1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Mattiazzi A, Jaquenod De Giusti C, Valverde CA. CaMKII at the crossroads: calcium dysregulation, and post-translational modifications driving cell death. J Physiol 2025. [PMID: 39907446 DOI: 10.1113/jp285941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates numerous proteins involved in excitation-contraction-relaxation coupling and cardiac excitability. However, its overactivation induces severe Ca2+/handling alterations, playing a significant role in the pathogenesis of diseases such as hypertrophy, arrhythmias and cell death, which can ultimately lead to heart failure. Being a suitable target for various aberrant signals that characterize several diseases, such as Ca2+ overload, oxidative stress or excessive glycosylation, CaMKII shifts under these conditions from a physiological regulator to a pathological molecule. In this review, we explore the evolution of knowledge regarding the role of CaMKII activation on cell death across different pathological contexts, focusing on the converging mechanisms that transform the enzyme from an ally into a villain.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
3
|
Shi Q, Wang J, Malik H, Li X, Streeter J, Sharafuddin J, Weatherford E, Stein D, Itan Y, Chen B, Hall D, Song LS, Abel ED. IRS2 Signaling Protects Against Stress-Induced Arrhythmia by Maintaining Ca 2+ Homeostasis. Circulation 2024; 150:1966-1983. [PMID: 39253856 PMCID: PMC11631690 DOI: 10.1161/circulationaha.123.065048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND The docking protein IRS2 (insulin receptor substrate protein-2) is an important mediator of insulin signaling and may also regulate other signaling pathways. Murine hearts with cardiomyocyte-restricted deletion of Irs2 (cIRS2-KO) are more susceptible to pressure overload-induced cardiac dysfunction, implying a critical protective role of IRS2 in cardiac adaptation to stress through mechanisms that are not fully understood. There is limited evidence regarding the function of IRS2 beyond metabolic homeostasis regulation, particularly in the context of cardiac disease. METHODS A retrospective analysis of an electronic medical record database was conducted to identify patients with IRS2 variants and assess their risk of cardiac arrhythmias. Arrhythmia susceptibility was examined in cIRS2-KO mice. The underlying mechanisms were investigated using confocal calcium imaging of ex vivo whole hearts and isolated cardiomyocytes to assess calcium handling, Western blotting to analyze the involved signaling pathways, and pharmacological and genetic interventions to rescue arrhythmias in cIRS2-KO mice. RESULTS The retrospective analysis identified patients with IRS2 variants of uncertain significance with a potential association to an increased risk of cardiac arrhythmias compared with matched controls. cIRS2-KO hearts were found to be prone to catecholamine-sensitive ventricular tachycardia and reperfusion ventricular tachycardia. Confocal calcium imaging of ex vivo whole hearts and single isolated cardiomyocytes from cIRS2-KO hearts revealed decreased Ca²⁺ transient amplitudes, increased spontaneous Ca²⁺ sparks, and reduced sarcoplasmic reticulum Ca²⁺ content during sympathetic stress, indicating sarcoplasmic reticulum dysfunction. We identified that overactivation of the AKT1/NOS3 (nitric oxide synthase 3)/CaMKII (Ca²⁺/calmodulin-dependent protein kinase II)/RyR2 (type 2 ryanodine receptor) signaling pathway led to calcium mishandling and catecholamine-sensitive ventricular tachycardia in cIRS2-KO hearts. Pharmacological AKT inhibition or genetic stabilization of RyR2 rescued catecholamine-sensitive ventricular tachycardia in cIRS2-KO mice. CONCLUSIONS Cardiac IRS2 inhibits sympathetic stress-induced AKT/NOS3/CaMKII/RyR2 overactivation and calcium-dependent arrhythmogenesis. This novel IRS2 signaling axis, essential for maintaining cardiac calcium homeostasis under stress, presents a promising target for developing new antiarrhythmic therapies.
Collapse
Affiliation(s)
- Qian Shi
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jinxi Wang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Hamza Malik
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xuguang Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jacob Sharafuddin
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Eric Weatherford
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - David Stein
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Biyi Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Duane Hall
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Long-Sheng Song
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - E. Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
- Current address, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
4
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
5
|
Xu J, Liang S, Wang Q, Zheng Q, Wang M, Qian J, Yu T, Lou S, Luo W, Zhou H, Liang G. JOSD2 mediates isoprenaline-induced heart failure by deubiquitinating CaMKIIδ in cardiomyocytes. Cell Mol Life Sci 2024; 81:18. [PMID: 38195959 PMCID: PMC11072575 DOI: 10.1007/s00018-023-05037-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024]
Abstract
Prolonged stimulation of β-adrenergic receptor (β-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.
Collapse
Affiliation(s)
- Jiachen Xu
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shiqi Liang
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qinyan Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingsong Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, 132013, Jilin, China
| | - Jinfu Qian
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuaijie Lou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wu Luo
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Hao Zhou
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guang Liang
- Department of Cardiology, Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
6
|
Power AS, Asamudo EU, Worthington LP, Alim CC, Parackal RE, Wallace RS, Ebenebe OV, Heller Brown J, Kohr MJ, Bers DM, Erickson JR. Nitric Oxide Modulates Ca 2+ Leak and Arrhythmias via S-Nitrosylation of CaMKII. Circ Res 2023; 133:1040-1055. [PMID: 37961889 PMCID: PMC10699507 DOI: 10.1161/circresaha.123.323571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Nitric oxide (NO) has been identified as a signaling molecule generated during β-adrenergic receptor stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of CaMKIIδ (Ca2+/calmodulin kinase II delta) is emerging. NO donors are routinely used clinically for their cardioprotective effects on the heart, but it is unknown how NO donors modulate the proarrhythmic CaMKII to alter cardiac arrhythmia incidence. We test the role of S-nitrosylation of CaMKIIδ at the Cysteine-273 inhibitory site and cysteine-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during β-adrenergic receptor stimulation. METHODS We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at cysteine-273 or cysteine-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (200 μM), and β-adrenergic agonist isoproterenol (100 nmol/L). RESULTS Both WT and CaMKIIδ-KO cardiomyocytes responded to isoproterenol with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from isoproterenol-induced Ca2+ sparks and waves was mimicked by GSNO pretreatment in WT cardiomyocytes but lost in CaMKIIδ-C273S cardiomyocytes. When GSNO was applied after isoproterenol, this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pretreatment limited isoproterenol-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after isoproterenol sustained or exacerbated arrhythmic events. CONCLUSIONS We conclude that prior S-nitrosylation of CaMKIIδ at cysteine-273 can limit subsequent β-adrenergic receptor-induced arrhythmias, but that S-nitrosylation at cysteine-290 might worsen or sustain β-adrenergic receptor-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
- Department of Physiology, University of Auckland, New Zealand (A.S.P.)
| | - Esther U. Asamudo
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Luke P.I. Worthington
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Chidera C. Alim
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Raquel E. Parackal
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Rachel S. Wallace
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| | - Obialunanma V. Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.V.E., M.J.K.)
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla (J.H.B.)
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (O.V.E., M.J.K.)
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis (E.U.A., C.C.A., D.M.B.)
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand (A.S.P., E.U.A., L.P.I.W., R.E.P., R.S.W., J.R.E.)
| |
Collapse
|
7
|
Lebek S, Caravia XM, Chemello F, Tan W, McAnally JR, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Elimination of CaMKIIδ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation 2023; 148:1490-1504. [PMID: 37712250 PMCID: PMC10842988 DOI: 10.1161/circulationaha.123.065117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic β-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
- Department of Internal Medicine II, University Hospital Regensburg; Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
8
|
Ni H, Morotti S, Zhang X, Dobrev D, Grandi E. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Cardiovasc Res 2023; 119:2294-2311. [PMID: 37523735 PMCID: PMC11318383 DOI: 10.1093/cvr/cvad118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 08/02/2023] Open
Abstract
AIMS Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations. METHODS AND RESULTS Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis. CONCLUSIONS Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University
Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and
Université de Montréal, Montréal, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, TX, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
9
|
Power AS, Asamudo E, Worthington LPI, Alim CC, Parackal R, Wallace RS, Ebenebe OV, Brown JH, Kohr MJ, Bers DM, Erickson JR. Nitric Oxide modulates spontaneous Ca 2+ release and ventricular arrhythmias during β-adrenergic signalling through S-nitrosylation of Calcium/Calmodulin dependent kinase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554546. [PMID: 37662205 PMCID: PMC10473710 DOI: 10.1101/2023.08.23.554546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rationale Nitric oxide (NO) has been identified as a signalling molecule generated during β-adrenergic receptor (AR) stimulation in the heart. Furthermore, a role for NO in triggering spontaneous Ca2+ release via S-nitrosylation of Ca2+/calmodulin kinase II delta (CaMKIIδ) is emerging. NO donors are routinely used clinically for their cardioprotective effects in the heart, but it is unknown how NO donors modulate the pro-arrhythmic CaMKII to alter cardiac arrhythmia incidence. Objective We test the role of S-nitrosylation of CaMKIIδ at the Cys-273 inhibitory site and Cys-290 activating site in cardiac Ca2+ handling and arrhythmogenesis before and during β-AR stimulation. Methods and Results We measured Ca2+-handling in isolated cardiomyocytes from C57BL/6J wild-type (WT) mice and mice lacking CaMKIIδ expression (CaMKIIδ-KO) or with deletion of the S-nitrosylation site on CaMKIIδ at Cys-273 or Cys-290 (CaMKIIδ-C273S and -C290A knock-in mice). Cardiomyocytes were exposed to NO donors, S-nitrosoglutathione (GSNO; 150 μM), sodium nitroprusside (SNP; 200 μM) and/or β-adrenergic agonist isoproterenol (ISO; 100 nM). WT and CaMKIIδ-KO cardiomyocytes treated with GSNO showed no change in Ca2+ transient or spark properties under baseline conditions (0.5 Hz stimulation frequency). Both WT and CaMKIIδ-KO cardiomyocytes responded to ISO with a full inotropic and lusitropic Ca2+ transient response as well as increased Ca2+ spark frequency. However, the increase in Ca2+ spark frequency was significantly attenuated in CaMKIIδ-KO cardiomyocytes. The protection from ISO-induced Ca2+ sparks and waves was mimicked by GSNO pre-treatment in WT cardiomyocytes, but lost in CaMKIIδ-C273S cardiomyocytes that displayed a robust increase in Ca2+ waves. This observation is consistent with CaMKIIδ-C273 S-nitrosylation being critical in limiting ISO-induced arrhythmogenic sarcoplasmic reticulum Ca2+ leak. When GSNO was applied after ISO this protection was not observed in WT or CaMKIIδ-C273S but was apparent in CaMKIIδ-C290A. In Langendorff-perfused isolated hearts, GSNO pre-treatment limited ISO-induced arrhythmias in WT but not CaMKIIδ-C273S hearts, while GSNO exposure after ISO sustained or exacerbated arrhythmic events. Conclusions We conclude that prior S-nitrosylation of CaMKIIδ at Cys-273 can limit subsequent β-AR induced arrhythmias, but that S-nitrosylation at Cys-290 might worsen or sustain β-AR-induced arrhythmias. This has important implications for the administration of NO donors in the clinical setting.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Esther Asamudo
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
- Department of Pharmacology, University of California, Davis
| | | | | | - Raquel Parackal
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rachel S. Wallace
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Obialunanma V. Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Oliveira-Paula GH, I M Batista R, Stransky S, Tella SC, Ferreira GC, Portella RL, Pinheiro LC, Damacena-Angelis C, Riascos-Bernal DF, Sidoli S, Sibinga N, Tanus-Santos JE. Orally administered sodium nitrite prevents the increased α-1 adrenergic vasoconstriction induced by hypertension and promotes the S-nitrosylation of calcium/calmodulin-dependent protein kinase II. Biochem Pharmacol 2023; 212:115571. [PMID: 37127250 PMCID: PMC10198929 DOI: 10.1016/j.bcp.2023.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The unsatisfactory rates of adequate blood pressure control among patients receiving antihypertensive treatment calls for new therapeutic strategies to treat hypertension. Several studies have shown that oral sodium nitrite exerts significant antihypertensive effects, but the mechanisms underlying these effects remain unclear. While these mechanisms may involve nitrite-derived S-nitrosothiols, their implication in important alterations associated with hypertension, such as aberrant α1-adrenergic vasoconstriction, has not yet been investigated. Here, we examined the effects of oral nitrite treatment on vascular responses to the α1-adrenergic agonist phenylephrine in two-kidney, one clip (2K1C) hypertensive rats and investigated the potential underlying mechanisms. Our results show that treatment with oral sodium nitrite decreases blood pressure and prevents the increased α1-adrenergic vasoconstriction in 2K1C hypertensive rats. Interestingly, we found that these effects require vascular protein S-nitrosylation, and to investigate the specific S-nitrosylated proteins we performed an unbiased nitrosoproteomic analysis of vascular smooth muscle cells (VSMCs) treated with the nitrosylating compound S-nitrosoglutathione (GSNO). This analysis revealed that GSNO markedly increases the nitrosylation of calcium/calmodulin-dependent protein kinase II γ (CaMKIIγ), a multifunctional protein that mediates the α1-adrenergic receptor signaling. This result was associated with reduced α1-adrenergic receptor-mediated CaMKIIγ activity in VSMCs. We further tested the relevance of these findings in vivo and found that treatment with oral nitrite increases CaMKIIγ S-nitrosylation and blunts the increased CaMKIIγ activity induced by phenylephrine in rat aortas. Collectively, these results are consistent with the idea that oral sodium nitrite treatment increases vascular protein S-nitrosylation, including CaMKIIγ as a target, which may ultimately prevent the increased α1-adrenergic vasoconstriction induced by hypertension. These mechanisms may help to explain the antihypertensive effects of oral nitrite and hold potential implications in the therapy of hypertension and other cardiovascular diseases associated with abnormal α1-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Sandra C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Celio Damacena-Angelis
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Nicholas Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
11
|
Benchoula K, Mediani A, Hwa WE. The functions of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) in diabetes progression. J Cell Commun Signal 2023; 17:25-34. [PMID: 35551607 PMCID: PMC10030766 DOI: 10.1007/s12079-022-00680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
The increase in blood glucose causes a myriad of pathways and molecular components to malfunction, leading to diabetes. Diabetes affects each organ differently by activating distinct pathways. It has an impact on the liver, pancreas, kidney (nephropathy), eyes (retinopathy), and nervous system (neuropathy). Understanding the effects of diabetes on each organ is the first step in developing a sustained treatment for the disease. Among the many cellular molecules impacted by diabetes is Ca2+/calmodulin-dependent protein kinase II (CaMKII), a complex Ca2+/calmodulin-activated serine/threonine-protein kinase. When intracellular [Ca2+] rises, it binds to calmodulin (CaM) to produce Ca2+/CaM, which activates CaMKIIs. This factor is involved in the pancreas, liver, heart, muscles, and various organs. Thus, Understanding CaMKII action in each organ is critical for gaining a complete picture of diabetic complications. Therefore, this review covers CaMKII's functions in many organs and how it affects and has been affected by diabetes.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
12
|
Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED, Anderson ME. CaMKII as a Therapeutic Target in Cardiovascular Disease. Annu Rev Pharmacol Toxicol 2023; 63:249-272. [PMID: 35973713 PMCID: PMC11019858 DOI: 10.1146/annurev-pharmtox-051421-111814] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.
Collapse
Affiliation(s)
- Oscar E Reyes Gaido
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Kate L Schole
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Qinchuan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Priya Umapathi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Olurotimi O Mesubi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Klitos Konstantinidis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Elizabeth D Luczak
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Departments of Physiology and Genetic Medicine and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Alim CC, Ko CY, Mira Hernandez J, Shen EY, Baidar S, Chen‐Izu Y, Bers DM, Bossuyt J. Nitrosylation of cardiac CaMKII at Cys290 mediates mechanical afterload-induced increases in Ca 2+ transient and Ca 2+ sparks. J Physiol 2022; 600:4865-4879. [PMID: 36227145 PMCID: PMC9827875 DOI: 10.1113/jp283427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiac mechanical afterload induces an intrinsic autoregulatory increase in myocyte Ca2+ dynamics and contractility to enhance contraction (known as the Anrep effect or slow force response). Our prior work has implicated both nitric oxide (NO) produced by NO synthase 1 (NOS1) and calcium/calmodulin-dependent protein kinase II (CaMKII) activity as required mediators of this form of mechano-chemo-transduction. To test whether a single S-nitrosylation site on CaMKIIδ (Cys290) mediates enhanced sarcoplasmic reticulum Ca2+ leak and afterload-induced increases in sarcoplasmic reticulum (SR) Ca2+ uptake and release, we created a novel CRISPR-based CaMKIIδ knock-in (KI) mouse with a Cys to Ala mutation at C290. These CaMKIIδ-C290A-KI mice exhibited normal cardiac morphometry and function, as well as basal myocyte Ca2+ transients (CaTs) and β-adrenergic responses. However, the NO donor S-nitrosoglutathione caused an acute increased Ca2+ spark frequency in wild-type (WT) myocytes that was absent in the CaMKIIδ-C290A-KI myocytes. Using our cell-in-gel system to exert multiaxial three-dimensional mechanical afterload on myocytes during contraction, we found that WT myocytes exhibited an afterload-induced increase in Ca2+ sparks and Ca2+ transient amplitude and rate of decline. These afterload-induced effects were prevented in both cardiac-specific CaMKIIδ knockout and point mutant CaMKIIδ-C290A-KI myocytes. We conclude that CaMKIIδ activation by S-nitrosylation at the C290 site is essential in mediating the intrinsic afterload-induced enhancement of myocyte SR Ca2+ uptake, release and Ca2+ transient amplitude (the Anrep effect). The data also indicate that NOS1 activation is upstream of S-nitrosylation at C290 of CaMKII, and that this molecular mechano-chemo-transduction pathway is beneficial in allowing the heart to increase contractility to limit the reduction in stroke volume when aortic pressure (afterload) is elevated. KEY POINTS: A novel CRISPR-based CaMKIIδ knock-in mouse was created in which kinase activation by S-nitrosylation at Cys290 (C290A) is prevented. How afterload affects Ca2+ signalling was measured in cardiac myocytes that were embedded in a hydrogel that imposes a three-dimensional afterload. This mechanical afterload induced an increase in Ca2+ transient amplitude and decay in wild-type myocytes, but not in cardiac-specific CaMKIIδ knockout or C290A knock-in myocytes. The CaMKIIδ-C290 S-nitrosylation site is essential for the afterload-induced enhancement of Ca2+ transient amplitude and Ca2+ sparks.
Collapse
Affiliation(s)
- Chidera C. Alim
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | | | - Juliana Mira Hernandez
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA,Research Group in Veterinary MedicineSchool of Veterinary MedicineUniversity Corporation LasallistaCaldasAntioquiaColombia
| | - Erin Y. Shen
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Sonya Baidar
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Ye Chen‐Izu
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA,Department of Biomedical EngineeringUniversity of CaliforniaDavisCAUSA,Department of Internal Medicine/CardiologyUniversity of CaliforniaDavisCAUSA
| | - Donald M. Bers
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | - Julie Bossuyt
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
14
|
Rocco-Machado N, Lai L, Kim G, He Y, Luczak ED, Anderson ME, Levine RL. Oxidative stress–induced autonomous activation of the calcium/calmodulin-dependent kinase II involves disulfide formation in the regulatory domain. J Biol Chem 2022; 298:102579. [PMID: 36220393 PMCID: PMC9643438 DOI: 10.1016/j.jbc.2022.102579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ) has a pivotal role in cardiac signaling. Constitutive and deleterious CaMKII “autonomous” activation is induced by oxidative stress, and the previously reported mechanism involves oxidation of methionine residues in the regulatory domain. Here, we demonstrate that covalent oxidation leads to a disulfide bond with Cys273 in the regulatory domain causing autonomous activity. Autonomous activation was induced by treating CaMKII with diamide or histamine chloramine, two thiol-oxidizing agents. Autonomy was reversed when the protein was incubated with DTT or thioredoxin to reduce disulfide bonds. Tryptic mapping of the activated CaMKII revealed formation of a disulfide between Cys273 and Cys290 in the regulatory domain. We determined the apparent pKa of those Cys and found that Cys273 had a low pKa while that of Cys290 was elevated. The low pKa of Cys273 facilitates oxidation of its thiol to the sulfenic acid at physiological pH. The reactive sulfenic acid then attacks the thiol of Cys290 to form the disulfide. The previously reported CaMKII mutant in which methionine residues 281 and 282 were mutated to valine (MMVV) protects mice and flies from cardiac decompensation induced by oxidative stress. Our initial hypothesis was that the MMVV mutant underwent a conformational change that prevented disulfide formation and autonomous activation. However, we found that the thiol-oxidizing agents induced autonomy in the MMVV mutant and that the mutant undergoes rapid degradation by the cell, potentially preventing accumulation of the injurious autonomous form. Together, our results highlight additional mechanistic details of CaMKII autonomous activation.
Collapse
Affiliation(s)
- Nathália Rocco-Machado
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Lo Lai
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Yi He
- Fermentation Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth D Luczak
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Physiology and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Roberts-Craig FT, Worthington LP, O’Hara SP, Erickson JR, Heather AK, Ashley Z. CaMKII Splice Variants in Vascular Smooth Muscle Cells: The Next Step or Redundancy? Int J Mol Sci 2022; 23:ijms23147916. [PMID: 35887264 PMCID: PMC9318135 DOI: 10.3390/ijms23147916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) help to maintain the normal physiological contractility of arterial vessels to control blood pressure; they can also contribute to vascular disease such as atherosclerosis. Ca2+/calmodulin-dependent kinase II (CaMKII), a multifunctional enzyme with four isoforms and multiple alternative splice variants, contributes to numerous functions within VSMCs. The role of these isoforms has been widely studied across numerous tissue types; however, their functions are still largely unknown within the vasculature. Even more understudied is the role of the different splice variants of each isoform in such signaling pathways. This review evaluates the role of the different CaMKII splice variants in vascular pathological and physiological mechanisms, aiming to show the need for more research to highlight both the deleterious and protective functions of the various splice variants.
Collapse
Affiliation(s)
- Finn T. Roberts-Craig
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
| | - Luke P. Worthington
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Samuel P. O’Hara
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Jeffrey R. Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Alison K. Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Zoe Ashley
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-7646
| |
Collapse
|
16
|
Qian D, Tian J, Wang S, Shan X, Zhao P, Chen H, Xu M, Guo W, Zhang C, Lu R. Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway. BMC Complement Med Ther 2022; 22:115. [PMID: 35468773 PMCID: PMC9040265 DOI: 10.1186/s12906-022-03594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trans-cinnamaldehyde (TCA) is one of the main pharmaceutical ingredients of Cinnamomum cassia Presl, which has been shown to have therapeutic effects on a variety of cardiovascular diseases. This study was carried out to characterize and reveal the underlying mechanisms of the protective effects of TCA against cardiac hypertrophy. METHODS We used phenylephrine (PE) to induce cardiac hypertrophy and treated with TCA in vivo and in vitro. In neonatal rat cardiomyocytes (NRCMs), RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to identify potential pathways of TCA. Then, the phosphorylation and nuclear localization of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-related kinase (ERK) were detected. In adult mouse cardiomyocytes (AMCMs), calcium transients, calcium sparks, sarcomere shortening and the phosphorylation of several key proteins for calcium handling were evaluated. For mouse in vivo experiments, cardiac hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, and the expression of hypertrophic genes and proteins. RESULTS TCA suppressed PE-induced cardiac hypertrophy and the phosphorylation and nuclear localization of CaMKII and ERK in NRCMs. Our data also demonstrate that TCA blocked the hyperphosphorylation of ryanodine receptor type 2 (RyR2) and phospholamban (PLN) and restored Ca2+ handling and sarcomere shortening in AMCMs. Moreover, our data revealed that TCA alleviated PE-induced cardiac hypertrophy in adult mice and downregulated the phosphorylation of CaMKII and ERK. CONCLUSION TCA has a protective effect against PE-induced cardiac hypertrophy that may be associated with the inhibition of the CaMKII/ERK pathway.
Collapse
Affiliation(s)
- Dongdong Qian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Tian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sining Wang
- Department of Comprehensive Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaoli Shan
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei Zhao
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Xu
- Department of Physiology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Guo
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhang
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
17
|
Carlson CR, Aronsen JM, Bergan-Dahl A, Moutty MC, Lunde M, Lunde PK, Jarstadmarken H, Wanichawan P, Pereira L, Kolstad TRS, Dalhus B, Subramanian H, Hille S, Christensen G, Müller OJ, Nikolaev V, Bers DM, Sjaastad I, Shen X, Louch WE, Klussmann E, Sejersted OM. AKAP18δ Anchors and Regulates CaMKII Activity at Phospholamban-SERCA2 and RYR. Circ Res 2022; 130:27-44. [PMID: 34814703 PMCID: PMC9500498 DOI: 10.1161/circresaha.120.317976] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.
Collapse
Affiliation(s)
- Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo Norway,Department of Pharmacology, Oslo University Hospital, Norway
| | - Anna Bergan-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Marie Christine Moutty
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Hilde Jarstadmarken
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pimthanya Wanichawan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Laetitia Pereira
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Terje RS Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway,Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Susanne Hille
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany,Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Oliver J. Müller
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany,Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Donald M. Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
19
|
Simon M, Ko CY, Rebbeck RT, Baidar S, Cornea RL, Bers DM. CaMKIIδ post-translational modifications increase affinity for calmodulin inside cardiac ventricular myocytes. J Mol Cell Cardiol 2021; 161:53-61. [PMID: 34371035 PMCID: PMC8716136 DOI: 10.1016/j.yjmcc.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Persistent over-activation of CaMKII (Calcium/Calmodulin-dependent protein Kinase II) in the heart is implicated in arrhythmias, heart failure, pathological remodeling, and other cardiovascular diseases. Several post-translational modifications (PTMs)-including autophosphorylation, oxidation, S-nitrosylation, and O-GlcNAcylation-have been shown to trap CaMKII in an autonomously active state. The molecular mechanisms by which these PTMs regulate calmodulin (CaM) binding to CaMKIIδ-the primary cardiac isoform-has not been well-studied particularly in its native myocyte environment. Typically, CaMKII activates upon Ca-CaM binding during locally elevated [Ca]free and deactivates upon Ca-CaM dissociation when [Ca]free returns to basal levels. To assess the effects of CaMKIIδ PTMs on CaM binding, we developed a novel FRET (Förster resonance energy transfer) approach to directly measure CaM binding to and dissociation from CaMKIIδ in live cardiac myocytes. We demonstrate that autophosphorylation of CaMKIIδ increases affinity for CaM in its native environment and that this increase is dependent on [Ca]free. This leads to a 3-fold slowing of CaM dissociation from CaMKIIδ (time constant slows from ~0.5 to 1.5 s) when [Ca]free is reduced with physiological kinetics. Moreover, oxidation further slows CaM dissociation from CaMKIIδ T287D (phosphomimetic) upon rapid [Ca]free chelation and increases FRET between CaM and CaMKIIδ T287A (phosphoresistant). The CaM dissociation kinetics-measured here in myocytes-are similar to the interval between heartbeats, and integrative memory would be expected as a function of heart rate. Furthermore, the PTM-induced slowing of dissociation between beats would greatly promote persistent CaMKIIδ activity in the heart. Together, these findings suggest a significant role of PTM-induced changes in CaMKIIδ affinity for CaM and memory under physiological and pathophysiological processes in the heart.
Collapse
Affiliation(s)
- Mitchell Simon
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sonya Baidar
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA.
| |
Collapse
|
20
|
Aguilar G, Córdova F, Koning T, Sarmiento J, Boric MP, Birukov K, Cancino J, Varas-Godoy M, Soza A, Alves NG, Mujica PE, Durán WN, Ehrenfeld P, Sánchez FA. TNF-α-activated eNOS signaling increases leukocyte adhesion through the S-nitrosylation pathway. Am J Physiol Heart Circ Physiol 2021; 321:H1083-H1095. [PMID: 34652985 PMCID: PMC8782658 DOI: 10.1152/ajpheart.00065.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-α (TNF-α) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase Cζ (PKCζ) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-α, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-α-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-α-induced NO also produced S-nitrosylation and phosphorylation of PKCζ, association of PKCζ with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCζ blocked leukocyte adhesion induced by TNF-α. Mass spectrometry analysis of purified PKCζ identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCζ may be an important regulatory step in early leukocyte adhesion in inflammation.NEW & NOTEWORTHY Contrary to the well-established inhibitory role of NO in leukocyte adhesion, we demonstrate a positive role of nitric oxide in this process. We demonstrate that NO induced by eNOS after TNF-α treatment induces early leukocyte adhesion activating the S-nitrosylation pathway. Our data suggest that PKCζ S-nitrosylation may be a key step in this process.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Córdova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio P Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Konstantin Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natascha G Alves
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Patricio E Mujica
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy College, Dobbs Ferry, New York
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Pamela Ehrenfeld
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
21
|
Chaanine AH. Metabolic Remodeling and Implicated Calcium and Signal Transduction Pathways in the Pathogenesis of Heart Failure. Int J Mol Sci 2021; 22:ijms221910579. [PMID: 34638917 PMCID: PMC8508915 DOI: 10.3390/ijms221910579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The heart is an organ with high-energy demands in which the mitochondria are most abundant. They are considered the powerhouse of the cell and occupy a central role in cellular metabolism. The intermyofibrillar mitochondria constitute the majority of the three-mitochondrial subpopulations in the heart. They are also considered to be the most important in terms of their ability to participate in calcium and cellular signaling, which are critical for the regulation of mitochondrial function and adenosine triphosphate (ATP) production. This is because they are located in very close proximity with the endoplasmic reticulum (ER), and for the presence of tethering complexes enabling interorganelle crosstalk via calcium signaling. Calcium is an important second messenger that regulates mitochondrial function. It promotes ATP production and cellular survival under physiological changes in cardiac energetic demand. This is accomplished in concert with signaling pathways that regulate both calcium cycling and mitochondrial function. Perturbations in mitochondrial homeostasis and metabolic remodeling occupy a central role in the pathogenesis of heart failure. In this review we will discuss perturbations in ER-mitochondrial crosstalk and touch on important signaling pathways and molecular mechanisms involved in the dysregulation of calcium homeostasis and mitochondrial function in heart failure.
Collapse
Affiliation(s)
- Antoine H. Chaanine
- Department of Medicine, Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; ; Tel.: +1-(504)-988-1612
- Department of Physiology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Sadredini M, Manotheepan R, Lehnart SE, Anderson ME, Sjaastad I, Stokke MK. The oxidation-resistant CaMKII-MM281/282VV mutation does not prevent arrhythmias in CPVT1. Physiol Rep 2021; 9:e15030. [PMID: 34558218 PMCID: PMC8461029 DOI: 10.14814/phy2.15030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited arrhythmogenic disorder caused by missense mutations in the cardiac ryanodine receptors (RyR2), that result in increased β-adrenoceptor stimulation-induced diastolic Ca2+ leak. We have previously shown that exercise training prevents arrhythmias in CPVT1, potentially by reducing the oxidation of Ca2+ /calmodulin-dependent protein kinase type II (CaMKII). Therefore, we tested whether an oxidation-resistant form of CaMKII protects mice carrying the CPVT1-causative mutation RyR2-R2474S (RyR2-RS) against arrhythmias. Antioxidant treatment (N-acetyl-L-cysteine) reduced the frequency of β-adrenoceptor stimulation-induced arrhythmogenic Ca2+ waves in isolated cardiomyocytes from RyR2-RS mice. To test whether the prevention of CaMKII oxidation exerts an antiarrhythmic effect, mice expressing the oxidation-resistant CaMKII-MM281/282VV variant (MMVV) were crossed with RyR2-RS mice to create a double transgenic model (RyR2-RS/MMVV). Wild-type mice served as controls. Telemetric ECG surveillance revealed an increased incidence of ventricular tachycardia and an increased arrhythmia score in both RyR2-RS and RyR2-RS/MMVV compared to wild-type mice, both following a β-adrenoceptor challenge (isoprenaline i.p.), and following treadmill exercise combined with a β-adrenoceptor challenge. There were no differences in the incidence of arrhythmias between RyR2-RS and RyR2-RS/MMVV mice. Furthermore, no differences were observed in β-adrenoceptor stimulation-induced Ca2+ waves in RyR2-RS/MMVV compared to RyR2-RS. In conclusion, antioxidant treatment reduces β-adrenoceptor stimulation-induced Ca2+ waves in RyR2-RS cardiomyocytes. However, oxidation-resistant CaMKII-MM281/282VV does not protect RyR2-RS mice from β-adrenoceptor stimulation-induced Ca2+ waves or arrhythmias. Hence, alternative oxidation-sensitive targets need to be considered to explain the beneficial effect of antioxidant treatment on Ca2+ waves in cardiomyocytes from RyR2-RS mice.
Collapse
Affiliation(s)
- Mani Sadredini
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
| | - Ravinea Manotheepan
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
| | - Stephan E. Lehnart
- Heart Research Center GöttingenDepartment of Cardiology and PulmonologyUniversity Medical Center GöttingenGeorg August University GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Mark E. Anderson
- Division of CardiologyDepartment of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
| | - Ivar Sjaastad
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
| | - Mathis K. Stokke
- Institute for Experimental Medical Research and KG Jebsen Cardiac Research CentreOslo University Hospital and University of OsloOsloNorway
- Department of CardiologyOslo University HospitalRikshospitaletOsloNorway
| |
Collapse
|
23
|
Hegyi B, Shimkunas R, Jian Z, Izu LT, Bers DM, Chen-Izu Y. Mechanoelectric coupling and arrhythmogenesis in cardiomyocytes contracting under mechanical afterload in a 3D viscoelastic hydrogel. Proc Natl Acad Sci U S A 2021; 118:e2108484118. [PMID: 34326268 PMCID: PMC8346795 DOI: 10.1073/pnas.2108484118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heart pumps blood against the mechanical afterload from arterial resistance, and increased afterload may alter cardiac electrophysiology and contribute to life-threatening arrhythmias. However, the cellular and molecular mechanisms underlying mechanoelectric coupling in cardiomyocytes remain unclear. We developed an innovative patch-clamp-in-gel technology to embed cardiomyocytes in a three-dimensional (3D) viscoelastic hydrogel that imposes an afterload during regular myocyte contraction. Here, we investigated how afterload affects action potentials, ionic currents, intracellular Ca2+ transients, and cell contraction of adult rabbit ventricular cardiomyocytes. We found that afterload prolonged action potential duration (APD), increased transient outward K+ current, decreased inward rectifier K+ current, and increased L-type Ca2+ current. Increased Ca2+ entry caused enhanced Ca2+ transients and contractility. Moreover, elevated afterload led to discordant alternans in APD and Ca2+ transient. Ca2+ alternans persisted under action potential clamp, indicating that the alternans was Ca2+ dependent. Furthermore, all these afterload effects were significantly attenuated by inhibiting nitric oxide synthase 1 (NOS1). Taken together, our data reveal a mechano-chemo-electrotransduction (MCET) mechanism that acutely transduces afterload through NOS1-nitric oxide signaling to modulate the action potential, Ca2+ transient, and contractility. The MCET pathway provides a feedback loop in excitation-Ca2+ signaling-contraction coupling, enabling autoregulation of contractility in cardiomyocytes in response to afterload. This MCET mechanism is integral to the individual cardiomyocyte (and thus the heart) to intrinsically enhance its contractility in response to the load against which it has to do work. While this MCET is largely compensatory for physiological load changes, it may also increase susceptibility to arrhythmias under excessive pathological loading.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Rafael Shimkunas
- Department of Pharmacology, University of California, Davis, CA 95616
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA 95616;
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| |
Collapse
|
24
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Baine S, Bonilla I, Belevych A, Stepanov A, Dorn LE, Terentyeva R, Terentyev D, Accornero F, Carnes CA, Gyorke S. Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1-mediated calcium entry in heart failure. J Cell Mol Med 2021; 25:4637-4648. [PMID: 33755308 PMCID: PMC8107086 DOI: 10.1111/jcmm.16356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andrei Stepanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
28
|
Kreitmeier KG, Tarnowski D, Nanadikar MS, Baier MJ, Wagner S, Katschinski DM, Maier LS, Sag CM. CaMKII δ Met281/282 oxidation is not required for recovery of calcium transients during acidosis. Am J Physiol Heart Circ Physiol 2021; 320:H1199-H1212. [PMID: 33449853 DOI: 10.1152/ajpheart.00040.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
CaMKII is needed for the recovery of Ca2+ transients during acidosis but also mediates postacidic arrhythmias. CaMKIIδ can sustain its activity following Met281/282 oxidation. Increasing cytosolic Na+ during acidosis as well as postacidic pH normalization should result in prooxidant conditions within the cell favoring oxidative CaMKIIδ activation. We tested whether CaMKIIδ activation through Met281/282 oxidation is involved in recovery of Ca2+ transients during acidosis and promotes cellular arrhythmias post-acidosis. Single cardiac myocytes were isolated from a well-established mouse model in which CaMKIIδ was made resistant to oxidative activation by knock-in replacement of two oxidant-sensitive methionines (Met281/282) with valines (MM-VV). MM-VV myocytes were exposed to extracellular acidosis (pHo 6.5) and compared to wild type (WT) control cells. Full recovery of Ca2+ transients was observed in both WT and MM-VV cardiac myocytes during late-phase acidosis. This was associated with comparably enhanced sarcoplasmic reticulum Ca2+ load and preserved CaMKII specific phosphorylation of phospholamban at Thr17 in MM-VV myocytes. CaMKII was phosphorylated at Thr287, but not Met281/282 oxidized. In line with this, postacidic cellular arrhythmias occurred to a similar extent in WT and MM-VV cells, whereas inhibition of CaMKII using AIP completely prevented recovery of Ca2+ transients during acidosis and attenuated postacidic arrhythmias in MM-VV cells. Using genetically altered cardiomyocytes with cytosolic expression of redox-sensitive green fluorescent protein-2 coupled to glutaredoxin 1, we found that acidosis has a reductive effect within the cytosol of cardiac myocytes despite a significant acidosis-related increase in cytosolic Na+. Our study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for recovery of Ca2+ transients during acidosis nor relevant for postacidic arrhythmogenesis in isolated cardiac myocytes. Acidosis reduces the cytosolic glutathione redox state of isolated cardiac myocytes despite a significant increase in cytosolic Na+. Pharmacological inhibition of global CaMKII activity completely prevents recovery of Ca2+ transients and protects from postacidic arrhythmias in MM-VV myocytes, which confirms the relevance of CaMKII in the context of acidosis.NEW & NOTEWORTHY The current study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for CaMKII-dependent recovery of Ca2+ transients during acidosis nor relevant for the occurrence of postacidic cellular arrhythmias. Despite a usually prooxidant increase in cytosolic Na+, acidosis reduces the cytosolic glutathione redox state within cardiac myocytes. This novel finding suggests that oxidation of cytosolic proteins is less likely to occur during acidosis.
Collapse
Affiliation(s)
- K G Kreitmeier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
- Department of Internal Medicine III, University Medical Center Regensburg, Germany
| | - D Tarnowski
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - M S Nanadikar
- Institute for Cardiovascular Physiology, Georg August University, Göttingen, Germany
| | - M J Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - S Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - D M Katschinski
- Institute for Cardiovascular Physiology, Georg August University, Göttingen, Germany
| | - L S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - C M Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| |
Collapse
|
29
|
Mustroph J, Sag CM, Bähr F, Schmidtmann AL, Gupta SN, Dietz A, Islam MMT, Lücht C, Beuthner BE, Pabel S, Baier MJ, El-Armouche A, Sossalla S, Anderson ME, Möllmann J, Lehrke M, Marx N, Mohler PJ, Bers DM, Unsöld B, He T, Dewenter M, Backs J, Maier LS, Wagner S. Loss of CASK Accelerates Heart Failure Development. Circ Res 2021; 128:1139-1155. [PMID: 33593074 DOI: 10.1161/circresaha.120.318170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Can M Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Felix Bähr
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Anna-Lena Schmidtmann
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Shamindra N Gupta
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Alexander Dietz
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - M M Towhidul Islam
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Charlotte Lücht
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Bo Eric Beuthner
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Maria J Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technical University Dresden, Germany (A.E.-A.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.).,Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | | | - Julia Möllmann
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Michael Lehrke
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Nikolaus Marx
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Peter J Mohler
- College of Medicine, the Ohio State University Wexner Medical Center, Columbus (P.J.M.)
| | - Donald M Bers
- College of Biological Sciences, University of California at Davis (D.M.B.)
| | - Bernhard Unsöld
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Tao He
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Matthias Dewenter
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| |
Collapse
|
30
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
31
|
Takata T, Araki S, Tsuchiya Y, Watanabe Y. Persulfide Signaling in Stress-Initiated Calmodulin Kinase Response. Antioxid Redox Signal 2020; 33:1308-1319. [PMID: 32460522 DOI: 10.1089/ars.2020.8138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Significance: Calcium ion (Ca2+)/calmodulin (CaM)-dependent protein kinases (CaMKs) are activated by phosphorylation of a crucial threonine residue either by itself (CaMKII) or by upstream kinases, CaMK kinases (CaMKKs) (CaMKI and CaMKIV). CaMKs, present in most mammalian tissues, can phosphorylate many downstream targets, thereby regulating numerous cellular functions. Recent Advances: Aside from canonical post-translational modifications, cysteine-based redox switches in CaMKs affect their enzyme activities. In addition to reactive oxygen species (ROS) and reactive nitrogen species (RNS), reactive sulfur species (RSS) are also recognized as key signaling molecules, regulating protein function through polysulfidation, formation of polysulfides [-S-(S)n-H] on their reactive cysteine residues. To comprehend the biological significance of RSS signaling-related CaMK regulation, here we introduce a novel concept defining CaMKs as RSS targets in stress responses. The stress responses include an irreversible electrophile attack for CaMKI, inflammation for CaMKII, and endoplasmic reticulum stress for CaMKIV. Critical Issues: Development of various human diseases is associated with increased ROS, RNS, and RSS generation. Therefore, depending on specific pathophysiology, RSS could have very particular effects on CaMK functions. Future Directions: How multiple sources and mutual reactions of ROS, RNS, and RSS are coordinated is obscure. Elucidating the mechanisms through applications of enzymology, chemical biology, and mass spectrometry enables to uncover the complexities of redox regulation of CaMK cascades.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan.,Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoma Araki
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Yukihiro Tsuchiya
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuo Watanabe
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
32
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Jiang SJ, Wang W. Research progress on the role of CaMKII in heart disease. Am J Transl Res 2020; 12:7625-7639. [PMID: 33437349 PMCID: PMC7791482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the heart, Ca2+ participates in electrical activity and myocardial contraction, which is closely related to the generation of action potential and excitation contraction coupling (ECC) and plays an important role in various signal cascades and regulates different physiological processes. In the Ca2+ related physiological activities, CaMKII is a key downstream regulator, involving autophosphorylation and post-translational modification, and plays an important role in the excitation contraction coupling and relaxation events of cardiomyocytes. This paper reviews the relationship between CaMKII and various substances in the pathological process of myocardial apoptosis and necrosis, myocardial hypertrophy and arrhythmia, and what roles it plays in the development of disease in complex networks. This paper also introduces the drugs targeting at CaMKII to treat heart disease.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wei Wang
- Department of Cardiology, Affiliated Taihe Hospital of Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
34
|
Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. Int J Mol Sci 2020; 21:ijms21228750. [PMID: 33228180 PMCID: PMC7699490 DOI: 10.3390/ijms21228750] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.
Collapse
|
35
|
Mollenhauer M, Mehrkens D, Klinke A, Lange M, Remane L, Friedrichs K, Braumann S, Geißen S, Simsekyilmaz S, Nettersheim FS, Lee S, Peinkofer G, Geisler AC, Geis B, Schwoerer AP, Carrier L, Freeman BA, Dewenter M, Luo X, El-Armouche A, Wagner M, Adam M, Baldus S, Rudolph V. Nitro-fatty acids suppress ischemic ventricular arrhythmias by preserving calcium homeostasis. Sci Rep 2020; 10:15319. [PMID: 32948795 PMCID: PMC7501300 DOI: 10.1038/s41598-020-71870-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/22/2020] [Indexed: 12/01/2022] Open
Abstract
Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany.
| | - Dennis Mehrkens
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Max Lange
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Lisa Remane
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Kai Friedrichs
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| | - Simon Braumann
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Felix S Nettersheim
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Samuel Lee
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Gabriel Peinkofer
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Anne C Geisler
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bianca Geis
- General and Interventional Cardiology University Heart Center Hamburg, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander P Schwoerer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, DZHK (German Centre of Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Experimental Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Dewenter
- Institute of Experimental Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Xiaojing Luo
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Dresden, Germany
| | - Matti Adam
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Clinic III for Internal Medicine, Department of Cardiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/ Angiology, Herz- Und Diabeteszentrum NRW, Ruhr-Universitaet Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
36
|
Ma Y, Cheng N, Sun J, Lu JX, Abbasi S, Wu G, Lee AS, Sawamura T, Cheng J, Chen CH, Xi Y. Atherogenic L5 LDL induces cardiomyocyte apoptosis and inhibits K ATP channels through CaMKII activation. Lipids Health Dis 2020; 19:189. [PMID: 32825832 PMCID: PMC7441649 DOI: 10.1186/s12944-020-01368-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation plays a critical role in cardiomyocyte (CM) apoptosis and arrhythmia. Functional ATP-sensitive potassium (KATP) channels are essential for cardiac protection during ischemia. In cultured CMs, L5 low-density lipoprotein (LDL) induces apoptosis and QTc prolongation. L5 is a highly electronegative and atherogenic aberrant form of LDL, and its levels are significantly higher in patients with cardiovascular-related diseases. Here, the role of L5 in cardiac injury was studied by evaluating the effects of L5 on CaMKII activity and KATP channel physiology in CMs. Methods Cultured neonatal rat CMs (NRCMs) were treated with a moderate concentration (ie, 7.5 μg/mL) of L5 or L1 (the least electronegative LDL subfraction). NRCMs were examined for apoptosis and viability, CaMKII activity, and the expression of phosphorylated CaMKIIδ and NOX2/gp91phox. The function of KATP and action potentials (APs) was analyzed by using the patch-clamp technique. Results In NRCMs, L5 but not L1 significantly induced cell apoptosis and reduced cell viability. Furthermore, L5 decreased Kir6.2 expression by more than 50%. Patch-clamp analysis showed that L5 reduced the KATP current (IKATP) density induced by pinacidil, a KATP opener. The partial recovery of the inward potassium current during pinacidil washout was susceptible to subsequent inhibition by the IKATP blocker glibenclamide. Suppression of IKATP by L5 significantly prolonged the AP duration. L5 also significantly increased the activity of CaMKII, the phosphorylation of CaMKIIδ, and the expression of NOX2/gp91phox. L5-induced apoptosis was prevented by the addition of the CaMKII inhibitor KN93 and the reactive oxygen species scavenger Mn (III)TBAP. Conclusions L5 but not L1 induces CM damage through the activation of the CaMKII pathway and increases arrhythmogenicity in CMs by modulating the AP duration. These results help to explain the harmful effects of L5 in cardiovascular-related disease.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China.,Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Nancy Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Junping Sun
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Jonathan Xuhai Lu
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.,InVitro Cell Research, LLC, 106 Grand Avenue, Suite 290, Englewood, NJ, 07631, USA
| | - Shahrzad Abbasi
- Molecular Cardiology Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, USA
| | - Geru Wu
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City, Taiwan, 252.,Cardiovascular Research Laboratory, China Medical University Hospital, No. 2 Yude Road, North District, Taichung City, Taiwan
| | - Tatsuya Sawamura
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Molecular Pathophysiology, Shinshu University School of Medicine, 3 Chome-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Jie Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA. .,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Yutao Xi
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China. .,, 6770 Bertner Street, MC 2-255, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Baine S, Thomas J, Bonilla I, Ivanova M, Belevych A, Li J, Veeraraghavan R, Radwanski PB, Carnes C, Gyorke S. Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by PI3K-AKT-nNOS signaling. J Biol Chem 2020; 295:11720-11728. [PMID: 32580946 PMCID: PMC7450129 DOI: 10.1074/jbc.ra120.014054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications of proteins involved in calcium handling in myocytes, such as the cardiac ryanodine receptor (RyR2), critically regulate cardiac contractility. Recent studies have suggested that phosphorylation of RyR2 by protein kinase G (PKG) might contribute to the cardioprotective effects of cholinergic stimulation. However, the specific mechanisms underlying these effects remain unclear. Here, using murine ventricular myocytes, immunoblotting, proximity ligation as-says, and nitric oxide imaging, we report that phosphorylation of Ser-2808 in RyR2 induced by the muscarinic receptor agonist carbachol is mediated by a signaling axis comprising phosphoinositide 3-phosphate kinase, Akt Ser/Thr kinase, nitric oxide synthase 1, nitric oxide, soluble guanylate cyclase, cyclic GMP (cGMP), and PKG. We found that this signaling pathway is compartmentalized in myocytes, as it was distinct from atrial natriuretic peptide receptor-cGMP-PKG-RyR2 Ser-2808 signaling and independent of muscarinic-induced phosphorylation of Ser-239 in vasodilator-stimulated phosphoprotein. These results provide detailed insights into muscarinic-induced PKG signaling and the mediators that regulate cardiac RyR2 phosphorylation critical for cardiovascular function.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Justin Thomas
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Marina Ivanova
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Jiaoni Li
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| | | | | | - Cynthia Carnes
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Sandor Gyorke
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
38
|
Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, Heller Brown J, Molkentin JD, Bossuyt J, Bers DM. Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via O-linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circ Res 2020; 126:e80-e96. [PMID: 32134364 DOI: 10.1161/circresaha.119.316288] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.
Collapse
Affiliation(s)
- Shan Lu
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Zhandi Liao
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Xiyuan Lu
- Department of Cardiology, Renji Hospital School of Medicine, Jiaotong University, Shanghai, China (X.L.)
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Centre Göttingen, Germany (D.M.K.)
- German Center for Cardiovascular Research, Partner Site, Göttingen (D.M.K.)
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, CA (M.M.)
| | - Ju Chen
- Department of Medicine (J.C.), University of California San Diego, La Jolla
| | - Joan Heller Brown
- Department of Pharmacology (J.H.B.), University of California San Diego, La Jolla
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M.)
| | - Julie Bossuyt
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Donald M Bers
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| |
Collapse
|
39
|
Trum M, Wagner S, Maier LS, Mustroph J. CaMKII and GLUT1 in heart failure and the role of gliflozins. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165729. [PMID: 32068116 DOI: 10.1016/j.bbadis.2020.165729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Empagliflozin, a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has been shown to reduce mortality and hospitalization for heart failure in diabetic patients in the EMPA-REG-OUTCOME trial (Zinman et al., 2015). Surprisingly, dapagliflozin, another SGLT2 inhibitor, exerted comparable effects on clinical endpoints even in the absence of diabetes mellitus (DAPA-HF trial) (McMurray et al., 2019). There is a myriad of suggested underlying mechanisms ranging from improved glycemic control and hemodynamic effects to altered myocardial metabolism, inflammation, neurohumoral activation and intracellular ion homeostasis. Here, we review the effects of gliflozins on cardiac electro-mechanical coupling with an emphasis on novel CaMKII-mediated pathways and on cardiac glucose and ketone metabolism in the failing heart. We focus on empagliflozin as it is the gliflozin with the most abundant experimental evidence for direct effects on the heart. Where useful, we aim to compare empagliflozin to other gliflozins. To facilitate understanding of empagliflozin-induced alterations, we first give a short summary of the pathophysiological role of CaMKII in heart failure, as well as cardiac changes of glucose and ketone body metabolism in the failing heart.
Collapse
Affiliation(s)
- M Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - S Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - L S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - J Mustroph
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
40
|
Nassal D, Gratz D, Hund TJ. Challenges and Opportunities for Therapeutic Targeting of Calmodulin Kinase II in Heart. Front Pharmacol 2020; 11:35. [PMID: 32116711 PMCID: PMC7012788 DOI: 10.3389/fphar.2020.00035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure remains a major health burden around the world. Despite great progress in delineation of molecular mechanisms underlying development of disease, standard therapy has not advanced at the same pace. The multifunctional signaling molecule Ca2+/calmodulin-dependent protein kinase II (CaMKII) has received considerable attention over recent years for its central role in maladaptive remodeling and arrhythmias in the setting of chronic disease. However, these basic science discoveries have yet to translate into new therapies for human patients. This review addresses both the promise and barriers to developing translational therapies that target CaMKII signaling to abrogate pathologic remodeling in the setting of chronic disease. Efforts in small molecule design are discussed, as well as alternative targeting approaches that exploit novel avenues for compound delivery and/or genetic approaches to affect cardiac CaMKII signaling. These alternative strategies provide hope for overcoming some of the challenges that have limited the development of new therapies.
Collapse
Affiliation(s)
- Drew Nassal
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
41
|
Jesus ICG, Mesquita TRR, Monteiro ALL, Parreira AB, Santos AK, Coelho ELX, Silva MM, Souza LAC, Campagnole-Santos MJ, Santos RS, Guatimosim S. Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. Am J Physiol Cell Physiol 2020; 318:C740-C750. [PMID: 31913703 DOI: 10.1152/ajpcell.00153.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Overstimulation of the renin-angiotensin system (RAS) has been implicated in the pathogenesis of various cardiovascular diseases. Alamandine is a peptide newly identified as a protective component of the RAS; however, the mechanisms involved in its beneficial effects remain elusive. By using a well-characterized rat model of hypertension, the TGR (mREN2)27, we show that mREN ventricular myocytes are prone to contractile enhancement mediated by short-term alamandine (100 nmol/L) stimulation of Mas-related G protein-coupled receptor member D (MrgD) receptors, while Sprague-Dawley control cells showed no effect. Additionally, alamandine prevents the Ca2+ dysregulation classically exhibited by freshly isolated mREN myocytes. Accordingly, alamandine treatment of mREN myocytes attenuated Ca2+ spark rate and enhanced Ca2+ reuptake to the sarcoplasmic reticulum. Along with these findings, KN-93 fully inhibited the alamandine-induced increase in Ca2+ transient magnitude and phospholamban (PLN) phosphorylation at Thr17, indicating CaMKII as a downstream effector of the MrgD signaling pathway. In mREN ventricular myocytes, alamandine treatment induced significant nitric oxide (NO) production. Importantly, NO synthase inhibition prevented the contractile actions of alamandine, including PLN-Thr17 phosphorylation at the CaMKII site, thereby indicating that NO acts upstream of CaMKII in the alamandine downstream signaling. Altogether, our results show that enhanced contractile responses mediated by alamandine in cardiomyocytes from hypertensive rats occur through a NO-dependent activation of CaMKII.
Collapse
Affiliation(s)
- Itamar Couto Guedes Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | | | - André Luís Lima Monteiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Borges Parreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Kenedy Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elizeu Lucas Xavier Coelho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Morais Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas A C Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Robson Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| |
Collapse
|
42
|
Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Nagaraju CK, Johnson DM, Holemans P, Roderick HL, Macquaide N, Claus P, Sipido KR. Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc Res 2019; 114:1512-1524. [PMID: 29668881 PMCID: PMC6106102 DOI: 10.1093/cvr/cvy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Aims In ventricular myocytes from humans and large mammals, the transverse and axial tubular system (TATS) network is less extensive than in rodents with consequently a greater proportion of ryanodine receptors (RyRs) not coupled to this membrane system. TATS remodelling in heart failure (HF) and after myocardial infarction (MI) increases the fraction of non-coupled RyRs. Here we investigate whether this remodelling alters the activity of coupled and non-coupled RyR sub-populations through changes in local signalling. We study myocytes from patients with end-stage HF, compared with non-failing (non-HF), and myocytes from pigs with MI and reduced left ventricular (LV) function, compared with sham intervention (SHAM). Methods and results Single LV myocytes for functional studies were isolated according to standard protocols. Immunofluorescent staining visualized organization of TATS and RyRs. Ca2+ was measured by confocal imaging (fluo-4 as indicator) and using whole-cell patch-clamp (37°C). Spontaneous Ca2+ release events, Ca2+ sparks, as a readout for RyR activity were recorded during a 15 s period following conditioning stimulation at 2 Hz. Sparks were assigned to cell regions categorized as coupled or non-coupled sites according to a previously developed method. Human HF myocytes had more non-coupled sites and these had more spontaneous activity than in non-HF. Hyperactivity of these non-coupled RyRs was reduced by Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition. Myocytes from MI pigs had similar changes compared with SHAM controls as seen in human HF myocytes. As well as by CaMKII inhibition, in MI, the increased activity of non-coupled sites was inhibited by mitochondrial reactive oxygen species (mito-ROS) scavenging. Under adrenergic stimulation, Ca2+ waves were more frequent and originated at non-coupled sites, generating larger Na+/Ca2+ exchange currents in MI than in SHAM. Inhibition of CaMKII or mito-ROS scavenging reduced spontaneous Ca2+ waves, and improved excitation–contraction coupling. Conclusions In HF and after MI, RyR microdomain re-organization enhances spontaneous Ca2+ release at non-coupled sites in a manner dependent on CaMKII activation and mito-ROS production. This specific modulation generates a substrate for arrhythmia that appears to be responsive to selective pharmacologic modulation.
Collapse
Affiliation(s)
- Eef Dries
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Demetrio J Santiago
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Guillaume Gilbert
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Ilse Lenaerts
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Bert Vandenberk
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Chandan K Nagaraju
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Daniel M Johnson
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Patricia Holemans
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - H Llewelyn Roderick
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Niall Macquaide
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat Leuven, Belgium
| |
Collapse
|
43
|
Bayer KU, Schulman H. CaM Kinase: Still Inspiring at 40. Neuron 2019; 103:380-394. [PMID: 31394063 DOI: 10.1016/j.neuron.2019.05.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) was touted as a memory molecule, even before its involvement in long-term potentiation (LTP) was shown. The enzyme has not disappointed, with subsequent demonstrations of remarkable structural and regulatory properties. Its neuronal functions now extend to long-term depression (LTD), and last year saw the first direct evidence for memory storage by CaMKII. Although CaMKII may have taken the spotlight, it is a member of a large family of diverse and interesting CaM kinases. Our aim is to place CaMKII in context of the other CaM kinases and then review certain aspects of this kinase that are of current interest.
Collapse
Affiliation(s)
- K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
44
|
Zareba-Koziol M, Bartkowiak-Kaczmarek A, Figiel I, Krzystyniak A, Wojtowicz T, Bijata M, Wlodarczyk J. Stress-induced Changes in the S-palmitoylation and S-nitrosylation of Synaptic Proteins. Mol Cell Proteomics 2019; 18:1916-1938. [PMID: 31311849 PMCID: PMC6773552 DOI: 10.1074/mcp.ra119.001581] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/12/2019] [Indexed: 11/06/2022] Open
Abstract
The precise regulation of synaptic integrity is critical for neuronal network connectivity and proper brain function. Essential aspects of the activity and localization of synaptic proteins are regulated by posttranslational modifications. S-palmitoylation is a reversible covalent modification of the cysteine with palmitate. It modulates affinity of the protein for cell membranes and membranous compartments. Intracellular palmitoylation dynamics are regulated by crosstalk with other posttranslational modifications, such as S-nitrosylation. S-nitrosylation is a covalent modification of cysteine thiol by nitric oxide and can modulate protein functions. Therefore, simultaneous identification of endogenous site-specific proteomes of both cysteine modifications under certain biological conditions offers new insights into the regulation of functional pathways. Still unclear, however, are the ways in which this crosstalk is affected in brain pathology, such as stress-related disorders. Using a newly developed mass spectrometry-based approach Palmitoylation And Nitrosylation Interplay Monitoring (PANIMoni), we analyzed the endogenous S-palmitoylation and S-nitrosylation of postsynaptic density proteins at the level of specific single cysteine in a mouse model of chronic stress. Among a total of 813 S-PALM and 620 S-NO cysteine sites that were characterized on 465 and 360 proteins, respectively, we sought to identify those that were differentially affected by stress. Our data show involvement of S-palmitoylation and S-nitrosylation crosstalk in the regulation of 122 proteins including receptors, scaffolding proteins, regulatory proteins and cytoskeletal components. Our results suggest that atypical crosstalk between the S-palmitoylation and S-nitrosylation interplay of proteins involved in synaptic transmission, protein localization and regulation of synaptic plasticity might be one of the main events associated with chronic stress disorder, leading to destabilization in synaptic networks.
Collapse
Affiliation(s)
- Monika Zareba-Koziol
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland.
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Adam Krzystyniak
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Tomasz Wojtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland.
| |
Collapse
|
45
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
46
|
Daniels LJ, Varma U, Annandale M, Chan E, Mellor KM, Delbridge LMD. Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxid Redox Signal 2019; 31:472-486. [PMID: 30417655 DOI: 10.1089/ars.2018.7650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Energy stress in the myocardium occurs in a variety of acute and chronic pathophysiological contexts, including ischemia, nutrient deprivation, and diabetic disease settings of substrate disturbance. Although the heart is highly adaptive and flexible in relation to fuel utilization and routes of adenosine-5'-triphosphate (ATP) generation, maladaptations in energy stress situations confer functional deficit. An understanding of the mechanisms that link energy stress to impaired myocardial performance is crucial. Recent Advances: Emerging evidence suggests that, in parallel with regulated enzymatic pathways that control intracellular substrate supply, other processes of "bulk" autophagic macromolecular breakdown may be important in energy stress conditions. Recent findings indicate that cargo-specific autophagic activity may be important in different stress states. In particular, induction of glycophagy, a glycogen-specific autophagy, has been described in acute and chronic energy stress situations. The impact of elevated cardiomyocyte glucose flux relating to glycophagy dysregulation on contractile function is unknown. Critical Issues: Ischemia- and diabetes-related cardiac adverse events comprise the majority of cardiovascular disease morbidity and mortality. Current therapies involve management of systemic comorbidities. Cardiac-specific adjunct treatments targeted to manage myocardial energy stress responses are lacking. Future Directions: New knowledge is required to understand the mechanisms involved in selective recruitment of autophagic responses in the cardiomyocyte energy stress response. In particular, exploration of the links between cell substrate flux, calcium ion (Ca2+) flux, and phagosomal cargo flux is required. Strategies to target specific fuel "bulk" management defects in cardiac energy stress states may be of therapeutic value.
Collapse
Affiliation(s)
- Lorna J Daniels
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Upasna Varma
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Marco Annandale
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Eleia Chan
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand.,2 Department of Physiology, University of Melbourne, Melbourne, Australia.,3 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
47
|
Qu J, Mei Q, Niu R. Oxidative CaMKII as a potential target for inflammatory disease (Review). Mol Med Rep 2019; 20:863-870. [PMID: 31173191 DOI: 10.3892/mmr.2019.10309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/22/2019] [Indexed: 11/06/2022] Open
Abstract
CaMKII is a calcium‑activated kinase, proved to be modulated by oxidation. Currently, the oxidative activation of CaMKII exists in several models of asthma, chronic rhinosinusitis with nasal polyps, cardiovascular disease, diabetes mellitus, acute ischemic stroke and cancer. Oxidized CaMKII (ox‑CaMKII) may be important in several of these diseases. The present review examines the mechanism underlying the oxidative activation of CaMKII and summarizes the current findings associated with the function of ox‑CaMKII in inflammatory diseases. Taken together, the findings of this review aim to improve current understanding of the function of ox‑CaMKII and provide novel insights for future research.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410008, P.R. China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan 410005, P.R. China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
48
|
Ma Y, Gong Z, Nan K, Qi S, Chen Y, Ding C, Wang D, Ru L. Apolipoprotein-J blocks increased cell injury elicited by ox-LDL via inhibiting ROS-CaMKII pathway. Lipids Health Dis 2019; 18:117. [PMID: 31113434 PMCID: PMC6530009 DOI: 10.1186/s12944-019-1066-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidized low-density lipoprotein (ox-LDL) is crucial in cardiac injury. Apolipoprotein-J (ApoJ) contributes to antiapoptotic effects in the heart. We aimed to evaluate the protective effects of ApoJ against ox-LDL cytotoxicity in Neonatal rat ventricular cells (NRVCs). Methods and results NRVCs were damaged by exposure to ox-LDL, as shown by increased caspase-3/7 activity, enhanced caspase-3 expression, and decreased cell viability. ApoJ overexpression, using an adenovirus vector, significantly reduced ox-LDL-induced cell injury. ApoJ also prevented ox-LDL from augmenting reactive oxygen species (ROS) production, as demonstrated by elevated Nox2/gp91phox and P47 expression. Furthermore, ApoJ overexpression reduced CaMKIIδ expression elicited by ox-LDL in cultured NRVCs. Upregulating CaMKIIδ activity, mediated by ox-LDL, was significantly inhibited by ApoJ overexpression. A CaMKIIδ inhibitor, KN93, prevented ApoJ’s protective effect against ox-LDL cytotoxicity. A ROS scavenger, Mn (III)meso-tetrakis (4-benzoic acid) porphyrin (Mn (III)TBAP), also attenuated CaMKIIδ’s increased expression and activity, induced by ox-LDL, and showed similar results to ApoJ by attenuating ox-LDL-induced cell damage, as ApoJ did. Conclusions ApoJ confers cytoprotection to NRVCs against ox-LDL cytotoxicity through the ROS-CaMKII pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Zhi Gong
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Yu Chen
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China.
| |
Collapse
|
49
|
Nickel AG, Kohlhaas M, Bertero E, Wilhelm D, Wagner M, Sequeira V, Kreusser MM, Dewenter M, Kappl R, Hoth M, Dudek J, Backs J, Maack C. CaMKII does not control mitochondrial Ca 2+ uptake in cardiac myocytes. J Physiol 2019; 598:1361-1376. [PMID: 30770570 DOI: 10.1113/jp276766] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/13/2019] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Mitochondrial Ca2+ uptake stimulates the Krebs cycle to regenerate the reduced forms of pyridine nucleotides (NADH, NADPH and FADH2 ) required for ATP production and reactive oxygen species (ROS) elimination. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) has been proposed to regulate mitochondrial Ca2+ uptake via mitochondrial Ca2+ uniporter phosphorylation. We used two mouse models with either global deletion of CaMKIIδ (CaMKIIδ knockout) or cardiomyocyte-specific deletion of CaMKIIδ and γ (CaMKIIδ/γ double knockout) to interrogate whether CaMKII controls mitochondrial Ca2+ uptake in isolated mitochondria and during β-adrenergic stimulation in cardiac myocytes. CaMKIIδ/γ did not control Ca2+ uptake, respiration or ROS emission in isolated cardiac mitochondria, nor in isolated cardiac myocytes, during β-adrenergic stimulation and pacing. The results of the present study do not support a relevant role of CaMKII for mitochondrial Ca2+ uptake in cardiac myocytes under physiological conditions. ABSTRACT Mitochondria are the main source of ATP and reactive oxygen species (ROS) in cardiac myocytes. Furthermore, activation of the mitochondrial permeability transition pore (mPTP) induces programmed cell death. These processes are essentially controlled by Ca2+ , which is taken up into mitochondria via the mitochondrial Ca2+ uniporter (MCU). It was recently proposed that Ca2+ /calmodulin-dependent protein kinase II (CaMKII) regulates Ca2+ uptake by interacting with the MCU, thereby affecting mPTP activation and programmed cell death. In the present study, we investigated the role of CaMKII under physiological conditions in which mitochondrial Ca2+ uptake matches energy supply to the demand of cardiac myocytes. Accordingly, we measured mitochondrial Ca2+ uptake in isolated mitochondria and cardiac myocytes harvested from cardiomyocyte-specific CaMKII δ and γ double knockout (KO) (CaMKIIδ/γ DKO) and global CaMKIIδ KO mice. To simulate a physiological workload increase, cardiac myocytes were subjected to β-adrenergic stimulation (by isoproterenol superfusion) and an increase in stimulation frequency (from 0.5 to 5 Hz). No differences in mitochondrial Ca2+ accumulation were detected in isolated mitochondria or cardiac myocytes from both CaMKII KO models compared to wild-type littermates. Mitochondrial redox state and ROS production were unchanged in CaMKIIδ/γ DKO, whereas we observed a mild oxidation of mitochondrial redox state and an increase in H2 O2 emission from CaMKIIδ KO cardiac myocytes exposed to an increase in workload. In conclusion, the results obtained in the present study do not support the regulation of mitochondrial Ca2+ uptake via the MCU or mPTP activation by CaMKII in cardiac myocytes under physiological conditions.
Collapse
Affiliation(s)
- Alexander G Nickel
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Daniel Wilhelm
- Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Michael Wagner
- Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany.,Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Michael M Kreusser
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany.,Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany
| | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Abstract
Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.
Collapse
|