1
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
2
|
Liu H, Zhu S, Xia G, Huang Z, Han W, Li Z, Liu C. Effects of 1,4-dihydropyridine derivatives on cell injury and mTOR of HepG2 and 3D-QSAR study. Comput Biol Chem 2024; 109:108010. [PMID: 38232515 DOI: 10.1016/j.compbiolchem.2023.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
1,4-dihydropyridine derivatives (1,4-DHPs) are a class of drugs used to treat cardiovascular diseases, but these drugs can cause liver injury. To reveal the toxicity characteristics of these compounds, we used a series of assays, including cell viability, enzyme activity detection, and western blotting, to investigate the toxicity of seven kinds of 1,4-DHPs (0-100 μM) on HepG2 cells and establish 3D-QSAR model based on relevant toxicity data. After HepG2 cells were treated with 1,4-DHPs for 24 h, high-dose (100 μM) 1,4-DHPs decreased cell viability to varying degrees, while ROS and MDA contents were significantly increased, and ATP content was reduced. Moreover, with the concentration of 100 μM 1,4-DHPs (Nimodipine, Nitrendipine, Cilnidipine, and Manidipine) were markedly inhibited the phosphorylation levels of mTOR protein. The results of the 3D-QSAR model showed that the non-cross validation coefficient (R2) and cross validation coefficient (Q2) of the model were 0.982 and 0.652, respectively. Combined with external validation and the Williams diagram, the model showed good predictability and application domain. Based on the CoMSIA 3D contour map, the introduction of large volume and hydrogen bond receptor groups on the carbonyl oxygen side chains of the 1,4-DHPs ring 3- and 5- was beneficial for reducing the toxicity of 1,4-DHPs. The results of this study could supplement information on the cytotoxicity of 1,4-DHPs, and could provide theoretical support for predicting the toxicity of 1,4-DHPs.
Collapse
Affiliation(s)
- Huan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
| | - Siyu Zhu
- SCAU (Chaozhou) Food Institute Co., Ltd., Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guiqiong Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoquan Huang
- SCAU (Chaozhou) Food Institute Co., Ltd., Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenna Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongyi Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chunhong Liu
- SCAU (Chaozhou) Food Institute Co., Ltd., Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
4
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
5
|
Yin L, Hu C, Yu XJ. High-content analysis of testicular toxicity of BPA and its selected analogs in mouse spermatogonial, Sertoli cells, and Leydig cells revealed BPAF induced unique multinucleation phenotype associated with the increased DNA synthesis. Toxicol In Vitro 2023; 89:105589. [PMID: 36958674 PMCID: PMC10351343 DOI: 10.1016/j.tiv.2023.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Bisphenol A is an endocrine disruptor that has been shown to have testicular toxicity in animal models. Its structural analog, including bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) have been introduced to the market as BPA alternatives. Previously, we developed high-content analysis (HCA) assays and applied machine learning to compare the testicular toxicity of BPA and its analogs in spermatogonial cells and testicular cell co-culture models. There are diverse cell populations in the testis to support spermatogenesis, but their cell type-specific toxicities are still not clear. The purpose of this study is to examine the selective toxicity of BPA, BPS), BPAF, and TBBPA on these testicular cells, including Sertoli cells, Leydig cells, and spermatogonia cells. We developed a high-content image-based single-cell analysis and measured a broad spectrum of adverse endpoints related to the development of reproductive toxicology, including cell number, nuclear morphology, DNA synthesis, cell cycle progression, early DNA damage response, cytoskeleton structure, DNA methylation status, and autophagy. We introduced an HCA index and spectrum to reveal multiple HCA parameters and observed distinct toxicity profiling of BPA and its analogs among three testicular types. The HCA spectrum shows the dynamic, chemical-specific, dose-dependent changes of each HCA parameter. Each chemical displayed a unique dose-dependent profile within each type of cell. All three types of cells showed the highest response to BPAF at 10 μM across all endpoints measured. BPAF targeted spermatogonial cell (C18) more significantly at 5 μM. BPS more likely targeted Sertoli cell (TM4) and Leydig cell (TM3) and less at spermatogonia cells. TBBPA targeted spermatogonia, Sertoli cells, and less at TM3 cells. BPA is mainly targeted at TM4, followed by TM3 cells, and less at spermatogonial cells. Most importantly, we observed that BPAF induced a dose-dependent increase in spermatogonia cells, not in Sertoli and Leydig cells. In summary, our current HCA assays revealed the cell-type-specific toxicities of BPA and its analogs in different testicular cells. Multinucleation induced by BPAF, along with increased DNA damage and synthesis at low doses, could possibly have a profound long-term effect on reproductive systems.
Collapse
Affiliation(s)
- Lei Yin
- ReproTox Biotech LLC, 800 Bradbury Dr. SE Science & Technology Park, Albuquerque, NM 87106, United States of America
| | - Chelin Hu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America
| | - Xiaozhong John Yu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America.
| |
Collapse
|
6
|
Single and repeated bisphenol A treatment induces ROS, Aβ and hyperphosphorylated-tau accumulation, and insulin pathways disruption, through HDAC2 and PTP1B overexpression, leading to SN56 cholinergic apoptotic cell death. Food Chem Toxicol 2022; 170:113500. [DOI: 10.1016/j.fct.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
7
|
Bagheri-Mohammadi S. Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci 2022; 132:1165-1177. [PMID: 33350876 DOI: 10.1080/00207454.2020.1865953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Molecular signalling pathways are an evolutionarily conserved multifaceted pathway that can control diverse cellular processes. The role of signalling pathways in regulating development and tissue homeostasis as well as hippocampal neurogenesis is needed to study in detail. In the adult brain, the Notch signalling pathway, in collaboration with the Wnt/β-catenin, bone morphogenetic proteins (BMPs), and sonic hedgehog (Shh) molecular signalling pathways, are involved in stem cell regulation in the hippocampal formation, and they also control the plasticity of the neural stem cells (NSCs) or neural progenitor cells (NPCs) which involved in neurogenesis processes. Here we discuss the distinctive roles of molecular signalling pathways involved in the generation of new neurons from a pool of NSCs in the adult brain. Our approach will facilitate the understanding of the molecular signalling mechanism of hippocampal neurogenesis during NSCs development in the adult brain using molecular aspects coupled with cell biological and physiological analysis.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Chen H, Zhang Y, Qi X, Shi X, Huang X, Xu SW. Selenium deficiency aggravates bisphenol A-induced autophagy in chicken kidney through regulation of nitric oxide and adenosine monophosphate activated protein kinase/mammalian target of rapamycin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2503-2514. [PMID: 35830335 DOI: 10.1002/tox.23613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA), a phenolic compound, is harmful to humans and animals as its residue in the water threatens multiple organs, especially the kidney. Low selenium (Se) diets are consumed in many regions of the world, and poor Se status has exacerbating effect on toxicity of several environmental chemicals. Here, we described the discovery path of Se deficiency aggravation on autophagy in BPA treated chicken kidney through regulating nitric oxide (NO) and adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathways. The actual dietary Se intake for chickens was 0.30 mg/kg in control group and 0.03 mg/kg in Low-Se group, and BPA exposure concentration for chickens was 0.05 g/kg. Chicken embryo kidney (CEK) cells were used in vitro and the BPA exposure concentration for CEK cells was 150 nM. We found that BPA significantly increased levels of NO and inducible nitric oxide synthase, activated AMPK/mTOR signaling pathways, thereby triggering p62/LC3/Beclin1 signaling, resulting in formations of autophagosome and autolysosome, and finally stimulating autophagy in the chicken kidney. Additionally, Se deficiency promoted the occurrence of autophagy in BPA-treated kidneys. Altogether, our findings showed that Se deficiency exacerbates BPA-induced renal autophagy in chickens via regulation of NO and AMPK/mTOR signaling pathways. These findings will improve our understandings of the mechanisms of nephrotoxicity of BPA and detoxification by Se in chickens. In addition, further work is required to determine if Se status of exposed populations needs to be considered in future epidemiological assessments.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Guo X, Bao X, Wang X, Liu D, Liu P, Chi T, Ji X, Zheng Z, Chen G, Zou L. OAB-14 Effectively Ameliorates the Dysfunction of the Endosomal-Autophagic-Lysosomal Pathway in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2021; 12:3985-3993. [PMID: 34652916 DOI: 10.1021/acschemneuro.1c00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Alzheimer's disease (AD), damaged Aβ clearance contributes to elevated levels of Aβ that cause a series of cytotoxic cascade reactions. Thus, targeting Aβ clearance has now been considered a valid therapeutic approach for AD. Cellular uptake and degradation are important mechanisms for Aβ clearance, which are mainly performed by the endosomal-autophagic-lysosomal (EAL) pathway. Our previous study showed that OAB-14, a novel small molecule designed with bexarotene as the lead compound, treatment for 3 months significantly alleviated cognitive disorders and remarkably reduced the deposition of Aβ without affecting its production in APP/PS1 transgenic mice. Here, we further revealed that enhancement of the EAL activity is one of the mechanisms that increases Aβ clearance after OAB-14 administration for 3 months. OAB-14 facilitates receptor-mediated endocytosis and restores autophagy flux via the AMPK/mTOR pathway. Meanwhile, OAB-14 enhances the lysosomal activity, and reduced Aβ accumulation in lysosomes was observed in OAB-14-treated AD mice. These results suggest that OAB-14 may promote Aβ clearance in lysosomes by alleviating the EAL dysfunction in AD mice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xiaojuan Wang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, Shandong 255086, P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
11
|
Bisphenol a Induces Autophagy Defects and AIF-Dependent Apoptosis via HO-1 and AMPK to Degenerate N2a Neurons. Int J Mol Sci 2021; 22:ijms222010948. [PMID: 34681608 PMCID: PMC8535739 DOI: 10.3390/ijms222010948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 01/21/2023] Open
Abstract
Bisphenol A (BPA) is an environmental contaminant widely suspected to be a neurological toxicant. Epidemiological studies have demonstrated close links between BPA exposure, pathogenetic brain degeneration, and altered neurobehaviors, considering BPA a risk factor for cognitive dysfunction. However, the mechanisms of BPA resulting in neurodegeneration remain unclear. Herein, cultured N2a neurons were subjected to BPA treatment, and neurotoxicity was assessed using neuronal viability and differentiation assays. Signaling cascades related to cellular self-degradation were also evaluated. BPA decreased cell viability and axon outgrowth (e.g., by down-regulating MAP2 and GAP43), thus confirming its role as a neurotoxicant. BPA induced neurotoxicity by down-regulating Bcl-2 and initiating apoptosis and autophagy flux inhibition (featured by nuclear translocation of apoptosis-inducing factor (AIF), light chain 3B (LC3B) aggregation, and p62 accumulation). Both heme oxygenase (HO)-1 and AMP-activated protein kinase (AMPK) up-regulated/activated by BPA mediated the molecular signalings involved in apoptosis and autophagy. HO-1 inhibition or AIF silencing effectively reduced BPA-induced neuronal death. Although BPA elicited intracellular oxygen free radical production, ROS scavenger NAC exerted no effect against BPA insults. These results suggest that BPA induces N2a neurotoxicity characterized by AIF-dependent apoptosis and p62-related autophagy defects via HO-1 up-regulation and AMPK activation, thereby resulting in neuronal degeneration.
Collapse
|
12
|
Lee CY, Hyun SA, Ko MY, Kim HR, Rho J, Kim KK, Kim WY, Ka M. Maternal Bisphenol A (BPA) Exposure Alters Cerebral Cortical Morphogenesis and Synaptic Function in Mice. Cereb Cortex 2021; 31:5598-5612. [PMID: 34171088 DOI: 10.1093/cercor/bhab183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Early-life exposure to bisphenol A (BPA), synthetic compound used in polycarbonate plastic, is associated with altered cognitive and emotional behavior later in life. However, the brain mechanism underlying the behavioral deficits is unknown. Here, we show that maternal BPA exposure disrupted self-renewal and differentiation of neural progenitors during cortical development. The BPA exposure reduced the neuron number, whereas it increased glial cells in the cerebral cortex. Also, synaptic formation and transmission in the cerebral cortex were suppressed after maternal BPA exposure. These changes appeared to be associated with autophagy as a gene ontology analysis of RNA-seq identified an autophagy domain in the BPA condition. Mouse behavioral tests revealed that maternal BPA caused hyperactivity and social deficits in adult offspring. Together, these results suggest that maternal BPA exposure leads to abnormal cortical architecture and function likely by activating autophagy.
Collapse
Affiliation(s)
- Chang Youn Lee
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sung-Ae Hyun
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Ryeong Kim
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
13
|
Wang S, Yang Y, Luo D, Zhai L, Bai Y, Wei W, Sun Q, Jia L. Bisphenol A increases TLR4-mediated inflammatory response by up-regulation of autophagy-related protein in lung of adolescent mice. CHEMOSPHERE 2021; 268:128837. [PMID: 33187652 DOI: 10.1016/j.chemosphere.2020.128837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In previous studies we found that bisphenol A (BPA) aggravated OVA-induced lung inflammation. The aim of this research was to determine whether BPA exposure alone also induced inflammatory response in the lungs, which mechanism was associated with TLR4/NF-κB signaling pathway and the activation of mTOR-mediated autophagy. Female C57BL/6 mice aged 4 weeks were randomly divided into three groups (10/group): control group, 0.1 and 0.2 μg mL-1 BPA groups. BPA induced the pathological changes in the lung and increased the levels of cytokines and inflammatory cells, as well as affected autophagy related proteins expression. In addition, the RAW264.7 cell culture experiment was conducted in order to confirm the role of autophagy. We found that BPA can enhance autophagy flux by enhancing autophagosome formation. It was further confirmed the details of the mechanism of action with chloroquine (CQ, a compound that inhibits the fusion of autophagosomes and lysosomes) intervention. The inhibition of autophagy led to down-regulation of expression levels associated with inflammation. This research results indicated that BPA induced inflammatory response in vitro and in vivo, and its mechanism may be related to TLR4/NF-κB signaling pathway and the activation of mTOR-mediated autophagy. After autophagy was suppressed, the inflammatory response also weakened. Our findings provide a new perspective into the mechanisms underlying inflammatory responses induced by the environmental exposure. These findings indicate that therapeutic strategies targeting autophagy may provide a new method for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yilong Yang
- Department of Social Medicine, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Dan Luo
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Lingling Zhai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Yinglong Bai
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
14
|
Tiwari SK, Dang JW, Lin N, Qin Y, Wang S, Rana TM. Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein FANCC. EMBO Rep 2020; 21:e49183. [PMID: 33073500 PMCID: PMC7726779 DOI: 10.15252/embr.201949183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus, which when passed through vertical transmission from mother to developing fetus can lead to developmental abnormalities, including microcephaly. While there is mounting evidence that suggests a causal relationship between ZIKV infection and microcephaly, the mechanisms by which ZIKV induces these changes remain to be elucidated. Here, we demonstrate that ZIKV infection of neural stems cells, both in vitro and in vivo, induces macroautophagy to enhance viral replication. At the same time, ZIKV downregulates a number of essential selective autophagy genes, including the Fanconi anemia (FA) pathway genes. Bioinformatics analyses indicate that the transcription factor E2F4 promotes FANCC expression and is downregulated upon ZIKV infection. Gain and loss of function assays indicate that FANCC is essential for selective autophagy and acts as a negative regulator of ZIKV replication. Finally, we show that Fancc KO mice have increased ZIKV infection and autophagy protein levels in various brain regions. Taken together, ZIKV downregulates FANCC to modulate the host antiviral response and simultaneously attenuate neuronal growth.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Jason W Dang
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Nianwei Lin
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Yue Qin
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
- Bioinformatics ProgramUniversity of California San DiegoLa JollaCAUSA
| | - Shaobo Wang
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Tariq M Rana
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
15
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
16
|
Activation of autophagic flux via LKB1/AMPK/mTOR axis against xenoestrogen Bisphenol-A exposure in primary rat hepatocytes. Food Chem Toxicol 2020; 141:111314. [DOI: 10.1016/j.fct.2020.111314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022]
|
17
|
Cespedes A, Villa M, Benito-Cuesta I, Perez-Alvarez MJ, Ordoñez L, Wandosell F. Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC. Curr Pharm Des 2020; 25:4763-4770. [PMID: 31820693 DOI: 10.2174/1381612825666191210152156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023]
Abstract
Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.
Collapse
Affiliation(s)
- Angel Cespedes
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Research Group of Neurodegenerative Diseases, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics - Tolima University, Santa Helena - 730006299, Ibagué, Colombia
| | - Mario Villa
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Departamento de Biología (Fisiología Animal). Facultad de Ciencias. Universidad Autónoma de Madrid. C/Darwin 2. 28049 Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria J Perez-Alvarez
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Departamento de Biología (Fisiología Animal). Facultad de Ciencias. Universidad Autónoma de Madrid. C/Darwin 2. 28049 Madrid, Spain
| | - Lara Ordoñez
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular "Severo Ochoa". CSIC-UAM. Nicolás Cabrera 1, 28049 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
18
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
19
|
Wang S, Yang Y, Luo D, Wu D, Liu H, Li M, Sun Q, Jia L. Lung inflammation induced by exposure to Bisphenol-A is associated with mTOR-mediated autophagy in adolescent mice. CHEMOSPHERE 2020; 248:126035. [PMID: 32014637 DOI: 10.1016/j.chemosphere.2020.126035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Epidemiologic studies show that there is a link between Bisphenol A (BPA) exposure and lung inflammation. Despite this, the molecular mechanisms are not entirely known. This study sought to determine whether exposure to BPA affected the development of ovalbumin (OVA) induced lung inflammation in adolescent female mice and whether the mechanism was related to mTOR-mediated autophagy pathway. Female 4-week-old C57BL/6 mice after one week of domestication were randomly divided into five groups (8/group): control group, OVA group, 0.1 μg mL-1 BPA + OVA group, 0.2 μg mL-1 BPA + OVA group and 0.4 μg mL-1 BPA + OVA group. BPA exacerbated airway hyperresponsiveness (AHR), induced the pathological changes in the lung, which also enhanced inflammatory cells and cytokine levels. In addition, BPA exposure affected expression of autophagy associated proteins and genes. This research results indicated that BPA aggravated OVA-induced lung inflammation and induced abnormal immune function in mice, and its mechanism was related to the activation of autophagy pathway by down-regulation expression of mTOR. These findings suggest that therapeutic strategies to target autophagy may offer a new approach for severe asthma therapy.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Yilong Yang
- Department of Social Medicine, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Dan Luo
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Mengqi Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
20
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
21
|
Zhao Y, Zhang Y, Zhang J, Zhang X, Yang G. Molecular Mechanism of Autophagy: Its Role in the Therapy of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:720-739. [PMID: 31934838 PMCID: PMC7536828 DOI: 10.2174/1570159x18666200114163636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of progressive dementia that is characterized by the accumulation of beta-amyloid (Aβ)-containing neuritic plaques and intracellular Tau protein tangles. This distinctive pathology indicates that the protein quality control is compromised in AD. Autophagy functions as a "neuronal housekeeper" that eliminates aberrant protein aggregates by wrapping then into autophagosomes and delivering them to lysosomes for degradation. Several studies have suggested that autophagy deficits in autophagy participate in the accumulation and propagation of misfolded proteins (including Aβ and Tau). In this review, we summarize current knowledge of autophagy in the pathogenesis of AD, as well as some pathways targeting the restoration of autophagy. Moreover, we discuss how these aspects can contribute to the development of disease-modifying therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Guofeng Yang
- Address correspondence to this author at the Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, China; Tel: +86-311-66636243; E-mail:
| |
Collapse
|
22
|
Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 2019; 72:641-658. [PMID: 32048246 DOI: 10.1007/s43440-019-00019-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a devastating autoimmune disorder characterized by oligodendrocytes (OLGs) loss and demyelination. In this study, we have examined the effects of metformin (MET) on the oligodendrogenesis, redox signaling, apoptosis, and glial responses during a self-repairing period (1-week) in the animal model of MS. METHODS For induction of demyelination, C57BL/6 J mice were fed a 0.2% cuprizone (CPZ) for 5 weeks. Thereafter, CPZ was removed for 1-week and molecular and behavioral changes were monitored in the presence or absence of MET (50 mg/kg body weight/day). RESULTS MET remarkably increased the localization of precursor OLGs (NG2+/O4+ cells) and subsequently the renewal of mature OLGs (MOG+ cells) in the corpus callosum via AMPK/mammalian target of rapamycin (mTOR) pathway. Moreover, we observed a significant elevation in the antioxidant responses, especially in mature OLGs (MOG+/nuclear factor erythroid 2-related factor 2 (Nrf2+) cells) after MET intervention. MET also reduced brain apoptosis markers and lessened motor dysfunction in the open-field test. While MET was unable to decrease active astrogliosis (GFAP mRNA), it reduced microgliosis by down-regulation of Mac-3 mRNA a marker of pro-inflammatory microglia/macrophages. Molecular modeling studies, likewise, confirmed that MET exerts its effects via direct interaction with AMPK. CONCLUSIONS Altogether, our study reveals that MET effectively induces lesion reduction and elevated molecular processes that support myelin recovery via direct activation of AMPK and indirect regulation of AMPK/Nrf2/mTOR pathway in OLGs. These findings facilitate the development of new therapeutic strategies based on AMPK activation for MS in the near future.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mahmood Barati
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Fariba Houshmand
- Department of Physiology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14155-6451, Tehran, Iran.
| |
Collapse
|
23
|
Srivastav AK, Dubey D, Chopra D, Singh J, Negi S, Mujtaba SF, Dwivedi A, Ray RS. Oxidative stress–mediated photoactivation of carbazole inhibits human skin cell physiology. J Cell Biochem 2019; 121:1273-1282. [DOI: 10.1002/jcb.29360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Ajeet K. Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
- Department of Research and Development Aryan Essentials Private Limited (Brand Name‐Wikka) New Delhi India
| | - Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Syed Faiz Mujtaba
- Department of Zoology, Faculty of Science Shia P.G. College Lucknow Uttar Pradesh India
| | - Ashish Dwivedi
- Food Drug and Chemical Toxicology Division CSIR‐IITR Lucknow Uttar Pradesh India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| |
Collapse
|
24
|
N-Acetylcysteine Attenuates the Increasing Severity of Distant Organ Liver Dysfunction after Acute Kidney Injury in Rats Exposed to Bisphenol A. Antioxidants (Basel) 2019; 8:antiox8100497. [PMID: 31640182 PMCID: PMC6826922 DOI: 10.3390/antiox8100497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Distant organ liver damage after acute kidney injury (AKI) remains a serious clinical setting with high mortality. This undesirable outcome may be due to some hidden factors that can intensify the consequences of AKI. Exposure to bisphenol A (BPA), a universal chemical used in plastics industry, is currently unavoidable and can be harmful to the liver. This study explored whether BPA exposure could be a causative factor that increase severity of remote liver injury after AKI and examined the preventive benefit by N-acetylcysteine (NAC) in this complex condition. Male Wistar rats were given vehicle, BPA, or BPA + NAC for 5 weeks then underwent 45 min renal ischemia followed by 24 h reperfusion (RIR), a group of vehicle-sham-control was also included. RIR not only induced AKI but produced liver injury, triggered systemic oxidative stress as well as inflammation, which increasing severity upon exposure to BPA. Given NAC to BPA-exposed rats diminished the added-on effects of BPA on liver functional impairment, oxidative stress, inflammation, and apoptosis caused by AKI. NAC also mitigated the abnormalities in mitochondrial functions, dynamics, mitophagy, and ultrastructure of the liver by improving the mitochondrial homeostasis regulatory signaling AMPK-PGC-1α-SIRT3. The study demonstrates that NAC is an effective adjunct for preserving mitochondrial homeostasis and reducing remote effects of AKI in environments where BPA exposure is vulnerable.
Collapse
|
25
|
Li L, Peng W, Tian X. Protective Effects and Mechanisms of MicroRNA-182 on Oxidative Stress in RHiN. Open Life Sci 2019; 14:400-409. [PMID: 33817175 PMCID: PMC7874809 DOI: 10.1515/biol-2019-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/06/2019] [Indexed: 01/11/2023] Open
Abstract
To explore protective effects and related mechanisms of microRNA-182 (miR-182) on oxidative stress in rat hippocampal neurons (RHiN), RHiN cells. As the results, the survival rate and superoxide dismutase levels in H2O2 group were significantly lower than H2O2+miR-182 group (all P<0.05). The malondialdehyde levels and apoptosis rate in H2O2+miR-182 group were significantly lower than H2O2 group (all P<0.05). The mRNA levels and expression levels of mTOR and PI3K in H2O2+miR-182 group were higher than those in H2O2 group (both P<0.05). The experiment of cerebral ischemic oxidative stress model rats showed that the survival rate, apoptosis rate, malondialdehyde and superoxide dismutase levels in miR-182 group were better than model control group. The positive staining intensity of phosphoinositide 3-kinase (mTOR) and phosphoinositide 3-kinase (PI3K) in model control group were significantly lower than miR-182 group (all P<0.05). Increased levels of miR-182 can reduce the damage of H2O2 treatments in RHiN cells. Oxidative stress is decreased in the neuronal cells possibly by activation of the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Lihua Li
- Colleges of Medicine, Jishou University, Jishou, Hunan Province, P.R. China
| | - Wenna Peng
- Department of Rehabilitation Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, P.R. China
| | - Xiangrong Tian
- Biology and Environmental Sciences, Jishou University, Jishou, Hunan Province, P.R. China
| |
Collapse
|
26
|
Wang H, Zhao P, Huang Q, Chi Y, Dong S, Fan J. Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons. CHEMOSPHERE 2019; 229:618-630. [PMID: 31102917 DOI: 10.1016/j.chemosphere.2019.04.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol-A (BPA) is a representative exogenous endocrine disruptor, which is extensively composed in plastic products. Due to the capability of passing through the blood-brain barrier, evidence has linked BPA exposure with multiple neuropsychological dysfunctions, neurobehavioral disorders and neurodegenerative diseases. However, the underlying mechanism by which BPA induces neurodegeneration still remains unclear. Our study used human embryonic stem cells-derived human cortical neurons (hCNs) as a cellular model to investigate the adverse neurotoxic effects of BPA. hCNs were treated with 0, 0.1, 1 and 10 μM BPA for 14 days. Impacts of BPA exposure on cell morphology, cell viability and neural marker (MAP2) were measured for evaluating the neurodegeneration. The intracellular calcium homeostasis, reactive oxygen species (ROS) generation and organelle functions were also taken into consideration. Results revealed that chronic exposure of BPA damaged the neural morphology, induced neuronal apoptosis and decreased MAP2 expression at the level of both transcription and translation. The intracellular calcium levels were elevated in hCNs after BPA exposure through NMDARs-nNOS-PSD-95 mediating. Meanwhile, BPA led to oxidative stress by raising the ROS generation and attenuating the antioxidant defense in hCNs. Furthermore, BPA triggered ER stress and increased cytochrome c release by impairing the mitochondrial function. Ultimately, BPA triggered the cell apoptosis by regulating Bcl-2 family and caspase-dependent signaling pathway. Taken together, BPA exerted neurotoxic effects on hCNs by eliciting apoptosis, which might due to the intracellular calcium homeostasis perturbation and cell organellar dysfunction.
Collapse
Affiliation(s)
- Hongou Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiqiang Zhao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiansheng Huang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yulang Chi
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
27
|
Birla H, Keswani C, Rai SN, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh SP. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:9. [PMID: 31064381 PMCID: PMC6503545 DOI: 10.1186/s12993-019-0160-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase. RESULTS The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain. CONCLUSION These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
28
|
Zhang M, Liu F, Zhou P, Wang Q, Xu C, Li Y, Bian L, Liu Y, Zhou J, Wang F, Yao Y, Fang Y, Li D. The MTOR signaling pathway regulates macrophage differentiation from mouse myeloid progenitors by inhibiting autophagy. Autophagy 2019; 15:1150-1162. [PMID: 30724690 DOI: 10.1080/15548627.2019.1578040] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Understanding of the mechanism for myeloid differentiation provides important insights into the hematopoietic developmental processes. By using an ESC-derived myeloid progenitor cell model, we found that CSF2/GM-CSF triggered macrophage differentiation and activation of the MTOR signaling pathway. Activation or inhibition of the MTOR signaling enhanced or attenuated macrophage differentiation, respectively, suggesting a critical function. We further showed that macroautophagy/autophagy was inhibited with the addition of CSF2. Furthermore, pharmacological inhibition and genetic modification of autophagy enhanced macrophage differentiation and rescued the inhibitory effect on differentiation caused by MTOR inhibition. Thus, the MTOR signaling pathway regulates macrophage differentiation of myeloid progenitors by inhibiting autophagy. Our results provide new insights into the mechanisms for myeloid differentiation and may prove useful for therapeutic applications of hematopoietic and myeloid progenitor cells. Abbreviations: 2-DG: 2-deoxy-D-glucose; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; BM: bone marrow; CQ: chloroquine; ECAR: extracellular acidification rate; ESC: embryonic stem cell; CSF2/GM-CSF: colony stimulating factor 2; CSF3/G-CSF: colony stimulating factor 3; HPC: hematopoietic progenitor cell; ITGAM/CD11b: integrin alpha M; LPS: lipopolysaccharide; MFI: median fluorescence intensity; MTOR: mechanistic target of rapamycin kinase; RPS6KB1/p70S6K1: ribosomal protein S6 kinase, polypeptide 1; shRNA: short hairpin RNA; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Meichao Zhang
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Furao Liu
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Pingting Zhou
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qian Wang
- b Department of Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Ci Xu
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yanyan Li
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Lei Bian
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yuanhua Liu
- c Department of Chemotherapy , Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province , Nanjing , Jiangsu , China
| | - Jiaxi Zhou
- d State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital , Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , China
| | - Fei Wang
- e Department of Cell and Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Yuan Yao
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yong Fang
- f Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital , Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Dong Li
- a Department of Radiation Oncology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
29
|
Carbofuran hampers oligodendrocytes development leading to impaired myelination in the hippocampus of rat brain. Neurotoxicology 2019; 70:161-179. [DOI: 10.1016/j.neuro.2018.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
|
30
|
Marroqui L, Tudurí E, Alonso-Magdalena P, Quesada I, Nadal Á, Dos Santos RS. Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes. J Endocrinol 2018; 239:R27-R45. [PMID: 30072426 DOI: 10.1530/joe-18-0362] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes is a chronic, heterogeneous syndrome characterized by insulin resistance and pancreatic β-cell dysfunction or death. Among several environmental factors contributing to type 2 diabetes development, endocrine-disrupting chemicals (EDCs) have been receiving special attention. These chemicals include a wide variety of pollutants, from components of plastic to pesticides, with the ability to modulate endocrine system function. EDCs can affect multiple cellular processes, including some related to energy production and utilization, leading to alterations in energy homeostasis. Mitochondria are primarily implicated in cellular energy conversion, although they also participate in other processes, such as hormone secretion and apoptosis. In fact, mitochondrial dysfunction due to reduced oxidative capacity, impaired lipid oxidation and increased oxidative stress has been linked to insulin resistance and type 2 diabetes. Herein, we review the main mechanisms whereby metabolism-disrupting chemical (MDC), a subclass of EDCs that disturbs energy homeostasis, cause mitochondrial dysfunction, thus contributing to the establishment of insulin resistance and type 2 diabetes. We conclude that MDC-induced mitochondrial dysfunction, which is mainly characterized by perturbations in mitochondrial bioenergetics, biogenesis and dynamics, excessive reactive oxygen species production and activation of the mitochondrial pathway of apoptosis, seems to be a relevant mechanism linking MDCs to type 2 diabetes development.
Collapse
Affiliation(s)
- Laura Marroqui
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Eva Tudurí
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Iván Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Ángel Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Reinaldo Sousa Dos Santos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| |
Collapse
|
31
|
Ayazgök B, Tüylü Küçükkılınç T. Low-dose bisphenol A induces RIPK1-mediated necroptosis in SH-SY5Y cells: Effects on TNF-α and acetylcholinesterase. J Biochem Mol Toxicol 2018; 33:e22233. [PMID: 30238673 DOI: 10.1002/jbt.22233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor-α (TNF-α) and caspase-8 levels were determined in SH-SY5Y cells. The current study reveals that low-dose BPA treatment induced cytotoxicity, NO, and caspase-8 levels in SH-SY5Y cells. We also evaluated the mechanism underlying BPA-induced cell death. Ours is the first report that receptor-interacting serine/threonine-protein kinase 1-mediated necroptosis is induced by nanomolar BPA treatment in SH-SY5Y cells. This effect is mediated by altered AChE and decreased TNF-α levels, which result in an apoptosis-necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.
Collapse
Affiliation(s)
- Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| | - Tuba Tüylü Küçükkılınç
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| |
Collapse
|
32
|
Sensitive neurotoxicity assessment of bisphenol A using double immunocytochemistry of DCX and MAP2. Arch Pharm Res 2018; 41:1098-1107. [DOI: 10.1007/s12272-018-1077-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023]
|
33
|
Ferrucci M, Biagioni F, Ryskalin L, Limanaqi F, Gambardella S, Frati A, Fornai F. Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. Int J Mol Sci 2018; 19:ijms19092756. [PMID: 30217100 PMCID: PMC6163197 DOI: 10.3390/ijms19092756] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy primarily works to counteract nutrient deprivation that is strongly engaged during starvation and hypoxia, which happens in hypoperfusion. Nonetheless, autophagy is slightly active even in baseline conditions, when it is useful to remove aged proteins and organelles. This is critical when the mitochondria and/or proteins are damaged by toxic stimuli. In the present review, we discuss to that extent the recruitment of autophagy is beneficial in counteracting brain hypoperfusion or, vice-versa, its overactivity may per se be detrimental for cell survival. While analyzing these opposite effects, it turns out that the autophagy activity is likely not to be simply good or bad for cell survival, but its role varies depending on the timing and amount of autophagy activation. This calls for the need for an appropriate autophagy tuning to guarantee a beneficial effect on cell survival. Therefore, the present article draws a theoretical pattern of autophagy activation, which is hypothesized to define the appropriate timing and intensity, which should mirrors the duration and severity of brain hypoperfusion. The need for a fine tuning of the autophagy activation may explain why confounding outcomes occur when autophagy is studied using a rather simplistic approach.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
34
|
Gu HF, Li N, Tang YL, Yan CQ, Shi Z, Yi SN, Zhou HL, Liao DF, OuYang XP. Nicotinate-curcumin ameliorates cognitive impairment in diabetic rats by rescuing autophagic flux in CA1 hippocampus. CNS Neurosci Ther 2018; 25:430-441. [PMID: 30260594 DOI: 10.1111/cns.13059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Our previous study has confirmed that a novel curcumin derivate nicotinate-curcumin (NC) can facilitate autophagic flux in THP-1 cells induced by oxidized low-density lipoprotein. AIMS Given that autophagy plays critical roles in neurodegenerative diseases, the present study was carried out to investigate whether NC can improve cognitive function of rats with diabetes mellitus (DM) via restoring autophagic flux in CA1 hippocampus. RESULTS Our results showed that NC treatment improved cognitive deficit and attenuated neuronal loss as well as cellular ultrastructure impairment in the CA1 region of DM rats induced by streptozotocin. Moreover, NC lowered the expressions of the apoptosis-related proteins Bcl-2, Bax, Cyt-c, and cleaved Caspase-3. Notably, NC treatment reversed autophagic flux impairment as evidenced by the deceases in LC3-II and p62 protein levels, and autophagosome accumulation in the hippocampal CA1 region of DM rats. However, these protective effects of NC were abolished by cotreatment with 3-methyladenine (an autophagy inhibitor) and chloroquine (an autophagic flux inhibitor), respectively. Furthermore, NC treatment decreased the expressions of phosphorylated mammalian target of rapamycin (mTOR) and p70 ribosomal protein S6 kinase (p70S6k) proteins in the CA1 region of DM rats. CONCLUSIONS These results indicate that NC ameliorates DM-induced cognitive function impairment via restoring autophagic flux might by inhibiting mTOR/p70S6k activation in the CA1 region, and NC may be a promising agent for diabetic cognitive dysfunction prevention and treatment.
Collapse
Affiliation(s)
- Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Na Li
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Ya-Ling Tang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Can-Qun Yan
- Department of Endocrine of the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zhe Shi
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, China
| | - Si-Ni Yi
- Department of Endocrine of the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Hao-Ling Zhou
- Department of Endocrine of the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, China
| | - Xin-Ping OuYang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| |
Collapse
|
35
|
Kobayashi Y, Oguro A, Imaoka S. Bisphenol A and Its Derivatives Induce Degradation of HIF-1alpha via the Lysosomal Pathway in Human Hepatocarcinoma Cell Line, Hep3B. Biol Pharm Bull 2018; 41:374-382. [PMID: 29491214 DOI: 10.1248/bpb.b17-00693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane), one of the phenolic compounds widely used in the manufacture of plastic and epoxy resins, is known as an endocrine disruptor. In a previous study, we found that BPA induced hypoxia inducible factor-1alpha (HIF-1alpha) degradation by dissociation from heat shock protein 90 (Hsp90). In this study, to investigate the structural requirements for degradation of HIF-1alpha, we estimated the effect of BPA derivatives (BPE, BPF, BPB, Dimethyl butylidene diphenol (DMBDP), Ethyl hexylidene diphenol (EHDP), Bishydroxyphenyl cyclohexane (BHCH), and Methyl benzylidene bisphenol (MBBP)) on HIF-1alpha protein degradation, using human hepatocarcinoma cell line, Hep3B. BPB, DMBDP, BHCH, and MBBP decreased HIF-1alpha protein levels more efficiently than BPA, but BPE, BPF, and EHDP did not affect HIF-1alpha protein levels. BPA degraded HIF-1alpha even in the presence of MG132, a proteasome inhibitor. In this study, we found that ammonium chloride (NH4Cl), a lysosomal enzyme inhibitor, efficiently restored the decrease in HIF-1alpha protein levels by BPA. Recent studies indicated that HIF-1alpha is degraded by the lysosomal pathway as well as the proteasomal pathway. Therefore, we investigated the levels of heat shock cognate 70 kDa protein (HSC70) protein after treatment with BPA. We found that BPA induced HSC70 protein and overexpression of HSC70 enhanced HIF-1alpha degradation in Hep3B cells. These results suggested that BPA causes the degradation of HIF-1alpha by induction of HSC70, leading lysosomal degradation of HIF-1alpha.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
36
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
37
|
Li R, Zhang L, Shi Q, Guo Y, Zhang W, Zhou B. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:46-54. [PMID: 29605586 DOI: 10.1016/j.aquatox.2018.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in various environmental media and biota, and has been demonstrated as neurotoxic. Autophagy has been proposed as a protective mechanism against toxicant-induced neurotoxicity. The purpose of the present study was to investigate the effect of TDCIPP exposure on autophagy, and its role in TDCIPP-induced developmental neurotoxicity. Zebrafish embryos (2-120 h post-fertilization [hpf]) were exposed to TDCIPP (0, 5, 50 and 500 μg/l) and a model neurotoxic chemical, chlorpyrifos (CPF, 100 μg/l). The developmental endpoints, locomotive behavior, cholinesterase activities, gene and protein expression related to neurodevelopment and autophagy were measured in the larvae. Our results demonstrate that exposure to TDCIPP (500 μg/l) and CPF causes developmental toxicity, including reduced hatching and survival rates and increased malformation rate (e.g., spinal curvature), as well as altered locomotor behavior. The expression of selected neurodevelopmental gene and protein markers (e.g., mbp, syn2a, and α1-tubulin) was significantly down-regulated in CPF and TDCIPP exposed zebrafish larvae. Treatment with CPF significantly inhibits AChE and BChE, while TDCIPP (0-500 μg/l) exerts no effects on these enzymes. Furthermore, the conversion of microtubule-associated protein I (LC3 I) to LC3 II was significantly increased in TDCIPP exposed zebrafish larvae. In addition, exposure to TDCIPP also activates transcription of several critical genes in autophagy (e.g. Becn1, atg3, atg5, map1lc3b and sqstm1). To further investigate the role of autophagy in TDCIPP induced developmental neurotoxicity, an autophagy inducer (rapamycin, Rapa, 1 nM) and inhibitor (chloroquine, CQ, 1 μM) were used. The results demonstrate that the hatching rate, survival rate, and the expression of mbp and а1-tubulin proteins were all significantly increased in larvae treated with TDCIPP (500 μg/l) and Rapa compared to TDCIPP alone. In contrast, co-treatment with the autophagy inhibitor CQ results in exacerbated neurodevelopmental toxicity. Taken together, our results confirm that exposure to TDCIPP induces autophagy, which plays a protective role in TDCIPP-induced developmental neurotoxicity in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Ruiwen Li
- Department of Nutrition and Toxicology, School of Public Health, Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ling Zhang
- Department of Nutrition and Toxicology, School of Public Health, Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| | - Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
38
|
Role of autophagy in sevoflurane-induced neurotoxicity in neonatal rat hippocampal cells. Brain Res Bull 2018; 140:291-298. [DOI: 10.1016/j.brainresbull.2018.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023]
|
39
|
PLGA nanoformulation of sparfloxacin enhanced antibacterial activity with photoprotective potential under ambient UV-R exposure. Int J Pharm 2018; 541:173-187. [DOI: 10.1016/j.ijpharm.2018.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
40
|
Garza-Lombó C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. CURRENT OPINION IN TOXICOLOGY 2018; 8:102-110. [PMID: 30417160 PMCID: PMC6223325 DOI: 10.1016/j.cotox.2018.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) and the adenosine monophosphate-activated protein kinase (AMPK) regulate cell survival and metabolism in response to diverse stimuli such as variations in amino acid content, changes in cellular bioenergetics, oxygen levels, neurotrophic factors and xenobiotics. This Opinion paper aims to discuss the current state of knowledge regarding how mTOR and AMPK regulate the metabolism and survival of brain cells and the close interrelationship between both signaling cascades. It is now clear that both mTOR and AMPK pathways regulate cellular homeostasis at multiple levels. Studies so far demonstrate that dysregulation in these two pathways is associated with neuronal injury, degeneration and neurotoxicity, but the mechanisms involved remain unclear. Most of the work so far has been focused on their antagonistic regulation of autophagy, but recent findings highlight that changes in protein synthesis, metabolism and mitochondrial function are likely to play a role in the regulatory effects of both mTOR and AMPK on neuronal health. Understanding the role and relationship between these two master regulators of cell metabolism is crucial for future therapeutic approaches to counteract alterations in cell metabolism and survival in brain injury and disease.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México 04510
| | - Annika Schroder
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Elsa M. Reyes-Reyes
- University of Arizona College of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Tucson, AZ 85724
| | - Rodrigo Franco
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
41
|
Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology 2018; 131:256-270. [DOI: 10.1016/j.neuropharm.2017.12.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
|
42
|
Perez-Alvarez MJ, Villa Gonzalez M, Benito-Cuesta I, Wandosell FG. Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Front Neurosci 2018; 12:60. [PMID: 29497356 PMCID: PMC5818460 DOI: 10.3389/fnins.2018.00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
Intense efforts are being undertaken to understand the pathophysiological mechanisms triggered after brain ischemia and to develop effective pharmacological treatments. However, the underlying molecular mechanisms are complex and not completely understood. One of the main problems is the fact that the ischemic damage is time-dependent and ranges from negligible to massive, involving different cell types such as neurons, astrocytes, microglia, endothelial cells, and some blood-derived cells (neutrophils, lymphocytes, etc.). Thus, approaching such a complicated cellular response generates a more complex combination of molecular mechanisms, in which cell death, cellular damage, stress and repair are intermixed. For this reason, animal and cellular model systems are needed in order to dissect and clarify which molecular mechanisms have to be promoted and/or blocked. Brain ischemia may be analyzed from two different perspectives: that of oxygen deprivation (hypoxic damage per se) and that of deprivation of glucose/serum factors. For investigations of ischemic stroke, middle cerebral artery occlusion (MCAO) is the preferred in vivo model, and uses two different approaches: transient (tMCAO), where reperfusion is permitted; or permanent (pMCAO). As a complement to this model, many laboratories expose different primary cortical neuron or neuronal cell lines to oxygen-glucose deprivation (OGD). This ex vivo model permits the analysis of the impact of hypoxic damage and the specific response of different cell types implicated in vivo, such as neurons, glia or endothelial cells. Using in vivo and neuronal OGD models, it was recently established that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, is one of the players deregulated after ischemia and OGD. In addition, neuroprotective intervention either by estradiol or by specific AT2R agonists shows an important regulatory role for the mTORC1 activity, for instance regulating vascular endothelial growth factor (VEGF) levels. This evidence highlights the importance of understanding the role of mTORC1 in neuronal death/survival processes, as it could be a potential therapeutic target. This review summarizes the state-of-the-art of the complex kinase mTORC1 focusing in upstream and downstream pathways, their role in central nervous system and their relationship with autophagy, apoptosis and neuroprotection/neurodegeneration after ischemia/hypoxia.
Collapse
Affiliation(s)
- Maria J Perez-Alvarez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mario Villa Gonzalez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
43
|
The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget 2018; 7:32554-65. [PMID: 27086915 PMCID: PMC5078033 DOI: 10.18632/oncotarget.8689] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) and Di-(2-ethylhexyl) phthalate (DEHP) are widely used in the plastic industry such as water bottles, containers, packaging and toys. BPA and DEHP are shown to be the endocrine disruptors which disturb the endocrine system and are linked to several diseases including infertility. In this study, we investigated the effects of BPA exposure on porcine oocyte maturation and its possible reasons. Our results showed that: (i) the rates of oocyte maturation significantly decreased with 250 μM BPA treatment in vitro, but not DEHP. This might be due to the delayed cell cycle progression of oocyte maturation. (ii) BPA treatment resulted in abnormal cytoskeletons on porcine oocytes, showing with aberrant actin distribution, spindle morphology and chromosome alignment, which was further confirmed by the reduced p-MAPK level. (iii) The fluorescence intensity of histone methylation (H3K4me2) and DNA methylation (5 mC) levels were altered after BPA treatment, indicating that epigenetic modification was disturbed. (iv) BPA-exposed oocytes had higher rates of early stage apoptosis/autophagy, and this may be resulted from the increased level of oxidative stress. Collectively, our results indicated that porcine oocytes maturation was disrupted after BPA treatment through disrupting cytoskeletal dynamics, epigenetic modifications and inducing apoptosis/autophagy.
Collapse
|
44
|
Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36:311-327. [DOI: 10.1016/j.biotechadv.2017.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
|
45
|
Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 2018; 28:3-13. [PMID: 28703923 PMCID: PMC5739982 DOI: 10.1111/bpa.12545] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
The most prevalent pathological features of many neurodegenerative diseases are the aggregation of misfolded proteins and the loss of certain neuronal populations. Autophagy, as major intracellular machinery for degrading aggregated proteins and damaged organelles, has been reported to be involved in the occurrence of pathological changes in many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. In this review, we summarize most recent research progress in this topic and provide a new perspective regarding autophagy regulation on the pathogenesis of neurodegenerative diseases. Finally, we discuss the signaling molecules in autophagy-related pathways as therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Fang Guo
- The Key Laboratory of Stem Cell Biology and Neurogenomic LaboratoryInstitute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinyao Liu
- Clinical Research Center on Neurological Diseasesthe First Affiliated Hospital, Dalian Medical UniversityDalian116011China
| | - Huaibin Cai
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMD
| | - Weidong Le
- The Key Laboratory of Stem Cell Biology and Neurogenomic LaboratoryInstitute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai200025China
- Clinical Research Center on Neurological Diseasesthe First Affiliated Hospital, Dalian Medical UniversityDalian116011China
- Collaborative Innovation Center for Brain Sciencethe First Affiliated Hospital, Dalian Medical UniversityDalian116011China
| |
Collapse
|
46
|
Nucleoside reverse transcriptase inhibitor-induced rat oocyte dysfunction and low fertility mediated by autophagy. Oncotarget 2017; 9:3895-3907. [PMID: 29423092 PMCID: PMC5790509 DOI: 10.18632/oncotarget.23243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Low fertility is one of the most common side effects caused by nucleoside reverse transcriptase inhibitors (NRTIs), whereas the molecular mechanism underlying this process were largely unclear. This study was conducted to investigate whether autophagy plays a role in NRTIs-induced oocyte dysfunction and low fertility in female rat. Both in vivo and in vitro experiments were conducted. For the in vivo experiment, female adult Sprague-Dawley rats were subjected to zidovudine (AZT) and lamivudine (3TC) intragastric treatment for 3, 6, 9, and 12 weeks; a control was also set. Oocytes were collected for maturation evaluation, in vitro fertilization and mitochondrial function assays, and apoptosis and autophagy analysis. For the in vitro experiment, oocytes were collected and assigned to the control, 3-methyladenine (3-MA, an effective autophagy inhibitor), AZT, AZT+3-MA, 3TC, and 3TC+3-MA groups. The oocytes were cultured with the abovementioned drugs for 24, 48, and 72 h and then, subjected to the same assays as in the in vivo study. The results showed a significant time-dependent decrease in oocyte maturation-related maker levels, oocyte cleavage rate, blastocyst formation rate, mitochondrial DNA copy number and adenosine triphosphate level, and apoptosis, and a significant increase in the reactive oxygen species levels (all P-values < 0.05), in both the in vivo and the in vitro experiments. These changes, except for the changes in the oocyte maturation-related markers, were partially attenuated by 3-MA. In conclusion, we demonstrated that NRTIs can cause rat oocyte dysfunction and low fertility, and this damage was, at least partially, mediated by autophagy.
Collapse
|
47
|
Kushwaha R, Mishra J, Tripathi S, Raza W, Mandrah K, Roy SK, Bandyopadhyay S. Arsenic Attenuates Heparin-Binding EGF-Like Growth Factor/EGFR Signaling That Promotes Matrix Metalloprotease 9-Dependent Astrocyte Damage in the Developing Rat Brain. Toxicol Sci 2017; 162:406-428. [DOI: 10.1093/toxsci/kfx264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajesh Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
- Babu Banarasi Das University, Lucknow 226028, India
| | - Sachin Tripathi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
- Amity Institute of Biotechnology, Amity University (Lucknow Campus), Lucknow, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-IITR, Lucknow, India
| | - Somendu Kumar Roy
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-IITR, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| |
Collapse
|
48
|
Acconcia F, Fiocchetti M, Marino M. Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Mol Cell Endocrinol 2017; 457:3-12. [PMID: 27816767 DOI: 10.1016/j.mce.2016.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
The hormone 17β-estradiol (E2) contributes to body homeostasis maintenance by regulating many different physiological functions in both male and female organs. E2 actions in reproductive and non-reproductive tissues rely on a complex net of nuclear and extra-nuclear signal transduction pathways triggered by at least two estrogen receptor subtypes (ERα and ERβ). Consequently, the de-regulation of E2:ER signaling contributes to the pathogenesis of many diseases including cancer. Among other factors, the ERα/ERβ ratio is considered one of the pivotal mechanisms at the root of E2 action in cancer progression. Remarkably, several natural or synthetic exogenous chemicals, collectively called xenoestrogens, bind to ERs and interfere with their signals and intracellular functions. In this review, the molecular mechanism(s) through which xenoestrogens influence ERα and ERβ intracellular concentrations and the consequences of this influence on E2-related cancer will be discussed.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
49
|
Seth B, Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK. Inhibition of the transforming growth factor-β/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem 2017; 292:19423-19440. [PMID: 28982980 DOI: 10.1074/jbc.m117.798074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The widely used carbamate pesticide carbofuran causes neurophysiological and neurobehavioral deficits in rodents and humans and therefore poses serious health hazards around the world. Previously, we reported that gestational carbofuran exposure has detrimental effects on hippocampal neurogenesis, the generation of new neurons from neural stem cells (NSC), in offspring. However, the underlying cellular and molecular mechanisms for carbofuran-impaired neurogenesis remain unknown. Herein, we observed that chronic carbofuran exposure from gestational day 7 to postnatal day 21 altered expression of genes and transcription factors and levels of proteins involved in neurogenesis and the TGF-β pathway (i.e. TGF-β; SMAD-2, -3, and -7; and SMURF-2) in the rat hippocampus. We found that carbofuran increases TGF-β signaling (i.e. increased phosphorylated SMAD-2/3 and reduced SMAD-7 expression) in the hippocampus, which reduced NSC proliferation because of increased p21 levels and reduced cyclin D1 levels. Moreover, the carbofuran-altered TGF-β signaling impaired neuronal differentiation (BrdU/DCX+ and BrdU/NeuN+ cells) and increased apoptosis and neurodegeneration in the hippocampus. Blockade of the TGF-β pathway with the specific inhibitor SB431542 and via SMAD-3 siRNA prevented carbofuran-mediated inhibition of neurogenesis in both hippocampal NSC cultures and the hippocampus, suggesting the specific involvement of this pathway. Of note, both in vitro and in vivo studies indicated that TGF-β pathway attenuation reverses carbofuran's inhibitory effects on neurogenesis and associated learning and memory deficits. These results suggest that carbofuran inhibits NSC proliferation and neuronal differentiation by altering TGF-β signaling. Therefore, we conclude that TGF-β may represent a potential therapeutic target against carbofuran-mediated neurotoxicity and neurogenesis disruption.
Collapse
Affiliation(s)
- Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India, .,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
50
|
Photosensitized methyl paraben induces apoptosis via caspase dependent pathway under ambient UVB exposure in human skin cells. Food Chem Toxicol 2017; 108:171-185. [DOI: 10.1016/j.fct.2017.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022]
|