1
|
Nouri Z, Sarmadi A, Narrei S, Kianersi H, Kianersi F, Tabatabaiefar MA. Clinical characterizations and molecular genetic study of two co-segregating variants in PDZD7 and PDE6C genes leading simultaneously to non-syndromic hearing loss and achromatopsia. BMC Med Genomics 2024; 17:173. [PMID: 38956522 PMCID: PMC11218353 DOI: 10.1186/s12920-024-01942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Autosomal recessive non-syndromic hearing loss (NSHL) and cone dystrophies (CODs) are highly genetically and phenotypically heterogeneous disorders. In this study, we applied the whole exome sequencing (WES) to find the cause of HL and COD in an Iranian consanguineous family with three affected individuals. METHODS Three members from an Iranian consanguineous family who were suffering from NSHL and visual impairment were ascertained in this study. Comprehensive clinical evaluations and genetic analysis followed by bioinformatic and co-segregation studies were performed to diagnose the cause of these phenotypes. Data were collected from 2020 to 2022. RESULTS All cases showed congenital bilateral NSHL, decreased visual acuity, poor color discrimination, photophobia and macular atrophy. Moreover, cornea, iris and anterior vitreous were within normal limit in both eyes, decreased foveal sensitivity, central scotoma and generalized depression of visual field were seen in three cases. WES results showed two variants, a novel null variant (p.Trp548Ter) in the PDE6C gene causing COD type 4 (Achromatopsia) and a previously reported variant (p.Ile84Thr) in the PDZD7 gene causing NSHL. Both variants were found in the cis configuration on chromosome 10 with a genetic distance of about 8.3 cM, leading to their co-inheritance. However, two diseases could appear independently in subsequent generations due to crossover during meiosis. CONCLUSIONS Here, we could successfully determine the etiology of a seemingly complex phenotype in two adjacent genes. We identified a novel variant in the PDE6C gene, related to achromatopsia. Interestingly, this variant could cooperatively cause visual disorders: cone dystrophy and cone-rod dystrophy.
Collapse
Affiliation(s)
- Zahra Nouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akram Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Narrei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Research and Development, Harmonic Medical Genetics Lab, Isfahan, Iran
| | - Hamidreza Kianersi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzan Kianersi
- Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
2
|
AitRaise I, Amalou G, Redouane S, Charoute H, Snoussi K, Abdelghaffar H, Bonnet C, Petit C, Barakat A. Novel pathogenic WHRN variant causing hearing loss in a moroccan family. Mol Biol Rep 2023; 50:10663-10669. [PMID: 37924449 DOI: 10.1007/s11033-023-08901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES The most prevalent sensory disease in humans is deafness. A variety of genes have been linked to hearing loss, which can either be isolated (non-syndromic) or associated with lesions in other organs (syndromic). It has been discovered that WHRN variants are responsible for non-syndromic hearing loss and Usher syndrome type II. METHODS AND RESULTS Exome sequencing in a consanguineous Moroccan patient with severe hearing loss identified a single homozygous mutation c.619G > T; p.Ala207Ser in WHRN, encoding a cytoskeletal scaffold protein that binds membrane protein complexes to the cytoskeleton in ocular photoreceptors and ear hair cell stereocilia. Bioinformatics methods and molecular dynamic modeling were able to predict the pathogenic implications of this variation. CONCLUSION We used whole exome sequencing to find a homozygous WHRN gene variant in a Moroccan family. Numerous bioinformatics methods predict that this modification might result in a change in the WHRN protein's structure.
Collapse
Affiliation(s)
- Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Salaheddine Redouane
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Hicham Charoute
- Research unit of epidemiology, biostatistics and bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Khalid Snoussi
- Audition center, Cheikh Khalifa International University Hospital, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, Paris, F-75012, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, Paris, F-75012, France
- Collège de France, Paris, F-75005, France
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
| |
Collapse
|
3
|
Guan Y, Du HB, Yang Z, Wang YZ, Ren R, Liu WW, Zhang C, Zhang JH, An WT, Li NN, Zeng XX, Li J, Sun YX, Wang YF, Yang F, Yang J, Xiong W, Yu X, Chai RJ, Tu XM, Sun JP, Xu ZG. Deafness-Associated ADGRV1 Mutation Impairs USH2A Stability through Improper Phosphorylation of WHRN and WDSUB1 Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205993. [PMID: 37066759 PMCID: PMC10238197 DOI: 10.1002/advs.202205993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Indexed: 06/04/2023]
Abstract
The ankle-link complex (ALC) consists of USH2A, WHRN, PDZD7, and ADGRV1 and plays an important role in hair cell development. At present, its architectural organization and signaling role remain unclear. By establishing Adgrv1 Y6236fsX1 mutant mice as a model of the deafness-associated human Y6244fsX1 mutation, the authors show here that the Y6236fsX1 mutation disrupts the interaction between adhesion G protein-coupled receptor V subfamily member 1 (ADGRV1) and other ALC components, resulting in stereocilia disorganization and mechanoelectrical transduction (MET) deficits. Importantly, ADGRV1 inhibits WHRN phosphorylation through regional cAMP-PKA signaling, which in turn regulates the ubiquitination and stability of USH2A via local signaling compartmentalization, whereas ADGRV1 Y6236fsX1 does not. Yeast two-hybrid screening identified the E3 ligase WDSUB1 that binds to WHRN and regulates the ubiquitination of USH2A in a WHRN phosphorylation-dependent manner. Further FlAsH-BRET assay, NMR spectrometry, and mutagenesis analysis provided insights into the architectural organization of ALC and interaction motifs at single-residue resolution. In conclusion, the present data suggest that ALC organization and accompanying local signal transduction play important roles in regulating the stability of the ALC.
Collapse
Affiliation(s)
- Ying Guan
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Hai-Bo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Yu-Zhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jia-Hai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Wen-Tao An
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Na-Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Xiao-Xue Zeng
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Yi-Xiao Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Yan-Fei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ren-Jie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiao-Ming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
4
|
Mathur PD, Zou J, Neiswanger G, Zhu D, Wang Y, Almishaal AA, Vashist D, Hammond HK, Park AH, Yang J. Adenylyl cyclase 6 plays a minor role in the mouse inner ear and retina. Sci Rep 2023; 13:7075. [PMID: 37127773 PMCID: PMC10151359 DOI: 10.1038/s41598-023-34361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Adenylyl cyclase 6 (AC6) synthesizes second messenger cAMP in G protein-coupled receptor (GPCR) signaling. In cochlear hair cells, AC6 distribution relies on an adhesion GPCR, ADGRV1, which is associated with Usher syndrome (USH), a condition of combined hearing and vision loss. ADGRV1 is a component of the USH type 2 (USH2) protein complex in hair cells and photoreceptors. However, the role of AC6 in the inner ear and retina has not been explored. Here, we found that AC6 distribution in hair cells depends on the USH2 protein complex integrity. Several known AC6 regulators and effectors, which were previously reported to participate in ADGRV1 signaling in vitro, are localized to the stereociliary compartments that overlap with AC6 distribution in hair cells. In young AC6 knockout (Adcy6-/-) mice, the activity of cAMP-dependent protein kinase, but not Akt kinase, is altered in cochleas, while both kinases are normal in vestibular organs. Adult Adcy6-/- mice however exhibit normal hearing function. AC6 is expressed in mouse retinas but rarely in photoreceptors. Adcy6-/- mice have slightly enhanced photopic but normal scotopic vision. Therefore, AC6 may participate in the ADGRV1 signaling in hair cells but AC6 is not essential for cochlear and retinal development and maintenance.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
- Vecprobio Inc., San Diego, CA, 92126, USA
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Grace Neiswanger
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Daniel Zhu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Yong Wang
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Ali A Almishaal
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Speech-Language Pathology and Audiology, College of Applied Medical Sciences, University of Hail, Hail, 81451, Saudi Arabia
| | - Deepti Vashist
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - H Kirk Hammond
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Albert H Park
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA.
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
5
|
Wang H, Du H, Ren R, Du T, Lin L, Feng Z, Zhao D, Wei X, Zhai X, Wang H, Dong T, Sun JP, Wu H, Xu Z, Lu Q. Temporal and spatial assembly of inner ear hair cell ankle link condensate through phase separation. Nat Commun 2023; 14:1657. [PMID: 36964137 PMCID: PMC10039067 DOI: 10.1038/s41467-023-37267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.
Collapse
Affiliation(s)
- Huang Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Air Force Medical Center, PLA, Beijing, 100074, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Tingting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lin Lin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhe Feng
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tingting Dong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Bio-X-Renji Hospital Research Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Li J. Liquid-liquid phase separation in hair cell stereocilia development and maintenance. Comput Struct Biotechnol J 2023; 21:1738-1745. [PMID: 36890881 PMCID: PMC9986246 DOI: 10.1016/j.csbj.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
As an emerging concept, liquid-liquid phase separation (LLPS) in biological systems has shed light on the formation mechanisms of membrane-less compartments in cells. The process is driven by multivalent interactions of biomolecules such as proteins and/or nucleic acids, allowing them to form condensed structures. In the inner ear hair cells, LLPS-based biomolecular condensate assembly plays a vital role in the development and maintenance of stereocilia, the mechanosensing organelles located at the apical surface of hair cells. This review aims to summarize recent findings on the molecular basis governing the LLPS of Usher syndrome-related gene-encoding proteins and their binding partners, which may ultimately result in the formation of upper tip-link density and tip complex density in hair cell stereocilia, offering a better understanding of this severe inherited disease that causes deaf-blindness.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Otorhinolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Schellens RTW, Slijkerman RWN, Hetterschijt L, Peters T, Broekman S, Clemént A, Westerfield M, Phillips JB, Boldt K, Kremer H, De Vrieze E, Van Wijk E. Affinity purification of in vivo assembled whirlin-associated protein complexes from the zebrafish retina. J Proteomics 2022; 266:104666. [PMID: 35788411 DOI: 10.1016/j.jprot.2022.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Mutations in WHRN lead to Usher syndrome type 2d or to non-syndromic hearing impairment. The WHRN-encoded gene product whirlin directly interacts with the intracellular regions of the other two Usher syndrome type 2-associated proteins, usherin and ADGRV1. In photoreceptor cells, this protein complex constitutes fibrous links between the periciliary membrane and the connecting cilium. However, the molecular mechanism(s) of retinal degeneration due to compromised formation and function of the USH2-associated protein complex remains elusive. To unravel this pathogenic mechanism, we isolated and characterized whirlin-associated protein complexes from zebrafish photoreceptor cells. We generated transgenic zebrafish that express Strep/FLAG-tagged Whrna, a zebrafish ortholog of human whirlin, under the control of a photoreceptor-specific promoter. Affinity purification of Strep/FLAG-tagged Whrna and associated proteins from adult transgenic zebrafish retinas followed by mass spectrometry identified 19 novel candidate associated proteins. Pull down experiments and dedicated yeast two-hybrid assays confirmed the association of Whrna with 7 of the co-purified proteins. Several of the co-purified proteins are part of the synaptic proteome, which indicates a role for whirlin in the photoreceptor synapse. Future studies will elucidate which of the newly identified protein-protein interactions contribute to the development of the retinal phenotype observed in USH2d patients. SIGNIFICANCE: Since protein-protein interactions identified using targeted in vitro studies do not always recapitulate interactions that are functionally relevant in vivo, we established a transgenic zebrafish line that stably expresses a Strep/FLAG-tagged ortholog of human whirlin (SF-Whrna) in photoreceptor cells. Affinity purification of in vivo-assembled SF-Whrna-associated protein complexes from retinal lysates followed by mass spectrometry, identified 19 novel candidate interaction partners, many of which are enriched in the synaptic proteome. Two human orthologs of the identified candidate interaction partners, FRMPD4 and Kir2.3, were validated as direct interaction partners of human whirlin using a yeast two-hybrid assay. The strong connection of whirlin with postsynaptic density proteins was not identified in previous in vitro protein-protein interaction assays, presumably due to the absence of a biologically relevant context. Isolation and identification of in vivo-assembled whirlin-associated protein complexes from the tissue of interest is therefore a powerful methodology to obtain novel insight into tissue specific protein-protein interactions and has the potential to improve significantly our understanding of the function of whirlin and the molecular pathogenesis underlying Usher syndrome type 2.
Collapse
Affiliation(s)
- R T W Schellens
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands.
| | - R W N Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, the Netherlands
| | - L Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands
| | - T Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| | - S Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| | - A Clemént
- University of Oregon, OR 97403, Eugene, Oregon, United States of America
| | - M Westerfield
- University of Oregon, OR 97403, Eugene, Oregon, United States of America.
| | - J B Phillips
- University of Oregon, OR 97403, Eugene, Oregon, United States of America.
| | - K Boldt
- Institute for Ophthalmic Research, University of Tübingen, D-72076 Tübingen, Germany.
| | - H Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands.
| | - E De Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands.
| | - E Van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Zaw K, Carvalho LS, Aung-Htut MT, Fletcher S, Wilton SD, Chen FK, McLenachan S. Pathogenesis and Treatment of Usher Syndrome Type IIA. Asia Pac J Ophthalmol (Phila) 2022; 11:369-379. [PMID: 36041150 DOI: 10.1097/apo.0000000000000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Deafness-related protein PDZD7 forms complex with the C-terminal tail of FCHSD2. Biochem J 2022; 479:1393-1405. [PMID: 35695292 PMCID: PMC9317961 DOI: 10.1042/bcj20220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
In cochlea, deafness-related protein PDZD7 is an indispensable component of the ankle link complex, which is critical for the maturation of inner-ear hair cell for sound perception. Ankle links, connecting the different rows of cochlear stereocilia, are essential for the staircase-like development of stereocilia. However, the molecular mechanism of how PDZD7 governs stereociliary development remains unknown. Here, we reported a novel PDZD7-binding partner, FCHSD2, identified by yeast two-hybrid screening. FCHSD2 was reported to be expressed in hair cell, where it co-operated with CDC42 and N-WASP to regulate the formation of cell protrusion. The association between FCHSD2 and PDZD7 was further confirmed in COS-7 cells. More importantly, we solved the complex structure of FCHSD2 tail with PDZD7 PDZ3 domain at 2.0 Å resolution. The crystal structure shows that PDZD7 PDZ3 adopts a typical PDZ domain topology, comprising five β strands and two α helixes. The PDZ-binding motif of FCHSD2 tail stretches through the αB/βB groove of PDZD7 PDZ3. Our study not only uncovers the interaction between FCHSD2 tail and PDZD7 PDZ3 at the atomic level, but also provides clues of connecting the ankle link complex with cytoskeleton dynamics for exploiting the molecular mechanism of stereociliary development.
Collapse
|
10
|
Du Q, Sun Q, Gu X, Wang J, Li W, Guo L, Li H. Novel homozygous variant in the PDZD7 gene in a family with nonsyndromic sensorineural hearing loss. BMC Med Genomics 2022; 15:135. [PMID: 35715776 PMCID: PMC9204979 DOI: 10.1186/s12920-022-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Hearing loss is the most common sensory neural disorder in humans, and according to a WHO estimation, 5.5% (466 million) of people worldwide have disabling hearing loss. In this study, a Chinese family with prelingual sensorineural hearing loss was investigated. The affected individuals showed moderately severe hearing loss at all frequencies. Using target genome enrichment and high-throughput sequencing, the homozygous variant c.2372del; p.(Ser791fs) was identified in PDZD7. This variant lies in exon 15 of PDZD7 and results in a frame shift followed by an early stop codon. It is classified as pathogenic according to the ACMG/AMP guidelines and ClinGen specifications. Our study expands the pathogenic variant spectrum of PDZD7 and strengthens the clinical importance of this gene in patients with moderately severe hearing loss.
Collapse
Affiliation(s)
- Qiang Du
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Qin Sun
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Xiaodong Gu
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Jinchao Wang
- Department of Otorhinolaryngology, Huizhou Municipal Central Hospital, Huizhou, 516002, Guangdong, China
| | - Weitao Li
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Luo Guo
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| | - Huawei Li
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China. .,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, China. .,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
12
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
13
|
Characteristics of Retinitis Pigmentosa Associated with ADGRV1 and Comparison with USH2A in Patients from a Multicentric Usher Syndrome Study Treatrush. Int J Mol Sci 2021; 22:ijms221910352. [PMID: 34638692 PMCID: PMC8509029 DOI: 10.3390/ijms221910352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
In contrast to USH2A, variants in ADGRV1 are a minor cause of Usher syndrome type 2, and the associated phenotype is less known. The purpose of the study was to characterize the retinal phenotype of 18 ADGRV1 patients (9 male, 9 female; median age 52 years) and compare it with that of 204 USH2A patients (111 male, 93 female; median age 43 years) in terms of nyctalopia onset, best corrected visual acuity (BCVA), fundus autofluorescence (FAF), and optical coherence tomography (OCT) features. There was no statistical difference in the median age at onset (30 and 18 years; Mann–Whitney U test, p = 0.13); the mean age when 50% of the patients reached legal blindness (≥1.0 log MAR) based on visual acuity (64 years for both groups; log-rank, p = 0.3); the risk of developing advanced retinal degeneration (patch or atrophy) with age (multiple logistic regression, p = 0.8); or the frequency of cystoid macular edema (31% vs. 26%, Fisher’s exact test, p = 0.4). ADGRV1 and USH2A retinopathy were indistinguishable in all major functional and structural characteristics, suggesting that the loss of function of the corresponding proteins produces similar effects in the retina. The results are important for counseling ADGRV1 patients, who represent the minor patient subgroup.
Collapse
|
14
|
Guan J, Li J, Chen G, Shi T, Lan L, Wu X, Zhao C, Wang D, Wang H, Wang Q. Family trio-based sequencing in 404 sporadic bilateral hearing loss patients discovers recessive and De novo genetic variants in multiple ways. Eur J Med Genet 2021; 64:104311. [PMID: 34416374 DOI: 10.1016/j.ejmg.2021.104311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
Hereditary hearing loss (HL) has high genetic and phenotypical heterogeneity including the overlapping and variable phenotypic features. For sporadic HL without a family history, it is more difficult to indicate the contribution of genetic factors to define a pattern of inheritance. We assessed the contribution of genetic variants and patterns of inheritance by a family trio-based sequencing and provided new insight into genetics. We conducted an analysis of data from unrelated sporadic patients with HL (n = 404) who underwent trio-based whole-exome sequencing (trio-WES) or proband-only WES (p-WES) or targeted exome sequencing (TES), and the samples of their unaffected-parents (n = 808)were validated. A molecular diagnosis was rendered for 191 of 404 sporadic HL patients (47.3%) in multiple modes of inheritance, including autosomal recessive (AR), autosomal dominant (AD) caused by de novo variants, copy-number variants (CNVs), X-linked recessive, and dual genetic diagnosis. Among these patients, 83 (43.5%) cases were diagnosed with variants in rare genes. Sporadic HL patients were identified by multiple modes of transmission. Observed variations in rare genes and multiple modes of inheritance can strikingly emphasize the important etiological contribution of recessive and de novo genetic variants to a large cohort of sporadic HL cases plus their parents.
Collapse
Affiliation(s)
- Jing Guan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Jin Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Guohui Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Tao Shi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Lan Lan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Xiaonan Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Cui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Dayong Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Hongyang Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Qiuju Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China; National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, China & Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| |
Collapse
|
15
|
Meng X, Liu X, Li Y, Guo T, Yang L. Correlation between Genotype and Phenotype in 69 Chinese Patients with USH2A Mutations: A comparative study of the patients with Usher Syndrome and Nonsyndromic Retinitis Pigmentosa. Acta Ophthalmol 2021; 99:e447-e460. [PMID: 33124170 DOI: 10.1111/aos.14626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of this study was to analyse 69 Chinese patients with USH2A mutations and to assess the genotype-phenotype correlation. METHODS All 36 Usher syndrome type IIA patients and 33 nonsyndromic RP (retinitis pigmentosa) patients underwent clinical examinations. Eye examinations included best-corrected visual acuity, slit-lamp biomicroscopy, fundus examination with dilated pupils, fundus fluorescent angiography, visual field test, full-field electroretinography and optic coherence tomography; audiological assessment included pure tone audiometry and hearing thresholds. The molecular diagnosis of genotype combined the single-gene Sanger sequencing and next-generation sequencing. This study is a retrospective study. RESULTS The mean age of first symptoms with Usher syndrome type IIa and nonsyndromic RP patients was 13.7 versus 29.8 years (ocular phenotypes, p < 0.001); 17.7 versus 29.9 years (nyctalopia, p < 0.001); 44.7 versus 54.8 years (low vision based on VF, p < 0.001); 41.7 versus 54.7 years (low vision based on VA, p < 0.001); and 46.0 versus 56.7 years (legal blindness based on VF, p < 0.001). There was significant difference in variants in the two groups (p < 0.05). Among patients with mutation c.2802T > G (p.Cys934Trp), more (66.7%) presented with normal hearing. All patients (3/3, 100%) with the variant c.8232G > C (p.Trp2744Cys) had hearing loss. Furthermore, we identified 23 novel variants in USH2A. CONCLUSIONS Patients with Usher syndrome type IIa had an earlier onset of the disease, inferior visual function and presented with more truncating variants, compared with the nonsyndromic RP patients.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - XiaoZhen Liu
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - YingYing Li
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - Tong Guo
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| | - Liping Yang
- Department of Ophthalmology Peking University Third Hospital Beijing Key Laboratory of Restoration of Damaged Ocular Nerve Beijing China
| |
Collapse
|
16
|
Li J, Liu C, Zhao B. N-Terminus of GRXCR2 Interacts With CLIC5 and Is Essential for Auditory Perception. Front Cell Dev Biol 2021; 9:671364. [PMID: 34026762 PMCID: PMC8131845 DOI: 10.3389/fcell.2021.671364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Stereocilia of cochlear hair cells are specialized mechanosensing organelles that convert sound-induced vibration to electrical signals. Glutaredoxin domain-containing cysteine-rich protein 2 (GRXCR2) is localized at the base of stereocilia and is necessary for stereocilia morphogenesis and auditory perception. However, the detailed functions of GRXCR2 in hair cells are still largely unknown. Here, we report that GRXCR2 interacts with chloride intracellular channel protein 5 (CLIC5) which is also localized at the base of stereocilia and required for normal hearing in human and mouse. Immunolocalization analyses suggest that GRXCR2 is not required for the localization of CLIC5 to the stereociliary base during development, or vice versa. Using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we deleted 60 amino acids near the N-terminus of GRXCR2 essential for its interaction with CLIC5. Interestingly, mice harboring this in-frame deletion in Grxcr2 exhibit moderate hearing loss at lower frequencies and severe hearing loss at higher frequencies although the morphogenesis of stereocilia is minimally affected. Thus, our findings reveal that the interaction between GRXCR2 and CLIC5 is crucial for normal hearing.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
17
|
Lin L, Wang H, Ren D, Xia Y, He G, Lu Q. Structure and Membrane Targeting of the PDZD7 Harmonin Homology Domain (HHD) Associated With Hearing Loss. Front Cell Dev Biol 2021; 9:642666. [PMID: 33937240 PMCID: PMC8083959 DOI: 10.3389/fcell.2021.642666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Usher syndrome (USH) is the leading cause of hereditary hearing–vision loss in humans. PDZ domain-containing 7 (PDZD7) has been reported to be a modifier of and contributor to USH. PDZD7 co-localizes with USH2 proteins in the inner ear hair cells and is essential for ankle-link formation and stereocilia development. PDZD7 contains three PDZ domains and a low-complexity region between the last two PDZ domains, which has been overlooked in the previous studies. Here we characterized a well-folded harmonin homology domain (HHD) from the middle region and solved the PDZD7 HHD structure at the resolution of 1.49 Å. PDZD7 HHD adopts the same five-helix fold as other HHDs found in Harmonin and Whirlin; however, in PDZD7 HHD, a unique α1N helix occupies the canonical binding pocket, suggesting a distinct binding mode. Moreover, we found that the PDZD7 HHD domain can bind lipid and mediate the localization of PDZD7 to the plasma membrane in HEK293T cells. Intriguingly, a hearing-loss mutation at the N-terminal extension region of the HHD can disrupt the lipid-binding ability of PDZD7 HHD, suggesting that HHD-mediated membrane targeting is required for the hearing process. This structural and biochemical characterization of the PDZD7 HHD region provides mechanistic explanations for human deafness-causing mutations in PDZD7. Furthermore, this structure will also facilitate biochemical and functional studies of other HHDs.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Huang Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xia
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Bio-X-Renji Hospital Research Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Fahimi H, Behroozi S, Noavar S, Parvini F. A novel recessive PDZD7 bi-allelic mutation in an Iranian family with non-syndromic hearing loss. BMC Med Genomics 2021; 14:37. [PMID: 33530996 PMCID: PMC7852090 DOI: 10.1186/s12920-021-00884-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Autosomal recessive non-syndromic hearing loss (ARNSHL) is genetically and phenotypically heterogeneous with over 110 genes causally implicated in syndromic and non-syndromic hearing loss. Here, we investigate the genetic etiology of deafness in two GJB2 and GJB6 negative patients presenting with pre-lingual, progressive, severe hearing loss. METHODS Targeted exome sequencing (TES) using Next Generation Illumina Sequencing was used to analyze the exonic and some other important genomic regions of 154 genes in the proband. Subsequently, the mutation found was confirmed by Sanger sequencing in other affected sibling and healthy family members. The possible impact of the reported mutation on the corresponding protein was also evaluated by using bioinformatics tools. Moreover, the affected patients underwent audiological and ophthalmic evaluations. RESULTS TES identified a novel homozygous missense mutation c.251T>C (p.I84T) in exon 3 of PDZD7 gene. In addition, segregation and phenotype-genotype correlation analysis as well as in-silico evaluations confirmed the autosomal recessive inheritance pattern and disease-causing nature of mutation found. CONCLUSIONS In overall, our finding could expand the pathogenic mutations spectrum and strengthens the clinical importance of the PDZD7 gene in ARNSHL patients. It can also aid to conduct genetic counseling, prenatal diagnosis and clinical management of these types of genetic disorders.
Collapse
Affiliation(s)
- Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Samira Behroozi
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Noavar
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, 35131-19111 Iran
| |
Collapse
|
19
|
Lin L, Shi Y, Wang M, Wang C, Lu Q, Zhu J, Zhang R. Phase separation-mediated condensation of Whirlin-Myo15-Eps8 stereocilia tip complex. Cell Rep 2021; 34:108770. [PMID: 33626355 DOI: 10.1016/j.celrep.2021.108770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Stereocilia, the mechanosensory organelles on the apical surface of hair cells, are necessary to detect sound and carry out mechano-electrical transduction. An electron-dense matrix is located at the distal tips of stereocilia and plays crucial roles in the regulation of stereocilia morphology. Mutations of the components in this tip complex density (TCD) have been associated with profound deafness. However, the mechanism underlying the formation of the TCD is largely unknown. Here, we discover that the specific multivalent interactions among the Whirlin-myosin 15 (Myo15)-Eps8 complex lead to the formation of the TCD-like condensates through liquid-liquid phase separation. The reconstituted TCD-like condensates effectively promote actin bundling. A deafness-associated mutation of Myo15 interferes with the condensates formation and consequently impairs actin bundling. Therefore, our study not only suggests that the TCD in hair cell stereocilia may form via phase separation but it also provides important clues for the possible mechanism underlying hearing loss.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingdong Shi
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
20
|
Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Exp Eye Res 2020; 201:108330. [PMID: 33121974 PMCID: PMC8417766 DOI: 10.1016/j.exer.2020.108330] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023]
Abstract
Bilallelic variants in the USH2A gene can cause Usher syndrome type 2 and non-syndromic retinitis pigmentosa. In both disorders, the retinal phenotype involves progressive rod photoreceptor loss resulting in nyctalopia and a constricted visual field, followed by subsequent cone degeneration, leading to the loss of central vision and severe visual impairment. The USH2A gene raises many challenges for researchers and clinicians due to a broad spectrum of mutations, a large gene size hampering gene therapy development and limited knowledge on its pathogenicity. Patients with Usher type 2 may benefit from hearing aids or cochlear implants to correct their hearing defects, but there are currently no approved treatments available for the USH2A-retinopathy. Several treatment strategies, including antisense oligonucleotides and translational readthrough inducing drugs, have shown therapeutic promise in preclinical studies. Further understanding of the pathogenesis and natural history of USH2A-related disorders is required to develop innovative treatments and design clinical trials based on reliable outcome measures. The present review will discuss the current knowledge about USH2A, the emerging therapeutics and existing challenges.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
21
|
Zhu Y, Delhommel F, Cordier F, Lüchow S, Mechaly A, Colcombet-Cazenave B, Girault V, Pepermans E, Bahloul A, Gautier C, Brûlé S, Raynal B, Hoos S, Haouz A, Caillet-Saguy C, Ivarsson Y, Wolff N. Deciphering the Unexpected Binding Capacity of the Third PDZ Domain of Whirlin to Various Cochlear Hair Cell Partners. J Mol Biol 2020; 432:5920-5937. [PMID: 32971111 DOI: 10.1016/j.jmb.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.
Collapse
Affiliation(s)
- Yanlei Zhu
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | - Florent Delhommel
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | | | | | - Ariel Mechaly
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Baptiste Colcombet-Cazenave
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | | | - Elise Pepermans
- Complexité du Vivant, Sorbonne Université, 75005 Paris, France; Unité de génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France
| | - Amel Bahloul
- Unité de génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France
| | - Candice Gautier
- Istituto Pasteur - Fondazione C. Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Ahmed Haouz
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | | | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Sweden
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
22
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
23
|
Nolen RM, Hufnagel RB, Friedman TB, Turriff AE, Brewer CC, Zalewski CK, King KA, Wafa TT, Griffith AJ, Brooks BP, Zein WM. Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genet 2020; 41:401-412. [PMID: 32372680 DOI: 10.1080/13816810.2020.1747090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.
Collapse
Affiliation(s)
- Rosalie M Nolen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Christopher K Zalewski
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Kelly A King
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Talah T Wafa
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
24
|
Zou J, Li R, Wang Z, Yang J. Studies of the Periciliary Membrane Complex in the Syrian Hamster Photoreceptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:543-547. [PMID: 31884668 DOI: 10.1007/978-3-030-27378-1_89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mutations in USH2A, ADGRV1, and WHRN genes cause Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). The proteins encoded by these genes form the periciliary membrane complex (PMC) in photoreceptors. Unlike patients, who show retinal degeneration in their second decade of life, mice carrying USH2 mutations have very-late-onset retinal degeneration, although the PMC is disrupted. A similar weak retinal degeneration phenotype was also reported in ush2a mutant zebrafish. The lack of appropriate USH2 animal models hinders our understanding on PMC function in photoreceptors and retinal pathogenesis caused by USH2 mutations. In this study, we examined the molecular composition of the PMC and the morphology of the PMC and its surrounding subcellular structure in Syrian hamster photoreceptors. We demonstrate that the PMC and its neighboring structure in hamsters are similar to those in mice. Therefore, the Syrian hamster may not offer advantages over the mouse as an animal model for USH2 pathogenic studies.
Collapse
Affiliation(s)
- Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Rong Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
- Department of Surgery, Division of Otolaryngology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
GRXCR2 Regulates Taperin Localization Critical for Stereocilia Morphology and Hearing. Cell Rep 2019; 25:1268-1280.e4. [PMID: 30380417 PMCID: PMC6317715 DOI: 10.1016/j.celrep.2018.09.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in human GRXCR2, which encodes a protein of undetermined function, cause hearing loss by unknown mechanisms. We found that mouse GRXCR2 localizes to the base of the stereocilia, which are actin-based mechanosensing organelles in cochlear hair cells that convert sound-induced vibrations into electrical signals. The stereocilia base also contains taperin, another protein of unknown function required for human hearing. We show that taperin and GRXCR2 form a complex and that taperin is diffused throughout the stereocilia length in Grxcr2-deficient hair cells. Stereocilia lacking GRXCR2 are longer than normal and disorganized due to the mislocalization of taperin, which could modulate the actin cytoskeleton in stereocilia. Remarkably, reducing taperin expression levels could rescue the morphological defects of stereocilia and restore the hearing of Grxcr2-deficient mice. Thus, our findings suggest that GRXCR2 is critical for the morphogenesis of stereocilia and auditory perception by restricting taperin to the stereocilia base. Liu et al. show that GRXCR2 and taperin form a complex at the base of the stereocilia in cochlear hair cells. Stereocilia lacking GRXCR2 are longer than normal and disorganized due to the mislocalization of taperin, which could modulate the actin cytoskeleton in stereocilia. Reducing taperin expression levels could rescue the morphological defects of stereocilia and restore the hearing of Grxcr2-deficient mice.
Collapse
|
26
|
Richardson GP, Petit C. Hair-Bundle Links: Genetics as the Gateway to Function. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033142. [PMID: 30617060 DOI: 10.1101/cshperspect.a033142] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to five distinct cell-surface specializations interconnect the stereocilia and the kinocilium of the mature hair bundle in some species: kinocilial links, tip links, top connectors, shaft connectors, and ankle links. In developing hair bundles, transient lateral links are prominent. Mutations in genes encoding proteins associated with these links cause Usher deafness/blindness syndrome or nonsyndromic (isolated) forms of human hereditary deafness, and mice with constitutive or conditional alleles of these genes have provided considerable insight into the molecular composition and function of the different links. We describe the structure of these links and review evidence showing CDH23 and PCDH15 are components of the tip, kinocilial, and transient-lateral links, that stereocilin (STRC) and protein tyrosine phosphatase (PTPRQ) are associated with top and shaft connectors, respectively, and that USH2A and ADGRV1 are associated with the ankle links. Whereas tip links are required for mechanoelectrical transduction, all link proteins play key roles in the normal development and/or the maintenance of hair bundle structure and function. Recent crystallographic and single-particle analyses of PCDH15 and CDH23 provide insight as to how the structure of tip link may contribute to the elastic element predicted to lie in series with the hair cell's mechanoelectrical transducer channel.
Collapse
Affiliation(s)
- Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Christine Petit
- Institut Pasteur, 75724 Paris Cedex 15, France.,Collège de France, 75231 Paris Cedex 05, France
| |
Collapse
|
27
|
Du H, Zou L, Ren R, Li N, Li J, Wang Y, Sun J, Yang J, Xiong W, Xu Z. Lack of PDZD7 long isoform disrupts ankle-link complex and causes hearing loss in mice. FASEB J 2019; 34:1136-1149. [PMID: 31914662 DOI: 10.1096/fj.201901657rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Usher syndrome (USH) is the most frequent form of combined hereditary deafness-blindness, characterized by hearing loss and retinitis pigmentosa, with or without vestibular dysfunction. PDZD7 is a PDZ domain-containing scaffold protein that was suggested to be a USH modifier and a contributor to digenic USH. In the inner ear hair cells, PDZD7 localizes at the ankle region of the stereocilia and constitutes the so-called ankle-link complex together with three other USH proteins Usherin, WHRN, and ADGRV1. PDZD7 gene is subjected to alternative splicing, which gives rise to two types of PDZD7 isoforms, namely the long and short isoforms. At present, little is known which specific isoform is involved in ankle-link formation and stereocilia development. In this work, we showed that PDZD7 long isoform, but not short isoforms, localizes at the ankle region of the stereocilia. Moreover, we established Pdzd7 mutant mice by introducing deletions into exon 14 of the Pdzd7 gene, which causes potential premature translational stop in the long isoform but leaves short isoforms unaffected. We found that lack of PDZD7 long isoform affects the localization of other ankle-link complex components in the stereocilia. Consequently, Pdzd7 mutant mice showed stereocilia development deficits and hearing loss as well as reduced mechanotransduction (MET) currents, suggesting that PDZD7 long isoform is indispensable for hair cells. Furthermore, by performing yeast two-hybrid screening, we identified a PDZD7 long isoform-specific binding partner PIP5K1C, which has been shown to play important roles in hearing and might participate in the function and/or transportation of PDZD7.
Collapse
Affiliation(s)
- Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Linzhi Zou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
28
|
Lee SY, Joo K, Oh J, Han JH, Park HR, Lee S, Oh DY, Woo SJ, Choi BY. Severe or Profound Sensorineural Hearing Loss Caused by Novel USH2A Variants in Korea: Potential Genotype-Phenotype Correlation. Clin Exp Otorhinolaryngol 2019; 13:113-122. [PMID: 31674169 PMCID: PMC7248602 DOI: 10.21053/ceo.2019.00990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Abstract
Objectives We, herein, report two novel USH2A variants from two unrelated Korean families and their clinical phenotypes, with attention to severe or more than severe sensorineural hearing loss (SNHL). Methods Two postlingually deafened subjects (SB237-461, M/46 and SB354-692, F/34) with more than severe SNHL and also with suspicion of Usher syndrome type II (USH2) were enrolled. A comprehensive audiological and ophthalmological assessments were evaluated. We conducted the whole exome sequencing and subsequent pathogenicity prediction analysis. Results We identified the following variants of USH2A from the two probands manifesting more than severe SNHL and retinitis pigmentosa (RP): compound heterozygosity for a nonsense (c.8176C>T: p.R2723X) and a missense variant (c.1823G>A: p.C608Y) in SB237, and compound heterozygosity for two frameshift variants (c.14835delT: p.S4945fs & c.13112_13115delAAAT: p.G4371fs) in SB354. Based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines, two novel variants, c.1823G>A: p.C608Y and c.14835delT: p.Ser4945fs, can be classified as “uncertain significance” and “pathogenic,” respectively. The audiogram exhibited more than severe SNHL and a down-sloping configuration, necessitating cochlear implantation. The ophthalmic examinations revealed typical features of RP. Interestingly, one proband (SB 354-692) carrying two truncating compound heterozygous variants exhibited more severe hearing loss than the other proband (SB 237-461), carrying one truncation with one missense variant. Conclusion Our results provide insight on the expansion of audiological spectrum encompassing more than severe SNHL in Korean subjects harboring USH2A variants, suggesting that USH2A should also be included in the candidate gene of cochlear implantation. A specific combination of USH2A variants causing truncating proteins in both alleles could demonstrate more severe audiological phenotype than that of USH2A variants carrying one truncating mutation and one missense mutation, suggesting a possible genotype-phenotype correlation. The understanding of audiological complexity associated with USH2A will be helpful for genetic counseling and treatment starategy.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jayoung Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
29
|
Wang L, Wei B, Fu X, Wang Y, Sui Y, Ma J, Gong X, Hao J, Xing S. Identification of whirlin domains interacting with espin: A study of the mechanism of Usher syndrome type II. Mol Med Rep 2019; 20:5111-5117. [PMID: 31638198 PMCID: PMC6854525 DOI: 10.3892/mmr.2019.10728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022] Open
Abstract
Usher syndrome is the most common condition of combined blindness and deafness and is classified into three types (USH1-USH3). USH2 is the most commonly diagnosed of all Usher syndrome cases. There are three identified proteins (usherin, GPR98 and whirlin) that form the USH2 complex. Defects in any of these proteins may cause failure in the formation of the USH2 complex, which is the primary cause of USH2. Whirlin is a scaffold protein and is essential for the assembly of the USH2 protein complex. It has been reported that espin is an interacting partner protein for whirlin. However, which fragment of whirlin interacts with espin remains unclear. In the present study, whirlin N- and C-terminal fragments in the pEGFP-C2 vectors were constructed. The recombinant plasmids were transfected into COS-7 cells to observe the co-localization by confocal laser scanning microscopy. The interactions between whirlin and espin were investigated by co-immunoprecipitation using the 293 cell line. It was demonstated that only the whirlin N-terminal fragment was able to interact with espin and the PR (proline-rich) region in whirlin may be important for the interaction. However, the present study did not investigate the interaction between whirlin and espin without the PR domain which warrants future research. Our findings elucidated a primary mechanism of interaction between whirlin and espin, which are crucial for further study on the USH2 complex and USH2 pathogenesis.
Collapse
Affiliation(s)
- Le Wang
- Department of Ophthalmology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yuchen Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yuan Sui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Junfeng Ma
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xianhui Gong
- Department of Opthalmology, Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jilong Hao
- Department of Ophthalmology, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
30
|
Lee SY, Han JH, Kim BJ, Oh SH, Lee S, Oh DY, Choi BY. Identification of a Potential Founder Effect of a Novel PDZD7 Variant Involved in Moderate-to-Severe Sensorineural Hearing Loss in Koreans. Int J Mol Sci 2019; 20:ijms20174174. [PMID: 31454969 PMCID: PMC6747409 DOI: 10.3390/ijms20174174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
PDZD7, a PDZ domain-containing scaffold protein, is critical for the organization of Usher syndrome type 2 (USH2) interactome. Recently, biallelic PDZD7 variants have been associated with autosomal-recessive, non-syndromic hearing loss (ARNSHL). Indeed, we identified novel, likely pathogenic PDZD7 variants based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines from Korean families manifesting putative moderate-to-severe prelingual ARNSHL; these were c.490C>T (p.Arg164Trp), c.1669delC (p.Arg557Glyfs*13), and c.1526G>A (p.Gly509Glu), with p.Arg164Trp being a predominantly recurring variant. Given the recurring missense variant (p.Arg164Trp) from our cohort, we compared the genotyping data using six short tandem-repeat (STR) markers within or flanking PDZD7 between four probands carrying p.Arg164Trp and 81 normal-hearing controls. We observed an identical haplotype across three out of six STR genotyping markers exclusively shared by two unrelated hearing impaired probands but not by any of the 81 normal-hearing controls, suggesting a potential founder effect. However, STR genotyping, based on six STR markers, revealed various p.Arg164Trp-linked haplotypes shared by all of the affected subjects. In conclusion, PDZD7 can be an important causative gene for moderate to severe ARNSHL in Koreans. Moreover, at least some, if not all, p.Arg164Trp alleles in Koreans could exert a potential founder effect and arise from diverse haplotypes as a mutational hot spot.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 04401, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Bong Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul 04401, Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Doo-Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| |
Collapse
|
31
|
Guo Y, Wang P, Ma JH, Cui Z, Yu Q, Liu S, Xue Y, Zhu D, Cao J, Li Z, Tang S, Chen J. Modeling Retinitis Pigmentosa: Retinal Organoids Generated From the iPSCs of a Patient With the USH2A Mutation Show Early Developmental Abnormalities. Front Cell Neurosci 2019; 13:361. [PMID: 31481876 PMCID: PMC6709881 DOI: 10.3389/fncel.2019.00361] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) represents a group of inherited retinopathies with early-onset nyctalopia followed by progressive photoreceptor degeneration causing irreversible vision loss. Mutations in USH2A are the most common cause of non-syndromic RP. Here, we reprogrammed induced pluripotent stem cells (iPSCs) from a RP patient with a mutation in USH2A (c.8559-2A > G/c.9127_9129delTCC). Then, multilayer retinal organoids including neural retina (NR) and retinal pigment epithelium (RPE) were generated by three-step “induction-reversal culture.” The early retinal organoids derived from the RP patient with the USH2A mutation exhibited significant defects in terms of morphology, immunofluorescence staining and transcriptional profiling. To the best of our knowledge, the pathogenic mutation (c.9127_9129delTCC) in USH2A has not been reported previously among RP patients. Notably, the expression of laminin in the USH2A mutation organoids was significantly lower than in the iPSCs derived from healthy, age- and sex-matched controls during the retinal organogenesis. We also observed that abnormal retinal neuroepithelium differentiation and polarization caused defective retinal progenitor cell development and retinal layer formation, disordered organization of NRs in the presence of the USH2A mutation. Furthermore, the USH2A mutation bearing RPE cells presented abnormal morphology, lacking pigmented foci and showing an apoptotic trend and reduced expression of specific makers, such as MITF, PEDF, and RPE65. In addition, the USH2A mutation organoids had lower expression of cilium-associated (especially CFAP43, PIFO) and dopaminergic synapse-related genes (including DLGAP1, GRIK1, SLC17A7, and SLC17A8), while there was higher expression of neuron apoptotic process-related genes (especially HIF1A, ADARB1, and CASP3). This study may provide essential assistance in the molecular diagnosis and screening of RP. This work recapitulates the pathogenesis of USH2A using patient-specific organoids and demonstrated that alterations in USH2A function due to mutations may lead to cellular and molecular abnormalities.
Collapse
Affiliation(s)
- Yonglong Guo
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Peiyuan Wang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jacey Hongjie Ma
- Aier School of Ophthalmology, Central South University, Changsha, China.,Shenzhen Aier Eye Hospital, Shenzhen, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shiwei Liu
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jixing Cao
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Mathur PD, Yang J. Usher syndrome and non-syndromic deafness: Functions of different whirlin isoforms in the cochlea, vestibular organs, and retina. Hear Res 2019; 375:14-24. [PMID: 30831381 DOI: 10.1016/j.heares.2019.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Usher syndrome (USH) is the leading cause of inherited combined vision and hearing loss. However, mutations in most USH causative genes lead to other diseases, such as hearing loss only or vision loss only. The molecular mechanisms underlying the variable disease manifestations associated with USH gene mutations are unclear. This review focuses on an USH type 2 (USH2) gene encoding whirlin (WHRN; previously known as DFNB31), mutations in which have been found to cause either USH2 subtype USH2D or autosomal recessive non-syndromic deafness type 31 (DFNB31). This review summarizes the current knowledge about different whirlin isoforms encoded by WHRN orthologs in animal models, the interactions of different whirlin isoforms with their partners, and the function of whirlin isoforms in different cellular and subcellular locations. The recent findings regarding the function of whirlin isoforms suggest that disruption of different isoforms may be one of the mechanisms underlying the variable disease manifestations caused by USH gene mutations. This review also presents recent findings about the vestibular defects in Whrn mutant mouse models, which suggests that previous assumptions about the normal vestibular function of USH2 patients need to be re-evaluated. Finally, this review describes recent progress in developing therapeutics for diseases caused by WHRN mutations.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
33
|
Delhommel F, Cordier F, Saul F, Chataigner L, Haouz A, Wolff N. Structural plasticity of the HHD2 domain of whirlin. FEBS J 2018; 285:3738-3752. [PMID: 30053338 DOI: 10.1111/febs.14614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
Whirlin is a protein essential to sensory neurons. Its defects are responsible for nonsyndromic deafness or for the Usher syndrome, a condition associating congenital deafness and progressive blindness. This large multidomain scaffolding protein is expressed in three isoforms with different functions and localizations in stereocilia bundles of hearing hair cells or in the connecting cilia of photoreceptor cells. The HHD2 domain of whirlin is the only domain shared by all isoforms, but its function remains unknown. In this article, we report its crystal structure in two distinct conformations, a monomeric five-helix bundle, similar to the known structure of other HHD domains, and a three-helix bundle organized as a swapped dimer. Most of the hydrophobic contacts and electrostatic interactions that maintain the globular monomeric form are conserved at the protomer interface of the dimer. NMR experiments revealed that the five-helix conformation is predominant in solution, but exhibits increased dynamics on one face encompassing the hinge loops. Using NMR and SAXS, we also show that HHD2 does not interact with its preceding domains. Our findings suggest that structural plasticity might play a role in the function of the HHD2 domain.
Collapse
Affiliation(s)
- Florent Delhommel
- Unité Récepteurs-Canaux, Institut Pasteur, Paris, France.,CNRS, UMR3571, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Florence Cordier
- Unité de Bioinformatique Structurale, Institut Pasteur, Paris, France.,CNRS, UMR3528, Paris, France
| | - Frederick Saul
- CNRS, UMR3528, Paris, France.,Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Lucas Chataigner
- Unité Récepteurs-Canaux, Institut Pasteur, Paris, France.,CNRS, UMR3571, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Ahmed Haouz
- CNRS, UMR3528, Paris, France.,Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, Paris, France.,CNRS, UMR3571, Paris, France
| |
Collapse
|
34
|
Wei C, Yang L, Cheng J, Imani S, Fu S, Lv H, Li Y, Chen R, Leung ELH, Fu J. A novel homozygous variant of GPR98 causes usher syndrome type IIC in a consanguineous Chinese family by next generation sequencing. BMC MEDICAL GENETICS 2018; 19:99. [PMID: 29890953 PMCID: PMC5996530 DOI: 10.1186/s12881-018-0602-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Usher syndrome (USH) is a common heterogeneous retinopathy and a hearing loss (HL) syndrome. However, the gene causing Usher syndrome type IIC (USH2C) in a consanguineous Chinese pedigree is unknown. METHODS We performed targeted next-generation sequencing analysis and Sanger sequencing to explore the GPR98 mutations in a USH2C pedigree that included a 32-year-old male patient from a consanguineous marriage family. Western blot verified the nonsense mutation. RESULTS To identify disease-causing gene variants in a consanguineous Chinese pedigree with USH2C, DNA from proband was analyzed using targeted next generation sequencing (NGS). The patient was clinically documented as a possible USH2 by a comprehensive auditory and ophthalmology evaluation. We succeeded in identifying the deleterious, novel, and homologous variant, c.6912dupG (p.Leu2305Valfs*4), in the GPR98 gene (NM_032119.3) that contributes to the progression of USH2C. Variant detected by targeted NGS was then confirmed and co-segregation was conducted by direct Sanger sequencing. Western blot verified losing almost two-thirds of its amino acid residues, including partial Calx-beta, whole EPTP and 7TM-GPCRs at the C-terminus of GPR98. Furthermore, our results highlighted that this p.Leu2305Valfs*4 variant is most likely pathogenic due to a large deletion at the seven-transmembrane G protein-coupled receptors (7TM-GPCRs) domain in GPR98 protein, leading to significantly decreased functionality and complex stability. CONCLUSIONS These findings characterized the novel disease causativeness variant in GPR98 and broaden mutation spectrums, which could predict the pathogenic progression of patient with USH2C, guide diagnosis and treatment of this disease; and provide genetic counseling and family planning for consanguineous marriage pedigree in developing countries, including China.
Collapse
Affiliation(s)
- Chunli Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, Special Administrative Region of China.,Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Lisha Yang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.,Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shangyi Fu
- The Honors College, University of Houston, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongbin Lv
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, Special Administrative Region of China. .,Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The 1st Affiliated Hospital of Guangzhou Medical College, Guangzhou, China. .,Respiratoire Medicine Department, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Junjiang Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macao, Special Administrative Region of China. .,Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
35
|
Li T, Bellen HJ, Groves AK. Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 2018; 11:11/6/dmm031492. [PMID: 29853544 PMCID: PMC6031363 DOI: 10.1242/dmm.031492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Johnston's organ - the hearing organ of Drosophila - has a very different structure and morphology to that of the hearing organs of vertebrates. Nevertheless, it is becoming clear that vertebrate and invertebrate auditory organs share many physiological, molecular and genetic similarities. Here, we compare the molecular and cellular features of hearing organs in Drosophila with those of vertebrates, and discuss recent evidence concerning the functional conservation of Usher proteins between flies and mammals. Mutations in Usher genes cause Usher syndrome, the leading cause of human deafness and blindness. In Drosophila, some Usher syndrome proteins appear to physically interact in protein complexes that are similar to those described in mammals. This functional conservation highlights a rational role for Drosophila as a model for studying hearing, and for investigating the evolution of auditory organs, with the aim of advancing our understanding of the genes that regulate human hearing and the pathogenic mechanisms that lead to deafness.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Dona M, Slijkerman R, Lerner K, Broekman S, Wegner J, Howat T, Peters T, Hetterschijt L, Boon N, de Vrieze E, Sorusch N, Wolfrum U, Kremer H, Neuhauss S, Zang J, Kamermans M, Westerfield M, Phillips J, van Wijk E. Usherin defects lead to early-onset retinal dysfunction in zebrafish. Exp Eye Res 2018; 173:148-159. [PMID: 29777677 DOI: 10.1016/j.exer.2018.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/24/2023]
Abstract
Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A-associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock-out mouse model does not mimic the human phenotype, because it presents with only a mild and late-onset retinal degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating germline lesions into the zebrafish ush2a gene (ush2armc1: c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2ab1245: c.15520_15523delinsTG; p.Ala5174fsTer). Homozygous mutants were viable and displayed no obvious morphological or developmental defects. Immunohistochemical analyses with antibodies recognizing the N- or C-terminal region of the ush2a-encoded protein, usherin, demonstrated complete absence of usherin in photoreceptors of ush2armc1, but presence of the ectodomain of usherin at the periciliary membrane of ush2ab1245-derived photoreceptors. Furthermore, defects of usherin led to a reduction in localization of USH2 complex members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in both mutants when kept under constant bright illumination for three days. Electroretinogram (ERG) recordings revealed a significant and similar decrease in both a- and b-wave amplitudes in ush2armc1 as well as ush2ab1245 larvae as compared to strain- and age-matched wild-type larvae. In conclusion, this study shows that mutant ush2a zebrafish models present with early-onset retinal dysfunction that is exacerbated by light exposure. These models provide a better understanding of the pathophysiology underlying USH2A-associated RP and a unique opportunity to evaluate future therapeutic strategies.
Collapse
Affiliation(s)
- Margo Dona
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Ralph Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Kimberly Lerner
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Jeremy Wegner
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Taylor Howat
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Theo Peters
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Nanda Boon
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Nasrin Sorusch
- Institute of Molecular Physiology, Johannes Gutenberg University, Johannes-von-Muellerweg 6, D-55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Johannes-von-Muellerweg 6, D-55099 Mainz, Germany
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | - Stephan Neuhauss
- University of Zürich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, Zürich, CH - 8057, Switzerland
| | - Jingjing Zang
- University of Zürich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, Zürich, CH - 8057, Switzerland
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Biomedical Physics, Academisch Medisch Centrum, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Monte Westerfield
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Jennifer Phillips
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403-1254, USA
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behavior, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Identification of Binding Partners of Deafness-Related Protein PDZD7. Neural Plast 2018; 2018:2062346. [PMID: 29796015 PMCID: PMC5896214 DOI: 10.1155/2018/2062346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
PDZD7 is an important deafness gene, whose mutations are associated with syndromic and nonsyndromic hearing loss. PDZD7 contains multiple PDZ domains that are essential for organizing various proteins into protein complex. Several PDZD7-binding proteins have been identified, including usherin, ADGRV1, whirlin, harmonin, SANS, and MYO7A, all belonging to USH proteins. Here, we report the identification of novel PDZD7-binding partners through yeast two-hybrid screening using the first two PDZ domains of PDZD7 as bait. Eleven proteins were identified, most of which have not been reported as PDZD7-binding partners before. Among the identified proteins, ADGRV1, gelsolin, and β-catenin have been shown to play important roles in hearing, whereas the functions of other proteins in the inner ear remain elusive. We confirmed the expression of one candidate PDZD7-binding protein, CADM1, in the mouse inner ear and evaluated the auditory function of Cadm1 knockout mice by performing auditory brainstem response (ABR) measurement. Unexpectedly, Cadm1 knockout mice show normal hearing threshold, which might be explained by the possible compensation by its homologs that are also expressed in the inner ear. Taken together, our work identified several novel PDZD7-binding proteins, which will help us to further understand the role of PDZD7 in hearing transduction.
Collapse
|
38
|
Guan J, Wang H, Lan L, Wang L, Yang J, Xie L, Yin Z, Xiong W, Zhao L, Wang D, Wang Q. Novel recessive PDZD7 biallelic mutations in two Chinese families with non-syndromic hearing loss. Am J Med Genet A 2017; 176:99-106. [PMID: 29048736 PMCID: PMC5765442 DOI: 10.1002/ajmg.a.38477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/17/2022]
Abstract
Autosomal recessive non‐syndromic hearing loss (ARNSHL) is a highly heterogeneous genetic condition. PDZD7 has emerged as a new genetic etiology of ARNSHL. Biallelic mutations in the PDZD7 gene have been reported in two German families, four Iranian families, and a Pakistani family with ARNSHL. The effect of PDZD7 on ARNSHL in other population has yet to be elucidated. Two Chinese ARNSHL families, each of which had two affected siblings, were included in this study. The families underwent target region capture and high‐throughput sequencing to analyze the exonic, splice‐site, and intronic sequences of 128 genes. Furthermore, 1751 normal Chinese individuals served as controls, and 122 Chinese families segregating with apparent ARNSHL, who had been previously excluded for variants in the common deafness genes GJB2 and SLC26A4, were subjected to screening for candidate mutations. We identified a novel homozygous missense mutation (p.Arg66Leu) and novel compound heterozygous frameshift mutations (p.Arg56fsTer24 and p.His403fsTer36) in Chinese families with ARNSHL. This is the first report to identify PDZD7 as an ARNSHL‐associated gene in the Chinese population. Our finding could expand the pathogenic spectrum and strengthens the clinical diagnostic role of the PDZD7 gene in ARNSHL patients.
Collapse
Affiliation(s)
- Jing Guan
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hongyang Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lan Lan
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Li Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Ju Yang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Linyi Xie
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Zifang Yin
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wenping Xiong
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lidong Zhao
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
39
|
Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017; 18:649-670. [PMID: 28815315 PMCID: PMC5612923 DOI: 10.1007/s10162-017-0634-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gene therapy, or the treatment of human disease using genetic material, for inner ear dysfunction is coming of age. Recent progress in developing gene therapy treatments for genetic hearing loss has demonstrated tantalizing proof-of-principle in animal models. While successful translation of this progress into treatments for humans awaits, there is growing interest from patients, scientists, clinicians, and industry. Nonetheless, it is clear that a number of hurdles remain, and expectations for total restoration of auditory function should remain tempered until these challenges have been overcome. Here, we review progress, prospects, and challenges for gene therapy in the inner ear. We focus on technical aspects, including routes of gene delivery to the inner ear, choice of vectors, promoters, inner ear targets, therapeutic strategies, preliminary success stories, and points to consider for translating of these successes to the clinic.
Collapse
Affiliation(s)
- Hena Ahmed
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Shubina-Oleinik
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Zou J, Chen Q, Almishaal A, Mathur PD, Zheng T, Tian C, Zheng QY, Yang J. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells. Hum Mol Genet 2017; 26:624-636. [PMID: 28031293 DOI: 10.1093/hmg/ddw421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/07/2016] [Indexed: 11/14/2022] Open
Abstract
Usher syndrome (USH) is the most common cause of inherited deaf-blindness, manifested as USH1, USH2 and USH3 clinical types. The protein products of USH2 causative and modifier genes, USH2A, ADGRV1, WHRN and PDZD7, interact to assemble a multiprotein complex at the ankle link region of the mechanosensitive stereociliary bundle in hair cells. Defects in this complex cause stereociliary bundle disorganization and hearing loss. The four USH2 proteins also interact in vitro with USH1 proteins including myosin VIIa, USH1G (SANS), CIB2 and harmonin. However, it is unclear whether the interactions between USH1 and USH2 proteins occur in vivo and whether USH1 proteins play a role in USH2 complex assembly in hair cells. In this study, we identified a novel interaction between myosin VIIa and PDZD7 by FLAG pull-down assay. We further investigated the role of the above-mentioned four USH1 proteins in the cochlear USH2 complex assembly using USH1 mutant mice. We showed that only myosin VIIa is indispensable for USH2 complex assembly at ankle links, indicating the potential transport and/or anchoring role of myosin VIIa for USH2 proteins in hair cells. However, myosin VIIa is not required for USH2 complex assembly in photoreceptors. We further showed that, while PDZ protein harmonin is not involved, its paralogous USH2 proteins, PDZD7 and whirlin, function synergistically in USH2 complex assembly in cochlear hair cells. In summary, our studies provide novel insight into the functional relationship between USH1 and USH2 proteins in the cochlea and the retina as well as the disease mechanisms underlying USH1 and USH2.
Collapse
Affiliation(s)
- Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Qian Chen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, UT 84112, USA
| | - Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA.,Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Tihua Zheng
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Cong Tian
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qing Y Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA.,Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA.,Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| |
Collapse
|
41
|
Yu M, Liu Y, Li J, Natale BN, Cao S, Wang D, Amack JD, Hu H. Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish. Biol Open 2016; 5:1662-1673. [PMID: 27737822 PMCID: PMC5155541 DOI: 10.1242/bio.021584] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the extracellular matrix protein eyes shut homolog (EYS) cause photoreceptor degeneration in patients with retinitis pigmentosa 25 (RP25). Functions of EYS remain poorly understood, due in part to the lack of an EYS gene in mouse. We investigated the localization of vertebrate EYS proteins and engineered loss-of-function alleles in zebrafish. Immunostaining indicated that EYS localized near the connecting cilium/transition zone in photoreceptors. EYS also strongly localized to the cone outer segments and weakly to the rod outer segments and cone terminals in primate retinas. Analysis of mutant EYS zebrafish revealed disruption of the ciliary pocket in cone photoreceptors, indicating that EYS is required for maintaining the integrity of the ciliary pocket lumen. Mutant zebrafish exhibited progressive loss of cone and rod photoreceptors. Our results indicate that EYS protein localization is species-dependent and that EYS is required for maintaining ciliary pocket morphology and survival of photoreceptors in zebrafish. Summary: The extracellular matrix protein Eyes shut homolog is required for maintaining the integrity of the ciliary pocket and survival of photoreceptors in zebrafish.
Collapse
Affiliation(s)
- Miao Yu
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yu Liu
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jing Li
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brianna N Natale
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Shuqin Cao
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Huaiyu Hu
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
42
|
Morgan CP, Krey JF, Grati M, Zhao B, Fallen S, Kannan-Sundhari A, Liu XZ, Choi D, Müller U, Barr-Gillespie PG. PDZD7-MYO7A complex identified in enriched stereocilia membranes. eLife 2016; 5:e18312. [PMID: 27525485 PMCID: PMC5005036 DOI: 10.7554/elife.18312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022] Open
Abstract
While more than 70 genes have been linked to deafness, most of which are expressed in mechanosensory hair cells of the inner ear, a challenge has been to link these genes into molecular pathways. One example is Myo7a (myosin VIIA), in which deafness mutations affect the development and function of the mechanically sensitive stereocilia of hair cells. We describe here a procedure for the isolation of low-abundance protein complexes from stereocilia membrane fractions. Using this procedure, combined with identification and quantitation of proteins with mass spectrometry, we demonstrate that MYO7A forms a complex with PDZD7, a paralog of USH1C and DFNB31. MYO7A and PDZD7 interact in tissue-culture cells, and co-localize to the ankle-link region of stereocilia in wild-type but not Myo7a mutant mice. Our data thus describe a new paradigm for the interrogation of low-abundance protein complexes in hair cell stereocilia and establish an unanticipated link between MYO7A and PDZD7.
Collapse
Affiliation(s)
- Clive P Morgan
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
| | - Bo Zhao
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Shannon Fallen
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | | | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, United States
- Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ulrich Müller
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
43
|
Jansen F, Kalbe B, Scholz P, Mikosz M, Wunderlich KA, Kurtenbach S, Nagel-Wolfrum K, Wolfrum U, Hatt H, Osterloh S. Impact of the Usher syndrome on olfaction. Hum Mol Genet 2015; 25:524-33. [PMID: 26620972 DOI: 10.1093/hmg/ddv490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction.
Collapse
Affiliation(s)
- Fabian Jansen
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Benjamin Kalbe
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Paul Scholz
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Marta Mikosz
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Kirsten A Wunderlich
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Stefan Kurtenbach
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Hanns Hatt
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Sabrina Osterloh
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| |
Collapse
|
44
|
Mathur PD, Zou J, Zheng T, Almishaal A, Wang Y, Chen Q, Wang L, Vashist D, Brown S, Park A, Yang J. Distinct expression and function of whirlin isoforms in the inner ear and retina: an insight into pathogenesis of USH2D and DFNB31. Hum Mol Genet 2015; 24:6213-28. [PMID: 26307081 PMCID: PMC4599678 DOI: 10.1093/hmg/ddv339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Usher syndrome (USH) is the most common inherited deaf-blindness with the majority of USH causative genes also involved in nonsyndromic recessive deafness (DFNB). The mechanism underlying this disease variation of USH genes is unclear. Here, we addressed this issue by investigating the DFNB31 gene, whose mutations cause USH2D or DFNB31 depending on their position. We found that the mouse DFNB31 ortholog (Dfnb31) expressed different mRNA variants and whirlin protein isoforms in the cochlea and retina, where these isoforms played different roles spatially and temporally. Full-length (FL-) whirlin in photoreceptors and hair cell stereociliary bases is important for the USH type 2 protein complex, while FL- and C-terminal (C-) whirlins in hair cell stereociliary tips participate in stereociliary elongation. Mutations in the whirlin N-terminal region disrupted FL-whirlin isoform in the inner ear and retina but not C-whirlin in the inner ear, and led to retinal degeneration as well as moderate to severe hearing loss. By contrast, a mutation in the whirlin C-terminal region eliminated all normal whirlin isoforms but generated a truncated N-terminal whirlin protein fragment, which was partially functional in the retina and thus prevented retinal degeneration. Mice with this mutation had profound hearing loss. In summary, disruption of distinct whirlin isoforms by Dfnb31 mutations leads to a variety of phenotype configurations and may explain the mechanism underlying the different disease manifestations of human DFNB31 mutations. Our findings have a potential to improve diagnosis and treatment of USH disease and quality of life in USH patients.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Tihua Zheng
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, UT 84112, USA
| | - Yong Wang
- Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Qian Chen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Le Wang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, The First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, China and
| | - Deepti Vashist
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire OX11 ORD, UK
| | - Albert Park
- Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA, Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA,
| |
Collapse
|
45
|
Mathur PD, Vijayakumar S, Vashist D, Jones SM, Jones TA, Yang J. A study of whirlin isoforms in the mouse vestibular system suggests potential vestibular dysfunction in DFNB31-deficient patients. Hum Mol Genet 2015; 24:7017-30. [PMID: 26420843 DOI: 10.1093/hmg/ddv403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
The DFNB31 gene plays an indispensable role in the cochlea and retina. Mutations in this gene disrupt its various isoforms and lead to non-syndromic deafness, blindness and deaf-blindness. However, the known expression of Dfnb31, the mouse ortholog of DFNB31, in vestibular organs and the potential vestibular-deficient phenotype observed in one Dfnb31 mutant mouse (Dfnb31(wi/wi)) suggest that DFNB31 may also be important for vestibular function. In this study, we find that full-length (FL-) and C-terminal (C-) whirlin isoforms are expressed in the vestibular organs, where their stereociliary localizations are similar to those of developing cochlear inner hair cells. No whirlin is detected in Dfnb31(wi/wi) vestibular organs, while only C-whirlin is expressed in Dfnb31(neo/neo) vestibular organs. Both FL- and C-whirlin isoforms are required for normal vestibular stereociliary growth, although they may play slightly different roles in the central and peripheral zones of the crista ampullaris. Vestibular sensory-evoked potentials demonstrate severe to profound vestibular deficits in Dfnb31(neo/neo) and Dfnb31(wi/wi) mice. Swimming and rotarod tests demonstrate that the two Dfnb31 mutants have balance problems, with Dfnb31(wi/wi) mice being more affected than Dfnb31(neo/neo) mice. Because Dfnb31(wi/wi) and Dfnb31(neo/neo) mice faithfully recapitulate hearing and vision symptoms in patients, our findings of vestibular dysfunction in these Dfnb31 mutants raise the question of whether DFNB31-deficient patients may acquire vestibular as well as hearing and vision loss.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA and
| | - Deepti Vashist
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA and
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA and
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA, Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| |
Collapse
|
46
|
Booth KT, Azaiez H, Kahrizi K, Simpson AC, Tollefson WTA, Sloan CM, Meyer NC, Babanejad M, Ardalani F, Arzhangi S, Schnieders MJ, Najmabadi H, Smith RJH. PDZD7 and hearing loss: More than just a modifier. Am J Med Genet A 2015; 167A:2957-65. [PMID: 26416264 DOI: 10.1002/ajmg.a.37274] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022]
Abstract
Deafness is the most frequent sensory disorder. With over 90 genes and 110 loci causally implicated in non-syndromic hearing loss, it is phenotypically and genetically heterogeneous. Here, we investigate the genetic etiology of deafness in four families of Iranian origin segregating autosomal recessive non-syndromic hearing loss (ARNSHL). We used a combination of linkage analysis, homozygosity mapping, and a targeted genomic enrichment platform to simultaneously screen 90 known deafness-causing genes for pathogenic variants. Variant segregation was confirmed by Sanger sequencing. Linkage analysis and homozygosity mapping showed segregation with the DFNB57 locus on chromosome 10 in two families. Targeted genomic enrichment with massively parallel sequencing identified causal variants in PDZD7: a homozygous missense variant (p.Gly103Arg) in one family and compound heterozygosity for missense (p.Met285Arg) and nonsense (p.Tyr500Ter) variants in the second family. Screening of two additional families identified two more variants: (p.Gly228Arg) and (p.Gln526Ter). Variant segregation with the hearing loss phenotype was confirmed in all families by Sanger sequencing. The missense variants are predicted to be deleterious, and the two nonsense mutations produce null alleles. This report is the first to show that mutations in PDZD7 cause ARNSHL, a finding that offers addition insight into the USH2 interactome. We also describe a novel likely disease-causing mutation in CIB2 and illustrate the complexity associated with gene identification in diseases that exhibit large genetic and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Kevin T Booth
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Hela Azaiez
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Allen C Simpson
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | | | - Christina M Sloan
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Nicole C Meyer
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fariba Ardalani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J H Smith
- Department of Otolaryngology-Head Neck Surgery, Molecular Otolaryngology Renal Research Laboratories, University of Iowa, Iowa City, Iowa
| |
Collapse
|
47
|
Zou J, Mathur PD, Zheng T, Wang Y, Almishaal A, Park AH, Yang J. Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle. Hum Mol Genet 2015; 24:6944-57. [PMID: 26401052 DOI: 10.1093/hmg/ddv398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/21/2015] [Indexed: 11/14/2022] Open
Abstract
Usher syndrome (USH) is the leading cause of inherited deaf-blindness, with type 2 (USH2) being the most common clinical form. Studies suggest that proteins encoded by USH2 causative genes assemble into the ankle link complex (ALC) at the hair cell stereociliary bundle; however, little is known about the in vivo assembly and function of this complex. Using various USH2 mutant mice, we showed by immunofluorescence that USH2 proteins play different roles in cochlear ALC assembly, with G protein-coupled receptor 98 being the most important protein. Complex assembly likely occurs at the stereociliary bundle but not along the protein transport route in the cell body. Stereociliary morphological defects in USH2 mutant mice suggest roles for the ALC in regulating inner hair cell stereociliary growth and differentiation as well as outer hair cell stereociliary rigidity and organization during development. These roles are unique from the bundle cohesion role of Usher syndrome type 1 protein complexes. Loss of individual USH2 gene expressions leads to variable morphological and functional consequences, correlating with the severity of ALC disruption. This finding suggests a potential genotype-phenotype correlation in USH2 patients. In summary, this study provides novel insights into the molecular mechanism underlying cochlear stereociliary bundle development and hearing loss pathogenesis of various USH2 subtypes. Our thorough phenotypical characterization of USH2 mouse models is essential for future use of these animal models in therapeutic development.
Collapse
Affiliation(s)
- Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Pranav D Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Tihua Zheng
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Yong Wang
- Division of Otolaryngology, Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA and
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, UT 84112, USA
| | - Albert H Park
- Division of Otolaryngology, Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA and
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA, Division of Otolaryngology, Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA and
| |
Collapse
|
48
|
Chiang J(PW, Lamey T, McLaren T, Thompson JA, Montgomery H, De Roach J. Progress and prospects of next-generation sequencing testing for inherited retinal dystrophy. Expert Rev Mol Diagn 2015; 15:1269-75. [PMID: 26394700 PMCID: PMC4659341 DOI: 10.1586/14737159.2015.1081057] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Next-generation sequencing, also known as massively paralleled sequencing, offers an unprecedented opportunity to study disease mechanisms of inherited retinal dystrophies: a dramatic change from a few years ago. The specific involvement of the retina and the manageable number of genes to sequence make inherited retinal dystrophies an attractive model to study genotype-phenotype correlations. Costs are reducing rapidly and the current overall mutation detection rate of approximately 60% offers real potential for personalized medicine and treatments. This report addresses the challenges ahead, which include: better understanding of the mutation mechanisms of syndromic genes in apparent non-syndromic patients; finding mutations in patients who have tested negative or inconclusive; better variant calling, especially for intronic and synonymous variants; more precise genotype-phenotype correlations and making genetic testing more broadly accessible.
Collapse
Affiliation(s)
- John (Pei-Wen) Chiang
- Casey Eye Institute Molecular Diagnostic Laboratory, Oregon Health Science University, Portland, OR, USA
| | - Tina Lamey
- Australian Inherited Retinal Disease Register and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| | - Terri McLaren
- Australian Inherited Retinal Disease Register and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Register and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| | - Hannah Montgomery
- Australian Inherited Retinal Disease Register and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| | - John De Roach
- Australian Inherited Retinal Disease Register and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Western Australia 6009, Australia
| |
Collapse
|