1
|
Zhang W, Shi K, Hsueh FC, Mendoza A, Ye G, Huang L, Perlman S, Aihara H, Li F. Structural basis for mouse receptor recognition by bat SARS2-like coronaviruses. Proc Natl Acad Sci U S A 2024; 121:e2322600121. [PMID: 39083418 PMCID: PMC11317568 DOI: 10.1073/pnas.2322600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
The animal origin of SARS-CoV-2 remains elusive, lacking a plausible evolutionary narrative that may account for its emergence. Its spike protein resembles certain segments of BANAL-236 and RaTG13, two bat coronaviruses considered possible progenitors of SARS-CoV-2. Additionally, its spike contains a furin motif, a common feature of rodent coronaviruses. To explore the possible involvement of rodents in the emergence of SARS-CoV-2 spike, we examined the crystal structures of the spike receptor-binding domains (RBDs) of BANAL-236 and RaTG13 each complexed with mouse receptor ACE2. Both RBDs have residues at positions 493 and 498 that align well with two virus-binding hotspots on mouse ACE2. Our biochemical evidence supports that both BANAL-236 and RaTG13 spikes can use mouse ACE2 as their entry receptor. These findings point to a scenario in which these bat coronaviruses may have coinfected rodents, leading to a recombination of their spike genes and a subsequent acquisition of a furin motif in rodents, culminating in the emergence of SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Fu-Chun Hsueh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Linfen Huang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN55455
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
2
|
Geng Q, Wan Y, Hsueh FC, Shang J, Ye G, Bu F, Herbst M, Wilkens R, Liu B, Li F. Lys417 acts as a molecular switch that regulates the conformation of SARS-CoV-2 spike protein. eLife 2023; 12:e74060. [PMID: 37991488 PMCID: PMC10695562 DOI: 10.7554/elife.74060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/21/2023] [Indexed: 11/23/2023] Open
Abstract
SARS-CoV-2 spike protein plays a key role in mediating viral entry and inducing host immune responses. It can adopt either an open or closed conformation based on the position of its receptor-binding domain (RBD). It is yet unclear what causes these conformational changes or how they influence the spike's functions. Here, we show that Lys417 in the RBD plays dual roles in the spike's structure: it stabilizes the closed conformation of the trimeric spike by mediating inter-spike-subunit interactions; it also directly interacts with ACE2 receptor. Hence, a K417V mutation has opposing effects on the spike's function: it opens up the spike for better ACE2 binding while weakening the RBD's direct binding to ACE2. The net outcomes of this mutation are to allow the spike to bind ACE2 with higher probability and mediate viral entry more efficiently, but become more exposed to neutralizing antibodies. Given that residue 417 has been a viral mutational hotspot, SARS-CoV-2 may have been evolving to strike a balance between infection potency and immune evasion, contributing to its pandemic spread.
Collapse
Affiliation(s)
- Qibin Geng
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Yushun Wan
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Fu-Chun Hsueh
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Jian Shang
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Rowan Wilkens
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Bin Liu
- Hormel Institute, University of MinnesotaAustinUnited States
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
3
|
Bonavia A, Dominguez SR, Dveksler G, Gagneten S, Howard M, Jeffers S, Qian Z, Smith MK, Thackray LB, Tresnan DB, Wentworth DE, Wessner DR, Williams RK, Miura TA. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses 2022; 14:1573. [PMID: 35891553 PMCID: PMC9315735 DOI: 10.3390/v14071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two years, scientific research has moved at an unprecedented rate in response to the COVID-19 pandemic. The rapid development of effective vaccines and therapeutics would not have been possible without extensive background knowledge on coronaviruses developed over decades by researchers, including Kathryn (Kay) Holmes. Kay's research team discovered the first coronavirus receptors for mouse hepatitis virus and human coronavirus 229E and contributed a wealth of information on coronaviral spike glycoproteins and receptor interactions that are critical determinants of host and tissue specificity. She collaborated with several research laboratories to contribute knowledge in additional areas, including coronaviral pathogenesis, epidemiology, and evolution. Throughout her career, Kay was an extremely dedicated and thoughtful mentor to numerous graduate students and post-doctoral fellows. This article provides a review of her contributions to the coronavirus field and her exemplary mentoring.
Collapse
Affiliation(s)
- Aurelio Bonavia
- Vaccine Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139, USA;
| | - Samuel R. Dominguez
- Department of Pediatrics-Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Sara Gagneten
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Megan Howard
- Battelle Memorial Institute, Columbus, OH 43201, USA;
| | | | - Zhaohui Qian
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100050, China;
| | | | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dina B. Tresnan
- Safety Surveillance and Risk Management, Worldwide Safety, Pfizer, Groton, CT 06340, USA;
| | - David E. Wentworth
- COVID-19 Emergency Response, Virology Surveillance and Diagnosis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA;
| | - David R. Wessner
- Departments of Biology and Public Health, Davidson College, Davidson, NC 28035, USA;
| | | | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
4
|
Belcher Dufrisne M, Swope N, Kieber M, Yang JY, Han J, Li J, Moremen KW, Prestegard JH, Columbus L. Human CEACAM1 N-domain dimerization is independent from glycan modifications. Structure 2022; 30:658-670.e5. [PMID: 35219398 PMCID: PMC9081242 DOI: 10.1016/j.str.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022]
Abstract
Carcinoembryonic cellular adhesion molecules (CEACAMs) serve diverse roles in cell signaling, proliferation, and survival and are made up of one or several immunoglobulin (Ig)-like ectodomains glycosylated in vivo. The physiological oligomeric state and how it contributes to protein function are central to understanding CEACAMs. Two putative dimer conformations involving different CEACAM1 N-terminal Ig-like domain (CCM1) protein faces (ABED and GFCC'C″) were identified from crystal structures. GFCC'C″ was identified as the dominant CCM1 solution dimer, but ambiguity regarding the effect of glycosylation on dimer formation calls its physiological relevance into question. We present the first crystal structure of minimally glycosylated CCM1 in the GFCC'C″ dimer conformation and characterization in solution by continuous-wave and double electron-electron resonance electron paramagnetic resonance spectroscopy. Our results suggest the GFCC'C″ dimer is dominant in solution with different levels of glycosylation, and structural conservation and co-evolved residues support that the GFCC'C″ dimer is conserved across CEACAMs.
Collapse
Affiliation(s)
| | - Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Marissa Kieber
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ji Han
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Jason Li
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
5
|
Wan Y, Huang L, Zhang X, Shang J, Perlman S, Du L, Li F. Molecular switches regulating the potency and immune evasiveness of SARS-CoV-2 spike protein. RESEARCH SQUARE 2021:rs.3.rs-736159. [PMID: 34611654 PMCID: PMC8491847 DOI: 10.21203/rs.3.rs-736159/v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SARS-CoV-2 spike protein plays a key role in viral entry and host immune responses. The conformation of the spike protein can be either open or closed, yet it is unclear how the conformations affect the protein's functions or what regulate the conformational changes. Using SARS-CoV-1 and bat RaTG13-CoV as comparisons, we identified two molecular switches that regulate the conformations of SARS-CoV-2 spike protein: (i) a furin motif loop turns SARS-CoV-2 spike from a closed conformation to a mixture of open and closed conformations, and (ii) a K417V mutation turns SARS-CoV-2 spike from mixed conformations to an open conformation. We showed that the open conformation favors viral potency by exposing the RBD for receptor binding and viral entry, whereas the closed conformation supports viral immune evasion by hiding the RBD from neutralizing antibodies. Hence SARS-CoV-2 spike has evolved to reach a balance between potency and immune evasiveness, which may contribute to the pandemic spread of SARS-CoV-2. The dynamics between viral potency and invasiveness is likely to further evolve, providing insights into future evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| | - Linfen Huang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| | - Xiujuan Zhang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
6
|
Geng Q, Tai W, Baxter VK, Shi J, Wan Y, Zhang X, Montgomery SA, Taft-Benz SA, Anderson EJ, Knight AC, Dinnon KH, Leist SR, Baric RS, Shang J, Hong SW, Drelich A, Tseng CTK, Jenkins M, Heise M, Du L, Li F. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009897. [PMID: 34492082 PMCID: PMC8448314 DOI: 10.1371/journal.ppat.1009897] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/17/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARS-CoV-2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the two-month study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Qibin Geng
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Victoria K. Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Juan Shi
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Xiujuan Zhang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sharon A. Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Audrey C. Knight
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Leist
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Sung-Wook Hong
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark Heise
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
7
|
Landau LJB, Fam BSDO, Yépez Y, Caldas-Garcia GB, Pissinatti A, Falótico T, Reales G, Schüler-Faccini L, Sortica VA, Bortolini MC. Evolutionary analysis of the anti-viral STAT2 gene of primates and rodents: Signature of different stages of an arms race. INFECTION GENETICS AND EVOLUTION 2021; 95:105030. [PMID: 34384937 DOI: 10.1016/j.meegid.2021.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
STAT2 plays a strategic role in defending viral infection through the signaling cascade involving the immune system initiated after type I interferon release. Many flaviviruses target the inactivation or degradation of STAT2 as a strategy to impair this host's line of defense. Primates are natural reservoirs for a range of disease-causing flaviviruses (e.g., Zika, Dengue, and Yellow Fever virus), while rodents appear less susceptible. We analyzed the STAT2 coding sequence of 28 Rodentia species and 49 Primates species. Original data from 19 Platyrrhini species were sequenced for the SH2 domain of STAT2 and included in the analysis. STAT2 has many sites whose variation can be explained by positive selection, measurement by two methods (PALM indicated 12, MEME 61). Both evolutionary tests significantly marked sites 127, 731, 739, 766, and 780. SH2 is under evolutionary constraint but presents episodic positive selection events within Rodentia: in one of them, a moderately radical change (serine > arginine) at position 638 is found in Peromyscus species, and can be implicated in the difference in susceptibility to flaviviruses within Rodentia. Some other positively selected sites are functional such as 5, 95, 203, 251, 782, and 829. Sites 251 and 287 regulate the signaling mediated by the JAK-STAT2 pathway, while 782 and 829 create a stable tertiary structure of STAT2, facilitating its connection with transcriptional co-activators. Only three positively selected sites, 5, 95, and 203, are recognized members who act on the interface between STAT2 and flaviviruses NS5 protein. We suggested that due to the higher evolutionary rate, rodents are, at this moment, taking some advantage in the battle against infections for some well-known Flaviviridae, in particular when compared to primates. Our results point to dynamics that fit with a molecular evolutionary scenario shaped by a thought-provoking virus-host arms race.
Collapse
Affiliation(s)
- Luane Jandira Bueno Landau
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana Sampaio de Oliveira Fam
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yuri Yépez
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alcides Pissinatti
- Rio de Janeiro's Primatology Center (RJPC - INEA), Rio de Janeiro, RJ, Brazil
| | - Tiago Falótico
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Albuquerque Sortica
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Kim CH. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Front Pharmacol 2021; 12:590509. [PMID: 34122058 PMCID: PMC8194829 DOI: 10.3389/fphar.2021.590509] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), a β-coronavirus, is the cause of the recently emerged pandemic and worldwide outbreak of respiratory disease. Researchers exchange information on COVID-19 to enable collaborative searches. Although there is as yet no effective antiviral agent, like tamiflu against influenza, to block SARS-CoV-2 infection to its host cells, various candidates to mitigate or treat the disease are currently being investigated. Several drugs are being screened for the ability to block virus entry on cell surfaces and/or block intracellular replication in host cells. Vaccine development is being pursued, invoking a better elucidation of the life cycle of the virus. SARS-CoV-2 recognizes O-acetylated neuraminic acids and also several membrane proteins, such as ACE2, as the result of evolutionary switches of O-Ac SA recognition specificities. To provide information related to the current development of possible anti-SARS-COV-2 viral agents, the current review deals with the known inhibitory compounds with low molecular weight. The molecules are mainly derived from natural products of plant sources by screening or chemical synthesis via molecular simulations. Artificial intelligence-based computational simulation for drug designation and large-scale inhibitor screening have recently been performed. Structure-activity relationship of the anti-SARS-CoV-2 natural compounds is discussed.
Collapse
Affiliation(s)
- Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkhwan University, Suwon, South Korea
| |
Collapse
|
9
|
Li B, Wang W, Song W, Zhao Z, Tan Q, Zhao Z, Tang L, Zhu T, Yin J, Bai J, Dong X, Tan S, Hu Q, Tang BZ, Huang X. Antiviral and Anti‐Inflammatory Treatment with Multifunctional Alveolar Macrophage‐Like Nanoparticles in a Surrogate Mouse Model of COVID‐19. ADVANCED SCIENCE 2021; 8:2003556. [PMCID: PMC8209923 DOI: 10.1002/advs.202003556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID‐19) is continually worsening. Clinical treatment for COVID‐19 remains primarily supportive with no specific medicines or regimens. Here, the development of multifunctional alveolar macrophage (AM)‐like nanoparticles (NPs) with photothermal inactivation capability for COVID‐19 treatment is reported. The NPs, made by wrapping polymeric cores with AM membranes, display the same surface receptors as AMs, including the coronavirus receptor and multiple cytokine receptors. By acting as AM decoys, the NPs block coronavirus from host cell entry and absorb various proinflammatory cytokines, thus achieving combined antiviral and anti‐inflammatory treatment. To enhance the antiviral efficiency, an efficient photothermal material based on aggregation‐induced emission luminogens is doped into the NPs for virus photothermal disruption under near‐infrared (NIR) irradiation. In a surrogate mouse model of COVID‐19 caused by murine coronavirus, treatment with multifunctional AM‐like NPs with NIR irradiation decreases virus burden and cytokine levels, reduces lung damage and inflammation, and confers a significant survival advantage to the infected mice. Crucially, this therapeutic strategy may be clinically applied for the treatment of COVID‐19 at early stage through atomization inhalation of the NPs followed by NIR irradiation of the respiratory tract, thus alleviating infection progression and reducing transmission risk.
Collapse
Affiliation(s)
- Bin Li
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Wei Wang
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of EducationXizang Minzu UniversityXianyangShaanxi712082China
| | - Weifeng Song
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
| | - Zheng Zhao
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Qingqin Tan
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Zhaoyan Zhao
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Lantian Tang
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Tianchuan Zhu
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Jialing Yin
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Jun Bai
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Xin Dong
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Siyi Tan
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| | - Qunying Hu
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of EducationXizang Minzu UniversityXianyangShaanxi712082China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong999077China
| | - Xi Huang
- Center for Infection and ImmunityGuangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiGuangdong519000China
- Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiGuangdong519000China
| |
Collapse
|
10
|
Research progress on coronavirus S proteins and their receptors. Arch Virol 2021; 166:1811-1817. [PMID: 33778918 PMCID: PMC8005323 DOI: 10.1007/s00705-021-05008-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 01/19/2023]
Abstract
Coronaviruses are a large family of important pathogens that cause human and animal diseases. At the end of 2019, a pneumonia epidemic caused by a novel coronavirus brought attention to coronaviruses. Exploring the interaction between the virus and its receptor will be helpful in developing preventive vaccines and therapeutic drugs. The coronavirus spike protein (S) plays an important role in both binding to receptors on host cells and fusion of the viral membrane with the host cell membrane. This review introduces the structure and function of the S protein and its receptor, focusing on the binding mode and binding region of both.
Collapse
|
11
|
Murphy MK, Moon JT, Skolaris AT, Mikulin JA, Wilson TJ. Evidence for the loss and recovery of SLAMF9 during human evolution: implications on Dollo's law. Immunogenetics 2021; 73:243-251. [PMID: 33616677 PMCID: PMC7898023 DOI: 10.1007/s00251-021-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 11/04/2022]
Abstract
Signaling lymphocyte activation molecule family member 9 (SLAMF9) is a cell surface protein of the CD2/SLAM family of leukocyte surface receptors. It is conserved throughout mammals and has roles in the initiation of inflammatory responses and regulation of plasmacytoid dendritic cell function. Through comparison of reference sequences encoding SLAMF9 in human, mouse, and primate sequences, we have determined that the SLAMF9 gene underwent successive mutation events, resulting in the loss of the protein and subsequent recovery of a less stable version. The mutations included a single base pair deletion in the second exon and a change in the splice acceptor site of that same exon. These changes would have had the effect of creating and later repairing a frameshift in the coding sequence. These events took place since the divergence of the human lineage from the chimpanzee-human last common ancestor and represent the first known case of the functional loss and recovery of a gene within the human lineage.
Collapse
Affiliation(s)
- Maegan K Murphy
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Justin T Moon
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Alexis T Skolaris
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Joseph A Mikulin
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA
| | - Timothy J Wilson
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
12
|
Kim CH. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:4549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein-carbohydrate interaction (PCI) or lectin-carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA-specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA-ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein-glycan interaction and PCI stereochemistry potentiate the SA-ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
Affiliation(s)
- Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
13
|
Fam BS, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Genet Mol Biol 2020; 43:e20200104. [PMID: 32520981 PMCID: PMC7278419 DOI: 10.1590/1678-4685-gmb-2020-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The recent emergence of SARS-CoV-2 is responsible for the current pandemic of COVID-19, which uses the human membrane protein ACE2 as a gateway to host-cell infection. We performed a comparative genomic analysis of 70 ACE2 placental mammal orthologues to identify variations and contribute to the understanding of evolutionary dynamics behind this successful adaptation to infect humans. Our results reveal that 4% of the ACE2 sites are under positive selection, all located in the catalytic domain, suggesting possibly taxon-specific adaptations related to the ACE2 function, such as cardiovascular physiology. Considering all variable sites, we selected 30 of them located at the critical ACE2 binding sites to the SARS-CoV-like viruses for analysis in more detail. Our results reveal a relatively high diversity of ACE2 between placental mammal species, while showing no polymorphism within human populations, at least considering the 30 inter-species variable sites. A perfect scenario for natural selection favored this opportunistic new coronavirus in its trajectory of infecting humans. We suggest that SARS-CoV-2 became a specialist coronavirus for human hosts. Differences in the rate of infection and mortality could be related to the innate immune responses, other unknown genetic factors, as well as non-biological factors.
Collapse
Affiliation(s)
- Bibiana S.O. Fam
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Ribeirão Preto, SP, Brazil
| | | | - Vinicius A. Sortica
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Kim AS, Zimmerman O, Fox JM, Nelson CA, Basore K, Zhang R, Durnell L, Desai C, Bullock C, Deem SL, Oppenheimer J, Shapiro B, Wang T, Cherry S, Coyne CB, Handley SA, Landis MJ, Fremont DH, Diamond MS. An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host Microbe 2020; 27:428-440.e9. [PMID: 32075743 PMCID: PMC7163869 DOI: 10.1016/j.chom.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023]
Abstract
Alphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not. Cattle Mxra8 encodes a 15-amino acid insertion in its ectodomain that prevents Mxra8 binding to CHIKV. Identical insertions are present in zebu, yak, and the extinct auroch. As other Bovinae lineages contain related Mxra8 sequences, this insertion likely occurred at least 5 million years ago. Removing the Mxra8 insertion in Bovinae enhances alphavirus binding and infection, while introducing the insertion into mouse Mxra8 blocks CHIKV binding, prevents infection by multiple alphaviruses in cells, and mitigates CHIKV-induced pathogenesis in mice. Our studies on how this insertion provides resistance to CHIKV infection could facilitate countermeasures that disrupt Mxra8 interactions with alphaviruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rong Zhang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lorellin Durnell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sharon L Deem
- Saint Louis Zoo Institute for Conservation Medicine, Saint Louis, MO 63110, USA
| | - Jonas Oppenheimer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael J Landis
- Department of Biology, Washington University, Saint Louis, MO 63110, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
15
|
Shang J, Wan Y, Liu C, Yount B, Gully K, Yang Y, Auerbach A, Peng G, Baric R, Li F. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. PLoS Pathog 2020; 16:e1008392. [PMID: 32150576 PMCID: PMC7082060 DOI: 10.1371/journal.ppat.1008392] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/19/2020] [Accepted: 02/08/2020] [Indexed: 12/03/2022] Open
Abstract
Coronaviruses recognize a variety of receptors using different domains of their envelope-anchored spike protein. How these diverse receptor recognition patterns affect viral entry is unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric membrane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where three NTDs are located. Receptor binding induces structural changes in the spike, weakening the interactions between S1 and S2. Using protease sensitivity and negative-stain EM analyses, we further showed that after protease treatment of the spike, receptor binding facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-fusion conformation. Together these results reveal a new role of receptor binding in MHV entry: in addition to its well-characterized role in viral attachment to host cells, receptor binding also induces the conformational change of the spike and hence the fusion of viral and host membranes. Our study provides new mechanistic insight into coronavirus entry and highlights the diverse entry mechanisms used by different viruses. Coronaviruses recognize many receptors using their envelope-anchored spike protein. The role of receptor binding in coronavirus entry into host cells is a fundamental question in virology. Mouse hepatitis coronavirus (MHV) is unique among all coronaviruses in that it uses the N-terminal domain (NTD) of its spike protein to bind a protein receptor CEACAM1a. While extensive research has been performed on the cell entry mechanisms of coronaviruses that use a different domain of their spike protein for receptor binding, the cell entry mechanism for MHV is still elusive. Here we determined the cryo-EM structure of MHV spike protein complexed with CEACAM1a. The structure reveals unique features of receptor binding by MHV spike that facilitate the structural changes of MHV spike and promote cell entry of MHV. We further confirmed the structural results with biochemical and negative-stain EM analyses. These results suggest that receptor binding plays dual roles in MHV entry: it promotes both viral attachment to host cells and the fusion of host and viral membranes. Our study provides insight into the molecular mechanism of MHV entry, demonstrating how cell entry of MHV has been adapted to its unique way of receptor binding.
Collapse
Affiliation(s)
- Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Chang Liu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yang Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Ashley Auerbach
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Guiqing Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Many pathogens must bind to entry receptors on the surfaces of host cells yet avoid any closely-related phagocytic decoy receptors on granulocytes that evolved as a host defense mechanism. The discovery of decoy-receptor polymorphisms in human populations now points to an evolutionary process that allows the host to catch up with pathogens.
Collapse
|
17
|
Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. J Virol 2019; 93:JVI.01046-19. [PMID: 31375571 PMCID: PMC6798120 DOI: 10.1128/jvi.01046-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Mouse hepatitis virus (MHV) uses its N-terminal domain (NTD) of the viral spike (S) protein to bind the host receptor mouse carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a) and mediate virus entry. Our previous crystal structure study of the MHV NTD/mCEACAM1a complex (G. Peng, D. Sun, K. R. Rajashankar, Z. Qian, et al., Proc Natl Acad Sci U S A 108:10696-10701, 2011, https://doi.org/10.1073/pnas.1104306108) reveals that there are 14 residues in the NTD interacting with the receptor. However, their contribution to receptor binding and virus entry has not been fully investigated. Here we analyzed 13 out of 14 contact residues by mutagenesis and identified I22 as being essential for receptor binding and virus entry. Unexpectedly, we found that G29 was critical for the conformational changes of the S protein triggered by either receptor binding or high pH. Replacement of G29 with A, D, F, K, M, and T, to different extents, caused spontaneous dissociation of S1 from the S protein, resulting in an enhancement of high-pH-triggered receptor-independent syncytium (RIS) formation in HEK293T cells, compared to the wild type (WT). In contrast, replacement of G29 with P, a turn-prone residue with a strict conformation, hindered virus entry and conformational changes of the S protein triggered by either receptor binding or pH 8.0, suggesting that the structural turn around G29 and its flexibility are critical. Finally, stabilization of the NTD by G29P had almost no effect on pH-independent RIS induced by the Y320A mutation in the C-terminal domain (CTD) of the S1 subunit, indicating that there might be an absence of cross talk between the NTD and CTD during conformational changes of the S protein. Our study will aid in better understanding the mechanism of how conformational changes of the S protein are triggered.IMPORTANCE Binding of the MHV S protein to the receptor mCEACAM1a triggers conformational changes of S proteins, leading to the formation of a six-helix bundle and viral and cellular membrane fusion. However, the mechanism by which the conformational change of the S protein is initiated after receptor binding has not been determined. In this study, we showed that while replacement of G29, a residue at the edge of the receptor binding interface and the center of the structural turn after the β1-sheet of the S protein, with D or T triggered spontaneous conformational changes of the S protein and pH-independent RIS, the G29P mutation significantly impeded the conformational changes of S proteins triggered by either receptor binding or pH 8.0. We reason that this structural turn might be critical for conformational changes of the S protein and that altering this structural turn could initiate conformational changes of the S protein, leading to membrane fusion.
Collapse
|
18
|
Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog 2018; 14:e1007009. [PMID: 29684066 PMCID: PMC5933801 DOI: 10.1371/journal.ppat.1007009] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
As cell-invading molecular machinery, coronavirus spike proteins pose an evolutionary conundrum due to their high divergence. In this study, we determined the cryo-EM structure of avian infectious bronchitis coronavirus (IBV) spike protein from the γ-genus. The trimeric IBV spike ectodomain contains three receptor-binding S1 heads and a trimeric membrane-fusion S2 stalk. While IBV S2 is structurally similar to those from the other genera, IBV S1 possesses structural features that are unique to different other genera, thereby bridging these diverse spikes into an evolutionary spectrum. Specifically, among different genera, the two domains of S1, the N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD), diverge from simpler tertiary structures and quaternary packing to more complex ones, leading to different functions of the spikes in receptor usage and membrane fusion. Based on the above structural and functional comparisons, we propose that the evolutionary spectrum of coronavirus spikes follows the order of α-, δ-, γ-, and β-genus. This study has provided insight into the evolutionary relationships among coronavirus spikes and deepened our understanding of their structural and functional diversity.
Collapse
Affiliation(s)
- Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| | - Yuan Zheng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| | - Yang Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| | - Chang Liu
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| | - Qibin Geng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| | - Chuming Luo
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States of America
- Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States of America
| |
Collapse
|