1
|
Zhang Z, Tan R, Xiong Z, Feng Y, Chen L. Dysregulation of autophagy during photoaging reduce oxidative stress and inflammatory damage caused by UV. Front Pharmacol 2025; 16:1562845. [PMID: 40421222 PMCID: PMC12104874 DOI: 10.3389/fphar.2025.1562845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Photoaging, the premature aging of skin due to chronic ultraviolet (UV) exposure, is a growing concern in dermatology and cosmetic science. While UV radiation is known to induce DNA damage, oxidative stress, and inflammation in skin cells, recent research unveils a promising countermeasure: autophagy. This review explores the intricate relationship between autophagy and photoaging, highlighting how this cellular recycling process can mitigate UV-induced damage. We begin by examining the differential impacts of UVA and UVB radiation on skin cells and the role of oxidative stress in accelerating photoaging. Next, we delve into the molecular mechanisms of autophagy, including its various forms and regulatory pathways. Central to this review is the discussion of autophagy's protective functions, such as the clearance of damaged organelles and proteins, and its role in maintaining genomic integrity. Furthermore, we address the current challenges in harnessing autophagy for therapeutic purposes, including the need for selective autophagy inducers and a deeper understanding of its context-dependent effects. By synthesizing recent advancements and proposing future research directions, this review underscores the potential of autophagy modulation as a novel strategy to prevent and treat photoaging. This comprehensive analysis aims to inspire further investigation into autophagy-based interventions, offering new hope for preserving skin health in the face of environmental stressors.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Run Tan
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zuanyu Xiong
- Department of Medical Aesthetics, Nanbu People‘s Hospital, Nanchong, China
| | - Yanyan Feng
- Department of Dermatology, Chengdu Second People‘s Hospital, Chengdu, Sichuan Province, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Liu H, Wang X, Li B, Xiang Z, Zhao Y, Lu M, Lin Q, Zheng S, Guan T, Zhang Y, Hu Y. LncRNA HITT inhibits autophagy by attenuating ATG12-ATG5-ATG16L1 complex formation. Cancer Lett 2025; 616:217532. [PMID: 40021040 DOI: 10.1016/j.canlet.2025.217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Dysregulated autophagy has been implicated in the pathogenesis of numerous diseases, including cancer. Despite extensive research on the underlying mechanisms of autophagy, the involvement of long non-coding RNAs (lncRNAs) remains poorly understood. Here, we demonstrate that a previously identified lncRNA, HITT (HIF-1α inhibitor at the translation level), is closely associated with biological processes such as autophagy through unbiased bioinformatic analysis. Subsequent studies demonstrate that HITT is increased by several autophagic stimuli, including PI-103, a potent inhibitor of PI3K and mTOR. This is caused by a reduction in the binding between HITT and AGO2, resulting in a reduction in the activity of miR-205 towards HITT degradation. Increased HITT then binds to a key autophagy protein, Autophagy-related 5 (ATG5), and inhibits autophagosome formation by preventing the formation of the ATG12-ATG5-ATG16L1 complex. This results in HITT sensitizing PI-103-mediated cell death both in vitro and in vivo in nude mice by attenuating protective autophagy. The data presented herein demonstrate that HITT is a newly identified RNA regulator of autophagy and that it can be used to sensitize the colon cancer response to cell death by blocking the protective autophagy.
Collapse
Affiliation(s)
- Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Bolun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Qingyu Lin
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yihong Zhang
- Department of Endocrinology, Heilongjiang Province Hospital, Harbin, Heilongjiang Province, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Lufrano D, Gong C, Cecarini V, Cuccioloni M, Bonfili L, Sturaro C, Bettegazzi B, Ruzza C, Perelló M, Angeletti M, Eleuteri AM. An Insight into Neuronal Processing of Ghrelin: Effects of a Bioactive Ghrelin Derivative on Proteolytic Pathways and Mitophagy. Mol Neurobiol 2025:10.1007/s12035-025-04976-5. [PMID: 40285938 DOI: 10.1007/s12035-025-04976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Protein homeostasis (proteostasis) is preserved by an orchestrated network of molecular mechanisms that regulate protein synthesis, folding, and degradation, ensuring cellular integrity and function. Proteostasis declines with age and is related to pathologies such as neurodegenerative diseases and cardiac disorders, which are accompanied by the accumulation of toxic protein aggregates. In this context, therapeutic strategies enhancing the two primary degradative systems involved in the cellular clearance of those abnormal proteins, namely ubiquitin-proteasome system and autophagy-lysosomal pathway, represent a promising approach to counteract the collapse of proteostasis in such pathological conditions. In this work, we explored the processing of ghrelin, a pleiotropic peptide hormone linked to energy metabolism and higher brain functions, which is reported to modulate the protein degradative mechanisms. According to our data, ghrelin is processed by serine hydrolases secreted into the conditioned medium of SH-SY5Y neuroblastoma cell line, commonly used in neurotoxicology and neuroscience research. Ghrelin processing leads to the formation of a shorter peptide (ghrelin(1-11)) that stimulates both the cell proteasome system and autophagy-lysosomal pathway, encompassing the selective autophagy of mitochondria. Our findings suggest that ghrelin processing may contribute to the maintenance of neuronal proteostasis.
Collapse
Affiliation(s)
- Daniela Lufrano
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional La Plata (UNLP), CONICET, B1900 AVW, La Plata, Argentina.
| | - Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199, Haikou, China
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | | | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de La Provincia de Buenos Aires (CIC-PBA), B1906 APM, La Plata, Argentina
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
4
|
Campisi D, Hawkins N, Bonjour K, Wollert T. The Role of WIPI2, ATG16L1 and ATG12-ATG5 in Selective and Nonselective Autophagy. J Mol Biol 2025:169138. [PMID: 40221132 DOI: 10.1016/j.jmb.2025.169138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Autophagy is a conserved cellular recycling pathway that delivers damaged or superfluous cytoplasmic material to lysosomes for degradation. In response to cytotoxic stress or starvation, autophagy can also sequester bulk cytoplasm and deliver it to lysosomes to regenerate building blocks. In macroautophagy, a membrane cisterna termed phagophore that encloses autophagic cargo is generated. The formation of the phagophore depends on a conserved machinery of autophagy related proteins. The phosphatidylinositol(3)-phosphate binding protein WIPI2 facilitates the transition from phagophore initiation to phagophore expansion by recruiting the ATG12-ATG5-ATG16L1 complex to phagophores. This complex functions as an E3-ligase to conjugate ubiquitin-like ATG8 proteins to phagophore membranes, which promotes tethering of cargo to phagophore membranes, phagophore expansion, maturation and the fusion of autophagosomes with lysosomes. ATG16L1 also has important functions independently of ATG12-ATG5 in autophagy and beyond. In this review, we will summarize the functions of WIPI2 and ATG16L1 in selective and nonselective autophagy.
Collapse
Affiliation(s)
- Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - N'Toia Hawkins
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Kennedy Bonjour
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
5
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
6
|
Swarup G, Medchalmi S, Ramachandran G, Sayyad Z. Molecular aspects of cytoprotection by Optineurin during stress and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119895. [PMID: 39753182 DOI: 10.1016/j.bbamcr.2024.119895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Optineurin/OPTN is an adapter protein that plays a crucial role in mediating many cellular functions, including autophagy, vesicle trafficking, and various signalling pathways. Mutations of OPTN are linked with neurodegenerative disorders, glaucoma, and amyotrophic lateral sclerosis (ALS). Recent work has shown that OPTN provides cytoprotection from many types of stress, including oxidative stress, endoplasmic reticulum stress, protein homeostasis stress, tumour necrosis factor α, and microbial infection. Here, we discuss the mechanisms involved in cytoprotective functions of OPTN, which possibly depend on its ability to modulate various stress-induced signalling pathways. ALS- and glaucoma-causing mutants of OPTN are altered in this regulation, which may affect cell survival, particularly under various stress conditions. We suggest that OPTN deficiency created by mutations may cooperate with stress-induced signalling to enhance or cause neurodegeneration. Other functions of OPTN, such as neurotrophin secretion and vesicle trafficking, may also contribute to cytoprotection.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India.
| | - Swetha Medchalmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Gopalakrishna Ramachandran
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Zuberwasim Sayyad
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
7
|
Lin Y, Zhu Y, Jing L, Lei X, Xie Z. Regulation of viral replication by host restriction factors. Front Immunol 2025; 16:1484119. [PMID: 39917304 PMCID: PMC11798991 DOI: 10.3389/fimmu.2025.1484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Viral infectious diseases, caused by numerous viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), enterovirus (EV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus (HPV), pose a continuous threat to global health. As obligate parasites, viruses rely on host cells to replicate, and host cells have developed numerous defense mechanisms to counteract viral infection. Host restriction factors (HRFs) are critical components of the early antiviral response. These cellular proteins inhibit viral replication and spread by impeding essential steps in the viral life cycle, such as viral entry, genome transcription and replication, protein translation, viral particle assembly, and release. This review summarizes the current understanding of how host restriction factors inhibit viral replication, with a primary focus on their diverse antiviral mechanisms against a range of viruses, including SARS-CoV-2, influenza A virus, enteroviruses, human immunodeficiency virus, hepatitis B virus, and human papillomavirus. In addition, we highlight the crucial role of these factors in shaping the host-virus interactions and discuss their potential as targets for antiviral drug development.
Collapse
Affiliation(s)
- Ying Lin
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Jing
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Guo Y, Tian Y, Xia P, Zhou X, Hu X, Guo Z, Ji P, Yuan X, Fu D, Yin K, Shen R, Wang D. Exploring the Function of OPTN From Multiple Dimensions. Cell Biochem Funct 2024; 42:e70029. [PMID: 39670654 DOI: 10.1002/cbf.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is an essential intracellular degradation system responsible for delivering cytoplasmic components to lysosomes. Within this intricate process, optineurin (OPTN), an autophagy receptor, has attracted extensive attention due to its multifaceted roles in the autophagy process. OPTN is regulated by various posttranslational modifications and actively participates in numerous signaling pathways and cellular processes. By exploring the regulatory mechanism of OPTN posttranslational modification, we can further understand the critical role of protein posttranslational modification in biological progress, such as autophagy. Additionally, OPTN is implicated in many human diseases, including rheumatoid arthritis, osteoporosis, and infectious diseases. And we delve into the inflammatory pathways regulated by OPTN and clarify how it regulates inflammatory diseases and cancer. We aim to enhance the understanding of OPTN's multifaceted functions in cellular processes and its implications in the pathogenesis of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyue Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Daosen Fu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Wang J, Qiu Y, Yang L, Wang J, He J, Tang C, Yang Z, Hong W, Yang B, He Q, Weng Q. Preserving mitochondrial homeostasis protects against drug-induced liver injury via inducing OPTN (optineurin)-dependent Mitophagy. Autophagy 2024; 20:2677-2696. [PMID: 39099169 PMCID: PMC11587843 DOI: 10.1080/15548627.2024.2384348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.Abbreviation: AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Jiajia Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Yueping Qiu
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lijun Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of infectious diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, China
| | - Chengwu Tang
- Department of infectious diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou, China
| |
Collapse
|
10
|
Yang X, Zheng R, Zhang H, Ou Z, Wan S, Lin D, Yan J, Jin M, Tan J. Optineurin regulates motor and learning behaviors by affecting dopaminergic neuron survival in mice. Exp Neurol 2024; 383:115007. [PMID: 39428042 DOI: 10.1016/j.expneurol.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Optineurin (OPTN) is an autophagy receptor that participates in the degradation of damaged mitochondria, protein aggregates, and invading pathogens. OPTN is closely related to various types of neurodegenerative diseases. However, the role of OPTN in the central nervous system is unclear. Here, we found that OPTN dysregulation in the compact part of substantia nigra (SNc) led to motor and learning deficits in animal models. Knockdown of OPTN increased total and phosphorylated α-synuclein levels which induced microglial activation and dopaminergic neuronal loss in the SNc. Overexpression of OPTN can't reverse the motor and learning phenotypes. Mechanistic analysis revealed that upregulation of OPTN increased α-synuclein phosphorylation independent of its autophagy receptor activity, which further resulted in microglial activation and dopaminergic neuronal loss similar to OPTN downregulation. Our study uncovers the crucial role of OPTN in maintaining dopaminergic neuron survival and motor and learning functions which are disrupted in PD patients.
Collapse
Affiliation(s)
- Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Ruoling Zheng
- Shantou Longhu People's Hospital, Shantou 515041, China
| | - Hongyao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Zixian Ou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Dongfeng Lin
- Shantou University Mental Health Center, Shantou University, Shantou 515063, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
11
|
Gubas A, Attridge E, Jefferies HB, Nishimura T, Razi M, Kunzelmann S, Gilad Y, Mercer TJ, Wilson MM, Kimchi A, Tooze SA. WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation. EMBO Rep 2024; 25:3789-3811. [PMID: 39152217 PMCID: PMC11387628 DOI: 10.1038/s44319-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/19/2024] Open
Abstract
One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
Collapse
Affiliation(s)
- Andrea Gubas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Muscular Dystrophy UK, London, SE1 8QD, UK
| | - Eleanor Attridge
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Harold Bj Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yuval Gilad
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Adi Kimchi
- The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
12
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
Ramachandran G, Yeruva CV, Swarup G, Raghunand TR. A cytoprotective role for optineurin during mycobacterial infection of macrophages. Biochem Biophys Rep 2024; 38:101672. [PMID: 38434142 PMCID: PMC10907145 DOI: 10.1016/j.bbrep.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Autophagy has emerged as a critical innate immune mechanism for host elimination of intracellular pathogens, however, the role of the autophagy receptor Optineurin during mycobacterial infection is not fully understood. To address this lacuna, we infected bone marrow-derived macrophages (BMDMs) derived from Optn+/+ and Optn-/- mice with Mycobacterium smegmatis, and observed the infection outcome at sequential time points. While low multiplicity of infection (MOI) did not show any significant difference between BMDMs from the two groups, at high MOI Optn-/- mice-derived BMDMs showed significantly lower colony forming unit counts, as well as lower cell counts at 12 h and 24 h post-infection. Quantification of cell numbers and nuclear morphologies at various time points post-infection indicated a markedly higher cell death in the Optineurin-deficient macrophages. Optineurin-deficient BMDMs showed significantly lower levels of the autophagosomal protein LC3-II upon infection, indicating a potential role for Optineurin in regulating autophagy during mycobacterial infection. Moreover, when stimulated by bacterial LPS, Optineurin deficient macrophages, showed altered levels of the inflammatory cytokine pro-IL-1β. These observations taken together suggest a novel regulatory role for Optineurin during mycobacterial infection. Its deficiency leads to an impairment in macrophage responses, directly impacting the pathophysiology of infection.
Collapse
Affiliation(s)
| | | | - Ghanshyam Swarup
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tirumalai R. Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Yuen ELH, Leary AY, Clavel M, Tumtas Y, Mohseni A, Zhao J, Picchianti L, Jamshidiha M, Pandey P, Duggan C, Cota E, Dagdas Y, Bozkurt TO. A RabGAP negatively regulates plant autophagy and immune trafficking. Curr Biol 2024; 34:2049-2065.e6. [PMID: 38677281 DOI: 10.1016/j.cub.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexandre Y Leary
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Marion Clavel
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Yasin Tumtas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Azadeh Mohseni
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Jierui Zhao
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Lorenzo Picchianti
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Mostafa Jamshidiha
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cian Duggan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Yasin Dagdas
- Gregor Mendel Institute of Molecular Plant Biology, Vienna BioCenter, Dr. Bohr-Gasse, 1030 Vienna, Austria.
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
15
|
Jin J, Huang R, Chang Y, Yi X. Roles and mechanisms of optineurin in bone metabolism. Biomed Pharmacother 2024; 172:116258. [PMID: 38350370 DOI: 10.1016/j.biopha.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Optineurin (OPTN) is a widely expressed multifunctional articulatory protein that participates in cellular or mitochondrial autophagy, vesicular transport, and endoplasmic reticulum (ER) stress via interactions with various proteins. Skeletal development is a complex biological process that requires the participation of various osteoblasts, such as bone marrow mesenchymal stem cells (BMSCs), and osteogenic, osteoclastic, and chondrogenic cells. OPTN was recently found to be involved in the regulation of osteoblast activity, which affects bone metabolism. OPTN inhibits osteoclastogenesis via signaling pathways, including NF-κB, IFN-β, and NRF2. OPTN can promote the differentiation of BMSCs toward osteogenesis and inhibit lipogenic differentiation by delaying BMSC senescence and autophagy. These effects are closely related to the development of bone metabolism disorders, such as Paget's disease of bone, rheumatoid arthritis, and osteoporosis. Therefore, this review aims to explore the role and mechanism of OPTN in the regulation of bone metabolism and related bone metabolic diseases. Our findings will provide new targets and strategies for the prevention and treatment of bone metabolic diseases.
Collapse
Affiliation(s)
- Junjie Jin
- School of Sports and Human Sciences, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, Liaoning 110115, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian 116029, China
| | - Yixing Chang
- Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Xuejie Yi
- Exercise and Health Research Center/Department of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang , Liaoning 110115, China.
| |
Collapse
|
16
|
Wen D, Ji Y, Li Y, Duan W, Wang Y, Li Z, Tao M, Liu Y. OPTN gene therapy increases autophagy and protects mitochondria in SOD1-G93A-expressing transgenic mice and cells. FEBS J 2024; 291:795-813. [PMID: 37983563 DOI: 10.1111/febs.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive motor neuron (MN) death. Mutation of the superoxide dismutase 1 (SOD1) gene, which results in abnormal protein aggregation, is one of the causes of familial ALS. Autophagic dysfunction occurs in SOD1-G93A mutant mice as the disease progresses, but the etiology of this disease is still unclear. Optineurin (OPTN) is an adaptor that is involved in autophagy and participates in aggrephagy and mitophagy. Previous studies have established that OPTN mutations contribute to diseases such as glaucoma and ALS. However, the function of OPTN in autophagy and mitophagy has not been intensively investigated in models of ALS. In this study, we assessed the beneficial effect of OPTN on autophagy and mitochondrial function by intrathecally injecting adeno-associated virus 9 (AAV9)-OPTN into SOD1-G93A transgenic mice and by administering lentivirus (LV)-OPTN to cells expressing the SOD1-G93A mutant protein. The expression of voltage-dependent anion channel 1 (VDAC1) was increased and autophagy was elevated after OPTN gene therapy, as shown by a lower level of p62 and a higher level of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II. Moreover, using electron microscopy, we observed a hyperpolarized mitochondrial transmembrane potential and reversal of mitochondrial morphological abnormalities. Furthermore, the protein level of TANK-binding kinase 1 (TBK1) was increased, suggesting that mitophagy was increased. Our findings from both animal and cell line studies strongly suggest that OPTN gene therapy is a powerful strategy to increase autophagy and protect mitochondria to prevent the progression of ALS and could be effective in the treatment of ALS.
Collapse
Affiliation(s)
- Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingxiao Ji
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yanyan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Meichun Tao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
17
|
Xie J, Meijer AH. Xenophagy receptors Optn and p62 and autophagy modulator Dram1 independently promote the zebrafish host defense against Mycobacterium marinum. Front Cell Infect Microbiol 2024; 13:1331818. [PMID: 38264729 PMCID: PMC10803470 DOI: 10.3389/fcimb.2023.1331818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Anti-bacterial autophagy, also known as xenophagy, is a crucial innate immune process that helps maintain cellular homeostasis by targeting invading microbes. This defense pathway is widely studied in the context of infections with mycobacteria, the causative agents of human tuberculosis and tuberculosis-like disease in animal models. Our previous work in a zebrafish tuberculosis model showed that host defense against Mycobacterium marinum (Mm) is impaired by deficiencies in xenophagy receptors, optineurin (Optn) or sequestome 1 (p62), and Damage-regulated autophagy modulator 1 (Dram1). However, the interdependency of these receptors and their interaction with Dram1 remained unknown. In the present study, we used single and double knockout zebrafish lines in combination with overexpression experiments. We show that Optn and p62 can compensate for the loss of each other's function, as their overexpression restores the infection susceptibility of the mutant phenotypes. Similarly, Dram1 can compensate for deficiencies in Optn and p62, and, vice versa, Optn and p62 compensate for the loss of Dram1, indicating that these xenophagy receptors and Dram1 do not rely on each other for host defense against Mm. In agreement, Dram1 overexpression in optn/p62 double mutants restored the interaction of autophagosome marker Lc3 with Mm. Finally, optn/p62 double mutants displayed more severe infection susceptibility than the single mutants. Taken together, these results suggest that Optn and p62 do not function downstream of each other in the anti-mycobacterial xenophagy pathway, and that the Dram1-mediated defense against Mm infection does not rely on specific xenophagy receptors.
Collapse
|
18
|
Meyer LM, Koschade SE, Vischedyk JB, Thoelken M, Gubas A, Wegner M, Basoglu M, Knapp S, Kaulich M, Eimer S, Shaid S, Brandts CH. Deciphering the mitophagy receptor network identifies a crucial role for OPTN (optineurin) in acute myeloid leukemia. Autophagy 2023; 19:2982-2996. [PMID: 37439113 PMCID: PMC10549194 DOI: 10.1080/15548627.2023.2230839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
The selective autophagic degradation of mitochondria via mitophagy is essential for preserving mitochondrial homeostasis and, thereby, disease maintenance and progression in acute myeloid leukemia (AML). Mitophagy is orchestrated by a variety of mitophagy receptors whose interplay is not well understood. Here, we established a pairwise multiplexed CRISPR screen targeting mitophagy receptors to elucidate redundancies and gain a deeper understanding of the functional interactome governing mitophagy in AML. We identified OPTN (optineurin) as sole non-redundant mitophagy receptor and characterized its unique role in AML. Knockdown and overexpression experiments demonstrated that OPTN expression is rate-limiting for AML cell proliferation. In a MN1-driven murine transplantation model, loss of OPTN prolonged overall median survival by 7 days (+21%). Mechanistically, we found broadly impaired mitochondrial respiration and function with increased mitochondrial ROS, that most likely caused the proliferation defect. Our results decipher the intertwined network of mitophagy receptors in AML for both ubiquitin-dependent and receptor-mediated mitophagy, identify OPTN as a non-redundant tool to study mitophagy in the context of leukemia and suggest OPTN inhibition as an attractive therapeutic strategy.Abbreviations: AML: acute myeloid leukemia; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; CTRL: control; DFP: deferiprone; GI: genetic interaction; KD: knockdown; KO: knockout; ldMBM, lineage-depleted murine bone marrow; LFC: log2 fold change; LIR: LC3-interacting region; LSC: leukemic stem cell; MAGeCK: Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout; MDIVI-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MOM: mitochondrial outer membrane; NAC: N-acetyl-L-cysteine; OA: oligomycin-antimycin A; OCR: oxygen consumption rate; OE: overexpression; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SEM: standard error of the mean; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; UBD: ubiquitin-binding domain; WT: wild type.
Collapse
Affiliation(s)
- Laura M. Meyer
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
| | - Sebastian E. Koschade
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas B. Vischedyk
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Marlyn Thoelken
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
| | - Andrea Gubas
- Goethe University Frankfurt, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Martin Wegner
- Goethe University Frankfurt, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Marion Basoglu
- Goethe University Frankfurt, Transmission-Electron Microscopy Core Facility, Frankfurt am Main, Germany
| | - Stefan Knapp
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Stefan Eimer
- Goethe University Frankfurt, Transmission-Electron Microscopy Core Facility, Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Frankfurt am Main, Germany
| | - Shabnam Shaid
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian H. Brandts
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Tan LX, Germer CJ, Thamban T, La Cunza N, Lakkaraju A. Optineurin tunes outside-in signaling to regulate lysosome biogenesis and phagocytic clearance in the retina. Curr Biol 2023; 33:3805-3820.e7. [PMID: 37586372 PMCID: PMC10529777 DOI: 10.1016/j.cub.2023.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thushara Thamban
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Fukushi M, Ohsawa R, Okinaka Y, Oikawa D, Kiyono T, Moriwaki M, Irie T, Oda K, Kamei Y, Tokunaga F, Sotomaru Y, Maruyama H, Kawakami H, Sakaguchi T. Optineurin deficiency impairs autophagy to cause interferon beta overproduction and increased survival of mice following viral infection. PLoS One 2023; 18:e0287545. [PMID: 37352136 PMCID: PMC10289332 DOI: 10.1371/journal.pone.0287545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNβ), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNβ than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNβ overproduction during optineurin deficiency both in vitro and in vivo. METHODS To investigate the mechanism of IFNβ overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS IFNβ overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNβ overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNβ overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNβ overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.
Collapse
Affiliation(s)
- Masaya Fukushi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masaya Moriwaki
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Irie
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Decreased Paneth cell α-defensins promote fibrosis in a choline-deficient L-amino acid-defined high-fat diet-induced mouse model of nonalcoholic steatohepatitis via disrupting intestinal microbiota. Sci Rep 2023; 13:3953. [PMID: 36894646 PMCID: PMC9998432 DOI: 10.1038/s41598-023-30997-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fibrosis that develops from fatty liver. Disruption of intestinal microbiota homeostasis, dysbiosis, is associated with fibrosis development in NASH. An antimicrobial peptide α-defensin secreted by Paneth cells in the small intestine is known to regulate composition of the intestinal microbiota. However, involvement of α-defensin in NASH remains unknown. Here, we show that in diet-induced NASH model mice, decrease of fecal α-defensin along with dysbiosis occurs before NASH onset. When α-defensin levels in the intestinal lumen are restored by intravenous administration of R-Spondin1 to induce Paneth cell regeneration or by oral administration of α-defensins, liver fibrosis is ameliorated with dissolving dysbiosis. Furthermore, R-Spondin1 and α-defensin improved liver pathologies together with different features in the intestinal microbiota. These results indicate that decreased α-defensin secretion induces liver fibrosis through dysbiosis, further suggesting Paneth cell α-defensin as a potential therapeutic target for NASH.
Collapse
|
22
|
Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol 2023; 24:167-185. [PMID: 36302887 DOI: 10.1038/s41580-022-00542-2] [Citation(s) in RCA: 475] [Impact Index Per Article: 237.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
Autophagy is a process that targets various intracellular elements for degradation. Autophagy can be non-selective - associated with the indiscriminate engulfment of cytosolic components - occurring in response to nutrient starvation and is commonly referred to as bulk autophagy. By contrast, selective autophagy degrades specific targets, such as damaged organelles (mitophagy, lysophagy, ER-phagy, ribophagy), aggregated proteins (aggrephagy) or invading bacteria (xenophagy), thereby being importantly involved in cellular quality control. Hence, not surprisingly, aberrant selective autophagy has been associated with various human pathologies, prominently including neurodegeneration and infection. In recent years, considerable progress has been made in understanding mechanisms governing selective cargo engulfment in mammals, including the identification of ubiquitin-dependent selective autophagy receptors such as p62, NBR1, OPTN and NDP52, which can bind cargo and ubiquitin simultaneously to initiate pathways leading to autophagy initiation and membrane recruitment. This progress opens the prospects for enhancing selective autophagy pathways to boost cellular quality control capabilities and alleviate pathology.
Collapse
Affiliation(s)
- Jose Norberto S Vargas
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
Li S, Li Z, Chen S, Zhu Y, Li Y, Yin X, Li X, Zhu G. Apoptotic and autophagic cell death induced in cervical cancer cells by a dual specific oncolytic adenovirus. Anticancer Drugs 2023; 34:361-372. [PMID: 36730009 PMCID: PMC9891282 DOI: 10.1097/cad.0000000000001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Oncolytic adenoviruses are capable of exerting anticancer effects via a variety of mechanisms, including apoptosis and autophagy. In the present study, the dual-specific antitumor oncolytic adenovirus, Ad-Apoptin-hTERT-E1a (ATV), was used to infect cervical cancer cell lines to test its antitumor effects. METHODS To explore the use of apoptin in tumor gene therapy, a recombinant adenovirus ATV expressing the apoptin protein was assessed to determine its lethal and growth-inhibitory effects on human cervical cancer cell line (HeLa) cells in vitro . Nonapoptotic autophagy of HeLa cells infected with ATV was assessed by examining the cell morphology, development of acidic vesicular organelles and the conversion of microtubule-associated protein 1 light chain 3 (LC3) from its cytoplasmic to autophagosomal membrane form. Using gene silencing (knockdown of LC3 and Belin-1), autophagy-associated molecules (e.g. ATG5, ATG12 and ULK1) were monitored by real-time PCR and western blot. RESULTS A series of experiments demonstrated that ATV could significantly induce apoptosis and autophagy in cervical cancer cells, and provided evidence that ATV not only induced apoptosis but also autophagy and ATG5, ATG12 and ULK1 related pathways were not entirely dependent on LC3 and Beclin-1. CONCLUSION These results indicate that ATV may have a potential application in tumor gene therapy.
Collapse
Affiliation(s)
- Shanzhi Li
- Changchun University of Chinese Medicine
| | - Zhuoxin Li
- Changchun University of Chinese Medicine
| | - Shuang Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | - Yilong Zhu
- Changchun University of Chinese Medicine
| | - Yiquan Li
- Changchun University of Chinese Medicine
| | - Xunzhe Yin
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Xiao Li
- Changchun University of Chinese Medicine
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences
| | | |
Collapse
|
24
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Moharir SC, Sirohi K, Swarup G. Regulation of transferrin receptor trafficking by optineurin and its disease-associated mutants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:67-78. [PMID: 36631201 DOI: 10.1016/bs.pmbts.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transferrin receptor (TFRC) is a transmembrane protein that plays a crucial role in mediating homeostasis of iron in the cell. The binding of transferrin (that is bound to iron) to TFRC at the cell membrane generally starts endocytosis of TFRC-transferrin complex, which leads to formation of vesicles that are positive for TFRC. These vesicles travel to the early endosomes and later to the endocytic recycling compartment. Release of iron occurs in the early endosomes because of acidic pH. Major fraction of the transferrin and TFRC is transported back to the cell membrane; however, a minor fraction of it is transported to lysosomes through the process of autophagy. Optineurin (OPTN) is a multi-functional adaptor protein that plays a pivotal role in the control of TFRC trafficking, recycling and autophagy dependent degradation. Optineurin also plays a role in cargo-selective and non-selective autophagy. Here, we review our understanding of the function of OPTN in regulating TFRC trafficking, recycling and autophagy dependent degradation. We also discuss the mechanisms by which certain disease-associated mutations of OPTN alter these processes.
Collapse
Affiliation(s)
- Shivranjani C Moharir
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Kapil Sirohi
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India.
| |
Collapse
|
26
|
White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy. Autophagy 2023; 19:44-53. [PMID: 35470757 PMCID: PMC9809930 DOI: 10.1080/15548627.2022.2070331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that plays a central role in host defense to pathogens and in regulating the innate immune system. TAX1BP1 facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis and regulates TLR3 (toll-like receptor 3)-TLR4 and DDX58/RIG-I-like receptor (RLR) signaling by targeting TICAM1 and MAVS for autophagic degradation respectively. In addition to these canonical autophagy receptor functions, TAX1BP1 can also exert multiple accessory functions that influence the biogenesis and maturation of autophagosomes. In this review, we will discuss and integrate recent findings related to the autophagy function of TAX1BP1 and highlight outstanding questions regarding its functions in autophagy and regulation of innate immunity and host defense.Abbreviations: ATG: autophagy related; CALCOCO: calcium binding and coiled-coil domain; CC: coiled-coil; CHUK/IKKα: conserved helix-loop-helix ubiquitous kinase; CLIR: noncanonical LC3-interacting region; GABARAP: gamma-aminobutyric acid receptor associated protein; HTLV-1: human T-lymphotropic virus 1; IFN: interferon; IL1B/IL1β: interleukin 1 beta; LIR: LC3-interacting region; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase; mATG8: mammalian Atg8 homolog; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MTB: Mycobacterium tuberculosis; MYD88: myeloid differentiation primary response gene 88; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; OPTN: optineurin; Poly(I:C): polyinosinic:polycytidylic acid; PTM: post-translational modification; RB1CC1: RB1-inducible coiled-coil 1; RIPK: receptor (TNFRSF)-interacting serine-threonine kinase; RLR: DDX58/RIG-I-like receptor; RSV: respiratory syncytia virus; SKICH: SKIP carboxyl homology; SLR: SQSTM1 like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TBK1: TANK-binding kinase 1; TICAM1: toll-like receptor adaptor molecule 1; TLR: toll-like receptor; TNF: tumor necrosis factor; TNFAIP3: TNF alpha induced protein 3; TNFR: tumor necrosis factor receptor; TOM1: target of myb1 trafficking protein; TRAF: TNF receptor-associated factor; TRIM32: tripartite motif-containing 32; UBD: ubiquitin binding domain; ZF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
27
|
Moharir SC, Swarup G. Optineurin deficiency induces patchy hair loss but it is not sufficient to cause amyotrophic lateral sclerosis in mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166470. [PMID: 35750266 DOI: 10.1016/j.bbadis.2022.166470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shivranjani C Moharir
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Tata Institute for Genetics and Society, India.
| | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India.
| |
Collapse
|
28
|
Zhang Y, Liu X, Klionsky DJ, Lu B, Zhong Q. Manipulating autophagic degradation in human diseases: from mechanisms to interventions. LIFE MEDICINE 2022; 1:120-148. [PMID: 39871921 PMCID: PMC11749641 DOI: 10.1093/lifemedi/lnac043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/08/2022] [Indexed: 01/29/2025]
Abstract
Targeted degradation, having emerged as a powerful and promising strategy in drug discovery in the past two decades, has provided a solution for many once undruggable targets involved in various diseases. While earlier targeted degradation tools, as exemplified by PROteolysis-TArgeting Chimera (PROTAC), focused on harnessing the ubiquitin-proteasome system, novel approaches that aim to utilize autophagy, a potent, lysosome-dependent degradation pathway, have also surfaced recently as promising modalities. In this review, we first introduce the mechanisms that establish selectivity in autophagy, which provides the rationales for autophagy-based targeted degradation; we also provide an overview on the panoply of cellular machinery involved in this process, an arsenal that could be potentially harnessed. On this basis, we propose four strategies for designing autophagy-based targeted degraders, including Tagging Targets, Directly Engaging Targets, Initiating Autophagy at Targets, and Phagophore-Tethering to Targets. We introduce the current frontiers in this field, including AUtophagy-TArgeting Chimera (AUTAC), Targeted Protein Autophagy (TPA), AUTOphagy-TArgeting Chimera (AUTOTAC, not to be confused with AUTAC), AuTophagosome TEthering Compound (ATTEC), and other experimental approaches as case studies for each strategy. Finally, we put forward a workflow for generating autophagy-based degraders and some important questions that may guide and inspire the process.
Collapse
Affiliation(s)
- Yiqing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 20025, China
| |
Collapse
|
29
|
Almannai M, Marafi D, El-Hattab AW. WIPI proteins: Biological functions and related syndromes. Front Mol Neurosci 2022; 15:1011918. [PMID: 36157071 PMCID: PMC9500159 DOI: 10.3389/fnmol.2022.1011918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
WIPI (WD-repeat protein Interacting with PhosphoInositides) are important effectors in autophagy. These proteins bind phosphoinositides and recruit autophagy proteins. In mammals, there are four WIPI proteins: WIPI1, WIPI2, WIPI3 (WDR45B), and WIPI4 (WDR45). These proteins consist of a seven-bladed β-propeller structure. Recently, pathogenic variants in genes encoding these proteins have been recognized to cause human diseases with a predominant neurological phenotype. Defects in WIPI2 cause a disease characterized mainly by intellectual disability and variable other features while pathogenic variants in WDR45B and WDR45 have been recently reported to cause El-Hattab-Alkuraya syndrome and beta-propeller protein-associated neurodegeneration (BPAN), respectively. Whereas, there is no disease linked to WIPI1 yet, one study linked it neural tube defects (NTD). In this review, the role of WIPI proteins in autophagy is discussed first, then syndromes related to these proteins are summarized.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Mohammed Almannai
| | - Dana Marafi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110:935-966. [PMID: 35134347 PMCID: PMC8930707 DOI: 10.1016/j.neuron.2022.01.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Motoki Fujimaki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Sung Min Son
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
31
|
Moharir SC, Raghawan AK, Ramaswamy R, Swarup G. Autophagy-independent cytoprotection by optineurin from toxicity of aggregates formed by mutant huntingtin and mutant ataxin-3. J Biochem 2022; 171:555-565. [PMID: 35134975 DOI: 10.1093/jb/mvac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/31/2022] [Indexed: 11/12/2022] Open
Abstract
An important feature of several neurodegenerative diseases is the formation of pathological structures containing aggregated proteins. The autophagy receptor optineurin/OPTN is frequently observed in these structures. The role played by optineurin in these aggregates is not clear. In this study, we explored whether optineurin has a cytoprotective role in the cells having mutant protein aggregates. We overexpressed mutant huntingtin having 97 glutamine repeats (mHtt), and mutant ataxin-3 having 130 glutamine repeats (mAtax-3) in wild-type and optineurin-deficient neuronal (N2A) and non-neuronal cells (Optn-/- mouse embryonic fibroblasts), and determined the percentage of dead cells with mutant protein aggregates. Optineurin-deficient cells having mHtt or mAtax-3 aggregates showed higher cell death as compared to wild-type cells having mutant protein aggregates. Confocal microscopy revealed that optineurin formed a shell around mHtt and mAtax-3 aggregates through its C-terminal domain. The C-terminal domain of optineurin, which lacks LC3-interacting region required for autophagy, was necessary and sufficient to reduce cytotoxicity of mHtt and mAtax-3 aggregates. Our results show that in the absence of optineurin, mutant protein aggregates are highly toxic, revealing an autophagy-independent cytoprotective function of optineurin, which is mediated by its C-terminal domain.
Collapse
Affiliation(s)
- Shivranjani C Moharir
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India.,Tata Institute for Genetics and Society, Bangalore, India
| | | | | | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| |
Collapse
|
32
|
Wen X, Yang Y, Klionsky DJ. Moments in autophagy and disease: Past and present. Mol Aspects Med 2021; 82:100966. [PMID: 33931245 PMCID: PMC8548407 DOI: 10.1016/j.mam.2021.100966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Over the past several decades, research on autophagy, a highly conserved lysosomal degradation pathway, has been advanced by studies in different model organisms, especially in the field of its molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, among which cancer and neurodegenerative diseases are the major focus. In this review, we cover some other important diseases, including cardiovascular diseases, infectious and inflammatory diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more complete understanding of the spectrum of autophagy's role in human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Yang
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis. Cells 2021; 10:cells10092247. [PMID: 34571896 PMCID: PMC8468025 DOI: 10.3390/cells10092247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Stress granules are conserved cytosolic ribonucleoprotein (RNP) compartments that undergo dynamic assembly and disassembly by phase separation in response to stressful conditions. Gene mutations may lead to aberrant phase separation of stress granules eliciting irreversible protein aggregations. A selective autophagy pathway called aggrephagy may partially alleviate the cytotoxicity mediated by these protein aggregates. Cells must perceive when and where the stress granules are transformed into toxic protein aggregates to initiate autophagosomal engulfment for subsequent autolysosomal degradation, therefore, maintaining cellular homeostasis. Indeed, defective aggrephagy has been causally linked to various neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this review, we discuss stress granules at the intersection of autophagy and ALS pathogenesis.
Collapse
|
34
|
Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, Yuen EL, Sanguankiattichai N, Tan E, Khandare V, Connerton AJ, Yunusov T, Madalinski M, Mirkin FG, Schornack S, Dagdas Y, Kamoun S, Bozkurt TO. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. eLife 2021; 10:65285. [PMID: 34424198 PMCID: PMC8382295 DOI: 10.7554/elife.65285] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization. With its long filaments reaching deep inside its prey, the tiny fungi-like organism known as Phytophthora infestans has had a disproportionate impact on human history. Latching onto plants and feeding on their cells, it has caused large-scale starvation events such as the Irish or Highland potato famines. Many specialized proteins allow the parasite to accomplish its feat. For instance, PexRD54 helps P. infestans hijack a cellular process known as autophagy. Healthy cells use this ‘self-eating’ mechanism to break down invaders or to recycle their components, for example when they require specific nutrients. The process is set in motion by various pathways of molecular events that result in specific sac-like ‘vesicles’ filled with cargo being transported to specialized compartments for recycling. PexRD54 can take over this mechanism by activating one of the plant autophagy pathways, directing cells to form autophagic vesicles that Phytophthora could then possibly use to feed on or to destroy antimicrobial components. How or why this is the case remains poorly understood. To examine these questions, Pandey, Leary et al. used a combination of genetic and microscopy techniques and tracked how PexRD54 alters autophagy as P. infestans infects a tobacco-related plant. The results show that PexRD54 works by bridging two proteins: one is present on cellular vesicles filled with cargo, and the other on autophagic structures surrounding the parasite. This allows PexRD54 to direct the vesicles to the feeding sites of P. infestans so the parasite can potentially divert nutrients. Pandey, Leary et al. then went on to develop a molecule called the AIM peptide, which could block autophagy by mimicking part of PexRD54. These results help to better grasp how a key disease affects crops, potentially leading to new ways to protect plants without the use of pesticides. They also shed light on autophagy: ultimately, a deeper understanding of this fundamental biological process could allow the development of plants which can adapt to changing environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Cian Duggan
- Imperial College London, London, United Kingdom
| | | | | | - Emily Tan
- Imperial College London, London, United Kingdom
| | | | | | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom
| | - Mathias Madalinski
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Federico Gabriel Mirkin
- Imperial College London, London, United Kingdom.,Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.,INGEBI-CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
35
|
Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, Yuen EL, Sanguankiattichai N, Tan E, Khandare V, Connerton AJ, Yunusov T, Madalinski M, Mirkin FG, Schornack S, Dagdas Y, Kamoun S, Bozkurt TO. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. eLife 2021; 10:65285. [PMID: 34424198 DOI: 10.1101/2020.03.20.000117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/20/2021] [Indexed: 05/26/2023] Open
Abstract
Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.
Collapse
Affiliation(s)
| | | | | | | | | | - Cian Duggan
- Imperial College London, London, United Kingdom
| | | | | | - Emily Tan
- Imperial College London, London, United Kingdom
| | | | | | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom
| | - Mathias Madalinski
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Federico Gabriel Mirkin
- Imperial College London, London, United Kingdom
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- INGEBI-CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
36
|
High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol. Cell Death Dis 2021; 12:560. [PMID: 34059630 PMCID: PMC8167120 DOI: 10.1038/s41419-021-03830-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
Autophagy is an intracellular recycling pathway with implications for intracellular homeostasis and cell survival. Its pharmacological modulation can aid chemotherapy by sensitizing cancer cells toward approved drugs and overcoming chemoresistance. Recent translational data on autophagy modulators show promising results in reducing tumor growth and metastasis, but also reveal a need for more specific compounds and novel lead structures. Here, we searched for such autophagy-modulating compounds in a flow cytometry-based high-throughput screening of an in-house natural compound library. We successfully identified novel inducers and inhibitors of the autophagic pathway. Among these, we identified arzanol as an autophagy-modulating drug that causes the accumulation of ATG16L1-positive structures, while it also induces the accumulation of lipidated LC3. Surprisingly, we observed a reduction of the size of autophagosomes compared to the bafilomycin control and a pronounced accumulation of p62/SQSTM1 in response to arzanol treatment in HeLa cells. We, therefore, speculate that arzanol acts both as an inducer of early autophagosome biogenesis and as an inhibitor of later autophagy events. We further show that arzanol is able to sensitize RT-112 bladder cancer cells towards cisplatin (CDDP). Its anticancer activity was confirmed in monotherapy against both CDDP-sensitive and -resistant bladder cancer cells. We classified arzanol as a novel mitotoxin that induces the fragmentation of mitochondria, and we identified a series of targets for arzanol that involve proteins of the class of mitochondria-associated quinone-binding oxidoreductases. Collectively, our results suggest arzanol as a valuable tool for autophagy research and as a lead compound for drug development in cancer therapy.
Collapse
|
37
|
Sayyad Z, Vishwakarma S, Dave TV, Naik MN, Radha V, Kaur I, Swarup G. Human primary retinal cells as an in-vitro model for investigating defective signalling caused by OPTN mutants associated with glaucoma. Neurochem Int 2021; 148:105075. [PMID: 34023378 DOI: 10.1016/j.neuint.2021.105075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Studies carried out on the pathogenesis of glaucoma using murine cell lines and animal models require to be validated in human cells. Therefore, we explored the possibility of using human primary retinal cells (hPRCs) in culture as a model for molecular studies and testing of potential therapeutic drugs. For this purpose, central retinal tissue, obtained from the enucleated eyes of patients with anterior staphyloma, was digested with trypsin and grown in a medium containing supplements (basic fibroblast growth factor and fetal bovine serum). hPRCs at passage 1 and 2, show expression of either GFAP, a glial cell marker, or β-III tubulin, a retinal ganglion cell (RGC)-specific marker. But at passages 3-5 nearly all of hPRCs express several RGC-specific markers (Brn3 proteins, Thy-1, β-III tubulin, RBPMS and NeuN) but not GFAP. Expression of these markers indicated that these cells may have functional properties of RGCs. As RGCs are sensitive to glaucoma-associated mutants of OPTN, we analysed the survival of hPRCs upon overexpression of OPTN mutants. Glaucoma-associated mutants, E50K-OPTN and M98K-OPTN, induced significantly higher cell death in hPRCs compared to WT-OPTN, whereas an amyotrophic lateral sclerosis-associated mutant, E478G-OPTN, did not. TBK1 inhibitor Amlexanox protected hPRCs from E50K-OPTN and M98K-OPTN induced cell death. M98K-OPTN induced cell death was suppressed by inhibitors of CaMKKβ and AMPK in hPRCs as well as in 661W, a mouse cell line that expresses several markers of RGCs and RGC precursor cells. Our results suggest that hPRCs under appropriate culture condition show RGC-like properties. These cells can be used to explore the molecular mechanisms of cell death relevant for glaucoma pathogenesis and for testing of cytoprotective compounds.
Collapse
Affiliation(s)
- Zuberwasim Sayyad
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Sushma Vishwakarma
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Tarjani Vivek Dave
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Milind N Naik
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India
| | - Vegesna Radha
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Inderjeet Kaur
- Prof Brien Holden Eye Research Centre, L.V. Prasad Eye Institute, Hyderabad, India.
| | - Ghanshyam Swarup
- CSIR- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
38
|
Qiu Y, Wang J, Li H, Yang B, Wang J, He Q, Weng Q. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease. Autophagy 2021; 18:73-85. [PMID: 33783320 DOI: 10.1080/15548627.2021.1908722] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a highly conserved process in eukaryotic cells. It plays a critical role in cellular homeostasis by delivering cytoplasmic cargos to lysosomes for selective degradation. OPTN (optineurin), a well-recognized autophagy receptor, has received considerable attention due to its multiple roles in the autophagic process. OPTN is associated with many human disorders that are closely related to autophagy, such as rheumatoid arthritis, osteoporosis, and nephropathy. Here, we review the function of OPTN as an autophagy receptor at different stages of autophagy, focusing on cargo recognition, autophagosome formation, autophagosome maturation, and lysosomal quality control. OPTN tends to be protective in most autophagy associated diseases, though the molecular mechanism of OPTN regulation in these diseases is not well understood. A comprehensive review of the function of OPTN in autophagy provides valuable insight into the pathogenesis of human diseases related to OPTN and facilitates the discovery of potential key regulators and novel therapeutic targets for disease intervention in patients with autophagic diseases.Abbreviations: ATG: autophagy-related; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; HACE1: HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; MYO6: myosin VI; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: IκB kinase; LIR: LC3-interacting region; LZ: leucine zipper; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NFKB/NF-κB: nuclear factor kappa B subunit; OPTN: optineurin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RTECs: renal tubular epithelial cells; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TOM1: target of myb1 membrane trafficking protein; UBD: ubiquitin-binding domain; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; ZF: zinc finger.
Collapse
Affiliation(s)
- Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ, de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 2021; 78:3791-3801. [PMID: 33544154 PMCID: PMC8106602 DOI: 10.1007/s00018-021-03772-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Savannah Sawaged
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
40
|
Zhang S, Shao Z, Liu X, Hou M, Cheng F, Lei D, Yuan H. The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro. Cell Death Dis 2021; 7:49. [PMID: 33723228 PMCID: PMC7960725 DOI: 10.1038/s41420-021-00432-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/23/2021] [Accepted: 02/13/2021] [Indexed: 01/31/2023]
Abstract
The glaucoma-associated E50K mutation in optineurin (OPTN) is known to affect autophagy and cause the apoptosis of retinal ganglion cells (RGCs), but the pathogenic mechanism remains unclear. In this study, we investigated whether the OPTN (E50K) mutation caused TDP-43 aggregation by disrupting autophagy in vivo and in vitro. OPTN (E50K) mutant mice were generated and analysed for genotype and phenotype. Adeno-associated virus type 2 vectors containing either GFP only, GFP-tagged wild-type OPTN or GFP-tagged E50K-mutated OPTN were used to transfect R28 cells. Loss of RGCs decreased retinal thickness and visual impairment were observed in OPTN (E50K) mice compared with WT mice. Moreover, overexpression of E50K OPTN induced R28 cell apoptosis. Increased p62/SQSTM1 and LC3-II levels indicated that autophagic flux was inhibited and contributed to TDP-43 aggregation in vivo and in vitro. We found that rapamycin effectively reduced the aggregation of TDP-43 in OPTN (E50K) mice and decreased the protein levels of p62/SQSTM1 and the autophagic marker LC3-II. Moreover, rapamycin increased the RGC number and visual function of E50K mice. In addition, we also observed increased cytoplasmic TDP-43 in the spinal cord and motor dysfunction in 24-month-old OPTN (E50K) mice, indicating that TDP-43 accumulation may be the common pathological mechanism of glaucoma and amyotrophic lateral sclerosis (ALS). In conclusion, the disruption of autophagy by OPTN (E50K) affected the degradation of TDP-43 and may play an important role in OPTN (E50K)-mediated glaucomatous retinal neurodegeneration.
Collapse
Affiliation(s)
- Shiqi Zhang
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Zhengbo Shao
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinna Liu
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Mingying Hou
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Fang Cheng
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Lei
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huiping Yuan
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66:693-713. [PMID: 33582161 DOI: 10.1016/j.survophthal.2021.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is an optic neuropathy characterized by well-defined optic disc morphological changes (i.e., cup enlargement, neuroretinal border thinning, and notching, papillary vessel modifications) consequent to retinal ganglion cell loss, axonal degeneration, and lamina cribrosa remodeling. These modifications tend to be progressive and are the main cause of functional damage in glaucoma. Despite the latest findings about the pathophysiology of the disease, the exact trigger mechanisms and the mechanism of degeneration of retinal ganglion cells and their axons have not been completely elucidated. Neuroinflammation may play a role in both the development and the progression of the disease as a result of its effects on retinal environment and retinal ganglion cells. We summarize the latest findings about neuroinflammation in glaucoma and examine the connection between risk factors, neuroinflammation, and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- Luciano Quaranta
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Carlo Bruttini
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Eleonora Micheletti
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anastasios G P Konstas
- 1st and 3rd University Departments of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | | | - Giovanni De Angelis
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
42
|
Medchalmi S, Tare P, Sayyad Z, Swarup G. A glaucoma- and ALS-associated mutant of OPTN induces neuronal cell death dependent on Tbk1 activity, autophagy and ER stress. FEBS J 2021; 288:4576-4595. [PMID: 33548116 DOI: 10.1111/febs.15752] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Mutations in OPTN are associated with glaucoma, an eye disease, and also with amyotrophic lateral sclerosis (ALS), a motor neuron disease. A 2-bp insertion in OPTN (691_692insAG or 2bpIns-OPTN) is associated with both glaucoma and ALS. This mutation results in frame shift after 127 amino acids, giving rise to a protein with C-terminal aberrant sequence. We have explored the mechanism of induction of cell death by this mutant in a motor neuron cell line, NSC-34, and also in a retinal cell line, 661W. Compared to wild-type OPTN, this mutant induced more cell death in NSC-34 and 661W cells. This mutant localizes predominantly in the nucleus whereas normal OPTN localizes in the cytoplasm. Deletion analysis of 2bpIns-OPTN showed that the aberrant sequence was not essential for cell death induction. This mutant interacts with TANK-binding kinase 1 (Tbk1) but not with OPTN and activates Tbk1. This mutant induced ER stress in NSC-34 cells as seen by induction of C/EBP homologous protein (CHOP) and some other genes. Induction of CHOP, autophagosomal protein LC3-II and cell death by this mutant were abrogated by Tbk1 knockdown and also by 4-phenylbutyric acid, that inhibits ER stress. Induction of CHOP and cell death by 2bpIns-OPTN was autophagy dependent as shown by the effect of Atg5 knockdown. This mutant caused increased formation of LC3-positive aggregates. Treatment of cells with autophagy inducer rapamycin reduced LC3-positive aggregates, CHOP and cell death induced by 2bpIns-OPTN. These results suggest that constitutive activation of Tbk1 by 2bpIns-OPTN leads to impaired autophagy that results in ER stress and cell death.
Collapse
Affiliation(s)
- Swetha Medchalmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Priyanka Tare
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
43
|
Optineurin deletion disrupts metabotropic glutamate receptor 5-mediated regulation of ERK1/2, GSK3β/ZBTB16, mTOR/ULK1 signaling in autophagy. Biochem Pharmacol 2021; 185:114427. [PMID: 33513340 DOI: 10.1016/j.bcp.2021.114427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Optineurin (OPTN) is a multifunctional protein that mediates a network of cellular processes regulating membrane trafficking, inflammatory responses and autophagy. The OPTN-rich interactome includes Group I metabotropic glutamate receptors (mGluR1 and 5), members of the Gαq/11 protein receptor family. Recent evidence has shown that mGluR5, in addition to its canonical Gαq/11 protein-coupled signaling, regulates autophagic machinery via mTOR/ULK1 and GSK3β/ZBTB16 pathways in both Alzheimer's and Huntington's disease mouse models. Despite its potential involvement, the role of OPTN in mediating mGluR5 downstream signaling cascades remains largely unknown. Here, we employed a CRISPR/Cas9 OPTN-deficient STHdhQ7/Q7 striatal cell line and global OPTN knockout mice to investigate whether Optn gene deletion alters both mGluR5 canonical and noncanonical signaling. We find that OPTN is required for mGluR5-activated Ca2+ flux and ERK1/2 signaling following receptor activation in STHdhQ7/Q7 cells and acute hippocampal slices. Deletion of OPTN impairs both GSK3β/ZBTB16 and mTOR/ULK1 autophagic signaling in STHdhQ7/Q7 cells. Furthermore, mGluR5-dependent regulation of GSK3β/ZBTB16 and mTOR/ULK1 autophagic signaling is impaired in hippocampal slices of OPTN knockout mice. Overall, we show that the crosstalk between OPTN and mGluR5 can have major implication on receptor signaling and therefore potentially contribute to the pathophysiology of neurodegenerative diseases.
Collapse
|
44
|
Belousov DM, Mikhaylenko EV, Somasundaram SG, Kirkland CE, Aliev G. The Dawn of Mitophagy: What Do We Know by Now? Curr Neuropharmacol 2021; 19:170-192. [PMID: 32442087 PMCID: PMC8033973 DOI: 10.2174/1570159x18666200522202319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Cecil E. Kirkland
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| | - Gjumrakch Aliev
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| |
Collapse
|
45
|
Kim H, Kim H, Choi J, Inn KS, Seong J. Visualization of Autophagy Progression by a Red-Green-Blue Autophagy Sensor. ACS Sens 2020; 5:3850-3861. [PMID: 33261316 DOI: 10.1021/acssensors.0c00809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autophagy is a major degradation process of cytosolic components and misfolded proteins that is crucial for cellular homeostasis and for the pathogenesis of diverse diseases. Autophagy is initiated by the formation of phagophores, which mature to autophagosomes. The autophagosomes then fuse to lysosomes to form autolysosomes. Different stages of autophagy can be deregulated to cause autophagy-related diseases, and thus, an accurate detection of each stage of autophagy progression is critical for efficient therapeutic strategies for these diseases. To identify the different stages of autophagy progression, here, we developed a new autophagy flux sensor, named red-green-blue-LC3 (RGB-LC3). RGB-LC3 is composed of LC3 and red-green-blue (RGB) fluorescent proteins, which were carefully chosen by considering their separate spectral profiles, stability, brightness, and most importantly different pH sensitivities. Utilizing this RGB-LC3 and the predicted pH, we could clearly identify phagophores, autophagosomes, fusion stage, early autolysosomes, and mature autolysosomes in live cells. Furthermore, the RGB-LC3 sensor was successfully applied to distinguish different effects of Aβ monomers and oligomers on autophagy flux. Therefore, we developed a new autophagy flux sensor, RGB-LC3, which may be a valuable tool to further investigate the molecular mechanisms of autophagy and to develop efficient therapeutic strategies for autophagy-related diseases.
Collapse
Affiliation(s)
- Heejung Kim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, South Korea
| | - Hyunbin Kim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Jaesik Choi
- Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, South Korea
| | - Jihye Seong
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
46
|
Ramachandran G, Moharir SC, Raghunand TR, Swarup G. Optineurin modulates ER stress-induced signaling pathways and cell death. Biochem Biophys Res Commun 2020; 534:297-302. [PMID: 33272572 DOI: 10.1016/j.bbrc.2020.11.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022]
Abstract
We have investigated the physiological role of the autophagy receptor Optineurin/Optn in endoplasmic reticulum (ER) stress response using cellular and animal models. In comparison to their normal counterparts, Optn-deficient mouse embryonic fibroblasts showed significantly higher cell death and caspase-3 activation upon treatment with tunicamycin and thapsigargin, inducers of ER stress. The transcript levels of some of the genes regulated by the IRE1-XBP1 and PERK-ATF4 pathways were upregulated in Optn-deficient cells, in comparison with normal cells, upon treatment with tunicamycin, and also in the brain cortex and liver of tunicamycin treated Optn-deficient mice. Also, the basal levels of IRE1α and PERK were higher in Optn-deficient cells. These results suggest that Optn modulates ER stress-induced signaling pathways and provides protection from ER stress-induced cell death.
Collapse
Affiliation(s)
| | | | | | - Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
47
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Wesch N, Kirkin V, Rogov VV. Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Cells 2020; 9:E2008. [PMID: 32882854 PMCID: PMC7564214 DOI: 10.3390/cells9092008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a common name for a number of catabolic processes, which keep the cellular homeostasis by removing damaged and dysfunctional intracellular components. Impairment or misbalance of autophagy can lead to various diseases, such as neurodegeneration, infection diseases, and cancer. A central axis of autophagy is formed along the interactions of autophagy modifiers (Atg8-family proteins) with a variety of their cellular counter partners. Besides autophagy, Atg8-proteins participate in many other pathways, among which membrane trafficking and neuronal signaling are the most known. Despite the fact that autophagy modifiers are well-studied, as the small globular proteins show similarity to ubiquitin on a structural level, the mechanism of their interactions are still not completely understood. A thorough analysis and classification of all known mechanisms of Atg8-protein interactions could shed light on their functioning and connect the pathways involving Atg8-proteins. In this review, we present our views of the key features of the Atg8-proteins and describe the basic principles of their recognition and binding by interaction partners. We discuss affinity and selectivity of their interactions as well as provide perspectives for discovery of new Atg8-interacting proteins and therapeutic approaches to tackle major human diseases.
Collapse
Affiliation(s)
- Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Vladimir Kirkin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research London, Sutton SM2 5NG, UK;
| | - Vladimir V. Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany;
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
49
|
McCall AL, Dhindsa JS, Pucci LA, Kahn AF, Fusco AF, Biswas DD, Strickland LM, Tseng HC, ElMallah MK. Respiratory pathology in the Optn -/- mouse model of Amyotrophic Lateral Sclerosis. Respir Physiol Neurobiol 2020; 282:103525. [PMID: 32805420 DOI: 10.1016/j.resp.2020.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder that results in death due to respiratory failure. Many genetic defects are associated with ALS; one such defect is a mutation in the gene encoding optineurin (OPTN). Using an optineurin null mouse (Optn-/-), we sought to characterize the impact of optineurin deficiency on respiratory neurodegeneration. Respiratory function was assessed at 6 and 12 mo of age using whole body plethysmography at baseline during normoxia (FiO2: 0.21; N2 balance) and during a respiratory challenge with hypoxia and hypercapnia (FiCO2: 0.07, FiO2: 0.10; N2 balance). Histological analyses to assess motor neuron viability and respiratory nerve integrity were performed in the medulla, cervical spinal cord, hypoglossal nerve, and phrenic nerve. Minute ventilation, peak inspiratory flow, and peak expiratory flow are significantly reduced during a respiratory challenge in 6 mo Optn-/-mice. By 12 mo, tidal volume is also significantly reduced in Optn-/- mice. Furthermore, 12mo Optn-/- mice exhibit hypoglossal motor neuron loss, phrenic and hypoglossal dysmyelination, and accumulated mitochondria in the hypoglossal nerve axons. Overall, these data indicate that Optn-/- mice display neurodegenerative respiratory dysfunction and are a useful model to study the impact of novel therapies on respiratory function for optineurin-deficient ALS patients.
Collapse
Affiliation(s)
- Angela L McCall
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Justin S Dhindsa
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Logan A Pucci
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Amanda F Kahn
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Anna F Fusco
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Debolina D Biswas
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Laura M Strickland
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Mai K ElMallah
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina 27710, USA.
| |
Collapse
|
50
|
Guo Q, Wang J, Weng Q. The diverse role of optineurin in pathogenesis of disease. Biochem Pharmacol 2020; 180:114157. [PMID: 32687832 DOI: 10.1016/j.bcp.2020.114157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Optineurin is a widely expressed protein that possesses multiple functions. Growing evidence suggests that mutation or dysregulation of optineurin can cause several neurodegenerative diseases, including amyotrophic lateral sclerosis, primary open-angle glaucoma, and Huntington's disease, as well as inflammatory digestive disorders such as Crohn's disease. Optineurin engages in vesicular trafficking, receptor regulation, immune reactions, autophagy, and distinct signaling pathways including nuclear factor kappa beta, by which optineurin contributes to cellular death and related diseases, indicating its potential as a therapeutic target. In this review, we discuss the major functions and signaling pathways of optineurin. Furthermore, we illustrate the influence of optineurin mutation or dysregulation to region-specific pathogenesis as well as potential applications of optineurin in therapeutic strategies.
Collapse
Affiliation(s)
- Qingyi Guo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|