1
|
Shamsad A, Gautam T, Singh R, Banerjee M. Genetic and epigenetic alterations associated with gestational diabetes mellitus and adverse neonatal outcomes. World J Clin Pediatr 2025; 14:99231. [DOI: 10.5409/wjcp.v14.i1.99231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, recognised during 24-28 weeks of pregnancy. GDM is linked with adverse newborn outcomes such as macrosomia, premature delivery, metabolic disorder, cardiovascular, and neurological disorders. Recent investigations have focused on the correlation of genetic factors such as β-cell function and insulin secretary genes (transcription factor 7 like 2, potassium voltage-gated channel subfamily q member 1, adiponectin etc.) on maternal metabolism during gestation leading to GDM. Epigenetic alterations like DNA methylation, histone modification, and miRNA expression can influence gene expression and play a dominant role in feto-maternal metabolic pathways. Interactions between genes and environment, resulting in differential gene expression patterns may lead to GDM. Researchers suggested that GDM women are more susceptible to insulin resistance, which alters intrauterine surroundings, resulting hyperglycemia and hyperinsulinemia. Epigenetic modifications in genes affecting neuroendocrine activities, and metabolism, increase the risk of obesity and type 2 diabetes in offspring. There is currently no treatment or effective preventive method for GDM, since the molecular processes of insulin resistance are not well understood. The present review was undertaken to understand the pathophysiology of GDM and its effects on adverse neonatal outcomes. In addition, the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.
Collapse
Affiliation(s)
- Amreen Shamsad
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Tanu Gautam
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
2
|
Bellia F, Piccinini A, Annunzi E, Cannito L, Lionetti F, Dell’Osso B, Adriani W, Dainese E, Di Domenico A, Pucci M, Palumbo R, D’Addario C. Dopamine and Serotonin Transporter Genes Regulation in Highly Sensitive Individuals during Stressful Conditions: A Focus on Genetics and Epigenetics. Biomedicines 2024; 12:2149. [PMID: 39335662 PMCID: PMC11429336 DOI: 10.3390/biomedicines12092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Coping with stress is essential for mental well-being and can be critical for highly sensitive individuals, characterized by a deeper perception and processing of stimuli. So far, the molecular bases characterizing high-sensitivity traits have not been completely investigated and gene × environment interactions might play a key role in making some people more susceptible than others. Methods: In this study, 104 young adult university students, subjects that might face overwhelming experiences more than others, were evaluated for the genetics and epigenetics of dopamine (DAT1) and serotonin (SERT) transporter genes, in addition to the expression of miR-132, miR-491, miR-16, and miR-135. Results: We found an increase in DNA methylation at one specific CpG site at DAT1 5'UTR in highly sensitive students reporting high levels of perceived stress when compared to those less sensitive and/or less stressed. Moreover, considering DAT1 VNTR at 3'UTR, we observed that this effect was even more pronounced in university students having the 9/9 genotype when compared to those with the 9/10 genotype. These data are corroborated by the higher levels of miR-491, targeting DAT1, in highly sensitive subjects with high levels of perceived stress. SERT gene DNA methylation at one specific CpG site was reported to instead be higher in subjects reporting lower perceived stress when compared to more stressed subjects. Consistently, miR-135 expression, regulating SERT, was lower in subjects with higher perceived stress. Conclusions: We here suggest that the correlation of DAT1 and SERT genetic and epigenetic data with the analysis of stress and sensitivity might be useful to suggest possible biomarkers to monitor mental health wellness in vulnerable subjects.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Alessandro Piccinini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Eugenia Annunzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Loreta Cannito
- Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Social Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesca Lionetti
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20019 Milan, Italy;
- “Aldo Ravelli” Center for Nanotechnology and Neurostimulation, University of Milan, 20122 Milan, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
| | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G.D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Claudio D’Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.P.); (E.A.); (E.D.); (M.P.)
- Department of Clinical Neuroscience, Karolinska Institute, 10316 Stockholm, Sweden
| |
Collapse
|
3
|
Linares-Pineda TM, Peña-Montero N, Gutiérrez-Repiso C, Lima-Rubio F, Sánchez-Pozo A, Tinahones FJ, Molina-Vega M, Picón-César MJ, Morcillo S. Epigenome wide association study in peripheral blood of pregnant women identifies potential metabolic pathways related to gestational diabetes. Epigenetics 2023; 18:2211369. [PMID: 37192269 DOI: 10.1080/15592294.2023.2211369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Gestational diabetes mellitus (GDM) increases the risk of developing metabolic disorders in both pregnant women and their offspring. Factors such as nutrition or the intrauterine environment may play an important role, through epigenetic mechanisms, in the development of GDM. The aim of this work is to identify epigenetic marks involved in the mechanisms or pathways related to gestational diabetes. A total of 32 pregnant women were selected, 16 of them with GDM and 16 non-GDM. DNA methylation pattern was obtained from Illumina Methylation Epic BeadChip, from peripheral blood samples at the diagnostic visit (26-28 weeks). Differential methylated positions (DMPs) were extracted using ChAMP and limma package in R 2.9.10, with a threshold of FDR <0.05, deltabeta >|5|% and B >0. A total of 1.141 DMPs were found, and 714 were annotated in genes. A functional analysis was performed, and we found 23 genes significantly related to carbohydrate metabolism. Finally, a total of 27 DMPs were correlated with biochemical variables such as glucose levels at different points of oral glucose tolerance test, fasting glucose, cholesterol, HOMAIR and HbA1c, at different visits during pregnancy and postpartum. Our results show that there is a differentiated methylation pattern between GDM and non-GDM. Furthermore, the genes annotated to the DMPs could be implicated in the development of GDM as well as in alterations in related metabolic variables.
Collapse
Affiliation(s)
- Teresa María Linares-Pineda
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Departamento de Bioquímica y Biología Molecular 2, Universidad de Granada, Granada, Spain
| | - Nerea Peña-Montero
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Carolina Gutiérrez-Repiso
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Fuensanta Lima-Rubio
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Antonio Sánchez-Pozo
- Departamento de Bioquímica y Biología Molecular 2, Universidad de Granada, Granada, Spain
| | - Francisco J Tinahones
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - María Molina-Vega
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - María José Picón-César
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Sonsoles Morcillo
- Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Obesidad, diabetes y sus comorbilidades: prevención y tratamiento, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
5
|
Mio C, Baldan F, Damante G. NK2 homeobox gene cluster: Functions and roles in human diseases. Genes Dis 2023; 10:2038-2048. [PMID: 37492711 PMCID: PMC10363584 DOI: 10.1016/j.gendis.2022.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 07/27/2023] Open
Abstract
NK2 genes (NKX2 gene cluster in humans) encode for homeodomain-containing transcription factors that are conserved along the phylogeny. According to the most detailed classifications, vertebrate NKX2 genes are classified into two distinct families, NK2.1 and NK2.2. The former is constituted by NKX2-1 and NKX2-4 genes, which are homologous to the Drosophila scro gene; the latter includes NKX2-2 and NKX2-8 genes, which are homologous to the Drosophila vnd gene. Conservation of these genes is not only related to molecular structure and expression, but also to biological functions. In Drosophila and vertebrates, NK2 genes share roles in the development of ventral regions of the central nervous system. In vertebrates, NKX2 genes have a relevant role in the development of several other organs such as the thyroid, lung, and pancreas. Loss-of-function mutations in NKX2-1 and NKX2-2 are the monogenic cause of the brain-lung-thyroid syndrome and neonatal diabetes, respectively. Alterations in NKX2-4 and NKX2-8 genes may play a role in multifactorial diseases, autism spectrum disorder, and neural tube defects, respectively. NKX2-1, NKX2-2, and NKX2-8 are expressed in various cancer types as either oncogenes or tumor suppressor genes. Several data indicate that evaluation of their expression in tumors has diagnostic and/or prognostic value.
Collapse
Affiliation(s)
- Catia Mio
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
| | - Federica Baldan
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Giuseppe Damante
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| |
Collapse
|
6
|
Sun B, Zhang Y, Zhang M, Liu R, Yang W. Gene therapy targeting miR‑212‑3p exerts therapeutic effects on MAFLD similar to those of exercise. Int J Mol Med 2023; 51:16. [PMID: 36633140 PMCID: PMC9869725 DOI: 10.3892/ijmm.2023.5219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/03/2022] [Indexed: 01/12/2023] Open
Abstract
Exercise is the main treatment for patients with metabolic‑associated fatty liver disease (MAFLD); however, it may be difficult for some patients to adhere to or tolerate an exercise regime. Thus, finding a treatment alternative to exercise is of particular importance. The authors have previously demonstrated that the high expression of microRNA (miRNA/miR)‑212 promotes lipogenesis in vitro. The present study aimed to explore the therapeutic potential, as well as the mechanisms of action of miR‑212 in MAFLD. The expression of miR‑212‑3p, but not that of miR‑212‑5p, was found to be significantly elevated in MAFLD and to be decreased by exercise. Compared with exercise treatment, the inhibition of miR‑212‑3p expression in a mouse model fed a high‑fat diet exerted beneficial effects on MAFLD similar to those of exercise. Conversely, the overexpression of miR‑212‑3p abolished the ameliorative effects of exercise on MAFLD. Fibroblast growth factor 21 (FGF21) and chromodomain helicase DNA binding protein 1 (CHD1) were identified as target genes of miR‑212‑3p in lipid metabolism using bioinformatics analysis. Mechanistically, the inhibition of miR‑212‑3p mimicked the effects of exercise on lipid metabolism by regulating FGF21, but not CHD1. The exercise‑related transcription factor, early growth response 1 (EGR1), was identified upstream of miR‑212‑3p through promoter motif analysis. EGR1 overexpression inhibited miR‑212‑3p expression. The overexpression of miR‑212‑3p abolished the effects of exercise on lipid metabolism by exogenously attenuating the transcriptional repression of EGR1. Moreover, the overexpression of miR‑212‑3p abolished the regulatory effects of EGR1 on FGF21. On the whole, the present study demonstrates that miR‑212‑3p plays a key role in the effects of exercise on MAFLD. The findings presented herein suggest a potential therapeutic effect of targeting miR‑212‑3p in MAFLD.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yu Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Minbo Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Ruilin Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China,Dr Ruilin Liu, Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P.R. China, E-mail:
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China,Correspondence to: Dr Wenzhuo Yang, Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P.R. China, E-mail:
| |
Collapse
|
7
|
Song Y, He C, Jiang Y, Yang M, Xu Z, Yuan L, Zhang W, Xu Y. Bulk and single-cell transcriptome analyses of islet tissue unravel gene signatures associated with pyroptosis and immune infiltration in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1132194. [PMID: 36967805 PMCID: PMC10034023 DOI: 10.3389/fendo.2023.1132194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a common chronic heterogeneous metabolic disorder. However, the roles of pyroptosis and infiltrating immune cells in islet dysfunction of patients with T2D have yet to be explored. In this study, we aimed to explore potential crucial genes and pathways associated with pyroptosis and immune infiltration in T2D. METHODS To achieve this, we performed a conjoint analysis of three bulk RNA-seq datasets of islets to identify T2D-related differentially expressed genes (DEGs). After grouping the islet samples according to their ESTIMATE immune scores, we identified immune- and T2D-related DEGs. A clinical prediction model based on pyroptosis-related genes for T2D was constructed. Weighted gene co-expression network analysis was performed to identify genes positively correlated with pyroptosis-related pathways. A protein-protein interaction network was established to identify pyroptosis-related hub genes. We constructed miRNA and transcriptional networks based on the pyroptosis-related hub genes and performed functional analyses. Single-cell RNA-seq (scRNA-seq) was conducted using the GSE153885 dataset. Dimensionality was reduced using principal component analysis and t-distributed statistical neighbor embedding, and cells were clustered using Seurat. Different cell types were subjected to differential gene expression analysis and gene set enrichment analysis (GSEA). Cell-cell communication and pseudotime trajectory analyses were conducted using the samples from patients with T2D. RESULTS We identified 17 pyroptosis-related hub genes. We determined the abundance of 13 immune cell types in the merged matrix and found that these cell types were correlated with the 17 pyroptosis-related hub genes. Analysis of the scRNA-seq dataset of 1892 islet samples from patients with T2D and controls revealed 11 clusters. INS and IAPP were determined to be pyroptosis-related and candidate hub genes among the 11 clusters. GSEA of the 11 clusters demonstrated that the myc, G2M checkpoint, and E2F pathways were significantly upregulated in clusters with several differentially enriched pathways. DISCUSSION This study elucidates the gene signatures associated with pyroptosis and immune infiltration in T2D and provides a critical resource for understanding of islet dysfunction and T2D pathogenesis.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Jiang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengshi Yang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingyan Yuan
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Zhang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yushan Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yushan Xu,
| |
Collapse
|
8
|
Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, Shu C. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus. Nutrients 2022; 15:nu15010070. [PMID: 36615730 PMCID: PMC9823627 DOI: 10.3390/nu15010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an important metabolic complication of pregnancy, which affects the future health of both the mother and the newborn. The pathogenesis of GDM is not completely clear, but what is clear is that with the development and growth of the placenta, GDM onset and blood glucose is difficult to control, while gestational diabetes patients' blood glucose drops and reaches normal after placenta delivery. This may be associated with placental secretion of insulin-like growth factor, adipokines, tumor necrosis factor-α, cytokines and insulin resistance. Therefore, endocrine secretion of placenta plays a key role in the pathogenesis of GDM. The influence of DNA methylation of these molecules and pathway-related genes on gene expression is also closely related to the pathogenesis of GDM. Here, this review attempts to clarify the pathogenesis of GDM and the related maternal and placental DNA methylation changes and how they affect metabolic pathways.
Collapse
|
9
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
10
|
Grandt CL, Brackmann LK, Poplawski A, Schwarz H, Hummel-Bartenschlager W, Hankeln T, Kraemer C, Marini F, Zahnreich S, Schmitt I, Drees P, Mirsch J, Grabow D, Schmidberger H, Binder H, Hess M, Galetzka D, Marron M. Radiation-response in primary fibroblasts of long-term survivors of childhood cancer with and without second primary neoplasms: the KiKme study. Mol Med 2022; 28:105. [PMID: 36068491 PMCID: PMC9450413 DOI: 10.1186/s10020-022-00520-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023] Open
Abstract
Background The etiology and most risk factors for a sporadic first primary neoplasm in childhood or subsequent second primary neoplasms are still unknown. One established causal factor for therapy-associated second primary neoplasms is the exposure to ionizing radiation during radiation therapy as a mainstay of cancer treatment. Second primary neoplasms occur in 8% of all cancer survivors within 30 years after the first diagnosis in Germany, but the underlying factors for intrinsic susceptibilities have not yet been clarified. Thus, the purpose of this nested case–control study was the investigation and comparison of gene expression and affected pathways in primary fibroblasts of childhood cancer survivors with a first primary neoplasm only or with at least one subsequent second primary neoplasm, and controls without neoplasms after exposure to a low and a high dose of ionizing radiation. Methods Primary fibroblasts were obtained from skin biopsies from 52 adult donors with a first primary neoplasm in childhood (N1), 52 with at least one additional primary neoplasm (N2+), as well as 52 without cancer (N0) from the KiKme study. Cultured fibroblasts were exposed to a high [2 Gray (Gy)] and a low dose (0.05 Gy) of X-rays. Messenger ribonucleic acid was extracted 4 h after exposure and Illumina-sequenced. Differentially expressed genes (DEGs) were computed using limma for R, selected at a false discovery rate level of 0.05, and further analyzed for pathway enrichment (right-tailed Fisher’s Exact Test) and (in-) activation (z ≥|2|) using Ingenuity Pathway Analysis. Results After 0.05 Gy, least DEGs were found in N0 (n = 236), compared to N1 (n = 653) and N2+ (n = 694). The top DEGs with regard to the adjusted p-value were upregulated in fibroblasts across all donor groups (SESN1, MDM2, CDKN1A, TIGAR, BTG2, BLOC1S2, PPM1D, PHLDB3, FBXO22, AEN, TRIAP1, and POLH). Here, we observed activation of p53 Signaling in N0 and to a lesser extent in N1, but not in N2+. Only in N0, DNA (excision-) repair (involved genes: CDKN1A, PPM1D, and DDB2) was predicted to be a downstream function, while molecular networks in N2+ were associated with cancer, as well as injury and abnormalities (among others, downregulation of MSH6, CCNE2, and CHUK). After 2 Gy, the number of DEGs was similar in fibroblasts of all donor groups and genes with the highest absolute log2 fold-change were upregulated throughout (CDKN1A, TIGAR, HSPA4L, MDM2, BLOC1SD2, PPM1D, SESN1, BTG2, FBXO22, PCNA, and TRIAP1). Here, the p53 Signaling-Pathway was activated in fibroblasts of all donor groups. The Mitotic Roles of Polo Like Kinase-Pathway was inactivated in N1 and N2+. Molecular Mechanisms of Cancer were affected in fibroblasts of all donor groups. P53 was predicted to be an upstream regulator in fibroblasts of all donor groups and E2F1 in N1 and N2+. Results of the downstream analysis were senescence in N0 and N2+, transformation of cells in N0, and no significant effects in N1. Seven genes were differentially expressed in reaction to 2 Gy dependent on the donor group (LINC00601, COBLL1, SESN2, BIN3, TNFRSF10A, EEF1AKNMT, and BTG2). Conclusion Our results show dose-dependent differences in the radiation response between N1/N2+ and N0. While mechanisms against genotoxic stress were activated to the same extent after a high dose in all groups, the radiation response was impaired after a low dose in N1/N2+, suggesting an increased risk for adverse effects including carcinogenesis, particularly in N2+. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00520-6.
Collapse
Affiliation(s)
- Caine Lucas Grandt
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany.,Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | | | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christiane Kraemer
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Iris Schmitt
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp Drees
- Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Desiree Grabow
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Moritz Hess
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany.
| |
Collapse
|
11
|
Identification of Potential miRNA-mRNA Regulatory Network in Denervated Muscular Atrophy by Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6042591. [PMID: 35800215 PMCID: PMC9256438 DOI: 10.1155/2022/6042591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Muscle atrophy caused by long-term denervation leads to the loss of skeletal muscle mass and strength, resulting in a poor recovery of functional muscles and decreasing quality of life. Increasing differentially expressed microRNAs (DEMs) have been reported to be involved in the pathogenesis of denervated muscle atrophy. However, there is still insufficient evidence to explain the role of miRNAs and their target genes in skeletal muscle atrophy. Therefore, an integrative exploration of the miRNA-mRNA regulatory network in denervated muscle atrophy is necessary. A total of 21 (16 upregulated and 5 downregulated) DEMs were screened out in the GSE81914 dataset. Med1, Myod1, Nfkb1, Rela, and Camta1 were predicted and verified to be significantly upregulated in denervated muscle atrophy, from which 6 key TF-miRNA relationship pairs, including Med1-mir-1949, Med1-mir-146b, Myod1-mir-29b, Nfkb1-mir-21, Rela-mir-21, and Camta1-mir-132, were obtained. 60 target genes were then predicted by submitting candidate DEMs to the miRNet database. GO and KEGG pathway enrichment analysis showed that target genes of DEMs were mainly enriched in the apoptotic process and PI3K/Akt signaling pathway. Through the PPI network construction, key modules and hub genes were obtained and potentially modulated by mir-29b, mir-132, and mir-133a. According to the qRT-PCR results, the expression of COL1A1 and Ctgf is opposite to their related miRNAs in denervated muscle atrophy. In the study, a potential miRNA-mRNA regulatory network was firstly constructed in denervated muscle atrophy, in which the mir-29b-COL1A1 and mir-133a-Ctgf pathways may provide new insights into the pathogenesis and treatment.
Collapse
|
12
|
Marzilli E, Cerniglia L, Tambelli R, Cimino S. Children’s ADHD and Dysregulation Problems, DAT1 Genotype and Methylation, and their Interplay with Family Environment. CHILD & YOUTH CARE FORUM 2022. [DOI: 10.1007/s10566-022-09687-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Background
International literature has underlined the complex interplay between genetic and environmental variables in shaping children’s emotional-behavioral functioning.
Objective
This study aimed to explore the dynamic relationship between children’s Dopamine Transporter (DAT1) genotype and methylation, and maternal and paternal affective environment, on children’s Attention Deficit Hyperactivity Disorder (ADHD) problems and dysregulation problems.
Method
In a community sample of 76 families with school-aged children, we assessed children’s DAT1 genotype and methylation, their own ADHD problems and dysregulation profile (CBCL 6–18 DP), and maternal and paternal psychopathological risk, parenting stress, and marital adjustment. Hierarchical regressions were carried out to verify the possible moderation of children’s genotype on the relationship between children’s methylation and psychopathological risk, parental environment and children’s methylation, and parental environment and children’s psychopathological risk.
Results
The levels of methylation at M1 CpG significantly predicted ADHD problems among children with 10/10 genotype, whereas high levels of methylation at M6 CpG predicted low ADHD problems for children with 9/x genotype. High levels of methylation at M3 CpG were associated with high scores of CBCL DP. DAT1 genotype moderated the relationship between maternal and paternal variables with children’s methylation and psychopathological risk. The scores of maternal and paternal Dyadic Adjustment Scale showed indirect effects on children’s methylation and psychopathological risk in relation to those exerted by risk factors.
Conclusion
Our study has supported the emerging evidence on the complex nature of children’s emotional-behavioral functioning and the associated risk and protective factors, with important implications for the planning of preventive programs.
Collapse
|
13
|
Neiburga KD, Vilne B, Bauer S, Bongiovanni D, Ziegler T, Lachmann M, Wengert S, Hawe JS, Güldener U, Westerlund AM, Li L, Pang S, Yang C, Saar K, Huebner N, Maegdefessel L, DigiMed Bayern Consortium, Lange R, Krane M, Schunkert H, von Scheidt M. Vascular Tissue Specific miRNA Profiles Reveal Novel Correlations with Risk Factors in Coronary Artery Disease. Biomolecules 2021; 11:1683. [PMID: 34827683 PMCID: PMC8615466 DOI: 10.3390/biom11111683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microRNAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs-miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701-significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.
Collapse
Affiliation(s)
| | - Baiba Vilne
- Bioinformatics Lab, Riga Stradiņš University, LV-1007 Riga, Latvia;
- SIA Net-OMICS, LV-1011 Riga, Latvia
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Sabine Bauer
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| | - Dario Bongiovanni
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Tilman Ziegler
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Mark Lachmann
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Simon Wengert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Johann S. Hawe
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Ulrich Güldener
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Annie M. Westerlund
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ling Li
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Shichao Pang
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Chuhua Yang
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Kathrin Saar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (K.S.); (N.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Norbert Huebner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (K.S.); (N.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | | | - Rüdiger Lange
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- German Heart Centre Munich, Department of Cardiac Surgery, Technical University Munich, 80636 Munich, Germany
| | - Markus Krane
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- German Heart Centre Munich, Department of Cardiac Surgery, Technical University Munich, 80636 Munich, Germany
- Division of Cardiac Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| | - Moritz von Scheidt
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| |
Collapse
|
14
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Bai C, Ren Q, Liu H, Li X, Guan W, Gao Y. miR-212/132-Enriched Extracellular Vesicles Promote Differentiation of Induced Pluripotent Stem Cells Into Pancreatic Beta Cells. Front Cell Dev Biol 2021; 9:673231. [PMID: 34055806 PMCID: PMC8155495 DOI: 10.3389/fcell.2021.673231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
Pancreatic beta cell transplantation is the ideal method for treatment of type 1 diabetes mellitus (T1DM), and the generation of beta cells from induced pluripotent stem cells (iPSCs) of patients is a promising strategy. In this study, we improved a previous strategy to produce beta cells using extracellular vesicles (EVs) derived from mature beta cells and differentiated beta cells from iPSCs (i-Beta cells), which secreted insulin under glucose stimulation in vitro and ameliorated hyperglycemia in vivo. Mechanistic analyses revealed that EV-carried microRNA (miR)-212/132 (EV-miR-212/132) directly bound to the 3' UTR of FBW7 to prevent its translation and FBW7 combined with NGN3 to accelerate its proteasomal degradation. EV-miR-212/132 stabilized NGN3 expression to promote differentiation of endocrine cells from induced iPSCs. Moreover, NGN3 bound to PDX1 to enhance transcription of endogenous miR-212/132 and formed a positive regulatory circuit that maintained the functions of mature pancreatic beta cells. CONCLUSION This study describes a novel approach for beta cell production and supports the use of iPSCs for cell replacement therapy of T1DM.
Collapse
Affiliation(s)
- Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing China
| | - Qiwei Ren
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Haifeng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiangchen Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin’an, China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing China
| |
Collapse
|
16
|
Rubino A, D'Addario C, Di Bartolomeo M, Michele Salamone E, Locuratolo N, Fattapposta F, Vanacore N, Pascale E. DNA methylation of the 5'-UTR DAT 1 gene in Parkinson's disease patients. Acta Neurol Scand 2020; 142:275-280. [PMID: 32415851 DOI: 10.1111/ane.13279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The involvement of epigenetics mechanisms in the transcriptional regulation of key genes has been investigated in the initiation and progression of neurodegenerative disorders, including Parkinson's disease (PD). Among others, we, here, focused the attention on the dopamine transporter (DAT) gene playing a critical role in maintaining the integrity of dopaminergic neurons. MATERIALS AND METHODS We performed bisulfite pyrosequencing to examine DNA methylation levels of six CpG sites in the 5'-UTR of DAT1 gene in human peripheral blood mononuclear cells (PBMCs) obtained from 101 sporadic PD patients and 59 healthy controls. RESULTS We selectively report for CpG5 an increase in DNA methylation levels in PD subjects respect to controls, that almost reaches statistical significance (30.06 ± 12.4 vs 26.58 ± 7.6, P = .052). Of interest, a significantly higher methylation at specific CpG sites (ANOVA: P = .029) was observed in PD subjects with advanced stage of illness. Namely, a multivariate regression analysis showed that a higher methylation level at specific CpG sites in the group of PD patients was associated with increased methylation at CpG2, CpG3, and with H&Y stage but not with age and gender. This regression model explains the 38% of the variance of methylation at CpG5. CONCLUSION Our results do seem to suggest that the methylation level of CpG5 is different between PD patients and controls. Moreover, this methylation level for CpG5 may be associated also with the stage of disease.
Collapse
Affiliation(s)
- Alfonso Rubino
- Department of Human NeurosciencesSapienza University Rome Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of Teramo Teramo Italy
- Department of Clinical NeuroscienceKarolinska Institute Stockholm Stockholm Sweden
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of Teramo Teramo Italy
| | | | | | | | - Nicola Vanacore
- National Centre for Disease Prevention and Health PromotionNational Institute of Health Rome Italy
| | - Esterina Pascale
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University Rome Italy
| |
Collapse
|
17
|
Altered Genome-Wide DNA Methylation in Peripheral Blood of South African Women with Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20235828. [PMID: 31757015 PMCID: PMC6928622 DOI: 10.3390/ijms20235828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence implicate altered DNA methylation in the pathophysiology of gestational diabetes mellitus (GDM). This exploratory study probed the association between GDM and peripheral blood DNA methylation patterns in South African women. Genome-wide DNA methylation profiling was conducted in women with (n = 12) or without (n = 12) GDM using the Illumina Infinium HumanMethylationEPIC BeadChip array. Functional analysis of differentially methylated genes was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 1046 CpG sites (associated with 939 genes) were differentially methylated between GDM and non-GDM groups. Enriched pathways included GDM-related pathways such as insulin resistance, glucose metabolism and inflammation. DNA methylation of the top five CpG loci showed distinct methylation patterns in GDM and non-GDM groups and was correlated with glucose concentrations. Of these, one CpG site mapped to the calmodulin-binding transcription activator 1 (CAMTA1) gene, which have been shown to regulate insulin production and secretion and may offer potential as an epigenetic biomarker in our population. Further validation using pyrosequencing and conducting longitudinal studies in large sample sizes and in different populations are required to investigate their candidacy as biomarkers of GDM.
Collapse
|
18
|
A New Insight into the Roles of MiRNAs in Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7372636. [PMID: 30648107 PMCID: PMC6311798 DOI: 10.1155/2018/7372636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS), which includes several clinical components such as abdominal obesity, insulin resistance (IR), dyslipidemia, microalbuminuria, hypertension, proinflammatory state, and oxidative stress (OS), has become a global epidemic health issue contributing to a high risk of type 2 diabetes mellitus (T2DM). In recent years, microRNAs (miRNAs), used as noninvasive biomarkers for diagnosis and therapy, have aroused global interest in complex processes in health and diseases, including MetS and its components. MiRNAs can exist stably in serum, liver, skeletal muscle (SM), heart muscle, adipose tissue (AT), and βcells, because of their ability to escape the digestion of RNase. Here we first present an overall review on recent findings of the relationship between miRNAs and several main components of MetS, such as IR, obesity, diabetes, lipid metabolism, hypertension, hyperuricemia, and stress, to illustrate the targeting proteins or relevant pathways that are involved in the progress of MetS and also help us find promising novel diagnostic and therapeutic strategies.
Collapse
|
19
|
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O’Sullivan JM. Type 1 Diabetes Mellitus-Associated Genetic Variants Contribute to Overlapping Immune Regulatory Networks. Front Genet 2018; 9:535. [PMID: 30524468 PMCID: PMC6258722 DOI: 10.3389/fgene.2018.00535] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disorder characterized by the autoimmune destruction of insulin-producing pancreatic islet beta cells in genetically predisposed individuals. Genome-wide association studies (GWAS) have identified over 60 risk regions across the human genome, marked by single nucleotide polymorphisms (SNPs), which confer genetic predisposition to T1D. There is increasing evidence that disease-associated SNPs can alter gene expression through spatial interactions that involve distal loci, in a tissue- and development-specific manner. Here, we used three-dimensional (3D) genome organization data to identify genes that physically co-localized with DNA regions that contained T1D-associated SNPs in the nucleus. Analysis of these SNP-gene pairs using the Genotype-Tissue Expression database identified a subset of SNPs that significantly affected gene expression. We identified 246 spatially regulated genes including HLA-DRB1, LAT, MICA, BTN3A2, CTLA4, CD226, NOTCH1, TRIM26, PTEN, TYK2, CTSH, and FLRT3, which exhibit tissue-specific effects in multiple tissues. We observed that the T1D-associated variants interconnect through networks that form part of the immune regulatory pathways, including immune-cell activation, cytokine signaling, and programmed cell death protein-1 (PD-1). Our results implicate T1D-associated variants in tissue and cell-type specific regulatory networks that contribute to pancreatic beta cell inflammation and destruction, adaptive immune signaling, and immune-cell proliferation and activation. A number of other regulatory changes we identified are not typically considered to be central to the pathology of T1D. Collectively, our data represent a novel resource for the hypothesis-driven development of diagnostic, prognostic, and therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Denis M. Nyaga
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Craig Jefferies
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Children’s Health, Auckland, New Zealand
| | - Jo K. Perry
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
20
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
21
|
La Sala L, Micheloni S, De Nigris V, Prattichizzo F, Ceriello A. Novel insights into the regulation of miRNA transcriptional control: implications for T2D and related complications. Acta Diabetol 2018; 55:989-998. [PMID: 29732466 DOI: 10.1007/s00592-018-1149-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetics has emerged as an important form of biological regulation involving chromatin control of gene expression. The mechanisms of this fine-tuned regulation are susceptible to changes forced by environmental stimuli and nutritional factors and may be potentially reversible. Dysregulation of epigenetic processes has important consequences for the pathogenesis of complex and multifactorial diseases such as type 2 diabetes (T2D) and vascular complications. Along with DNA methylation (DNA-me), histone modifications and RNA-based mechanisms as the major epigenetic controllers, small non-coding RNAs known as microRNAs (miRNAs) have their own important implications for the pathogenesis of diabetes. There is increasing evidence supporting the role of miRNAs in modulating gene expression, cumulatively contributing to epigenetic gene silencing by acting either on the methylation status of the cells or in alternative roles. Although significant progress has been made in the characterization of miRNA functions, most miRNA promoters have not yet been characterized, and the transcriptional regulation of miRNAs remains elusive. The present work is centred on the new biological insights pertaining to the epigenetics-miRNA regulatory axis, focusing on the development of T2D and cardiovascular complications, and the ability of these mechanisms to interact in a network of DNA-me regulation. The genomic organization of inter- and intragenic miRNA genes is discussed, and the mutual connections between pre-mRNA splicing and miRNA biogenesis are summarized, along with the discovery of novel miRNA transcriptional regulation sites.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy.
| | - Stefano Micheloni
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Valeria De Nigris
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, Barcelona, Spain
| | - Francesco Prattichizzo
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
| | - Antonio Ceriello
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, MI, Italy
- Institut d'Investigación Biomédiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
22
|
Adriani W, Romano E, Pucci M, Pascale E, Cerniglia L, Cimino S, Tambelli R, Curatolo P, Granstrem O, Maccarrone M, Laviola G, D'Addario C. Potential for diagnosis versus therapy monitoring of attention deficit hyperactivity disorder: a new epigenetic biomarker interacting with both genotype and auto-immunity. Eur Child Adolesc Psychiatry 2018; 27:241-252. [PMID: 28822049 DOI: 10.1007/s00787-017-1040-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
In view of the need for easily accessible biomarkers, we evaluated in ADHD children the epigenetic status of the 5'-untranslated region (UTR) in the SLC6A3 gene, coding for human dopamine transporter (DAT). We analysed buccal swabs and sera from 30 children who met DSM-IV-TR criteria for ADHD, assigned to treatment according to severity. Methylation levels at six-selected CpG sites (among which, a CGGCGGCGG and a CGCG motif), alone or in combination with serum titers in auto-antibodies against dopamine transporter (DAT aAbs), were analysed for correlation with CGAS scores (by clinicians) and Conners' scales (by parents), collected at recruitment and after 6 weeks. In addition, we characterized the DAT genotype, i.e., the variable number tandem repeat (VNTR) polymorphisms at the 3'-UTR of the gene. DAT methylation levels were greatly reduced in ADHD patients compared to control, healthy children. Within patients carrying at least one DAT 9 allele (DAT 9/x), methylation at positions CpG2 and/or CpG6 correlated with recovery, as evident from delta-CGAS scores as well as delta Conners' scales ('inattentive' and 'hyperactive' subscales). Moreover, hypermethylation at CpG1 position denoted severity, specifically for those patients carrying a DAT 10/10 genotype. Intriguingly, high serum DAT-aAbs titers appeared to corroborate indications from high CpG1 versus high CpG2/CpG6 levels, likewise denoting severity versus recovery in DAT 10/10 versus 9/x patients, respectively. These profiles suggest that DAT 5'UTR epigenetics plus serum aAbs can serve as suitable biomarkers, to confirm ADHD diagnosis and/or to predict the efficacy of treatment.
Collapse
Affiliation(s)
- Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Building 19 Floor D Room 5, viale Regina Elena 299, 00161, Rome, Italy. .,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy.
| | - Emilia Romano
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Building 19 Floor D Room 5, viale Regina Elena 299, 00161, Rome, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Esterina Pascale
- Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Rome, Italy
| | - Luca Cerniglia
- Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Silvia Cimino
- Dynamic and Clinical Psychology Department, "Sapienza" University of Rome, Rome, Italy
| | - Renata Tambelli
- Dynamic and Clinical Psychology Department, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Curatolo
- Pediatric Neurology Unit, Department of System Medicine, "Tor Vergata" University of Rome, Rome, Italy
| | | | - Mauro Maccarrone
- Department of Medicine, "Campus Bio-Medico" University of Rome, Rome, Italy.,European Center for Brain Research, IRCCS "Santa Lucia", Rome, Italy
| | - Giovanni Laviola
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Building 19 Floor D Room 5, viale Regina Elena 299, 00161, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,European Center for Brain Research, IRCCS "Santa Lucia", Rome, Italy
| |
Collapse
|
23
|
Jiao A, Li F, Zhang C, Lv W, Chen B, Zhang J. Simulated Cholinergic Reinnervation of β (INS-1) Cells: Antidiabetic Utility of Heterotypic Pseudoislets Containing β Cell and Cholinergic Cell. Int J Endocrinol 2018; 2018:1505307. [PMID: 29755519 PMCID: PMC5884158 DOI: 10.1155/2018/1505307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cholinergic neurons can functionally support pancreatic islets in controlling blood sugar levels. However, in islet transplantation, the level of cholinergic reinnervation is significantly lower compared to orthotopic pancreatic islets. This abnormal reinnervation affects the survival and function of islet grafts. In this study, the cholinergic reinnervation of beta cells was simulated by 2D and 3D coculture of INS-1 and NG108-15 cells. In 2D culture conditions, 20 mM glucose induced a 1.24-fold increase (p < 0.0001) in insulin secretion from the coculture group, while in the 3D culture condition, a 1.78-fold increase (p < 0.0001) in insulin secretion from heterotypic pseudoislet group was observed. Glucose-stimulated insulin secretion (GSIS) from 2D INS-1 cells showed minimal changes when compared to 3D structures. E-cadherin expressed in INS-1 and NG108-15 cells was the key adhesion molecule for the formation of heterotypic pseudoislets. NG108-15 cells hardly affected the proliferation of INS-1 cells in vitro. Heterotypic pseudoislet transplantation recipient mice reverted to normoglycemic levels faster and had a greater blood glucose clearance compared to INS-1 pseudoislet recipient mice. In conclusion, cholinergic cells can promote insulin-secreting cells to function better in vitro and in vivo and E-cadherin plays an important role in the formation of heterotypic pseudoislets.
Collapse
Affiliation(s)
- Ao Jiao
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Feng Li
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wu Lv
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Baomin Chen
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jialin Zhang
- Hepatobiliary Surgery Department and Unit of Organ Transplantation, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
24
|
Eliasson L. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 2017; 456:95-101. [PMID: 28254488 DOI: 10.1016/j.mce.2017.02.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
The pathophysiology of diabetes is complex and recent research put focus on the pancreatic islets of Langerhans and the insulin-secreting beta cells as central in the development of the disease. MicroRNAs (miRNAs), the small non-coding RNAs regulating post-transcriptional gene expression, are significant regulators of beta cell function. One of the most abundant miRNAs in the islets is miR-375. This review focus on the role of miR-375 in beta cell function, including effects in development and differentiation, proliferation and regulation of insulin secretion. It also discusses the regulation of miR-375 expression, miR-375 as a potential circulating biomarker in type 1 and type 2 diabetes, and the need for the beta cell to keep expression of miR-375 within optimal levels. The summed picture of miR-375 is a miRNA with multiple functions with importance in the formation of beta cell identity, control of beta cell mass and regulation of insulin secretion.
Collapse
Affiliation(s)
- Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, CRC, SUS Malmö, Malmö, Sweden.
| |
Collapse
|
25
|
Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, Wollheim CB, Eliasson L, Esguerra JLS. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep 2017; 7:44986. [PMID: 28332581 PMCID: PMC5362944 DOI: 10.1038/srep44986] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs have emerged as important players of gene regulation with significant impact in diverse disease processes. In type-2 diabetes, in which impaired insulin secretion is a major factor in disease progression, dysregulated microRNA expression in the insulin-secreting pancreatic beta cell has been widely-implicated. Here, we show that miR-130a-3p, miR-130b-3p, and miR-152-3p levels are elevated in the pancreatic islets of hyperglycaemic donors, corroborating previous findings about their upregulation in the islets of type-2 diabetes model Goto-Kakizaki rats. We demonstrated negative regulatory effects of the three microRNAs on pyruvate dehydrogenase E1 alpha (PDHA1) and on glucokinase (GCK) proteins, which are both involved in ATP production. Consequently, we found both proteins to be downregulated in the Goto-Kakizaki rat islets, while GCK mRNA expression showed reduced trend in the islets of type-2 diabetes donors. Overexpression of any of the three microRNAs in the insulin-secreting INS-1 832/13 cell line resulted in altered dynamics of intracellular ATP/ADP ratio ultimately perturbing fundamental ATP-requiring beta cell processes such as glucose-stimulated insulin secretion, insulin biosynthesis and processing. The data further strengthen the wide-ranging influence of microRNAs in pancreatic beta cell function, and hence their potential as therapeutic targets in type-2 diabetes.
Collapse
Affiliation(s)
- Jones K Ofori
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Vishal A Salunkhe
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Annika Bagge
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Neelanjan Vishnu
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Mototsugu Nagao
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Hindrik Mulder
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Claes B Wollheim
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| |
Collapse
|
26
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
27
|
Gutiérrez GD, Bender AS, Cirulli V, Mastracci TL, Kelly SM, Tsirigos A, Kaestner KH, Sussel L. Pancreatic β cell identity requires continual repression of non-β cell programs. J Clin Invest 2016; 127:244-259. [PMID: 27941248 DOI: 10.1172/jci88017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Loss of β cell identity, the presence of polyhormonal cells, and reprogramming are emerging as important features of β cell dysfunction in patients with type 1 and type 2 diabetes. In this study, we have demonstrated that the transcription factor NKX2.2 is essential for the active maintenance of adult β cell identity as well as function. Deletion of Nkx2.2 in β cells caused rapid onset of a diabetic phenotype in mice that was attributed to loss of insulin and downregulation of many β cell functional genes. Concomitantly, NKX2.2-deficient murine β cells acquired non-β cell endocrine features, resulting in populations of completely reprogrammed cells and bihormonal cells that displayed hybrid endocrine cell morphological characteristics. Molecular analysis in mouse and human islets revealed that NKX2.2 is a conserved master regulatory protein that controls the acquisition and maintenance of a functional, monohormonal β cell identity by directly activating critical β cell genes and actively repressing genes that specify the alternative islet endocrine cell lineages. This study demonstrates the highly volatile nature of the β cell, indicating that acquiring and sustaining β cell identity and function requires not only active maintaining of the expression of genes involved in β cell function, but also continual repression of closely related endocrine gene programs.
Collapse
|