consumed by associated bacteria whereas protein remains in the co-cultures. These results provide deeper insights into the adverse effects of chemical compounds to microalgae-bacteria and their coadaptation ability.
Collapse
Affiliation(s)
- Jiefeng Tan
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Weihao Xu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Xue Zhai
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Binhua Yan
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
10
|
Corrà S, Checchetto V, Brischigliaro M, Rampazzo C, Bottani E, Gagliani C, Cortese K, De Pittà C, Roverso M, De Stefani D, Bogialli S, Zeviani M, Viscomi C, Szabò I, Costa R. Drosophila Mpv17 forms an ion channel and regulates energy metabolism. iScience 2023; 26:107955. [PMID: 37810222 PMCID: PMC10558772 DOI: 10.1016/j.isci.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/15/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Mutations in MPV17 are a major contributor to mitochondrial DNA (mtDNA) depletion syndromes, a group of inherited genetic conditions due to mtDNA instability. To investigate the role of MPV17 in mtDNA maintenance, we generated and characterized a Drosophila melanogaster Mpv17 (dMpv17) KO model showing that the absence of dMpv17 caused profound mtDNA depletion in the fat body but not in other tissues, increased glycolytic flux and reduced lifespan in starvation. Accordingly, the expression of key genes of glycogenolysis and glycolysis was upregulated in dMpv17 KO flies. In addition, we demonstrated that dMpv17 formed a channel in planar lipid bilayers at physiological ionic conditions, and its electrophysiological hallmarks were affected by pathological mutations. Importantly, the reconstituted channel translocated uridine but not orotate across the membrane. Our results indicate that dMpv17 forms a channel involved in translocation of key metabolites and highlight the importance of dMpv17 in energy homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- Samantha Corrà
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | | | | | | | - Emanuela Bottani
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Cristina Gagliani
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Carlo Viscomi
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- Institute of Neuroscience, National Research Council of Italy (CNR), Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
12
|
Li Y, Zhou H, Feng N, Zheng D, Ma G, Feng S, Liu M, Yu M, Huang X, Huang A. Physiological and transcriptome analysis reveals that prohexadione-calcium promotes rice seedling's development under salt stress by regulating antioxidant processes and photosynthesis. PLoS One 2023; 18:e0286505. [PMID: 37315011 DOI: 10.1371/journal.pone.0286505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Prohexadione-calcium (Pro-Ca) has been proved to play an important role in releasing abiotic stress in plants. However, there is still a lack of research on the mechanism of Pro-Ca alleviating salt stress in rice. To explore the protective effects of Pro-Ca on rice seedlings under salt stress, we investigated the effect of exogenous Pro-Ca on rice seedling under salt stress by conducting the following three treatment experiments: CK (control), S (50 mmol·L-1 NaCl saline solution) and S + Pro-Ca (50 mmol·L-1 NaCl saline solution + 100 mg·L-1 Pro-Ca). The results indicated that Pro-Ca modulated the expression of antioxidant enzyme-related genes (such as SOD2, PXMP2, MPV17, E1.11.1.7). Spraying Pro-Ca under salt stress significantly increased in ascorbate peroxidase, superoxide dismutase, and peroxidase activity by 84.2%, 75.2%, and 3.5% as compared to the salt treatment, as demonstrated by an example of a 24-hour treatment. Malondialdehyde level in Pro-Ca was also dramatically decreased by 5.8%. Moreover, spraying Pro-Ca under salt stress regulated the expression of photosynthesis genes (such as PsbS, PsbD) and chlorophyll metabolism genes (heml, PPD). Compared to salt stress treatment, spraying Pro-Ca under salt stress significantly increased in net photosynthetic rate by 167.2%. In addition, when rice shoots were sprayed with Pro-Ca under salt stress, the Na+ concentration was considerably reduced by 17.1% compared to salt treatment. In conclusion, Pro-Ca regulates antioxidant mechanisms and photosynthesis to aid in the growth of rice seedlings under salt stress.
Collapse
Affiliation(s)
- Yao Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
- South China Center, National Salt-alkali Tolerant Rice Technology Innovation Center, Zhanjiang, Guangdong, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
- South China Center, National Salt-alkali Tolerant Rice Technology Innovation Center, Zhanjiang, Guangdong, China
| | - Guohui Ma
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center, National Salt-alkali Tolerant Rice Technology Innovation Center, Zhanjiang, Guangdong, China
| | - Shengjie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Meiling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Minglong Yu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Xixin Huang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Anqi Huang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Lagies S, Pan D, Mohl DA, Plattner DA, Gentle IE, Kammerer B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells 2023; 12:692. [PMID: 36899826 PMCID: PMC10000845 DOI: 10.3390/cells12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolomics has expanded from cellular to subcellular level to elucidate subcellular compartmentalization. By applying isolated mitochondria to metabolome analysis, the hallmark of mitochondrial metabolites has been unraveled, showing compartment-specific distribution and regulation of metabolites. This method was employed in this work to study a mitochondrial inner membrane protein Sym1, whose human ortholog MPV17 is related to mitochondria DNA depletion syndrome. Gas chromatography-mass spectrometry-based metabolic profiling was combined with targeted liquid chromatography-mass spectrometry analysis to cover more metabolites. Furthermore, we applied a workflow employing ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry with a powerful chemometrics platform, focusing on only significantly changed metabolites. This workflow highly reduced the complexity of acquired data without losing metabolites of interest. Consequently, forty-one novel metabolites were identified in addition to the combined method, of which two metabolites, 4-guanidinobutanal and 4-guanidinobutanoate, were identified for the first time in Saccharomyces cerevisiae. With compartment-specific metabolomics, we identified sym1Δ cells as lysine auxotroph. The highly reduced carbamoyl-aspartate and orotic acid indicate a potential role of the mitochondrial inner membrane protein Sym1 in pyrimidine metabolism.
Collapse
Affiliation(s)
- Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Daqiang Pan
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Pharmaceutical Science, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel A. Mohl
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar A. Plattner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ian E. Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Zaman Q, Khan MA, Sahar K, Rehman G, Khan H, Rehman M, Najumuddin, Ahmad I, Tariq M, Muthaffar OY, Abdulkareem AA, Bibi F, Naseer MI, Faisal MS, Wasif N, Jelani M. Novel Variants in MPV17, PRX, GJB1, and SACS Cause Charcot-Marie-Tooth and Spastic Ataxia of Charlevoix-Saguenay Type Diseases. Genes (Basel) 2023; 14:328. [PMID: 36833258 PMCID: PMC9956329 DOI: 10.3390/genes14020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) and autosomal recessive spastic ataxia of Charlevoix-Saguenay type (ARSACS) are large heterogeneous groups of sensory, neurological genetic disorders characterized by sensory neuropathies, muscular atrophies, abnormal sensory conduction velocities, and ataxia. CMT2EE (OMIM: 618400) is caused by mutations in MPV17 (OMIM: 137960), CMT4F (OMIM: 614895) is caused by PRX (OMIM: 605725), CMTX1 (OMIM: 302800) is caused by mutations in GJB1 (OMIM: 304040), and ARSACS (OMIM: 270550) is caused by mutations in SACS (OMIM: 604490). In this study, we enrolled four families: DG-01, BD-06, MR-01, and ICP-RD11, with 16 affected individuals, for clinical and molecular diagnoses. One patient from each family was analyzed for whole exome sequencing and Sanger sequencing was done for the rest of the family members. Affected individuals of families BD-06 and MR-01 show complete CMT phenotypes and family ICP-RD11 shows ARSACS type. Family DG-01 shows complete phenotypes for both CMT and ARSACS types. The affected individuals have walking difficulties, ataxia, distal limb weakness, axonal sensorimotor neuropathies, delayed motor development, pes cavus, and speech articulations with minor variations. The WES analysis in an indexed patient of family DG-01 identified two novel variants: c.83G>T (p.Gly28Val) in MPV17 and c.4934G>C (p.Arg1645Pro) in SACS. In family ICP-RD11, a recurrent mutation that causes ARSACS, c.262C>T (p.Arg88Ter) in SACS, was identified. Another novel variant, c.231C>A (p.Arg77Ter) in PRX, which causes CMT4F, was identified in family BD-06. In family MR-01, a hemizygous missense variant c.61G>C (p.Gly21Arg) in GJB1 was identified in the indexed patient. To the best of our knowledge, there are very few reports on MPV17, SACS, PRX, and GJB1 causing CMT and ARSACS phenotypes in the Pakistani population. Our study cohort suggests that whole exome sequencing can be a useful tool in diagnosing complex multigenic and phenotypically overlapping genetic disorders such as Charcot-Marie-Tooth disease (CMT) and spastic ataxia of Charlevoix-Saguenay type.
Collapse
Affiliation(s)
- Qaiser Zaman
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Abbas Khan
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Kalsoom Sahar
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Hamza Khan
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Mehwish Rehman
- Department of Zoology, Government Postgraduate College Dargai, Malakand 23060, Pakistan
- Higher Education Department, Government of Khyber Pakhtunkhwa, Peshawar 24550, Pakistan
| | - Najumuddin
- National Center for Bioinformatics, Quid-I-Azam University, Islamabad 45320, Pakistan
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Muhmmad Tariq
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar 25120, Pakistan
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shah Faisal
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar 25120, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University Medical Center, Ulm University, 89081 Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Musharraf Jelani
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar 25120, Pakistan
| |
Collapse
|
16
|
A Drosophila model of the neurological symptoms in Mpv17-related diseases. Sci Rep 2022; 12:22632. [PMID: 36587049 PMCID: PMC9805426 DOI: 10.1038/s41598-022-27329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Mutations in the Mpv17 gene are responsible for MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and Charcot-Marie-Tooth (CMT) disease. Although several models including mouse, zebrafish, and cultured human cells, have been developed, the models do not show any neurological defects, which are often observed in patients. Therefore, we knocked down CG11077 (Drosophila Mpv17; dMpv17), an ortholog of human MPV17, in the nervous system in Drosophila melanogaster and investigated the behavioral and cellular phenotypes. The resulting dMpv17 knockdown larvae showed impaired locomotor activity and learning ability consistent with mitochondrial defects suggested by the reductions in mitochondrial DNA and ATP production and the increases in the levels of lactate and reactive oxygen species. Furthermore, an abnormal morphology of the neuromuscular junction, at the presynaptic terminal, was observed in dMpv17 knockdown larvae. These results reproduce well the symptoms of human diseases and partially reproduce the phenotypes of Mpv17-deficient model organisms. Therefore, we suggest that neuron-specific dMpv17 knockdown in Drosophila is a useful model for investigation of MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and CMT caused by Mpv17 dysfunction.
Collapse
|
17
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Almannai M, El-Hattab AW, Azamian MS, Ali M, Scaglia F. Mitochondrial DNA maintenance defects: potential therapeutic strategies. Mol Genet Metab 2022; 137:40-48. [PMID: 35914366 PMCID: PMC10401187 DOI: 10.1016/j.ymgme.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Mitochondrial DNA (mtDNA) replication depends on the mitochondrial import of hundreds of nuclear encoded proteins that control the mitochondrial genome maintenance and integrity. Defects in these processes result in an expanding group of disorders called mtDNA maintenance defects that are characterized by mtDNA depletion and/or multiple mtDNA deletions with variable phenotypic manifestations. As it applies for mitochondrial disorders in general, current treatment options for mtDNA maintenance defects are limited. Lately, with the development of model organisms, improved understanding of the pathophysiology of these disorders, and a better knowledge of their natural history, the number of preclinical studies and existing and planned clinical trials has been increasing. In this review, we discuss recent preclinical studies and current and future clinical trials concerning potential therapeutic options for the different mtDNA maintenance defects.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
19
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|
20
|
Yi WR, Tu MJ, Yu AX, Lin J, Yu AM. Bioengineered miR-34a modulates mitochondrial inner membrane protein 17 like 2 (MPV17L2) expression toward the control of cancer cell mitochondrial functions. Bioengineered 2022; 13:12489-12503. [PMID: 35579419 PMCID: PMC9276019 DOI: 10.1080/21655979.2022.2076399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-derived microRNAs (miRNAs or miRs) control post-transcriptional gene expression critical for various cellular processes. Recently, we have invented a novel platform technology to achieve high-yield production of fully humanized, bioengineered miRNA agents (hBERAs) for research and development. This study is aimed to produce and utilize a new biologic miR-34a-5p (or miR-34a) molecule, namely, hBERA/miR-34a, to delineate the role of miR-34a-5p in the regulation of mitochondrial functions in human carcinoma cells. Bioengineered hBERA/miR-34a was produced through in vivo fermentation production and purified by anion exchange fast protein liquid chromatography. hEBRA/miR-34a was processed to target miR-34a-5p in human osteosarcoma and lung cancer cells, as determined by selective stem-loop reverse transcription quantitative polymerase chain reaction analysis. The mitochondrial inner membrane protein MPV17 like 2 (MPV17L2) was validated as a direct target for miR-34a-5p by dual luciferase reporter assay. Western blot analysis revealed that bioengineered miR-34a-5p effectively reduced MPV17L2 protein outcomes, leading to much lower levels of respiratory chain Complex I activities and intracellular ATP that were determined with specific assay kits. Moreover, Seahorse Mito Stress Test assay was conducted, and the results showed that biologic miR-34a-5p sharply reduced cancer cell mitochondrial respiration capacity, accompanied by a remarkable increase of oxidative stress and elevated apoptotic cell death, which are manifested by greater levels of reactive oxygen species and selective apoptosis biomarkers, respectively. These results demonstrate the presence and involvement of the miR-34a-5p-MPV17L2 pathway in the control of mitochondrial functions in human carcinoma cells and support the utility of novel bioengineered miRNA molecules for functional studies.
Collapse
Affiliation(s)
- Wan-Rong Yi
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Lin
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
21
|
Hou N, Li C, He J, Liu Y, Yu S, Malnoy M, Mobeen Tahir M, Xu L, Ma F, Guan Q. MdMTA-mediated m 6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. THE NEW PHYTOLOGIST 2022; 234:1294-1314. [PMID: 35246985 DOI: 10.1111/nph.18069] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Sisi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Lunn D, Smith GA, Wallis JG, Browse J. Overexpression mutants reveal a role for a chloroplast MPD protein in regulation of reactive oxygen species during chilling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2666-2681. [PMID: 35084440 PMCID: PMC9015808 DOI: 10.1093/jxb/erac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) contribute to cellular damage in several different contexts, but their role during chilling damage is poorly defined. Chilling sensitivity both limits the distribution of plant species and causes devastating crop losses worldwide. Our screen of chilling-tolerant Arabidopsis (Arabidopsis thaliana) for mutants that suffer chilling damage identified a gene (At4g03410) encoding a chloroplast Mpv17_PMP22 protein, MPD1, with no previous connection to chilling. The chilling-sensitive mpd1-1 mutant is an overexpression allele that we successfully phenocopied by creating transgenic lines with a similar level of MPD1 overexpression. In mammals and yeast, MPD1 homologs are associated with ROS management. In chilling conditions, Arabidopsis overexpressing MPD1 accumulated H2O2 to higher levels than wild-type controls and exhibited stronger induction of ROS response genes. Paraquat application exacerbated chilling damage, confirming that the phenotype occurs due to ROS dysregulation. We conclude that at low temperature increased MPD1 expression results in increased ROS production, causing chilling damage. Our discovery of the effect of MPD1 overexpression on ROS production under chilling stress implies that investigation of the nine other members of the Mpv17_PMP22 family in Arabidopsis may lead to new discoveries regarding ROS signaling and management in plants.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
23
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
24
|
Talker SC, Barut GT, Lischer HE, Rufener R, von Münchow L, Bruggmann R, Summerfield A. Monocyte biology conserved across species: Functional insights from cattle. Front Immunol 2022; 13:889175. [PMID: 35967310 PMCID: PMC9373011 DOI: 10.3389/fimmu.2022.889175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.
Collapse
Affiliation(s)
- Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Stephanie C. Talker,
| | - G. Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heidi E.L. Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
26
|
di Punzio G, Gilberti M, Baruffini E, Lodi T, Donnini C, Dallabona C. A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int J Mol Sci 2021; 22:ijms222212223. [PMID: 34830106 PMCID: PMC8621932 DOI: 10.3390/ijms222212223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.
Collapse
|
27
|
Holmgren M, Sheets L. Influence of Mpv17 on Hair-Cell Mitochondrial Homeostasis, Synapse Integrity, and Vulnerability to Damage in the Zebrafish Lateral Line. Front Cell Neurosci 2021; 15:693375. [PMID: 34413725 PMCID: PMC8369198 DOI: 10.3389/fncel.2021.693375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Noise exposure is particularly stressful to hair-cell mitochondria, which must produce enough energy to meet high metabolic demands as well as regulate local intracellular Ca2+ concentrations. Mitochondrial Inner Membrane Protein 17 (Mpv17) functions as a non-selective cation channel and plays a role in maintaining mitochondrial homeostasis. In zebrafish, hair cells in mpv17a9/a9 mutants displayed elevated levels of reactive oxygen species (ROS), elevated mitochondrial calcium, hyperpolarized transmembrane potential, and greater vulnerability to neomycin, indicating impaired mitochondrial function. Using a strong water current to overstimulate hair cells in the zebrafish lateral line, we observed mpv17a9/a9 mutant hair cells were more vulnerable to morphological disruption than wild type (WT) siblings simultaneously exposed to the same stimulus. To determine the role of mitochondrial homeostasis on hair-cell synapse integrity, we surveyed synapse number in mpv17a9/a9 mutants and WT siblings as well as the sizes of presynaptic dense bodies (ribbons) and postsynaptic densities immediately following stimulus exposure. We observed mechanically injured mpv17a9/a9 neuromasts were not more vulnerable to synapse loss; they lost a similar number of synapses per hair cell relative to WT. Additionally, we quantified the size of hair cell pre- and postsynaptic structures following stimulation and observed significantly enlarged WT postsynaptic densities, yet relatively little change in the size of mpv17a9/a9 postsynaptic densities following stimulation. These results suggest chronically impaired hair-cell mitochondrial activity influences postsynaptic size under homeostatic conditions but does not exacerbate synapse loss following mechanical injury.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
28
|
Sperl LE, Hagn F. NMR Structural and Biophysical Analysis of the Disease-Linked Inner Mitochondrial Membrane Protein MPV17. J Mol Biol 2021; 433:167098. [PMID: 34116124 DOI: 10.1016/j.jmb.2021.167098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8-12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.
Collapse
Affiliation(s)
- Laura E Sperl
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
29
|
Jacinto S, Guerreiro P, de Oliveira RM, Cunha-Oliveira T, Santos MJ, Grazina M, Rego AC, Outeiro TF. MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Front Cell Neurosci 2021; 15:641264. [PMID: 33815063 PMCID: PMC8011494 DOI: 10.3389/fncel.2021.641264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
Collapse
Affiliation(s)
- Sandra Jacinto
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Neurologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central-EPE, Lisboa, Portugal
| | - Patrícia Guerreiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Switch Laboratory, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Katholiek Universiteit (KU), Leuven, Belgium
| | - Rita Machado de Oliveira
- CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Maria João Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Manuela Grazina
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
30
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
31
|
Cheng L, Jain D, Kakar S, Torbenson MS, Wu TT, Yeh MM. Hepatocellular neoplasms arising in genetic metabolic disorders: steatosis is common in both the tumor and background liver. Hum Pathol 2020; 108:93-99. [PMID: 33245984 DOI: 10.1016/j.humpath.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023]
Abstract
Hepatocellular neoplasms can develop in multiple genetic metabolic disorders. While there have been rare case reports, clinical and pathological characterizations have not been systematically performed. We conducted a retrospective study in 9 patients with these rare genetic metabolic disorders, including glycogen storage disease type 1, ornithine carbamyl transferase deficiency, hereditary tyrosinemia type 1, and Navajo neurohepatopathy, who developed hepatocellular neoplasms. Our results show that steatosis is a common finding in both tumor (6/9 cases, 67%) and background liver parenchyma (8/9 cases, 89%), underlying a possible role for steatosis in tumorigenesis in these genetic metabolic disorders. Our findings also raise a consideration of underlying genetic metabolic disorder when young patients with hepatocellular neoplasm show steatosis in both the tumor and background liver.
Collapse
Affiliation(s)
- Lin Cheng
- Rush University Medical Center, Department of Pathology, Chicago, IL 60612, United States
| | - Dhanpat Jain
- Yale University, Department of Pathology, New Haven, CT 06510, United States
| | - Sanjay Kakar
- University of California, Department of Pathology, San Francisco, CA 94143, United States
| | | | - Tsung-Teh Wu
- Mayo Clinic, Department of Pathology, Rochester, MN 55905, United States
| | - Matthew M Yeh
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA 98195, United States; University of Washington, Department of Medicine, Seattle, WA 98195, United States.
| |
Collapse
|
32
|
Xiu Y, Field MS. The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative Phosphorylation, and Cellular Function. Curr Dev Nutr 2020; 4:nzaa153. [PMID: 33134792 PMCID: PMC7584446 DOI: 10.1093/cdn/nzaa153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is compartmentalized within human cells to the cytosol, nucleus, and mitochondria. The recent identifications of mitochondria-specific, folate-dependent thymidylate [deoxythymidine monophosphate (dTMP)] synthesis together with discoveries indicating the critical role of mitochondrial FOCM in cancer progression have renewed interest in understanding this metabolic pathway. The goal of this narrative review is to summarize recent advances in the field of one-carbon metabolism, with an emphasis on the biological importance of mitochondrial FOCM in maintaining mitochondrial DNA integrity and mitochondrial function, as well as the reprogramming of mitochondrial FOCM in cancer. Elucidation of the roles and regulation of mitochondrial FOCM will contribute to a better understanding of the mechanisms underlying folate-associated pathologies.
Collapse
Affiliation(s)
- Yuwen Xiu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Luna-Sanchez M, Benincá C, Cerutti R, Brea-Calvo G, Yeates A, Scorrano L, Zeviani M, Viscomi C. Opa1 Overexpression Protects from Early-Onset Mpv17 -/--Related Mouse Kidney Disease. Mol Ther 2020; 28:1918-1930. [PMID: 32562616 PMCID: PMC7403474 DOI: 10.1016/j.ymthe.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17-/- mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17-/- animals as a late-onset clinical feature (after 12-18 months of life). In contrast, Mpv17-/- animals from this new "mixed" strain died at 8-9 weeks after birth because of severe kidney failure However, Mpv17-/-::Opa1tg mice lived much longer than Mpv17-/- littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17-/-::Opa1tg than in Mpv17-/- kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17-/-::Opa1tg versus Mpv17-/- kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes.
Collapse
Affiliation(s)
- Marta Luna-Sanchez
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cristiane Benincá
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología de Desarrollo and CIBERER, ISCIII, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Anna Yeates
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Luca Scorrano
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Neurosciences, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
34
|
Madungwe NB, Feng Y, Imam Aliagan A, Tombo N, Kaya F, Bopassa JC. Inner mitochondrial membrane protein MPV17 mutant mice display increased myocardial injury after ischemia/reperfusion. Am J Transl Res 2020; 12:3412-3428. [PMID: 32774709 PMCID: PMC7407695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
MPV17 is an inner mitochondrial membrane protein whose mutation results in mitochondrial DNA (mtDNA) depletion diseases such as neurohepatopathy. MPV17 is expressed in several organs including the liver and kidneys. Here, we investigated its role and mechanism of action in cardiac ischemia/reperfusion (I/R) injury. Using isolated hearts from wild type and Mpv17 mutant (Mpv17mut) mice, we found that mtDNA levels and normal cardiac function were similar between the groups. Furthermore, reactive oxygen species (ROS) generation, mitochondrial morphology, and calcium levels required to trigger mitochondrial permeability transition pore (mPTP) opening were all similar in normal/non-ischemic animals. However, following I/R, we found that mutant mice had poorer cardiac functional recovery and exhibited more mitochondrial structural damage. We also found that after I/R, Mpv17mut heart mitochondria did not produce more ROS than wild type hearts but that calcium retention capacity was gravely compromised. Using immunoprecipitation and mass spectrometry, we identified ATP synthase, Cyclophilin D, MIC60 and GRP75 as proteins critical to mitochondrial cristae organization and calcium handling that interact with MPV17, and this interaction is reduced by I/R. Together our results suggest that MPV17 has a protective function in the heart and is necessary for recovery following insults to the heart.
Collapse
Affiliation(s)
- Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX 78229, USA
- Department of Biomedical Engineering, University of Texas at San AntonioTX 78249, USA
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX 78229, USA
| | - Abdulhafiz Imam Aliagan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX 78229, USA
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX 78229, USA
| | - Ferdinand Kaya
- Department of Ophthalmology, University of California DavisCA 95616, USA
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San AntonioTX 78229, USA
| |
Collapse
|
35
|
Wi J, Na Y, Yang E, Lee JH, Jeong WJ, Choi DW. Arabidopsis AtMPV17, a homolog of mice MPV17, enhances osmotic stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1341-1348. [PMID: 32647452 PMCID: PMC7326884 DOI: 10.1007/s12298-020-00834-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/28/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Mutation in the human MPV17 gene or the functional yeast orthologue SYM1 result in mitochondrial DNA depletion. MPV17 homologs are also found in plants including Arabidopsis, but the function of these genes remain unclear. Arabidopsis genome contains 10 MPV17 homologs. Among these, the AtMPV17 protein was localized in mitochondria as MPV17 and SYM1. The yeast sym1 knock out mutant cannot grow on ethanol-containing medium at 37 °C. AtMPV17 complements the ethanol growth defection of sym1 yeast MPV17 ortholog cells at 37 °C, suggesting that AtMPV17 is a functional ortholog of SYM1. AtMPV17 knock out mutant, atmpv17 show similar growth and seed development to those of the wild-type plant on normal growth condition. However, atmpv17 mutant is more sensitive to ABA and mannitol during germination and seedling growth than wild type plants. Growth retardation of the atmpv17 knock out mutant on medium containing ABA and mannitol is complemented by AtMPV17 overexpression. These results suggest that the AtMPV17 contributes to osmotic stress tolerance in plants.
Collapse
Affiliation(s)
- Jiwoong Wi
- Department of Biology Education, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Yeonju Na
- Department of Biology Education, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eunju Yang
- Department of Biology Education, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jung-Hyun Lee
- Department of Biology Education, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Dong-Woog Choi
- Department of Biology Education, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
36
|
Canonne M, Wanet A, Nguyen TTA, Khelfi A, Ayama-Canden S, Van Steenbrugge M, Fattaccioli A, Sokal E, Najimi M, Arnould T, Renard P. MPV17 does not control cancer cell proliferation. PLoS One 2020; 15:e0229834. [PMID: 32155188 PMCID: PMC7064194 DOI: 10.1371/journal.pone.0229834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
MPV17 is described as a mitochondrial inner membrane channel. Although its function remains elusive, mutations in the MPV17 gene result in hepato-cerebral mitochondrial DNA depletion syndrome in humans. In this study, we show that MPV17 silencing does not induce depletion in mitochondrial DNA content in cancer cells. We also show that MPV17 does not control cancer cell proliferation despite the fact that we initially observed a reduced proliferation rate in five MPV17-silenced cancer cell lines with two different shRNAs. However, shRNA-mediated MPV17 knockdown performed in this work provided misguiding results regarding the resulting proliferation phenotype and only a rescue experiment was able to shed definitive light on the implication of MPV17 in cancer cell proliferation. Our results therefore emphasize the caution that is required when scientific conclusions are drawn from a work based on lentiviral vector-based gene silencing and clearly demonstrate the need to systematically perform a rescue experiment in order to ascertain the specific nature of the experimental results.
Collapse
Affiliation(s)
- Morgane Canonne
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thuy Truong An Nguyen
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Alexis Khelfi
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Sophie Ayama-Canden
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
- * E-mail:
| |
Collapse
|
37
|
Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 2020; 295:1369-1384. [PMID: 31871049 PMCID: PMC6996878 DOI: 10.1074/jbc.ra119.011244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Indexed: 12/26/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) affects blood pressure. In addition, ACE overexpression in myeloid cells increases their immune function. Using MS and chemical analysis, we identified marked changes of intermediate metabolites in ACE-overexpressing macrophages and neutrophils, with increased cellular ATP (1.7-3.0-fold) and Krebs cycle intermediates, including citrate, isocitrate, succinate, and malate (1.4-3.9-fold). Increased ATP is due to ACE C-domain catalytic activity; it is reversed by an ACE inhibitor but not by an angiotensin II AT1 receptor antagonist. In contrast, macrophages from ACE knockout (null) mice averaged only 28% of the ATP levels found in WT mice. ACE overexpression does not change cell or mitochondrial size or number. However, expression levels of the electron transport chain proteins NDUFB8 (complex I), ATP5A, and ATP5β (complex V) are significantly increased in macrophages and neutrophils, and COX1 and COX2 (complex IV) are increased in macrophages overexpressing ACE. Macrophages overexpressing ACE have increased mitochondrial membrane potential (24% higher), ATP production rates (29% higher), and maximal respiratory rates (37% higher) compared with WT cells. Increased cellular ATP underpins increased myeloid cell superoxide production and phagocytosis associated with increased ACE expression. Myeloid cells overexpressing ACE indicate the existence of a novel pathway in which myeloid cell function can be enhanced, with a key feature being increased cellular ATP.
Collapse
Affiliation(s)
- Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Weston R Spivia
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zhenzi Peng
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Sarah J Parker
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095
| | - Jennifer E Van Eyk
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
38
|
Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49895-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Platta HW, Erdmann R. The novel peroxin Pex37: the Pxmp2 family joins the peroxisomal fission machinery. FEBS J 2019; 287:1737-1741. [PMID: 31858686 DOI: 10.1111/febs.15153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022]
Abstract
Peroxisomes can undergo fission during cell division, followed by their segregation between mother and daughter cells. Despite species-specific variations in the molecular composition of the fission machinery, the central mechanistic factors can be assigned to two groups: the Pex11 family and the dynamin-related protein family. In a recent study, Singh et al. describe the involvement of a member of the Pxmp2-related protein family in peroxisome fission: the novel peroxin Pex37.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Germany
| |
Collapse
|
40
|
Singh R, Manivannan S, Krikken AM, de Boer R, Bordin N, Devos DP, van der Klei IJ. Hansenula polymorpha Pex37 is a peroxisomal membrane protein required for organelle fission and segregation. FEBS J 2019; 287:1742-1757. [PMID: 31692262 PMCID: PMC7318627 DOI: 10.1111/febs.15123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Here, we describe a novel peroxin, Pex37, in the yeast Hansenula polymorpha. H. polymorpha Pex37 is a peroxisomal membrane protein, which belongs to a protein family that includes, among others, the Neurospora crassa Woronin body protein Wsc, the human peroxisomal membrane protein PXMP2, the Saccharomyces cerevisiae mitochondrial inner membrane protein Sym1, and its mammalian homologue MPV17. We show that deletion of H. polymorpha PEX37 does not appear to have a significant effect on peroxisome biogenesis or proliferation in cells grown at peroxisome‐inducing growth conditions (methanol). However, the absence of Pex37 results in a reduction in peroxisome numbers and a defect in peroxisome segregation in cells grown at peroxisome‐repressing conditions (glucose). Conversely, overproduction of Pex37 in glucose‐grown cells results in an increase in peroxisome numbers in conjunction with a decrease in their size. The increase in numbers in PEX37‐overexpressing cells depends on the dynamin‐related protein Dnm1. Together our data suggest that Pex37 is involved in peroxisome fission in glucose‐grown cells. Introduction of human PXMP2 in H. polymorpha pex37 cells partially restored the peroxisomal phenotype, indicating that PXMP2 represents a functional homologue of Pex37. H.polymorpha pex37 cells did not show aberrant growth on any of the tested carbon and nitrogen sources that are metabolized by peroxisomal enzymes, suggesting that Pex37 may not fulfill an essential function in transport of these substrates or compounds required for their metabolism across the peroxisomal membrane.
Collapse
Affiliation(s)
- Ritika Singh
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Selvambigai Manivannan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Nicola Bordin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain.,Structural and Molecular Biology, University College London, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| |
Collapse
|
41
|
Dimou S, Kourkoulou A, Amillis S, Percudani R, Diallinas G. The peroxisomal SspA protein is redundant for purine utilization but essential for peroxisome localization in septal pores in Aspergillus nidulans. Fungal Genet Biol 2019; 132:103259. [PMID: 31394175 DOI: 10.1016/j.fgb.2019.103259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
In an in silico search for correlated gene loss with fungal peroxisomal uric acid oxidase (UOX), we identified PMP22-like proteins, some of which function as promiscuous channels in organellar membranes. To investigate whether PMP22 channels have a role in peroxisomal uric acid transport and catabolism, we functionally analyzed the closest homologue in Aspergillus nidulans, named SspA. We confirmed that SspA is a peroxisomal membrane protein that co-localizes significantly with PTS1-tagged mRFP, UOX or HexA, the latter considered a protein of Woronin bodies (WB), organelles originating from peroxisomes that dynamically plug septal pores in ascomycetes. Our results suggest that in A. nidulans, unlike some other ascomycetes, there is no strict protein segregation of peroxisomal and WB-specific proteins. Importantly, genetic deletion of sspA, but not of hexA, led to lack of peroxisomal localization at septal pores, suggesting that SspA is a key factor for septal pore functioning. Additionally, ΔsspA resulted in increased sensitivity to oxidative stress, apparently as a consequence of not only the inability to plug septal pores, but also a recorded reduction in peroxisome biogenesis. However, deleting sspA had no effect on uric acid or purine utilization, as we hypothesized, a result also in line with the observation that expression of SspA was not affected by regulatory mutants and conditions known to control purine catabolic enzymes. Our results are discussed within the framework of previous studies of SspA homologues in other fungi, as well as, the observed gene losses of PMP22 and peroxisomal uric acid oxidase.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece.
| |
Collapse
|
42
|
Angireddy R, Kazmi HR, Srinivasan S, Sun L, Iqbal J, Fuchs SY, Guha M, Kijima T, Yuen T, Zaidi M, Avadhani NG. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages. FASEB J 2019; 33:9167-9181. [PMID: 31063702 PMCID: PMC6662975 DOI: 10.1096/fj.201900010rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
The mitochondria-to-nucleus retrograde signaling (MtRS) pathway aids in cellular adaptation to stress. We earlier reported that the Ca2+- and calcineurin-dependent MtRS induces macrophage differentiation to bone-resorbing osteoclasts. However, mechanisms through which macrophages sense and respond to cellular stress remain unclear. Here, we induced mitochondrial stress in macrophages by knockdown (KD) of subunits IVi1 or Vb of cytochrome c oxidase (CcO). Whereas both IVi1 and Vb KD impair CcO activity, IVi1 KD cells produced higher levels of cellular and mitochondrial reactive oxygen species with increased glycolysis. Additionally, IVi1 KD induced the activation of MtRS factors NF-κB, NFAT2, and C/EBPδ as well as inflammatory cytokines, NOS 2, increased phagocytic activity, and a greater osteoclast differentiation potential at suboptimal RANK-L concentrations. The osteoclastogenesis in IVi1 KD cells was reversed fully with an IL-6 inhibitor LMT-28, whereas there was minimal rescue of the enhanced phagocytosis in these cells. In agreement with our findings in cultured macrophages, primary bone marrow-derived macrophages from MPV17-/- mice, a model for mitochondrial dysfunction, also showed higher propensity for osteoclast formation. This is the first report showing that CcO dysfunction affects inflammatory pathways, phagocytic function, and osteoclastogenesis.-Angireddy, R., Kazmi, H. R., Srinivasan, S., Sun, L., Iqbal, J., Fuchs, S. Y., Guha, M., Kijima, T., Yuen, T., Zaidi, M., Avadhani, N. G. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hasan Raza Kazmi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takashi Kijima
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Charton L, Plett A, Linka N. Plant peroxisomal solute transporter proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:817-835. [PMID: 30761734 PMCID: PMC6767901 DOI: 10.1111/jipb.12790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid β-oxidation, photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle. This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids (ABC transporter) and large cofactor molecules (carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300-400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane. In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.
Collapse
Affiliation(s)
- Lennart Charton
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Anastasija Plett
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| |
Collapse
|
44
|
Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial Metabolism in Major Neurological Diseases. Cells 2018; 7:E229. [PMID: 30477120 PMCID: PMC6316877 DOI: 10.3390/cells7120229] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell's ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation⁻functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Grant L Austin
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lyndsay E A Young
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | - Ramon Sun
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
45
|
Jing R, Corbett JL, Cai J, Beeson GC, Beeson CC, Chan SS, Dimmock DP, Lazcares L, Geurts AM, Lemasters JJ, Duncan SA. A Screen Using iPSC-Derived Hepatocytes Reveals NAD + as a Potential Treatment for mtDNA Depletion Syndrome. Cell Rep 2018; 25:1469-1484.e5. [PMID: 30404003 PMCID: PMC6289059 DOI: 10.1016/j.celrep.2018.10.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Patients with mtDNA depletion syndrome 3 (MTDPS3) often die as children from liver failure caused by severe reduction in mtDNA content. The identification of treatments has been impeded by an inability to culture and manipulate MTDPS3 primary hepatocytes. Here we generated DGUOK-deficient hepatocyte-like cells using induced pluripotent stem cells (iPSCs) and used them to identify drugs that could improve mitochondrial ATP production and mitochondrial function. Nicotinamide adenine dinucleotide (NAD) was found to improve mitochondrial function in DGUOK-deficient hepatocyte-like cells by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). NAD treatment also improved ATP production in MTDPS3-null rats and in hepatocyte-like cells that were deficient in ribonucleoside-diphosphate reductase subunit M2B (RRM2B), suggesting that it could be broadly effective. Our studies reveal that DGUOK-deficient iPSC-derived hepatocytes recapitulate the pathophysiology of MTDPS3 in culture and can be used to identify therapeutics for mtDNA depletion syndromes.
Collapse
Affiliation(s)
- Ran Jing
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - James L Corbett
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jun Cai
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Sherine S Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - David P Dimmock
- Human Molecular Genetics Center and Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Rady Children's Institute for Genomic Medicine, 3020 Children's Way, San Diego, CA 92123, USA
| | - Lynn Lazcares
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
46
|
Alonzo JR, Venkataraman C, Field MS, Stover PJ. The mitochondrial inner membrane protein MPV17 prevents uracil accumulation in mitochondrial DNA. J Biol Chem 2018; 293:20285-20294. [PMID: 30385507 DOI: 10.1074/jbc.ra118.004788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/24/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial inner membrane protein MPV17 is a protein of unknown function that is associated with mitochondrial DNA (mtDNA)-depletion syndrome (MDS). MPV17 loss-of-function has been reported to result in tissue-specific nucleotide pool imbalances, which can occur in states of perturbed folate-mediated one-carbon metabolism (FOCM), but MPV17 has not been directly linked to FOCM. FOCM is a metabolic network that provides one-carbon units for the de novo synthesis of purine and thymidylate nucleotides (e.g. dTMP) for both nuclear DNA (nuDNA) and mtDNA replication. In this study, we investigated the impact of reduced MPV17 expression on markers of impaired FOCM in HeLa cells. Depressed MPV17 expression reduced mitochondrial folate levels by 43% and increased uracil levels, a marker of impaired dTMP synthesis, in mtDNA by 3-fold. The capacity of mitochondrial de novo and salvage pathway dTMP biosynthesis was unchanged by the reduced MPV17 expression, but the elevated levels of uracil in mtDNA suggested that other sources of mitochondrial dTMP are compromised in MPV17-deficient cells. These results indicate that MPV17 provides a third dTMP source, potentially by serving as a transporter that transfers dTMP from the cytosol to mitochondria to sustain mtDNA synthesis. We propose that MPV17 loss-of-function and related hepatocerebral MDS are linked to impaired FOCM in mitochondria by providing insufficient access to cytosolic dTMP pools and by severely reducing mitochondrial folate pools.
Collapse
Affiliation(s)
- Judith R Alonzo
- From the Graduate Field of Biochemistry, Molecular, and Cellular Biology and
| | - Chantel Venkataraman
- the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Martha S Field
- the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Patrick J Stover
- From the Graduate Field of Biochemistry, Molecular, and Cellular Biology and; the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853.
| |
Collapse
|
47
|
Gilberti M, Baruffini E, Donnini C, Dallabona C. Pathological alleles of MPV17 modeled in the yeast Saccharomyces cerevisiae orthologous gene SYM1 reveal their inability to take part in a high molecular weight complex. PLoS One 2018; 13:e0205014. [PMID: 30273399 PMCID: PMC6166979 DOI: 10.1371/journal.pone.0205014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA depletion syndromes (MDDS) are a genetically and clinically heterogeneous group of human diseases caused by mutations in nuclear genes and characterized by a severe reduction in mitochondrial DNA (mtDNA) copy number leading to impaired energy production in affected tissues and organs. Mutations in the MPV17 gene, whose role is still elusive, were described as cause of the hepatocerebral form of MDDS and Navajo neuro-hepathopathy. The high degree of conservation observed between MPV17 and its yeast homolog SYM1 made the latter a good model for the study of the pathology. Here, we used Saccharomyces cerevisiae to elucidate the molecular consequences of seven MPV17 missense mutations identified in patients and localized in different protein domains. The phenotypic analysis of the appropriate sym1 mutant strains created demonstrated deleterious effect for all mutations regarding OXPHOS metabolism and mtDNA stability. We deepened the pathogenic effect of the mutations by investigating whether they prevented the correct protein localization into the mitochondria or affected the stability of the proteins. All the Sym1 mutant proteins correctly localized into the mitochondria and only one mutation predominantly affects protein stability. All the other mutations compromised the formation of the high molecular weight complex of unknown composition, previously identified both in yeast, cell cultures and mouse tissues, as demonstrated by the consistent fraction of the Sym1 mutant proteins found free or in not fully assembled complex, strengthening its role as protein forming part of a high molecular weight complex.
Collapse
Affiliation(s)
- Micol Gilberti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- * E-mail:
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
48
|
Meldau S, De Lacy R, Riordan G, Goddard E, Pillay K, Fieggen K, Marais A, Van der Watt G. Identification of a single MPV17 nonsense-associated altered splice variant in 24 South African infants with mitochondrial neurohepatopathy. Clin Genet 2018; 93:1093-1096. [DOI: 10.1111/cge.13208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- S. Meldau
- Division of Chemical Pathology, Department of Pathology, Groote Schuur and Red Cross War Memorial Children's Hospital; University of Cape Town and National Health Laboratory Service; Cape Town South Africa
| | - R.J. De Lacy
- Division of Paediatric Gastroenterology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town; Cape Town South Africa
| | - G.T.M. Riordan
- Division of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town; Cape Town South Africa
| | - E.A. Goddard
- Division of Paediatric Gastroenterology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital; University of Cape Town; Cape Town South Africa
| | - K. Pillay
- Division of Anatomical Pathology, Department of Pathology, Red Cross War Memorial Children's Hospital; University of Cape Town and National Health Laboratory Service; Cape Town South Africa
| | - K.J. Fieggen
- Division of Human Genetics, Department of Medicine, Groote Schuur Hospital; University of Cape Town; Cape Town South Africa
| | - A.D. Marais
- Division of Chemical Pathology, Department of Pathology, Groote Schuur and Red Cross War Memorial Children's Hospital; University of Cape Town and National Health Laboratory Service; Cape Town South Africa
| | - G.F. Van der Watt
- Division of Chemical Pathology, Department of Pathology, Groote Schuur and Red Cross War Memorial Children's Hospital; University of Cape Town and National Health Laboratory Service; Cape Town South Africa
| |
Collapse
|
49
|
Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet 2018; 59:43-57. [PMID: 29344903 PMCID: PMC5799321 DOI: 10.1007/s13353-017-0424-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are defined by a respiratory chain dysfunction and in most of the cases manifest as multisystem disorders with predominant expression in muscles and nerves and may be caused by mutations in mitochondrial (mtDNA) or nuclear (nDNA) genomes. Most of the proteins involved in respiratory chain function are nuclear encoded, although 13 subunits of respiratory chain complexes (together with 2 rRNAs and 22 tRNAs necessary for their translation) encoded by mtDNA are essential for cell function. nDNA encodes not only respiratory chain subunits but also all the proteins responsible for mtDNA maintenance, especially those involved in replication, as well as other proteins necessary for the transcription and copy number control of this multicopy genome. Mutations in these genes can cause secondary instability of the mitochondrial genome in the form of depletion (decreased number of mtDNA molecules in the cell), vast multiple deletions or accumulation of point mutations which in turn leads to mitochondrial diseases inherited in a Mendelian fashion. The list of genes involved in mitochondrial DNA maintenance is long, and still incomplete.
Collapse
|
50
|
Shvetsova AN, Mennerich D, Kerätär JM, Hiltunen JK, Kietzmann T. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription. Redox Biol 2017; 12:1052-1061. [PMID: 28531964 PMCID: PMC5440747 DOI: 10.1016/j.redox.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS). Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α). While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC) indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR), and cells lacking manganese superoxide dismutase (MnSOD) showed a reduced induction of HIF-1α under long-term (20h) hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle contribute differently to HIF-1α regulation by affecting HIF-1α degradation and HIF-1α transcription where ROS play not a major role.
Collapse
Affiliation(s)
- Antonina N Shvetsova
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Juha M Kerätär
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|