1
|
McPhee M, Dellaire G, Ridgway ND. Mechanisms for assembly of the nucleoplasmic reticulum. Cell Mol Life Sci 2024; 81:415. [PMID: 39367888 PMCID: PMC11455740 DOI: 10.1007/s00018-024-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
The nuclear envelope consists of an outer membrane connected to the endoplasmic reticulum, an inner membrane facing the nucleoplasm and a perinuclear space separating the two bilayers. The inner and outer nuclear membranes are physically connected at nuclear pore complexes that mediate selective communication and transfer of materials between the cytoplasm and nucleus. The spherical shape of the nuclear envelope is maintained by counterbalancing internal and external forces applied by cyto- and nucleo-skeletal networks, and the nuclear lamina and chromatin that underly the inner nuclear membrane. Despite its apparent rigidity, the nuclear envelope can invaginate to form an intranuclear membrane network termed the nucleoplasmic reticulum (NR) consisting of Type-I NR contiguous with the inner nuclear membrane and Type-II NR containing both the inner and outer nuclear membranes. The NR extends deep into the nuclear interior potentially facilitating communication and exchanges between the nuclear interior and the cytoplasm. This review details the evidence that NR intrusions that regulate cytoplasmic communication and genome maintenance are the result of a dynamic interplay between membrane biogenesis and remodelling, and physical forces exerted on the nuclear lamina derived from the cyto- and nucleo-skeletal networks.
Collapse
Affiliation(s)
- Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada.
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
2
|
Draganova EB, Wang H, Wu M, Liao S, Vu A, Gonzalez-Del Pino GL, Zhou ZH, Roller RJ, Heldwein EE. The universal suppressor mutation restores membrane budding defects in the HSV-1 nuclear egress complex by stabilizing the oligomeric lattice. PLoS Pathog 2024; 20:e1011936. [PMID: 38227586 PMCID: PMC10817169 DOI: 10.1371/journal.ppat.1011936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
Nuclear egress is an essential process in herpesvirus replication whereby nascent capsids translocate from the nucleus to the cytoplasm. This initial step of nuclear egress-budding at the inner nuclear membrane-is coordinated by the nuclear egress complex (NEC). Composed of the viral proteins UL31 and UL34, NEC deforms the membrane around the capsid as the latter buds into the perinuclear space. NEC oligomerization into a hexagonal membrane-bound lattice is essential for budding because NEC mutants designed to perturb lattice interfaces reduce its budding ability. Previously, we identified an NEC suppressor mutation capable of restoring budding to a mutant with a weakened hexagonal lattice. Using an established in-vitro budding assay and HSV-1 infected cell experiments, we show that the suppressor mutation can restore budding to a broad range of budding-deficient NEC mutants thereby acting as a universal suppressor. Cryogenic electron tomography of the suppressor NEC mutant lattice revealed a hexagonal lattice reminiscent of wild-type NEC lattice instead of an alternative lattice. Further investigation using x-ray crystallography showed that the suppressor mutation promoted the formation of new contacts between the NEC hexamers that, ostensibly, stabilized the hexagonal lattice. This stabilization strategy is powerful enough to override the otherwise deleterious effects of mutations that destabilize the NEC lattice by different mechanisms, resulting in a functional NEC hexagonal lattice and restoration of membrane budding.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hui Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Department of Bioengineering, UCLA, Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Melanie Wu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Shiqing Liao
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Amber Vu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gonzalo L. Gonzalez-Del Pino
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Department of Bioengineering, UCLA, Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
| | - Richard J. Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023; 14:2178184. [PMID: 36814098 PMCID: PMC9980700 DOI: 10.1080/19491034.2023.2178184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Filomena Broeskamp
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Dimitra Panagaki
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Sean D. Speese
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S Moody Ave, Portland, OR, 97201, USA
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Johanna L. Höög
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| |
Collapse
|
4
|
Klupp BG, Mettenleiter TC. The Knowns and Unknowns of Herpesvirus Nuclear Egress. Annu Rev Virol 2023; 10:305-323. [PMID: 37040797 DOI: 10.1146/annurev-virology-111821-105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
5
|
Amm I, Weberruss M, Hellwig A, Schwarz J, Tatarek-Nossol M, Lüchtenborg C, Kallas M, Brügger B, Hurt E, Antonin W. Distinct domains in Ndc1 mediate its interaction with the Nup84 complex and the nuclear membrane. J Cell Biol 2023; 222:e202210059. [PMID: 37154843 PMCID: PMC10165475 DOI: 10.1083/jcb.202210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and built from ∼30 different nucleoporins (Nups) in multiple copies, few are integral membrane proteins. One of these transmembrane nucleoporins, Ndc1, is thought to function in NPC assembly at the fused inner and outer nuclear membranes. Here, we show a direct interaction of Ndc1's transmembrane domain with Nup120 and Nup133, members of the pore membrane coating Y-complex. We identify an amphipathic helix in Ndc1's C-terminal domain binding highly curved liposomes. Upon overexpression, this amphipathic motif is toxic and dramatically alters the intracellular membrane organization in yeast. Ndc1's amphipathic motif functionally interacts with related motifs in the C-terminus of the nucleoporins Nup53 and Nup59, important for pore membrane binding and interconnecting NPC modules. The essential function of Ndc1 can be suppressed by deleting the amphipathic helix from Nup53. Our data indicate that nuclear membrane and presumably NPC biogenesis depends on a balanced ratio between amphipathic motifs in diverse nucleoporins.
Collapse
Affiliation(s)
- Ingo Amm
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marion Weberruss
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Johannes Schwarz
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Christian Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Martina Kallas
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Bahnamiri MM, Roller RJ. DISTINCT ROLES OF VIRAL US3 AND UL13 PROTEIN KINASES IN HERPES VIRUS SIMPLEX TYPE 1 (HSV-1) NUCLEAR EGRESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533584. [PMID: 36993506 PMCID: PMC10055267 DOI: 10.1101/2023.03.20.533584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Herpesviruses transport nucleocapsids from the nucleus to the cytoplasm by capsid envelopment into the inner nuclear membrane and de-envelopment from the outer nuclear membrane, a process that is coordinated by nuclear egress complex (NEC) proteins, pUL34, and pUL31. Both pUL31 and pUL34 are phosphorylated by the virus-encoded protein kinase, pUS3, and phosphorylation of pUL31 regulates NEC localization at the nuclear rim. pUS3 also controls apoptosis and many other viral and cellular functions in addition to nuclear egress, and the regulation of these various activities in infected cells is not well understood. It has been previously proposed that pUS3 activity is selectively regulated by another viral protein kinase, pUL13 such that its activity in nuclear egress is pUL13-dependent, but apoptosis regulation is not, suggesting that pUL13 might regulate pUS3 activity on specific substrates. We compared HSV-1 UL13 kinase-dead and US3 kinase-dead mutant infections and found that pUL13 kinase activity does not regulate the substrate choice of pUS3 in any defined classes of pUS3 substrates and that pUL13 kinase activity is not important for promoting de-envelopment during nuclear egress. We also find that mutation of all pUL13 phosphorylation motifs in pUS3, individually or in aggregate, does not affect the localization of the NEC, suggesting that pUL13 regulates NEC localization independent of pUS3. Finally, we show that pUL13 co-localizes with pUL31 inside the nucleus in large aggregates, further suggesting a direct effect of pUL13 on the NEC and suggesting a novel mechanism for both UL31 and UL13 in the DNA damage response pathway. IMPORTANCE Herpes simplex virus infections are regulated by two virus-encoded protein kinases, pUS3 and pUL13, which each regulate multiple processes in the infected cell, including capsid transport from the nucleus to the cytoplasm. Regulation of the activity of these kinases on their various substrates is poorly understood, but importantly, kinases are attractive targets for the generation of inhibitors. It has been previously suggested that pUS3 activity on specific substrates is differentially regulated by pUL13 and, specifically, that pUL13 regulates capsid egress from the nucleus by phosphorylation of pUS3. In this study, we determined that pUL13 and pUS3 have different effects on nuclear egress and that pUL13 may interact directly with the nuclear egress apparatus with implications both for virus assembly and egress and, possibly, the host cell DNA- damage response.
Collapse
|
7
|
RNA helicase DDX3X modulates herpes simplex virus 1 nuclear egress. Commun Biol 2023; 6:134. [PMID: 36725983 PMCID: PMC9892522 DOI: 10.1038/s42003-023-04522-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
DDX3X is a mammalian RNA helicase that regulates RNA metabolism, cancers, innate immunity and several RNA viruses. We discovered that herpes simplex virus 1, a nuclear DNA replicating virus, redirects DDX3X to the nuclear envelope where it surprisingly modulates the exit of newly assembled viral particles. DDX3X depletion also leads to an accumulation of virions in intranuclear herniations. Mechanistically, we show that DDX3X physically and functionally interacts with the virally encoded nuclear egress complex at the inner nuclear membrane. DDX3X also binds to and stimulates the incorporation in mature particles of pUs3, a herpes kinase that promotes viral nuclear release across the outer nuclear membrane. Overall, the data highlights two unexpected roles for an RNA helicase during the passage of herpes simplex viral particles through the nuclear envelope. This reveals a highly complex interaction between DDX3X and viruses and provides new opportunities to target viral propagation.
Collapse
|
8
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Thorsen MK, Draganova EB, Heldwein EE. The nuclear egress complex of Epstein-Barr virus buds membranes through an oligomerization-driven mechanism. PLoS Pathog 2022; 18:e1010623. [PMID: 35802751 PMCID: PMC9299292 DOI: 10.1371/journal.ppat.1010623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/20/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
During replication, herpesviral capsids are translocated from the nucleus into the cytoplasm by an unusual mechanism, termed nuclear egress, that involves capsid budding at the inner nuclear membrane. This process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid. Although the NEC is essential for capsid nuclear egress across all three subfamilies of the Herpesviridae, most studies to date have focused on the NEC homologs from alpha- and beta- but not gammaherpesviruses. Here, we report the crystal structure of the NEC from Epstein-Barr virus (EBV), a prototypical gammaherpesvirus. The structure resembles known structures of NEC homologs yet is conformationally dynamic. We also show that purified, recombinant EBV NEC buds synthetic membranes in vitro and forms membrane-bound coats of unknown geometry. However, unlike other NEC homologs, EBV NEC forms dimers in the crystals instead of hexamers. The dimeric interfaces observed in the EBV NEC crystals are similar to the hexameric interfaces observed in other NEC homologs. Moreover, mutations engineered to disrupt the dimeric interface reduce budding. Putting together these data, we propose that EBV NEC-mediated budding is driven by oligomerization into membrane-bound coats. Herpesviruses, which infect most of the world’s population for life, translocate their capsids from the nucleus, where they are formed, into the cytoplasm, where they mature into infectious virions, by an unusual mechanism, termed nuclear egress. During nuclear budding, an early step in this process, the inner nuclear membrane is deformed around the capsid by the complex of two viral proteins termed the nuclear egress complex (NEC). The NEC is conserved across all three subfamilies of Herpesviruses and essential for nuclear egress. However, most studies to date have focused on the NEC homologs from alpha- and betaherpesviruses while less is known about the NEC from gammaherpesviruses. Here, we determined the crystal structure of the NEC from Epstein-Barr virus (EBV), a prototypical gammaherpesvirus, and investigated its membrane budding properties in vitro. Our data show that the ability to vesiculate membranes by forming membrane-bound coats and the structure are conserved across the NEC homologs from all three subfamilies. However, the EBV NEC may employ a distinct membrane-budding mechanism due to its structural flexibility and the ability to form coats of different geometry.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Nourbakhsh F, Askari VR. Biological and pharmacological activities of noscapine: Focusing on its receptors and mechanisms. Biofactors 2021; 47:975-991. [PMID: 34534373 DOI: 10.1002/biof.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Noscapine has been mentioned as one of the effective drugs with potential therapeutic applications. With few side effects and amazing capabilities, noscapine can be considered different from other opioids-like structure compounds. Since 1930, extensive studies have been conducted in the field of pharmacological treatments from against malaria to control cough and cancer treatment. Furthermore, recent studies have shown that noscapine and some analogues, like 9-bromonoscapine, amino noscapine, and 9-nitronoscapine, can be used to treat polycystic ovaries syndrome, stroke, and other diseases. Given the numerous results presented in this field and the role of different receptors in the therapeutic effects of noscapine, we aimed to review the properties, therapeutic effects, and the role of receptors in the treatment of noscapine.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Thorsen MK, Lai A, Lee MW, Hoogerheide DP, Wong GCL, Freed JH, Heldwein EE. Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering. mBio 2021; 12:e0154821. [PMID: 34425706 PMCID: PMC8406295 DOI: 10.1128/mbio.01548-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 02/01/2023] Open
Abstract
During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex Lai
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Michelle W. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Muradov JH, Finnen RL, Gulak MA, Hay TJM, Banfield BW. pUL21 regulation of pUs3 kinase activity influences the nature of nuclear envelope deformation by the HSV-2 nuclear egress complex. PLoS Pathog 2021; 17:e1009679. [PMID: 34424922 PMCID: PMC8412291 DOI: 10.1371/journal.ppat.1009679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
It is well established that the herpesvirus nuclear egress complex (NEC) has an intrinsic ability to deform membranes. During viral infection, the membrane-deformation activity of the NEC must be precisely regulated to ensure efficient nuclear egress of capsids. One viral protein known to regulate herpes simplex virus type 2 (HSV-2) NEC activity is the tegument protein pUL21. Cells infected with an HSV-2 mutant lacking pUL21 (ΔUL21) produced a slower migrating species of the viral serine/threonine kinase pUs3 that was shown to be a hyperphosphorylated form of the enzyme. Investigation of the pUs3 substrate profile in ΔUL21-infected cells revealed a prominent band with a molecular weight consistent with that of the NEC components pUL31 and pUL34. Phosphatase sensitivity and retarded mobility in phos-tag SDS-PAGE confirmed that both pUL31 and pUL34 were hyperphosphorylated by pUs3 in the absence of pUL21. To gain insight into the consequences of increased phosphorylation of NEC components, the architecture of the nuclear envelope in cells producing the HSV-2 NEC in the presence or absence of pUs3 was examined. In cells with robust NEC production, invaginations of the inner nuclear membrane were observed that contained budded vesicles of uniform size. By contrast, nuclear envelope deformations protruding outwards from the nucleus, were observed when pUs3 was included in transfections with the HSV-2 NEC. Finally, when pUL21 was included in transfections with the HSV-2 NEC and pUs3, decreased phosphorylation of NEC components was observed in comparison to transfections lacking pUL21. These results demonstrate that pUL21 influences the phosphorylation status of pUs3 and the HSV-2 NEC and that this has consequences for the architecture of the nuclear envelope. During all herpesvirus infections, the nuclear envelope undergoes deformation in order to enable viral capsids assembled within the nucleus of the infected cell to gain access to the cytoplasm for further maturation and spread to neighbouring cells. These nuclear envelope deformations are orchestrated by the viral nuclear egress complex (NEC), which, in HSV, is composed of two viral proteins, pUL31 and pUL34. How the membrane-deformation activity of the NEC is controlled during infection is incompletely understood. The studies in this communication reveal that the phosphorylation status of pUL31 and pUL34 can determine the nature of nuclear envelope deformations and that the viral protein pUL21 can modulate the phosphorylation status of both NEC components. These findings provide an explanation for why HSV-2 strains lacking pUL21 are defective in nuclear egress. A thorough understanding of how NEC activity is controlled during infection may yield strategies to disrupt this fundamental step in the herpesvirus lifecycle, providing the basis for novel antiviral strategies.
Collapse
Affiliation(s)
- Jamil H. Muradov
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Renée L. Finnen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Michael A. Gulak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Thomas J. M. Hay
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Bruce W. Banfield
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- * E-mail:
| |
Collapse
|
13
|
Dorsch AD, Hölper JE, Franzke K, Zaeck LM, Mettenleiter TC, Klupp BG. Role of Vesicle-Associated Membrane Protein-Associated Proteins (VAP) A and VAPB in Nuclear Egress of the Alphaherpesvirus Pseudorabies Virus. Viruses 2021; 13:v13061117. [PMID: 34200728 PMCID: PMC8229525 DOI: 10.3390/v13061117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.
Collapse
Affiliation(s)
- Anna D. Dorsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
- Correspondence:
| |
Collapse
|
14
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Host and Viral Factors Involved in Nuclear Egress of Herpes Simplex Virus 1. Viruses 2021; 13:v13050754. [PMID: 33923040 PMCID: PMC8146395 DOI: 10.3390/v13050754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) replicates its genome and packages it into capsids within the nucleus. HSV-1 has evolved a complex mechanism of nuclear egress whereby nascent capsids bud on the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. The viral-encoded nuclear egress complex (NEC) plays a crucial role in this vesicle-mediated nucleocytoplasmic transport. Nevertheless, similar system mediates the movement of other cellular macromolecular complexes in normal cells. Therefore, HSV-1 may utilize viral proteins to hijack the cellular machinery in order to facilitate capsid transport. However, little is known about the molecular mechanisms underlying this phenomenon. This review summarizes our current understanding of the cellular and viral factors involved in the nuclear egress of HSV-1 capsids.
Collapse
|
16
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
17
|
Read C, Walther P, von Einem J. Quantitative Electron Microscopy to Study HCMV Morphogenesis. Methods Mol Biol 2021; 2244:265-289. [PMID: 33555592 DOI: 10.1007/978-1-0716-1111-1_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation and release of mature virions from human cytomegalovirus (HCMV) infected cells is a multistep process, involving a profound reorganization of cellular structures and various stages of virus particle morphogenesis in different cellular compartments. Although the general steps of HCMV morphogenesis are known, it has become clear that the detailed molecular mechanisms are complex and dependent on various viral factors and cellular pathways. The lack of a full understanding of HCMV virion morphogenesis emphasizes the need of imaging techniques to visualize the different stages of virion assembly, such as electron microscopy. Here, we describe various electron microscopy techniques and the methodology of high-pressure freezing and freeze substitution for sample preparation to visualize HCMV morphogenesis. These methods are used in our laboratory in combination with a thorough quantification to characterize phenotypic alterations and to identify the function of viral and cellular proteins for the various morphogenesis stages.
Collapse
Affiliation(s)
- Clarissa Read
- Institute of Virology, Ulm University Medical Center, Ulm, Germany.,Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
18
|
Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity In Vivo. J Virol 2020; 94:JVI.01572-20. [PMID: 32999028 DOI: 10.1128/jvi.01572-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness.IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.
Collapse
|
19
|
Molenberghs F, Bogers JJ, De Vos WH. Confined no more: Viral mechanisms of nuclear entry and egress. Int J Biochem Cell Biol 2020; 129:105875. [PMID: 33157236 DOI: 10.1016/j.biocel.2020.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Viruses are obligatory intracellular parasites. For their efficient replication, many require access to the nuclear interior. Yet, only few viral particles are small enough to passively diffuse through the nuclear pore complexes, calling for alternative strategies to bypass the nuclear envelope barrier. Some viruses will await mitotic nuclear envelope breakdown to gain access, whereas others will exploit more active means, for instance by hijacking nuclear pore transport or by directly targeting constituents of the nuclear envelope so as to remodel and temporarily perturb its integrity. After replication, newly produced viral DNA complexes need to cross the same barrier to exit the nucleus and enter the cytoplasm, where the final stages of virion maturation take place. There are also different flavours to the feat of nuclear egress that vary in delicacy and intensity. In this review, we define the major entry and egress strategies that are exploited by different viruses and describe the molecular details thereof. Ultimately, a deeper understanding of these pathways may help identifying molecular targets for blocking viral reproduction or spreading.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences/Medicine and Health Sciences, University of Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences/Medicine and Health Sciences, University of Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences/Medicine and Health Sciences, University of Antwerp, Belgium.
| |
Collapse
|
20
|
Hölper JE, Reiche S, Franzke K, Mettenleiter TC, Klupp BG. Generation and characterization of monoclonal antibodies specific for the Pseudorabies Virus nuclear egress complex. Virus Res 2020; 287:198096. [PMID: 32682818 DOI: 10.1016/j.virusres.2020.198096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
During herpesvirus replication, newly synthesized nucleocapsids exit the nucleus by a vesicle-mediated transport, which requires the nuclear egress complex (NEC), composed of the conserved viral proteins designated as pUL31 and pUL34 in the alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses. Oligomerization of the heterodimeric NEC at the inner nuclear membrane (INM) results in membrane bending and budding of virus particles into the perinuclear space. The INM-derived primary envelope then fuses with the outer nuclear membrane to release nucleocapsids into the cytoplasm. The two NEC components are necessary and sufficient for induction of vesicle budding and scission as shown after co-expression in eukaryotic cells or in synthetic membranes. However, where and when the NEC is formed, how membrane curvature is mediated and how it is regulated, remains unclear. While monospecific antisera raised against the different components of the PrV NEC aided in the characterization and intracellular localization of the individual proteins, no NEC specific tools have been described yet for any herpesvirus. To gain more insight into vesicle budding and scission, we aimed at generating NEC specific monoclonal antibodies (mAbs). To this end, mice were immunized with bacterially expressed soluble PrV NEC, which was previously used for structure determination. Besides pUL31- and pUL34-specific mAbs, we also identified mAbs, which reacted only in the presence of both proteins indicating specificity for the complex. Confocal microscopy with those NEC-specific mAbs revealed small puncta (approx. 0.064 μm2) along the nuclear rim in PrV wild type infected cells. In contrast, ca. 5-fold larger speckles (approx. 0.35 μm2) were detectable in cells infected with a PrV mutant lacking the viral protein kinase pUS3, which is known to accumulate primary enveloped virions in the PNS within large invaginations of the INM, or in cells co-expressing pUL31 and pUL34. Kinetic experiments showed that while the individual proteins were detectable already between 2-4 hours after infection, the NEC-specific mAbs produced significant staining only after 4-6 hours in accordance with timing of nuclear egress. Taken together, the data indicate that these mAbs specifically label the PrV NEC.
Collapse
Affiliation(s)
- Julia E Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
21
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Draganova EB, Zhang J, Zhou ZH, Heldwein EE. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 2020; 9:56627. [PMID: 32579107 PMCID: PMC7340501 DOI: 10.7554/elife.56627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
During herpesvirus infection, egress of nascent viral capsids from the nucleus is mediated by the viral nuclear egress complex (NEC). NEC deforms the inner nuclear membrane (INM) around the capsid by forming a hexagonal array. However, how the NEC coat interacts with the capsid and how curved coats are generated to enable budding is yet unclear. Here, by structure-guided truncations, confocal microscopy, and cryoelectron tomography, we show that binding of the capsid protein UL25 promotes the formation of NEC pentagons rather than hexagons. We hypothesize that during nuclear budding, binding of UL25 situated at the pentagonal capsid vertices to the NEC at the INM promotes formation of NEC pentagons that would anchor the NEC coat to the capsid. Incorporation of NEC pentagons at the points of contact with the vertices would also promote assembly of the curved hexagonal NEC coat around the capsid, leading to productive egress of UL25-decorated capsids.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Jiayan Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
23
|
Marschall M, Häge S, Conrad M, Alkhashrom S, Kicuntod J, Schweininger J, Kriegel M, Lösing J, Tillmanns J, Neipel F, Eichler J, Muller YA, Sticht H. Nuclear Egress Complexes of HCMV and Other Herpesviruses: Solving the Puzzle of Sequence Coevolution, Conserved Structures and Subfamily-Spanning Binding Properties. Viruses 2020; 12:v12060683. [PMID: 32599939 PMCID: PMC7354485 DOI: 10.3390/v12060683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric nuclear egress complex (core NEC). These core NECs serve as hexameric lattice-structured platforms for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina as well as membrane-rearranging functions (multicomponent NEC). The regulation of nuclear egress has been profoundly analyzed for murine and human cytomegaloviruses (CMVs) on a mechanistic basis, followed by the description of core NEC crystal structures, first for HCMV, then HSV-1, PRV and EBV. Interestingly, the highly conserved structural domains of these proteins stand in contrast to a very limited sequence conservation of the key amino acids within core NEC-binding interfaces. Even more surprising, although a high functional consistency was found when regarding the basic role of NECs in nuclear egress, a clear specification was identified regarding the limited, subfamily-spanning binding properties of core NEC pairs and NEC multicomponent proteins. This review summarizes the evolving picture of the relationship between sequence coevolution, structural conservation and properties of NEC interaction, comparing HCMV to α-, β- and γ-herpesviruses. Since NECs represent substantially important elements of herpesviral replication that are considered as drug-accessible targets, their putative translational use for antiviral strategies is discussed.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
- Correspondence: ; Tel.: +49-9131-85-26089
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| | - Sewar Alkhashrom
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Johannes Schweininger
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Mark Kriegel
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Frank Neipel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Medical Center, 91054 Erlangen, Germany; (S.H.); (J.K.); (J.L.); (J.T.); (F.N.)
| | - Jutta Eichler
- Division of Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany; (S.A.); (J.E.)
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (J.S.); (M.K.); (Y.A.M.)
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.C.); (H.S.)
| |
Collapse
|
24
|
Differentiating the Roles of UL16, UL21, and Us3 in the Nuclear Egress of Herpes Simplex Virus Capsids. J Virol 2020; 94:JVI.00738-20. [PMID: 32321804 DOI: 10.1128/jvi.00738-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
Viral proteins pUL16 and pUL21 are required for efficient nuclear egress of herpes simplex virus 2 capsids. To better understand the role of these proteins in nuclear egress, we established whether nuclear egress complex (NEC) distribution and/or function was altered in the absence of either pUL16 or pUL21. NEC distribution in cells infected with pUL16-deficient viruses was indistinguishable from that observed in cells infected with wild-type viruses. In contrast, NEC distribution was aberrant in cells infected with pUL21-deficient virus and, instead, showed some similarity to the aberrant NEC distribution pattern observed in cells infected with pUs3-deficient virus. These results indicated that pUL16 plays a role in nuclear egress that is distinct from that of pUL21 and pUs3. Higher-resolution examination of nuclear envelope ultrastructure in cells infected with pUL21-deficient viruses by transmission electron microscopy showed different types of nuclear envelope perturbations, including some that were not observed in cells infected with pUs3 deficient virus. The formation of the nuclear envelope perturbations observed in pUL21-deficient virus infections was dependent on a functional NEC, revealing a novel role for pUL21 in regulating NEC activity. The results of comparisons of nuclear envelope ultrastructure in cells infected with viruses lacking pUs3, pUL16, or both pUs3 and pUL16 were consistent with a role for pUL16 in advance of primary capsid envelopment and shed new light on how pUs3 functions in nuclear egress.IMPORTANCE The membrane deformation activity of the herpesvirus nuclear egress complex (NEC) allows capsids to transit through both nuclear membranes into the cytoplasm. NEC activity must be precisely controlled during viral infection, and yet our knowledge of how NEC activity is controlled is incomplete. To determine how pUL16 and pUL21, two viral proteins required for nuclear egress of herpes simplex virus 2, function in nuclear egress, we examined how the lack of each protein impacted NEC distribution. These analyses revealed a function of pUL16 in nuclear egress distinct from that of pUL21, uncovered a novel role for pUL21 in regulating NEC activity, and shed new light on how a viral kinase, pUs3, regulates nuclear egress. Nuclear egress of capsids is required for all herpesviruses. A complete understanding of all aspects of nuclear egress, including how viral NEC activity is controlled, may yield strategies to disrupt this process and aid the development of herpes-specific antiviral therapies.
Collapse
|
25
|
Mutational Functional Analysis of the Pseudorabies Virus Nuclear Egress Complex-Nucleocapsid Interaction. J Virol 2020; 94:JVI.01910-19. [PMID: 32051272 DOI: 10.1128/jvi.01910-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 01/11/2023] Open
Abstract
Herpesvirus nucleocapsids leave the nucleus by a vesicle-mediated translocation mediated by the viral nuclear egress complex (NEC). The NEC is composed of two conserved viral proteins, designated pUL34 and pUL31 in the alphaherpesvirus pseudorabies virus (PrV). It is required for efficient nuclear egress and is sufficient for vesicle formation and scission from the inner nuclear membrane (INM). Structure-based mutagenesis identified a lysine at position 242 (K242) in pUL31, located in the most membrane distal part of the NEC, to be crucial for efficient nucleocapsid incorporation into budding vesicles. Replacing the lysine by alanine (K242A) resulted in accumulations of empty vesicles in the perinuclear space, despite the presence of excess nucleocapsids in the nucleus. However, it remained unclear whether the defect in capsid incorporation was due to interference with a direct, electrostatic interaction between the capsid and the NEC or structural restrictions. To test this, we replaced K242 with several amino acids, thereby modifying the charge, size, and side chain orientation. In addition, virus recombinants expressing pUL31-K242A were passaged and screened for second-site mutations. Compensatory mutations at different locations in pUL31 or pUL34 were identified, pointing to an inherent flexibility of the NEC. In summary, our data suggest that the amino acid at position 242 does not directly interact with the nucleocapsid but that rearrangements in the NEC coat are required for efficient nucleocapsid envelopment at the INM.IMPORTANCE Herpesviruses encode an exceptional vesicle formation and scission machinery, which operates at the inner nuclear membrane, translocating the viral nucleocapsid from the nucleus into the perinuclear space. The conserved herpesviral nuclear egress complex (NEC) orchestrates this process. High-resolution imaging approaches as well as the recently solved crystal structures of the NEC provided deep insight into the molecular details of vesicle formation and scission. Nevertheless, the molecular mechanism of nucleocapsid incorporation remained unclear. In accordance with structure-based predictions, a basic amino acid could be pinpointed in the most membrane-distal domain of the NEC (pUL31-K242), indicating that capsid incorporation might depend on a direct electrostatic interaction. Our follow-up study, described here, however, shows that the positive charge is not relevant but that the overall structure matters.
Collapse
|
26
|
Hölper JE, Klupp BG, Luxton GWG, Franzke K, Mettenleiter TC. Function of Torsin AAA+ ATPases in Pseudorabies Virus Nuclear Egress. Cells 2020; 9:cells9030738. [PMID: 32192107 PMCID: PMC7140721 DOI: 10.3390/cells9030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Newly assembled herpesvirus nucleocapsids traverse the intact nuclear envelope by a vesicle-mediated nucleo-cytoplasmic transport for final virion maturation in the cytoplasm. For this, they bud at the inner nuclear membrane resulting in primary enveloped particles in the perinuclear space (PNS) followed by fusion of the primary envelope with the outer nuclear membrane (ONM). While the conserved viral nuclear egress complex orchestrates the first steps, effectors of fusion of the primary virion envelope with the ONM are still mostly enigmatic but might include cellular proteins like SUN2 or ESCRT-III components. Here, we analyzed the influence of the only known AAA+ ATPases located in the endoplasmic reticulum and the PNS, the Torsins (Tor), on nuclear egress of the alphaherpesvirus pseudorabies virus. For this overexpression of wild type and mutant proteins as well as CRISPR/Cas9 genome editing was applied. Neither single overexpression nor gene knockout (KO) of TorA or TorB had a significant impact. However, TorA/B double KO cells showed decreased viral titers at early time points of infection and an accumulation of primary virions in the PNS pointing to a delay in capsid release during nuclear egress.
Collapse
Affiliation(s)
- Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
- Correspondence: ; Tel.: +49-38351-71250; Fax: +49-38351-71151
| |
Collapse
|
27
|
Functional Identification and Characterization of the Nuclear Egress Complex of a Gammaherpesvirus. J Virol 2019; 93:JVI.01422-19. [PMID: 31554685 DOI: 10.1128/jvi.01422-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 01/29/2023] Open
Abstract
The herpesvirus nuclear egress complex (NEC) is composed of two viral proteins. They play key roles in mediating the translocation of capsids from the nucleus to the cytoplasm by facilitating the budding of capsids into the perinuclear space (PNS). The NEC of alphaherpesvirus can induce the formation of virion-like vesicles from the nuclear membrane in the absence of other viral proteins. However, whether the NEC of gammaherpesvirus harbors the ability to do so in mammalian cells remains to be determined. In this study, we first constructed open reading frame 67 (ORF67)-null and ORF69-null mutants of murine gammaherpesvirus 68 (MHV-68) and demonstrated that both ORF67 and ORF69 play critical roles in nuclear egress and hence viral lytic replication. Biochemical and bioimaging analyses showed that ORF67 and ORF69 interacted with each other and were sufficient to induce the formation of virion-like vesicles from the nuclear membrane in mammalian cells. Thus, we designated ORF67 and ORF69 components of MHV-68 NEC. Furthermore, we identified amino acids critical for mediating the interaction between ORF67 and ORF69 through homology modeling and verified their function in nuclear egress, providing insights into the molecular basis of NEC formation in gammaherpesviruses.IMPORTANCE Increasing amounts of knowledge indicate that the nuclear egress complex (NEC) is critical for the nuclear egress of herpesvirus capsids, which can be viewed as a vesicle-mediated transport pathway through the nuclear membrane. In this study, we identified open reading frame 67 (ORF67) and ORF69 as components of the NEC in murine gammaherpesvirus 68 (MHV-68) and demonstrated that they efficiently induce virion-like vesicles from the nuclear membrane in mammalian cells. This is the first time that the NEC of a gammaherpesvirus has been found to demonstrate such an essential characteristic. In addition, we identified amino acids critical for mediating the interaction between ORF67 and ORF69 as well as nuclear egress. Notably, these amino acids are conserved in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), providing a structural basis to design antigammaherpesvirus drugs.
Collapse
|
28
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
29
|
Aho V, Mäntylä E, Ekman A, Hakanen S, Mattola S, Chen JH, Weinhardt V, Ruokolainen V, Sodeik B, Larabell C, Vihinen-Ranta M. Quantitative Microscopy Reveals Stepwise Alteration of Chromatin Structure during Herpesvirus Infection. Viruses 2019; 11:v11100935. [PMID: 31614678 PMCID: PMC6832731 DOI: 10.3390/v11100935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
During lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope. Our data demonstrated a gradual increase in chromatin marginalization, and the kinetics of chromatin smoothening around the viral replication compartments correlated with their expansion. We also observed a gradual transfer of capsids to the nuclear envelope. Later in the infection, random walk modeling indicated a gradually faster transport of capsids to the nuclear envelope that correlated with an increase in the interchromatin channels in the nuclear periphery. Our study reveals a stepwise and time-dependent mechanism of herpesvirus nuclear egress, in which progeny viral capsids approach the egress sites at the nuclear envelope via interchromatin spaces.
Collapse
Affiliation(s)
- Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Elina Mäntylä
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Venera Weinhardt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.E.); (J.-H.C.); (V.W.); (C.L.)
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, P.O. Box 35, University of Jyvaskyla, 40014 Jyvaskyla, Finland; (V.A.); (E.M.); (S.H.); (S.M.); (V.R.)
- Correspondence:
| |
Collapse
|
30
|
Roles of the Interhexamer Contact Site for Hexagonal Lattice Formation of the Herpes Simplex Virus 1 Nuclear Egress Complex in Viral Primary Envelopment and Replication. J Virol 2019; 93:JVI.00498-19. [PMID: 31043535 DOI: 10.1128/jvi.00498-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023] Open
Abstract
During the nuclear export of nascent nucleocapsids of herpes simplex virus 1 (HSV-1), the nucleocapsids acquire a primary envelope by budding through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes. This unique budding process, termed primary envelopment, is initiated by the nuclear egress complex (NEC), composed of the HSV-1 UL31 and UL34 proteins. Earlier biochemical approaches have shown that the NEC has an intrinsic ability to vesiculate membranes through the formation of a hexagonal lattice structure. The significance of intrahexamer interactions of the NEC in the primary envelopment of HSV-1-infected cells has been reported. In contrast, the contribution of lattice formation of the NEC hexamer to primary envelopment in HSV-1-infected cells remains to be elucidated. Therefore, we constructed and characterized a recombinant HSV-1 strain carrying an amino acid substitution in a UL31 residue that is an interhexamer contact site for the lattice formation of the NEC hexamer. This mutation was reported to destabilize the interhexamer interactions of the HSV-1 NEC. Here, we demonstrate that the mutation causes the aberrant accumulation of nucleocapsids in the nucleus and reduces viral replication in Vero and HeLa cells. Thus, the ability of HSV-1 to form the hexagonal lattice structure of the NEC was linked to an increase in primary envelopment and viral replication. Our results suggest that the lattice formation of the NEC hexamer has an important role in HSV-1 replication by regulating primary envelopment.IMPORTANCE The scaffolding proteins of several envelope viruses required for virion assembly form high-order lattice structures. However, information on the significance of their lattice formation in infected cells is limited. Herpesviruses acquire envelopes twice during their viral replication. The first envelop acquisition (primary envelopment) is one of the steps in the vesicle-mediated nucleocytoplasmic transport of nascent nucleocapsids, which is unique in biology. HSV-1 NEC, thought to be conserved in all members of the Herpesviridae family, is critical for primary envelopment and was shown to form a hexagonal lattice structure. Here, we investigated the significance of the interhexamer contact site for hexagonal lattice formation of the NEC in HSV-1-infected cells and present evidence suggesting that the lattice formation of the NEC hexamer has an important role in HSV-1 replication by regulating primary envelopment. Our results provide insights into the mechanisms of the envelopment of herpesviruses and other envelope viruses.
Collapse
|
31
|
Beyond the NEC: Modulation of Herpes Simplex Virus Nuclear Egress by Viral and Cellular Components. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-0112-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Cellular Protein Kinase D Modulators Play a Role during Multiple Steps of Herpes Simplex Virus 1 Egress. J Virol 2018; 92:JVI.01486-18. [PMID: 30232182 DOI: 10.1128/jvi.01486-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The assembly of new herpes simplex virus 1 (HSV-1) particles takes place in the nucleus. These particles then travel across the two nuclear membranes and acquire a final envelope from a cellular compartment. The contribution of the cell to the release of the virus is, however, little known. We previously demonstrated, using a synchronized infection, that the host protein kinase D and diacylglycerol, a lipid that recruits the kinase to the trans-Golgi network (TGN), promote the release of the virus from that compartment. Given the role this cellular protein plays in the herpes simplex virus 1 life cycle and the many molecules that modulate its activity, we aimed to determine to what extent this virus utilizes the protein kinase D pathway during a nonsynchronized infection. Several molecular protein kinase D (PKD) regulators were targeted by RNA interference and viral production monitored. Surprisingly, many of these modulators negatively impacted the extracellular release of the virus. Overexpression studies, the use of pharmacological reagents, and assays to monitor intracellular lipids implicated in the biology of PKD suggested that these effects were oddly independent of total intracellular diacylglycerol levels. Instead, mapping of the viral intermediates by electron microscopy suggested that some of these modulators could regulate distinct steps along the viral egress pathway, notably nuclear egress. Altogether, this suggests a more complex contribution of PKD to HSV-1 egress than originally anticipated and new research avenues to explore.IMPORTANCE Viruses are obligatory parasites that highjack numerous cellular functions. This is certainly true when it comes to transporting viral particles within the cell. Herpesviruses share the unique property of traveling through the two nuclear membranes by subsequent budding and fusion and acquiring their final envelope from a cellular organelle. Albeit disputed, the overall evidence from many laboratories points to the trans-Golgi network (TGN) as the source of that membrane. Moreover, past findings revealed that the host protein kinase D (PKD) plays an important role at that stage, which is significant given the known implication of that protein in vesicular transport. The present findings suggest that the PKD machinery not only affects the late stages of herpes simplex virus I egress but also modulates earlier steps, such as nuclear egress. This opens up new means to control these viruses.
Collapse
|
33
|
Diewald B, Socher E, Söldner CA, Sticht H. Conformational Dynamics of Herpesviral NEC Proteins in Different Oligomerization States. Int J Mol Sci 2018; 19:ijms19102908. [PMID: 30257461 PMCID: PMC6213152 DOI: 10.3390/ijms19102908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
All herpesviruses use a heterodimeric nuclear egress complex (NEC) to transport capsids out of host cell nuclei. Despite their overall similar structure, NECs may differ significantly in sequence between different viruses. Up to now, structural information is limited to isolated NEC heterodimers and to large hexagonal lattices made up of hexagonal ring-like structures ("Hexagons"). The present study aimed to expand the existing structural knowledge with information on the dynamics of NECs from different viruses and in different oligomerization states. For this task, comparative molecular dynamics simulations were performed of the free NEC heterodimers from three different viruses (HCMV (human cytomegalovirus), HSV-1 (herpes simplex virus 1), and PRV (pseudorabies virus)). In addition, higher oligomerization states comprising two or six NEC heterodimers were characterized for HCMV and HSV-1. The study revealed that the isolated NEC heterodimers from α- (HSV-1, PRV) and β-herpesviruses (HCMV) differ significantly in their dynamics, which can be attributed to a poorly conserved interface region between the NEC subdomains. These differences become smaller for higher oligomerization states, and both HCMV and HSV-1 individual Hexagons exhibit a common region of enhanced dynamics, which might be of functional relevance for the formation of curved vesicle structures or the recognition of hexameric capsid proteins.
Collapse
Affiliation(s)
- Benedikt Diewald
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| | - Christian A Söldner
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| |
Collapse
|
34
|
Lv Y, Zhou S, Gao S, Deng H. Remodeling of host membranes during herpesvirus assembly and egress. Protein Cell 2018; 10:315-326. [PMID: 30242641 PMCID: PMC6468031 DOI: 10.1007/s13238-018-0577-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/21/2018] [Indexed: 02/04/2023] Open
Abstract
Many viruses, enveloped or non-enveloped, remodel host membrane structures for their replication, assembly and escape from host cells. Herpesviruses are important human pathogens and cause many diseases. As large enveloped DNA viruses, herpesviruses undergo several complex steps to complete their life cycles and produce infectious progenies. Firstly, herpesvirus assembly initiates in the nucleus, producing nucleocapsids that are too large to cross through the nuclear pores. Nascent nucleocapsids instead bud at the inner nuclear membrane to form primary enveloped virions in the perinuclear space followed by fusion of the primary envelopes with the outer nuclear membrane, to translocate the nucleocapsids into the cytoplasm. Secondly, nucleocapsids obtain a series of tegument proteins in the cytoplasm and bud into vesicles derived from host organelles to acquire viral envelopes. The vesicles are then transported to and fuse with the plasma membrane to release the mature virions to the extracellular space. Therefore, at least two budding and fusion events take place at cellular membrane structures during herpesviruses assembly and egress, which induce membrane deformations. In this review, we describe and discuss how herpesviruses exploit and remodel host membrane structures to assemble and escape from the host cell.
Collapse
Affiliation(s)
- Ying Lv
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengyan Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
35
|
Function of the Nonconserved N-Terminal Domain of Pseudorabies Virus pUL31 in Nuclear Egress. J Virol 2018; 92:JVI.00566-18. [PMID: 29793954 DOI: 10.1128/jvi.00566-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Nuclear egress of herpesvirus capsids is mediated by the conserved nuclear egress complex (NEC), composed of the membrane-anchored pUL34 and its nucleoplasmic interaction partner, pUL31. The recently solved crystal structures of the NECs from different herpesviruses show a high structural similarity, with the pUL34 homologs building a platform recruiting pUL31 to the inner nuclear membrane. Both proteins possess a central globular fold, while the conserved N-terminal portion of pUL31 forms an extension reaching around the core of pUL34. However, the extreme N terminus of the pUL31 homologs, which is highly variable in length and amino acid composition, had to be removed for crystallization. Several pUL31 homologs contain a classical nuclear localization signal (NLS) within this part mediating efficient nuclear import. In addition, membrane-binding activity, blocking premature interaction with pUL34, nucleocapsid trafficking, and regulation of NEC assembly and disassembly via phosphorylation were assigned to the extreme pUL31 N terminus. To test the functional importance in the alphaherpesvirus pseudorabies virus (PrV) pUL31, N-terminal truncations and site-specific mutations were generated, and the resulting proteins were tested for intracellular localization, interaction with pUL34, and functional complementation of PrV-ΔUL31. Our data show that neither the bipartite NLS nor the predicted phosphorylation sites are essential for pUL31 function during nuclear egress. Moreover, nearly the complete variable N-terminal part was dispensable for function as long as a stretch of basic amino acids was retained. Phosphorylation of this domain controls efficient nucleocapsid release from the perinuclear space.IMPORTANCE Nuclear egress of herpesvirus capsids is a unique vesicle-mediated nucleocytoplasmic transport. Crystal structures of the heterodimeric NECs from different herpesviruses provided important details of this viral nuclear membrane deformation and scission machinery but excluded the highly variable N terminus of the pUL31 component. We present here a detailed mutagenesis study of this important portion of pUL31 and show that basic amino acid residues within this domain play an essential role for proper targeting, complex formation, and function during nuclear egress, while phosphorylation modulates efficient release from the perinuclear space. Thus, our data complement previous structure-function assignments of the nucleocapsid-interacting component of the NEC.
Collapse
|
36
|
Bailer SM. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane. Cells 2017; 6:cells6040046. [PMID: 29186822 PMCID: PMC5755504 DOI: 10.3390/cells6040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/29/2023] Open
Abstract
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Collapse
Affiliation(s)
- Susanne M. Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart 70174, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany;
| |
Collapse
|
37
|
Lysine 242 within Helix 10 of the Pseudorabies Virus Nuclear Egress Complex pUL31 Component Is Critical for Primary Envelopment of Nucleocapsids. J Virol 2017; 91:JVI.01182-17. [PMID: 28878082 DOI: 10.1128/jvi.01182-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022] Open
Abstract
Newly assembled herpesvirus nucleocapsids are translocated from the nucleus to the cytosol by a vesicle-mediated process engaging the nuclear membranes. This transport is governed by the conserved nuclear egress complex (NEC), consisting of the alphaherpesviral pUL34 and pUL31 homologs. The NEC is not only required for efficient nuclear egress but also sufficient for vesicle formation from the inner nuclear membrane (INM), as well as from synthetic lipid bilayers. The recently solved crystal structures for the NECs from different herpesviruses revealed molecular details of this membrane deformation and scission machinery uncovering the interfaces involved in complex and coat formation. However, the interaction domain with the nucleocapsid remained undefined. Since the NEC assembles a curved hexagonal coat on the nucleoplasmic side of the INM consisting of tightly interwoven pUL31/pUL34 heterodimers arranged in hexamers, only the membrane-distal end of the NEC formed by pUL31 residues appears to be accessible for interaction with the nucleocapsid cargo. To identify the amino acids involved in capsid incorporation, we mutated the corresponding regions in the alphaherpesvirus pseudorabies virus (PrV). Site-specifically mutated pUL31 homologs were tested for localization, interaction with pUL34, and complementation of PrV-ΔUL31. We identified a conserved lysine residue at amino acid position 242 in PrV pUL31 located in the alpha-helical domain H10 exposed on the membrane-distal end of the NEC as a key residue for nucleocapsid incorporation into the nascent primary particle.IMPORTANCE Vesicular transport through the nuclear envelope is a focus of research but is still not well understood. Herpesviruses pioneered this mechanism for translocation of the newly assembled nucleocapsid from the nucleus into the cytosol via vesicles derived from the inner nuclear membrane which fuse in a well-tuned process with the outer nuclear membrane to release their content. The structure of the viral nuclear membrane budding and scission machinery has been solved recently, providing in-depth molecular details. However, how cargo is incorporated remained unclear. We identified a conserved lysine residue in the membrane-distal portion of the nuclear egress complex required for capsid uptake into inner nuclear membrane-derived vesicles.
Collapse
|
38
|
Marschall M, Muller YA, Diewald B, Sticht H, Milbradt J. The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids. Rev Med Virol 2017; 27. [PMID: 28664574 DOI: 10.1002/rmv.1934] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nuclear replication represents a common hallmark of herpesviruses achieved by a number of sequentially unrolled regulatory processes. A rate-limiting step is provided by nucleo-cytoplasmic capsid export, for which a defined multiregulatory protein complex, namely, the nuclear egress complex (NEC), is assembled comprising both viral and cellular components. The NEC regulates at least 3 aspects of herpesviral nuclear replication: (1) multimeric recruitment of NEC-associated effector proteins, (2) reorganization of the nuclear lamina and membranes, and (3) the docking to nuclear capsids. Here, we review published data and own experimental work that characterizes the NEC of HCMV and other herpesviruses. METHODS A systematic review of information on nuclear egress of HCMV compared to selected alpha-, beta-, and gamma-herpesviruses: proteomics-based approaches, high-resolution imaging techniques, and functional investigations. RESULTS A large number of reports on herpesviral NECs have been published during the last two decades, focusing on protein-protein interactions, nuclear localization, regulatory phosphorylation, and functional validation. The emerging picture provides an illustrated example of well-balanced and sophisticated protein networking in virus-host interaction. CONCLUSIONS Current evidence refined the view about herpesviral NECs. Datasets published for HCMV, murine CMV, herpes simplex virus, and Epstein-Barr virus illustrate the marked functional consistency in the way herpesviruses achieve nuclear egress. However, this compares with only limited sequence conservation of core NEC proteins and a structural conservation restricted to individual domains. The translational use of this information might help to define a novel antiviral strategy on the basis of NEC-directed small molecules.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany
| | - Benedikt Diewald
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
39
|
Abstract
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes simplex virus 1-sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.
Collapse
|
40
|
Sherry MR, Hay TJM, Gulak MA, Nassiri A, Finnen RL, Banfield BW. The Herpesvirus Nuclear Egress Complex Component, UL31, Can Be Recruited to Sites of DNA Damage Through Poly-ADP Ribose Binding. Sci Rep 2017; 7:1882. [PMID: 28507315 PMCID: PMC5432524 DOI: 10.1038/s41598-017-02109-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
The herpes simplex virus (HSV) UL31 gene encodes a conserved member of the herpesvirus nuclear egress complex that not only functions in the egress of DNA containing capsids from the nucleus, but is also required for optimal replication of viral DNA and its packaging into capsids. Here we report that the UL31 protein from HSV-2 can be recruited to sites of DNA damage by sequences found in its N-terminus. The N-terminus of UL31 contains sequences resembling a poly (ADP-ribose) (PAR) binding motif suggesting that PAR interactions might mediate UL31 recruitment to damaged DNA. Whereas PAR polymerase inhibition prevented UL31 recruitment to damaged DNA, inhibition of signaling through the ataxia telangiectasia mutated DNA damage response pathway had no effect. These findings were further supported by experiments demonstrating direct and specific interaction between HSV-2 UL31 and PAR using purified components. This study reveals a previously unrecognized function for UL31 and may suggest that the recognition of PAR by UL31 is coupled to the nuclear egress of herpesvirus capsids, influences viral DNA replication and packaging, or possibly modulates the DNA damage response mounted by virally infected cells.
Collapse
Affiliation(s)
- Maxwell R Sherry
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Thomas J M Hay
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Michael A Gulak
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Arash Nassiri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Bruce W Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
41
|
Abstract
As a compartment border, the nuclear envelope (NE) needs to serve as both a protective membrane shell for the genome and a versatile communication interface between the nucleus and the cytoplasm. Despite its important structural role in sheltering the genome, the NE is a dynamic and highly adaptable boundary that changes composition during differentiation, deforms in response to mechanical challenges, can be repaired upon rupture and even rapidly disassembles and reforms during open mitosis. NE remodelling is fundamentally involved in cell growth, division and differentiation, and if perturbed can lead to devastating diseases such as muscular dystrophies or premature ageing.
Collapse
|
42
|
Lye MF, Wilkie AR, Filman DJ, Hogle JM, Coen DM. Getting to and through the inner nuclear membrane during herpesvirus nuclear egress. Curr Opin Cell Biol 2017; 46:9-16. [PMID: 28086162 DOI: 10.1016/j.ceb.2016.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Abstract
Herpesviruses, like most DNA viruses, replicate and package their genomes into capsids in the host cell nucleus. Capsids then transit to the cytoplasm in a fascinating process called nuclear egress, which includes several unusual steps: Movement of capsids from the nuclear interior to the periphery, disruption of the nuclear lamina, capsid budding through the inner nuclear membrane, and fusion of enveloped particles with the outer nuclear membrane. Here, we review recent advances and emerging questions relating to herpesvirus nuclear egress, emphasizing controversies regarding mechanisms for capsid trafficking to the nuclear periphery, and implications of recent structures of the two-subunit, viral nuclear egress complex for the process, particularly at the step of budding through the inner nuclear membrane.
Collapse
Affiliation(s)
- Ming F Lye
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - Adrian R Wilkie
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02052, United States.
| |
Collapse
|
43
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
44
|
Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells. J Virol 2016; 90:10170-10181. [PMID: 27581980 DOI: 10.1128/jvi.01396-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) plays an essential role in viral entry. The functional regions of gD responsible for viral entry have been mapped to its extracellular domain, whereas the gD cytoplasmic domain plays no obvious role in viral entry. Thus far, the role(s) of the gD cytoplasmic domain in HSV-1 replication has remained to be elucidated. In this study, we show that ectopic expression of gD induces microvillus-like tubular structures at the plasma membrane which resemble the reported projection structures of the plasma membrane induced in HSV-1-infected cells. Mutations in the arginine cluster (residues 365 to 367) in the gD cytoplasmic domain greatly reduced gD-induced plasma membrane remodeling. In agreement with this, the mutations in the arginine cluster in the gD cytoplasmic domain reduced the number of microvillus-like tubular structures at the plasma membrane in HSV-1-infected cells. In addition, the mutations produced an accumulation of unenveloped nucleocapsids in the cytoplasm and reduced viral replication and cell-cell spread. These results suggest that the arginine cluster in the gD cytoplasmic domain is required for the efficient induction of plasma membrane projections and viral final envelopment, and these functions of the gD domain may lead to efficient viral replication and cell-cell spread. IMPORTANCE The cytoplasmic domain of HSV-1 gD, an envelope glycoprotein essential for viral entry, was reported to promote viral replication and cell-cell spread, but the role(s) of the domain during HSV-1 infection has remained unknown. In this study, we clarify two functions of the arginine cluster in the HSV-1 gD cytoplasmic domain, both of which require host cell membrane remodeling, i.e., the formation of microvillus-like projections at the plasma membrane and viral final envelopment in HSV-1-infected cells. We also show that the gD arginine cluster is required for efficient HSV-1 replication and cell-cell spread. This is the first report clarifying not only the functions of the gD cytoplasmic domain but also identifying the gD arginine cluster to be the HSV-1 factor responsible for the induction of plasma membrane projections in HSV-1-infected cells. Our results elucidate some of the functions of this multifunctional envelope glycoprotein during HSV-1 infection.
Collapse
|
45
|
Kuan MI, O'Dowd JM, Fortunato EA. The absence of p53 during Human Cytomegalovirus infection leads to decreased UL53 expression, disrupting UL50 localization to the inner nuclear membrane, and thereby inhibiting capsid nuclear egress. Virology 2016; 497:262-278. [PMID: 27498409 PMCID: PMC5026620 DOI: 10.1016/j.virol.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 01/10/2023]
Abstract
Our electron microscopy study (Kuan et al., 2016) found HCMV nuclear capsid egress was significantly reduced in p53 knockout cells (p53KOs), correlating with inhibited formation of infoldings of the inner nuclear membrane (IINMs). Molecular examination of these phenomena has found p53KOs expressed UL97 and phosphorylated lamins, however the lamina failed to remodel. The nuclear egress complex (NEC) protein UL50 was expressed in almost all cells. UL50 re-localized to the inner nuclear membrane (INM) in ~90% of wt cells, but only ~35% of p53KOs. UL53 expression was significantly reduced in p53KOs, and cells lacking UL50 nuclear staining, expressed no UL53. Re-introduction of p53 into p53KOs largely recovered UL53 positivity and UL50 nuclear re-localization. Nuclear rim located UL50/53 puncta, which co-localized with the major capsid protein, were largely absent in p53KOs. We believe these puncta were IINMs. In the absence of p53, UL53 expression was inhibited, disrupting formation of the NEC/IINMs, and reducing functional virion secretion.
Collapse
Affiliation(s)
- Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - John M O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Elizabeth A Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
46
|
Vesicular Nucleo-Cytoplasmic Transport-Herpesviruses as Pioneers in Cell Biology. Viruses 2016; 8:v8100266. [PMID: 27690080 PMCID: PMC5086602 DOI: 10.3390/v8100266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses use a vesicle-mediated transfer of intranuclearly assembled nucleocapsids through the nuclear envelope (NE) for final maturation in the cytoplasm. The molecular basis for this novel vesicular nucleo-cytoplasmic transport is beginning to be elucidated in detail. The heterodimeric viral nuclear egress complex (NEC), conserved within the classical herpesviruses, mediates vesicle formation from the inner nuclear membrane (INM) by polymerization into a hexagonal lattice followed by fusion of the vesicle membrane with the outer nuclear membrane (ONM). Mechanisms of capsid inclusion as well as vesicle-membrane fusion, however, are largely unclear. Interestingly, a similar transport mechanism through the NE has been demonstrated in nuclear export of large ribonucleoprotein complexes during Drosophila neuromuscular junction formation, indicating a widespread presence of a novel concept of cellular nucleo-cytoplasmic transport.
Collapse
|
47
|
Bigalke JM, Heldwein EE. Have NEC Coat, Will Travel: Structural Basis of Membrane Budding During Nuclear Egress in Herpesviruses. Adv Virus Res 2016; 97:107-141. [PMID: 28057257 DOI: 10.1016/bs.aivir.2016.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Herpesviruses are unusual among enveloped viruses because they bud twice yet acquire a single envelope. Furthermore, unlike other DNA viruses that replicate in the nucleus, herpesviruses do not exit it by passing through the nuclear pores or by rupturing the nuclear envelope. Instead, herpesviruses have a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. This makes them some of the very few known viruses that bud into the nuclear envelope. The envelope acquired during nuclear budding does not end up in the mature viral particle but instead allows the capsid to translocate from the nucleus into the cytosol. The viral nuclear egress complex (NEC) is a critical player in the nuclear egress, yet its function and mechanism have remained enigmatic. Recent studies have demonstrated that the NEC buds membranes without the help of other proteins by forming a honeycomb coat, which established the NEC as the first virally encoded budding machine that operates at the nuclear, as opposed to cytoplasmic, membrane. This review discusses our current understanding of the NEC budding mechanism, with the emphasis on studies that illuminated the structure of the NEC coat and its role in capsid budding during herpesvirus nuclear escape.
Collapse
Affiliation(s)
- J M Bigalke
- Tufts University School of Medicine, Boston, MA, United States
| | - E E Heldwein
- Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
48
|
The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress. PLoS Pathog 2016; 12:e1005825. [PMID: 27556400 PMCID: PMC4996521 DOI: 10.1371/journal.ppat.1005825] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear lamina in response to herpesviral or inherent cellular stimuli. In essence, Pin1 represents a regulatory effector of lamina disassembly that promotes the nuclear pore-independent egress of herpesviral capsids. Viruses often adopt preexisting cellular pathways to promote their own replication. In this regard, the recently discovered alternative mechanism for the nuclear export of large messenger ribonucleoprotein (mRNP) complexes is particularly noteworthy. This process is mechanistically similar to the nuclear egress of herpesviruses, which appear to utilize cellular pathways and effectors to release assembled capsids from the host nucleus. While vesicle formation and scission events at nuclear membranes are now increasingly understood in greater detail, the precise mechanism of the preceding disassembly of the nuclear lamina still awaits a defined molecular characterization. Here, we used herpesviruses in their property to induce a nucleocytoplasmic viral capsid export for our investigation of nuclear lamina disassembly. We identified a mechanism that promotes lamina disassembly by a conformational change of lamins, mediated by the cellular isomerase Pin1 in a phosphorylation-dependent manner. Intriguingly, Pin1 appeared to control the rearrangement of phosphorylated lamins and their transient displacement from the nuclear lamina. Our study suggests that Pin1 functions as a major regulatory effector of lamina disassembly and thus determines the nuclear egress pathway of herpesviruses.
Collapse
|
49
|
Abstract
Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. The mechanisms underlying herpesvirus nuclear egress have not been fully determined. In particular, how newly assembled capsids move to the inner nuclear membrane for envelopment is uncertain and controversial. In this study, we show that HCMV, an important human pathogen, induces actin filaments in the nuclei of infected cells and that an inhibitor of nuclear F-actin impairs nuclear egress and capsid localization toward the nuclear periphery. Herpesviruses are widespread pathogens that cause or contribute to an array of human diseases. A better understanding of how herpesvirus capsids traffic in the nucleus may uncover novel targets for antiviral intervention and elucidate aspects of the nuclear cytoskeleton, about which little is known.
Collapse
|
50
|
Kuan MI, O'Dowd JM, Chughtai K, Hayman I, Brown CJ, Fortunato EA. Human Cytomegalovirus nuclear egress and secondary envelopment are negatively affected in the absence of cellular p53. Virology 2016; 497:279-293. [PMID: 27498410 DOI: 10.1016/j.virol.2016.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/10/2016] [Accepted: 07/19/2016] [Indexed: 01/10/2023]
Abstract
Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, with a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm.
Collapse
Affiliation(s)
- Man I Kuan
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - John M O'Dowd
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Kamila Chughtai
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Ian Hayman
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Celeste J Brown
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Elizabeth A Fortunato
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA.
| |
Collapse
|