1
|
Pollak MR, Friedman DJ. APOL1-associated kidney disease: modulators of the genotype-phenotype relationship. Curr Opin Nephrol Hypertens 2025; 34:191-198. [PMID: 40047214 DOI: 10.1097/mnh.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW Apolipoprotein-L1 (APOL1) G1 and G2 risk variants, found in people of recent west sub-Saharan African ancestry, dramatically increase the likelihood of kidney disease, yet the incomplete penetrance an diverse clinical manifestations underscore the need to understand the molecular and environmental factors that modulate APOL1-mediated toxicity. RECENT FINDINGS Recent studies confirm that risk variants exert a toxic gain-of-function effect, exacerbated by inflammatory triggers such as HIV infection and COVID-19. Epigenetic mechanisms and microRNA pathways further modulate APOL1 expression, influencing disease penetrance. Multiple models have clarified how subcellular localization, signal peptide processing, and interactions with the endoplasmic reticulum may contribute to pathogenesis. Therapeutic advances include inhibitors targeting APOL1 ion channel activity and strategies that block key inflammatory signaling pathways. SUMMARY These findings highlight a multifaceted disease process driven by both the intrinsic toxic potential of APOL1 variants and numerous extrinsic triggers. Understanding this complex interplay will be pivotal for risk stratification and the development of precision therapies, potentially improving outcomes for populations disproportionately affected by APOL1-associated kidney disease.
Collapse
Affiliation(s)
- Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
2
|
Mejia SM, Fischman CJ, Sise ME. Kidney disease in patients with HIV. Curr Opin HIV AIDS 2025:01222929-990000000-00154. [PMID: 40184511 DOI: 10.1097/coh.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
PURPOSE OF REVIEW With the advent of antiretroviral therapy, people with HIV (PWH) are living longer and are at risk of developing age-related comorbid illnesses, such as chronic kidney disease (CKD). The purpose of this review article is to summarize recent advances in the diagnosis and management of kidney disease in PWH, and ultimately inform clinical practice. RECENT FINDINGS Individuals of West African descent are often genetically predisposed to develop CKD. Among carriers of the APOL-1 risk variant, Na+/K+ transport has been identified as the proximal driver in APOL-1-mediated pathogenesis. The use of urine biomarkers in CKD diagnosis among PWH has been supported and is comparable to the general population. Additionally, novel CKD therapies, such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide 1 receptor agonists can potentially offer significant clinical benefit to PWH with CKD. SUMMARY Despite being an underrepresented group in clinical trials, recent research findings have broadened our understanding of kidney disease in PWH. Given that PWH experience an increased risk of developing CKD, early detection and management is vital in improving quality of life and overall healthcare outcomes.
Collapse
Affiliation(s)
- Sherley M Mejia
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Clara J Fischman
- Renal-Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meghan E Sise
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Pays E. Apolipoprotein-L Functions in Membrane Remodeling. Cells 2024; 13:2115. [PMID: 39768205 PMCID: PMC11726835 DOI: 10.3390/cells13242115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A). These vesicles deliver APOL3 together with phosphatidylinositol-4-kinase-B (PI4KB) and activated Stimulator of Interferon Genes (STING) to mitochondrion-endoplasmic reticulum (ER) contact sites (MERCSs) for the induction and completion of mitophagy and apoptosis. Through direct interactions with PI4KB and PI4KB activity controllers (Neuronal Calcium Sensor-1, or NCS1, Calneuron-1, or CALN1, and ADP-Ribosylation Factor-1, or ARF1), APOL3 controls PI(4)P synthesis. PI(4)P is required for different processes linked to infection-induced inflammation: (i) STING activation at the Golgi and subsequent lysosomal degradation for inflammation termination; (ii) mitochondrion fission at MERCSs for induction of mitophagy and apoptosis; and (iii) phagolysosome formation for antigen processing. In addition, APOL3 governs mitophagosome fusion with endolysosomes for mitophagy completion, and the APOL3-like murine APOL7C is involved in phagosome permeabilization linked to antigen cross-presentation in dendritic cells. Similarly, APOL3 can induce the fusion of intracellular bacterial membranes, and a role in membrane fusion can also be proposed for endothelial APOLd1 and adipocyte mAPOL6, which promote angiogenesis and adipogenesis, respectively, under inflammatory conditions. Thus, different APOL isoforms play distinct roles in membrane remodeling associated with inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
4
|
Pays E. Apolipoprotein-L1 (APOL1): From Sleeping Sickness to Kidney Disease. Cells 2024; 13:1738. [PMID: 39451256 PMCID: PMC11506758 DOI: 10.3390/cells13201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Apolipoprotein-L1 (APOL1) is a membrane-interacting protein induced by inflammation, which confers human resistance to infection by African trypanosomes. APOL1 kills Trypanosoma brucei through induction of apoptotic-like parasite death, but two T. brucei clones acquired resistance to APOL1, allowing them to cause sleeping sickness. An APOL1 C-terminal sequence alteration, such as occurs in natural West African variants G1 and G2, restored human resistance to these clones. However, APOL1 unfolding induced by G1 or G2 mutations enhances protein hydrophobicity, resulting in kidney podocyte dysfunctions affecting renal filtration. The mechanism involved in these dysfunctions is debated. The ability of APOL1 to generate ion pores in trypanosome intracellular membranes or in synthetic membranes was provided as an explanation. However, transmembrane insertion of APOL1 strictly depends on acidic conditions, and podocyte cytopathology mainly results from secreted APOL1 activity on the plasma membrane, which occurs under non-acidic conditions. In this review, I argue that besides inactivation of APOL3 functions in membrane dynamics (fission and fusion), APOL1 variants induce inflammation-linked podocyte toxicity not through pore formation, but through plasma membrane disturbance resulting from increased interaction with cholesterol, which enhances cation channels activity. A natural mutation in the membrane-interacting domain (N264K) abrogates variant APOL1 toxicity at the expense of slightly increased sensitivity to trypanosomes, further illustrating the continuous mutual adaptation between host and parasite.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
5
|
Tabachnikov O, Skorecki K, Kruzel-Davila E. APOL1 nephropathy - a population genetics success story. Curr Opin Nephrol Hypertens 2024; 33:447-455. [PMID: 38415700 PMCID: PMC11139250 DOI: 10.1097/mnh.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW More than a decade ago, apolipoprotein L1 ( APOL1 ) risk alleles designated G1 and G2, were discovered to be causally associated with markedly increased risk for progressive kidney disease in individuals of recent African ancestry. Gratifying progress has been made during the intervening years, extending to the development and clinical testing of genomically precise small molecule therapy accompanied by emergence of RNA medicine platforms and clinical testing within just over a decade. RECENT FINDINGS Given the plethora of excellent prior review articles, we will focus on new findings regarding unresolved questions relating mechanism of cell injury with mode of inheritance, regulation and modulation of APOL1 activity, modifiers and triggers for APOL1 kidney risk penetrance, the pleiotropic spectrum of APOL1 related disease beyond the kidney - all within the context of relevance to therapeutic advances. SUMMARY Notwithstanding remaining controversies and uncertainties, promising genomically precise therapies targeted at APOL1 mRNA using antisense oligonucleotides (ASO), inhibitors of APOL1 expression, and small molecules that specifically bind and inhibit APOL1 cation flux are emerging, many already at the clinical trial stage. These therapies hold great promise for mitigating APOL1 kidney injury and possibly other systemic phenotypes as well. A challenge will be to develop guidelines for appropriate use in susceptible individuals who will derive the greatest benefit.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Nephrology, Rambam Healthcare Campus, Haifa, Israel
| | - Karl Skorecki
- Department of Nephrology, Rambam Healthcare Campus, Haifa, Israel
- Departments of Genetics and Developmental Biology and Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Etty Kruzel-Davila
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Nephrology, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
6
|
Chen L, Huang Y, Zhao H, Xue S. Swelling and penetration of fatty acid vesicles under ion-competitive environment. Colloids Surf B Biointerfaces 2024; 236:113800. [PMID: 38382226 DOI: 10.1016/j.colsurfb.2024.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The physicochemical characteristics of fatty acid (FA) vesicles and their ion sensitivity as drug delivery vehicles in an ion-competitive environment have received much attention. Here, we show that in a Na+/K+ competitive ionic environment, FA vesicles undergo a cascade of periodic expansion and selective ion retention in response to osmotic attack. When the Na+/K+ ratio is altered, the expansion and volume of vesicles are affected and the ions in vesicles mix with the hyperosmotic fluid to produce a stable transmembrane potential, consistent with the Donnan effect and iontophoresis theory. Furthermore, osmotic swelling experiments suggest that FA vesicles are more easily maintained in a single Na+ or K+ solution than in a multicomponent ion competition system. As a theoretical basis for the utilization of FA vesicles in multicomponent ionic environments, we developed a core theoretical model to characterize the basic features of the volume fluctuations of FA vesicles in ion-competing environments.
Collapse
Affiliation(s)
- Lichun Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6780 WE, the Netherlands.
| | - Yun Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huimin Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Songwen Xue
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Datta S, Antonio BM, Zahler NH, Theile JW, Krafte D, Zhang H, Rosenberg PB, Chaves AB, Muoio DM, Zhang G, Silas D, Li G, Soldano K, Nystrom S, Ferreira D, Miller SE, Bain JR, Muehlbauer MJ, Ilkayeva O, Becker TC, Hohmeier HE, Newgard CB, Olabisi OA. APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease. J Clin Invest 2024; 134:e172262. [PMID: 38227370 PMCID: PMC10904047 DOI: 10.1172/jci172262] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Somenath Datta
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | | | | | | | | | - Hengtao Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul B. Rosenberg
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alec B. Chaves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Guofang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Guojie Li
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Karen Soldano
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Sarah Nystrom
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - James R. Bain
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas C. Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hans-Ewald Hohmeier
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Opeyemi A. Olabisi
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| |
Collapse
|
8
|
Vasquez-Rios G, De Cos M, Campbell KN. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int Rep 2023; 8:2226-2234. [PMID: 38025220 PMCID: PMC10658239 DOI: 10.1016/j.ekir.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Apolipoprotein L1 (APOL1) high-risk variants confer an increased risk for the development and progression of kidney disease among individuals of recent African ancestry. Over the past several years, significant progress has been made in understanding the pathogenesis of APOL1-mediated kidney diseases (AMKD), including genetic regulation, environmental interactions, immunomodulatory, proinflammatory and apoptotic signaling processes, as well as the complex role of APOL1 as an ion channel. Collectively, these findings have paved the way for novel therapeutic strategies to mitigate APOL1-mediated kidney injury. Precision medicine approaches are being developed to identify subgroups of AMKD patients who may benefit from these targeted interventions, fueling hope for improved clinical outcomes. This review summarizes key mechanistic insights in the pathogenesis of AMKD, emergent therapies, and discusses future challenges.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina De Cos
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Vandorpe DH, Heneghan JF, Waitzman JS, McCarthy GM, Blasio A, Magraner JM, Donovan OG, Schaller LB, Shah SS, Subramanian B, Riella CV, Friedman DJ, Pollak MR, Alper SL. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475:323-341. [PMID: 36449077 DOI: 10.1007/s00424-022-02767-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.
Collapse
Affiliation(s)
- David H Vandorpe
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - John F Heneghan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Joshua S Waitzman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gizelle M McCarthy
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Angelo Blasio
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | - Jose M Magraner
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,, San Diego, CA, USA
| | - Olivia G Donovan
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA
| | - Lena B Schaller
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Ludwig-Maximilians-Universitaet, 80336, Munich, Germany
| | - Shrijal S Shah
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Chroma Medicine, Cambridge, MA, 02142, USA
| | - Balajikarthick Subramanian
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristian V Riella
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - David J Friedman
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Martin R Pollak
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| | - Seth L Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center RN380F, 99 Brookline Ave, Boston, MA, 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Winkler RL, Bruno J, Buchanan P, Edwards JC. Cation Channel Activity of Apolipoprotein L1 is Modulated by Haplotype Background. J Am Soc Nephrol 2022; 33:1673-1675. [PMID: 35840172 PMCID: PMC9529181 DOI: 10.1681/asn.2022020213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
| | - Jonathan Bruno
- Division of Nephrology, Saint Louis University, St. Louis, Missouri
| | - Paula Buchanan
- AHEAD Institute, Saint Louis University, St. Louis, Missouri
| | - John C. Edwards
- Division of Nephrology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
11
|
Gerstner L, Chen M, Kampf LL, Milosavljevic J, Lang K, Schneider R, Hildebrandt F, Helmstädter M, Walz G, Hermle T. Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney Int 2022; 101:1216-1231. [PMID: 35120995 PMCID: PMC10061223 DOI: 10.1016/j.kint.2021.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Lina L Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Ronen Schneider
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Renal Division, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol 2022; 18:307-320. [PMID: 35217848 PMCID: PMC8877744 DOI: 10.1038/s41581-022-00538-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 01/13/2023]
Abstract
Genetic coding variants in APOL1, which encodes apolipoprotein L1 (APOL1), were identified in 2010 and are relatively common among individuals of sub-Saharan African ancestry. Approximately 13% of African Americans carry two APOL1 risk alleles. These variants, termed G1 and G2, are a frequent cause of kidney disease — termed APOL1 nephropathy — that typically manifests as focal segmental glomerulosclerosis and the clinical syndrome of hypertension and arterionephrosclerosis. Cell culture studies suggest that APOL1 variants cause cell dysfunction through several processes, including alterations in cation channel activity, inflammasome activation, increased endoplasmic reticulum stress, activation of protein kinase R, mitochondrial dysfunction and disruption of APOL1 ubiquitinylation. Risk of APOL1 nephropathy is mostly confined to individuals with two APOL1 risk variants. However, only a minority of individuals with two APOL1 risk alleles develop kidney disease, suggesting the need for a ‘second hit’. The best recognized factor responsible for this ‘second hit’ is a chronic viral infection, particularly HIV-1, resulting in interferon-mediated activation of the APOL1 promoter, although most individuals with APOL1 nephropathy do not have an obvious cofactor. Current therapies for APOL1 nephropathies are not adequate to halt progression of chronic kidney disease, and new targeted molecular therapies are in clinical trials. This Review summarizes current understanding of the role of APOL1 variants in kidney disease. The authors discuss the genetics, protein structure and biological functions of APOL1 variants and provide an overview of promising therapeutic strategies. In contrast to other APOL family members, which are primarily intracellular, APOL1 contains a unique secretory signal peptide, resulting in its secretion into plasma. APOL1 renal risk alleles provide protection from African human trypanosomiasis but are a risk factor for progressive kidney disease in those carrying two risk alleles. APOL1 risk allele frequency is ~35% in the African American population in the United States, with ~13% of individuals having two risk alleles; the highest allele frequencies are found in West African populations and their descendants. Cell and mouse models implicate endolysosomal and mitochondrial dysfunction, altered ion channel activity, altered autophagy, and activation of protein kinase R in the pathogenesis of APOL1-associated kidney disease; however, the relevance of these injury pathways to human disease has not been resolved. APOL1 kidney disease tends to be progressive, and current standard therapies are generally ineffective; targeted therapeutic strategies hold the most promise.
Collapse
Affiliation(s)
- Parnaz Daneshpajouhnejad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Pennsylvania Hospital, Philadelphia, PA, USA
| | | | - Cheryl A Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Hall G, Wyatt CM. Mechanisms of Proteinuria in HIV. Front Med (Lausanne) 2021; 8:749061. [PMID: 34722586 PMCID: PMC8548571 DOI: 10.3389/fmed.2021.749061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Proteinuria is common in the setting of HIV infection, and may reflect comorbid kidney disease, treatment-related nephrotoxicity, and HIV-related glomerular diseases. The mechanisms of podocyte and tubulointerstial injury in HIV-associated nephropathy (HIVAN) have been the subject of intense investigation over the past four decades. The pathologic contributions of viral gene expression, dysregulated innate immune signaling, and ancestry-driven genetic risk modifiers have been explored in sophisticated cellular and whole animal models of disease. These studies provide evidence that injury-induced podocyte dedifferentiation, hyperplasia, cytoskeletal dysregulation, and apoptosis may cause the loss of glomerular filtration barrier integrity and slit diaphragm performance that facilitates proteinuria and tuft collapse in HIVAN. Although the incidence of HIVAN has declined with the introduction of antiretroviral therapy, the collapsing FSGS lesion has been observed in the context of other viral infections and chronic autoimmune disorders, and with the use of interferon-based therapies in genetically susceptible populations. This highlights the fact that the lesion is not specific to HIVAN and that the role of the immune system in aggravating podocyte injury warrants further exploration. This review will summarize our progress in characterizing the molecular mechanisms of podocyte dysfunction in HIVAN and other forms of HIV-associated kidney disease.
Collapse
Affiliation(s)
- Gentzon Hall
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Durham, NC, United States
| | - Christina M Wyatt
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, United States.,Duke Clinical Research Institute, Durham, NC, United States
| |
Collapse
|
14
|
Müller D, Schmitz J, Fischer K, Granado D, Groh AC, Krausel V, Lüttgenau SM, Amelung TM, Pavenstädt H, Weide T. Evolution of Renal-Disease Factor APOL1 Results in Cis and Trans Orientations at the Endoplasmic Reticulum That Both Show Cytotoxic Effects. Mol Biol Evol 2021; 38:4962-4976. [PMID: 34323996 PMCID: PMC8557400 DOI: 10.1093/molbev/msab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent and exclusively in humans and a few other higher primates expressed APOL1 (apolipoprotein L1) gene is linked to African human trypanosomiasis (also known as African sleeping sickness) as well as to different forms of kidney diseases. Whereas APOL1's role as a trypanolytic factor is well established, pathobiological mechanisms explaining its cytotoxicity in renal cells remain unclear. In this study, we compared the APOL family members using a combination of evolutionary studies and cell biological experiments to detect unique features causal for APOL1 nephrotoxic effects. We investigated available primate and mouse genome and transcriptome data to apply comparative phylogenetic and maximum likelihood selection analyses. We suggest that the APOL gene family evolved early in vertebrates and initial splitting occurred in ancestral mammals. Diversification and differentiation of functional domains continued in primates, including developing the two members APOL1 and APOL2. Their close relationship could be diagnosed by sequence similarity and a shared ancestral insertion of an AluY transposable element. Live-cell imaging analyses showed that both expressed proteins show a strong preference to localize at the endoplasmic reticulum (ER). However, glycosylation and secretion assays revealed that-unlike APOL2-APOL1 membrane insertion or association occurs in different orientations at the ER, with the disease-associated mutants facing either the luminal (cis) or cytoplasmic (trans) side of the ER. The various pools of APOL1 at the ER offer a novel perspective in explaining the broad spectrum of its observed toxic effects.
Collapse
Affiliation(s)
- Daria Müller
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | - Katharina Fischer
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Daniel Granado
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Ann-Christin Groh
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Vanessa Krausel
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Simona Mareike Lüttgenau
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Till Maximilian Amelung
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Hermann Pavenstädt
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| | - Thomas Weide
- Internal Medicine D (MedD), Molecular Nephrology, University Hospital of Münster (UKM), Münster, Germany
| |
Collapse
|
15
|
Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ, Ma Z, Beckerman P, Laczkó D, Palmer MB, Kopp JB, Kuo JJ, Pullen SS, Boustany-Kari CM, Linkermann A, Susztak K. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Invest 2021; 131:e136329. [PMID: 34651582 PMCID: PMC8516463 DOI: 10.1172/jci136329] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Coding variants in apolipoprotein L1 (APOL1), termed G1 and G2, can explain most excess kidney disease risk in African Americans; however, the molecular pathways of APOL1-induced kidney dysfunction remain poorly understood. Here, we report that expression of G2 APOL1 in the podocytes of Nphs1rtTA/TRE-G2APOL1 (G2APOL1) mice leads to early activation of the cytosolic nucleotide sensor, stimulator of interferon genes (STING), and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. STING and NLRP3 expression was increased in podocytes from patients with high-risk APOL1 genotypes, and expression of APOL1 correlated with caspase-1 and gasdermin D (GSDMD) levels. To demonstrate the role of NLRP3 and STING in APOL1-associated kidney disease, we generated transgenic mice with the G2 APOL1 risk variant and genetic deletion of Nlrp3 (G2APOL1/Nlrp3 KO), Gsdmd (G2APOL1/Gsdmd KO), and STING (G2APOL1/STING KO). Knockout mice displayed marked reduction in albuminuria, azotemia, and kidney fibrosis compared with G2APOL1 mice. To evaluate the therapeutic potential of targeting NLRP3, GSDMD, and STING, we treated mice with MCC950, disulfiram, and C176, potent and selective inhibitors of NLRP3, GSDMD, and STING, respectively. G2APOL1 mice treated with MCC950, disulfiram, and C176 showed lower albuminuria and improved kidney function even when inhibitor treatment was initiated after the development of albuminuria.
Collapse
Affiliation(s)
- Junnan Wu
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Archana Raman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan J. Coffey
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Sheng
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Wahba
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew J. Seasock
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pazit Beckerman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dorottya Laczkó
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B. Palmer
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay J. Kuo
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Steven S. Pullen
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Katalin Susztak
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Ultsch M, Holliday MJ, Gerhardy S, Moran P, Scales SJ, Gupta N, Oltrabella F, Chiu C, Fairbrother W, Eigenbrot C, Kirchhofer D. Structures of the ApoL1 and ApoL2 N-terminal domains reveal a non-classical four-helix bundle motif. Commun Biol 2021; 4:916. [PMID: 34316015 PMCID: PMC8316464 DOI: 10.1038/s42003-021-02387-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Michael J Holliday
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Suzie J Scales
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nidhi Gupta
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | | | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Wayne Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
17
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Bruggeman LA, Sedor JR, O'Toole JF. Apolipoprotein L1 and mechanisms of kidney disease susceptibility. Curr Opin Nephrol Hypertens 2021; 30:317-323. [PMID: 33767059 PMCID: PMC8211384 DOI: 10.1097/mnh.0000000000000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Allelic variants in the gene for apolipoprotein L1 (APOL1), found only in individuals of African ancestry, explain a majority of the excess risk of kidney disease in African Americans. However, a clear understanding how the disease-associated APOL1 variants cause kidney injury and the identity of environmental stressors that trigger the injury process have not been determined. RECENT FINDINGS Basic mechanistic studies of APOL1 biochemistry and cell biology, bolstered by new antibody reagents and inducible pluripotent stem cell-derived cell systems, have focused on the cytotoxic effect of the risk variants when APOL1 gene expression is induced. Since the APOL1 variants evolved to alter a key protein-protein interaction with the trypanosome serum resistance-associated protein, additional studies have begun to address differences in APOL1 interactions with other proteins expressed in podocytes, including new observations that APOL1 variants may alter podocyte cytoskeleton dynamics. SUMMARY A unified mechanism of pathogenesis for the various APOL1 nephropathies still remains unclear and controversial. As ongoing studies have consistently implicated the pathogenic gain-of-function effects of the variant proteins, novel therapeutic development inhibiting the synthesis or function of APOL1 proteins is moving toward clinical trials.
Collapse
Affiliation(s)
| | - John R Sedor
- Departments of Nephrology and Inflammation & Immunity, Cleveland Clinic
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John F O'Toole
- Departments of Nephrology and Inflammation & Immunity, Cleveland Clinic
| |
Collapse
|
19
|
Abstract
Rates of many types of severe kidney disease are much higher in Black individuals than most other ethnic groups. Much of this disparity can now be attributed to genetic variants in the apoL1 (APOL1) gene found only in individuals with recent African ancestry. These variants greatly increase rates of hypertension-associated ESKD, FSGS, HIV-associated nephropathy, and other forms of nondiabetic kidney disease. We discuss the population genetics of APOL1 risk variants and the clinical spectrum of APOL1 nephropathy. We then consider clinical issues that arise for the practicing nephrologist caring for the patient who may have APOL1 kidney disease.
Collapse
Affiliation(s)
- David J Friedman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
20
|
Bruno J, Edwards JC. Kidney-disease-associated variants of Apolipoprotein L1 show gain of function in cation channel activity. J Biol Chem 2021; 296:100238. [PMID: 33380423 PMCID: PMC7948812 DOI: 10.1074/jbc.ra120.013943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022] Open
Abstract
Variants in Apolipoprotein L1 (ApoL1) are known to be responsible for increased risk of some progressive kidney diseases among people of African ancestry. ApoL1 is an amphitropic protein that can insert into phospholipid membranes and confer anion- or cation-selective permeability to phospholipid membranes depending on pH. Whether these activities differ among the variants or whether they contribute to disease pathogenesis is unknown. We used assays of voltage-driven ion flux from phospholipid vesicles and of stable membrane association to assess differences among ApoL1 isoforms. There is a significant (approximately twofold) increase in the cation-selective ion permease activity of the two kidney-disease-associated variants compared with the reference protein. In contrast, we find no difference in the anion-selective permease activity at low pH among the isoforms. Compared with the reference sequence, the two disease-associated variants show increased stable association with phospholipid vesicles under conditions that support the cation permease activity, suggesting that the increased activity may be due to more efficient membrane association and insertion. There is no difference in membrane association among isoforms under optimal conditions for the anion permease activity. These data support a model in which enhanced cation permeability may contribute to the progressive kidney diseases associated with high-risk ApoL1 alleles.
Collapse
Affiliation(s)
- Jonathan Bruno
- Nephrology Division, Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - John C Edwards
- Nephrology Division, Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA.
| |
Collapse
|
21
|
Madhavan SM, Buck M. The Relationship between APOL1 Structure and Function: Clinical Implications. KIDNEY360 2020; 2:134-140. [PMID: 35368828 PMCID: PMC8785724 DOI: 10.34067/kid.0002482020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
Common variants in the APOL1 gene are associated with an increased risk of nondiabetic kidney disease in individuals of African ancestry. Mechanisms by which APOL1 variants mediate kidney disease pathogenesis are not well understood. Amino acid changes resulting from the kidney disease-associated APOL1 variants alter the three-dimensional structure and conformational dynamics of the C-terminal α-helical domain of the protein, which can rationalize the functional consequences. Understanding the three-dimensional structure of the protein, with and without the risk variants, can provide insights into the pathogenesis of kidney diseases mediated by APOL1 variants.
Collapse
Affiliation(s)
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
22
|
Zhong F, Lu HP, Chen G, Dang YW, Zhang XG, Liang Y, Li MX, Li GS, Chen XY, Yao YX, Qin YY, Mo M, Zhang KL, Ding H, Huang ZG, Wei ZX. The clinical significance of apolipoprotein L1 in head and neck squamous cell carcinoma. Oncol Lett 2020; 20:377. [PMID: 33154775 PMCID: PMC7608033 DOI: 10.3892/ol.2020.12240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Approximately 500,000 new head and neck squamous cell carcinoma (HNSCC) cases are detected every year around the world, and its incidence ranks sixth among all cancer types globally. Among these cases, oral squamous cell carcinoma (OSCC) and laryngeal squamous cell carcinoma (LSCC) are HNSCC subtypes with high incidence rates, especially in China. The present study examines the association between the apolipoprotein L1 (APOL1) mRNA and protein expression and clinical parameters in HNSCC. The two most common types (oral and larynx) of HNSCC were selected for subgroup analyses. Immunohistochemistry (IHC) was used to detect APOL1 protein expression levels in HNSCC clinical specimens. It was demonstrated that APOL1 protein expression in 221 cases of HNSCC was higher compared with that in normal tissues. Consistent upregulation of APOL1 protein was also found in subgroups of OSCC and LSCC. Through mining the ArrayExpress, The Cancer Genome Atlas and the Gene Expression Omnibus databases, microarrays and RNA sequencing data for HNSCC were retrieved, which were used to analyze APOL1 mRNA expression levels. The results showed that APOL1 expression was higher in both OSCC and LSCC subtypes, as well as in HNSCC, compared with that in non-cancerous squamous epithelium. The summary receiver operating characteristic analysis showed that APOL1 had potential as a diagnostic biomarker for HNSCC, OSCC and LSCC. Thus, upregulation of APOL1 may contribute to the tumorigenesis of HNSCC.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Pathology, Hengxian People's Hospital, Nanning, Guangxi Zhuang Autonomous Region 530300, P.R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Ying Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Miao Mo
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kai-Lang Zhang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
23
|
Li D, Snipes JA, Murea M, Molina AJA, Divers J, Freedman BI, Ma L, Petrovic S. An Acidic Environment Induces APOL1-Associated Mitochondrial Fragmentation. Am J Nephrol 2020; 51:695-704. [PMID: 32866949 DOI: 10.1159/000509989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Apolipoprotein L1 gene (APOL1) G1 and G2 kidney-risk variants (KRVs) cause CKD in African Americans, inducing mitochondrial dysfunction. Modifying factors are required, because a minority of individuals with APOL1 high-risk genotypes develop nephropathy. Given that APOL1 function is pH-sensitive and the pH of the kidney interstitium is <7, we hypothesized the acidic kidney interstitium may facilitate APOL1 KRV-induced mitochondrial dysfunction. METHODS Human embryonic kidney (HEK293) cells conditionally expressing empty vector (EV), APOL1-reference G0, and G1 or G2 KRVs were incubated in media pH 6.8 or 7.4 for 4, 6, or 8 h. Genotype-specific pH effects on mitochondrial length (µm) were assessed using confocal microscopy in live cells and Fiji derivative of ImageJ software with MiNA plug-in. Lower mitochondrial length indicated fragmentation and early dysfunction. RESULTS After 6 h doxycycline (Dox) induction in pH 6.8 media, G2-expressing cells had shorter mitochondria (6.54 ± 0.40) than cells expressing EV (7.65 ± 0.72, p = 0.02) or G0 (7.46 ± 0.31, p = 0.003). After 8 h Dox induction in pH 6.8 media, both G1- (6.21 ± 0.26) and G2-expressing cells had shorter mitochondria (6.46 ± 0.34) than cells expressing EV (7.13 ± 0.32, p = 0.002 and p = 0.008, respectively) or G0 (7.22 ± 0.45, p = 0.003 and p = 0.01, respectively). Mitochondrial length in cells incubated in pH 7.4 media were comparable after 8 h Dox induction regardless of genotype. APOL1 mRNA expression and cell viability were comparable regardless of pH or genotype after 8 h Dox induction. CONCLUSION Acidic pH facilitates early mitochondrial dysfunction induced by APOL1 G1 and G2 KRVs in HEK293 cells. We propose that the acidic kidney interstitium may play a role in APOL1-mediated mitochondrial pathophysiology and nephropathy.
Collapse
Affiliation(s)
- DengFeng Li
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James A Snipes
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mariana Murea
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony J A Molina
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jasmin Divers
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,
| | - Snezana Petrovic
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
24
|
Scales SJ, Gupta N, De Mazière AM, Posthuma G, Chiu CP, Pierce AA, Hötzel K, Tao J, Foreman O, Koukos G, Oltrabella F, Klumperman J, Lin W, Peterson AS. Apolipoprotein L1-Specific Antibodies Detect Endogenous APOL1 inside the Endoplasmic Reticulum and on the Plasma Membrane of Podocytes. J Am Soc Nephrol 2020; 31:2044-2064. [PMID: 32764142 DOI: 10.1681/asn.2019080829] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/10/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND APOL1 is found in human kidney podocytes and endothelia. Variants G1 and G2 of the APOL1 gene account for the high frequency of nondiabetic CKD among African Americans. Proposed mechanisms of kidney podocyte cytotoxicity resulting from APOL1 variant overexpression implicate different subcellular compartments. It is unclear where endogenous podocyte APOL1 resides, because previous immunolocalization studies utilized overexpressed protein or commercially available antibodies that crossreact with APOL2. This study describes and distinguishes the locations of both APOLs. METHODS Immunohistochemistry, confocal and immunoelectron microscopy, and podocyte fractionation localized endogenous and transfected APOL1 using a large panel of novel APOL1-specific mouse and rabbit monoclonal antibodies. RESULTS Both endogenous podocyte and transfected APOL1 isoforms vA and vB1 (and a little of isoform vC) localize to the luminal face of the endoplasmic reticulum (ER) and to the cell surface, but not to mitochondria, endosomes, or lipid droplets. In contrast, APOL2, isoform vB3, and most vC of APOL1 localize to the cytoplasmic face of the ER and are consequently absent from the cell surface. APOL1 knockout podocytes do not stain for APOL1, attesting to the APOL1-specificity of the antibodies. Stable re-transfection of knockout podocytes with inducible APOL1-G0, -G1, and -G2 showed no differences in localization among variants. CONCLUSIONS APOL1 is found in the ER and plasma membrane, consistent with either the ER stress or surface cation channel models of APOL1-mediated cytotoxicity. The surface localization of APOL1 variants potentially opens new therapeutic targeting avenues.
Collapse
Affiliation(s)
- Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California .,Department of Immunology, Genentech, South San Francisco, California
| | - Nidhi Gupta
- Department of Molecular Biology, Genentech, South San Francisco, California.,Department of Immunology, Genentech, South San Francisco, California
| | - Ann M De Mazière
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - George Posthuma
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cecilia P Chiu
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew A Pierce
- Department of Pathology, Genentech, South San Francisco, California
| | - Kathy Hötzel
- Department of Pathology, Genentech, South San Francisco, California
| | - Jianhua Tao
- Department of Pathology, Genentech, South San Francisco, California
| | - Oded Foreman
- Department of Pathology, Genentech, South San Francisco, California
| | - Georgios Koukos
- Department of Molecular Biology, Genentech, South San Francisco, California
| | | | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - WeiYu Lin
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, California
| |
Collapse
|
25
|
Gupta N, Wang X, Wen X, Moran P, Paluch M, Hass PE, Heidersbach A, Haley B, Kirchhofer D, Brezski RJ, Peterson AS, Scales SJ. Domain-Specific Antibodies Reveal Differences in the Membrane Topologies of Apolipoprotein L1 in Serum and Podocytes. J Am Soc Nephrol 2020; 31:2065-2082. [PMID: 32764138 DOI: 10.1681/asn.2019080830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Circulating APOL1 lyses trypanosomes, protecting against human sleeping sickness. Two common African gene variants of APOL1, G1 and G2, protect against infection by species of trypanosomes that resist wild-type APOL1. At the same time, the protection predisposes humans to CKD, an elegant example of balanced polymorphism. However, the exact mechanism of APOL1-mediated podocyte damage is not clear, including APOL1's subcellular localization, topology, and whether the damage is related to trypanolysis. METHODS APOL1 topology in serum (HDL particles) and in kidney podocytes was mapped with flow cytometry, immunoprecipitation, and trypanolysis assays that tracked 170 APOL1 domain-specific monoclonal antibodies. APOL1 knockout podocytes confirmed antibody specificity. RESULTS APOL1 localizes to the surface of podocytes, with most of the pore-forming domain (PFD) and C terminus of the Serum Resistance Associated-interacting domain (SRA-ID), but not the membrane-addressing domain (MAD), being exposed. In contrast, differential trypanolytic blocking activity reveals that the MAD is exposed in serum APOL1, with less of the PFD accessible. Low pH did not detectably alter the gross topology of APOL1, as determined by antibody accessibility, in serum or on podocytes. CONCLUSIONS Our antibodies highlighted different conformations of native APOL1 topology in serum (HDL particles) and at the podocyte surface. Our findings support the surface ion channel model for APOL1 risk variant-mediated podocyte injury, as well as providing domain accessibility information for designing APOL1-targeted therapeutics.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Molecular Biology, Genentech, South San Francisco, California.,Department of Immunology, Genentech, South San Francisco, California
| | - Xinhua Wang
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Xiaohui Wen
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Maciej Paluch
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Philip E Hass
- Department of Protein Chemistry, Genentech, South San Francisco, California
| | - Amy Heidersbach
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Randall J Brezski
- Department of Antibody Engineering, Genentech, South San Francisco, California
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech, South San Francisco, California
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California .,Department of Immunology, Genentech, South San Francisco, California
| |
Collapse
|
26
|
Schaub C, Verdi J, Lee P, Terra N, Limon G, Raper J, Thomson R. Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J Biol Chem 2020; 295:13138-13149. [PMID: 32727852 DOI: 10.1074/jbc.ra120.014201] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
The human innate immunity factor apolipoprotein L-I (APOL1) protects against infection by several protozoan parasites, including Trypanosoma brucei brucei Endocytosis and acidification of high-density lipoprotein-associated APOL1 in trypanosome endosomes leads to eventual lysis of the parasite due to increased plasma membrane cation permeability, followed by colloid-osmotic swelling. It was previously shown that recombinant APOL1 inserts into planar lipid bilayers at acidic pH to form pH-gated nonselective cation channels that are opened upon pH neutralization. This corresponds to the pH changes encountered during endocytic recycling, suggesting APOL1 forms a cytotoxic cation channel in the parasite plasma membrane. Currently, the mechanism and domains required for channel formation have yet to be elucidated, although a predicted helix-loop-helix (H-L-H) was suggested to form pores by virtue of its similarity to bacterial pore-forming colicins. Here, we compare recombinant human and baboon APOL1 orthologs, along with interspecies chimeras and individual amino acid substitutions, to identify regions required for channel formation and pH gating in planar lipid bilayers. We found that whereas neutralization of glutamates within the H-L-H may be important for pH-dependent channel formation, there was no evidence of H-L-H involvement in either pH gating or ion selectivity. In contrast, we found two residues in the C-terminal domain, tyrosine 351 and glutamate 355, that influence pH gating properties, as well as a single residue, aspartate 348, that determines both cation selectivity and pH gating. These data point to the predicted transmembrane region closest to the APOL1 C terminus as the pore-lining segment of this novel channel-forming protein.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biochemistry, The Graduate Center, CUNY, New York, USA
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biology, The Graduate Center, CUNY, New York, USA; German Cancer Research Center, Heidelberg, Germany
| | - Penny Lee
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Nada Terra
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Gina Limon
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; NYU School of Medicine, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, CUNY, New York, USA.
| |
Collapse
|
27
|
Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. eLife 2020; 9:51185. [PMID: 32427098 PMCID: PMC7292663 DOI: 10.7554/elife.51185] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Recently evolved alleles of Apolipoprotein L-1 (APOL1) provide increased protection against African trypanosome parasites while also significantly increasing the risk of developing kidney disease in humans. APOL1 protects against trypanosome infections by forming ion channels within the parasite, causing lysis. While the correlation to kidney disease is robust, there is little consensus concerning the underlying disease mechanism. We show in human cells that the APOL1 renal risk variants have a population of active channels at the plasma membrane, which results in an influx of both Na+ and Ca2+. We propose a model wherein APOL1 channel activity is the upstream event causing cell death, and that the activate-state, plasma membrane-localized channel represents the ideal drug target to combat APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Russell P Thomson
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Nailya Khalizova
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Patrick J Zager
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | | | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | - Jayne Raper
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| |
Collapse
|
28
|
Jha A, Kumar V, Haque S, Ayasolla K, Saha S, Lan X, Malhotra A, Saleem MA, Skorecki K, Singhal PC. Alterations in plasma membrane ion channel structures stimulate NLRP3 inflammasome activation in APOL1 risk milieu. FEBS J 2019; 287:2000-2022. [PMID: 31714001 DOI: 10.1111/febs.15133] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/23/2019] [Accepted: 11/09/2019] [Indexed: 12/01/2022]
Abstract
We evaluated alterations in the structural configurations of channels and activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome formation in apolipoprotein L1 (APOL1) risk and nonrisk milieus. APOL1G1- and APOL1G2-expressing podocytes (PD) displayed enhanced K+ efflux, induction of pyroptosis, and escalated transcription of interleukin (IL)-1β and IL-18. APOL1G1- and APOL1G2-expressing PD promoted the transcription as well as translation of proteins involved in the formation of inflammasomes. Since glyburide (a specific inhibitor of K+ efflux channels) inhibited the transcription of NLRP3, IL-1β, and IL-18, the role of K+ efflux in the activation of inflammasomes in APOL1 risk milieu was implicated. To evaluate the role of structural alterations in K+ channels in plasma membranes, bioinformatics studies, including molecular dynamic simulation, were carried out. Superimposition of bioinformatics reconstructions of APOL1G0, G1, and G2 showed several aligned regions. The analysis of pore-lining residues revealed that Ser342 and Tyr389 are involved in APOL1G0 pore formation and the altered conformations resulting from the Ser342Gly and Ile384Met mutation in the case of APOLG1 and deletion of the Tyr389 residue in the case of APOL1G2 are expected to alter pore characteristics, including K+ ion selectivity. Analysis of multiple membrane (lipid bilayer) models of interaction with the peripheral protein, integral membrane protein, and multimer protein revealed that for an APOL1 multimer model, APOL1G0 is not energetically favorable while the APOL1G1 and APOL1G2 moieties favor the insertion of multiple ion channels into the lipid bilayer. We conclude that altered pore configurations carry the potential to facilitate K+ ion transport in APOL1 risk milieu.
Collapse
Affiliation(s)
- Alok Jha
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | - Vinod Kumar
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | - Shabirul Haque
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | - Kamesh Ayasolla
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | - Shourav Saha
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | - Xiqian Lan
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | - Ashwani Malhotra
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| | | | - Karl Skorecki
- Technion - Israel Institute of Technology, Rambam Health Care Campus, Haifa, Israel
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-North Well, Manhasset, NY, USA
| |
Collapse
|
29
|
Abstract
Genetic variants in the APOL1 gene, found only in individuals of recent African ancestry, greatly increase risk of multiple types of kidney disease. These APOL1 kidney risk alleles are a rare example of genetic variants that are common but also have a powerful effect on disease susceptibility. These alleles rose to high frequency in sub-Saharan Africa because they conferred protection against pathogenic trypanosomes that cause African sleeping sickness. We consider the genetic evidence supporting the association between APOL1 and kidney disease across the range of clinical phenotypes in the APOL1 nephropathy spectrum. We then explore the origins of the APOL1 risk variants and evolutionary struggle between humans and trypanosomes at both the molecular and population genetic level. Finally, we survey the rapidly growing literature investigating APOL1 biology as elucidated from experiments in cell-based systems, cell-free systems, mouse and lower organism models of disease, and through illuminating natural experiments in humans.
Collapse
Affiliation(s)
- David J Friedman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA; ,
| | - Martin R Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA; ,
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The purpose of this mini-review is to highlight some unresolved questions and controversies in the evolving story of apolipoprotein L1 (APOL1) nephropathy. RECENT FINDINGS We highlight studies that introduce complexity in unraveling the mechanisms whereby APOL1 risk variant alleles cause disease. These include studies which support a possible protective role for the APOL1 GO nonrisk ancestral allele, and studies which explore the initiating events that may trigger other downstream pathways mediating APOL1 cellular injury. We also review studies that reconcile the perplexing findings regarding APOL1 anionic or cationic conductance, and pH dependency, and also studies that attempt to characterize the 3-dimensional structure of APOL1 C-terminal in APOL1 variants, as well as that of the serum resistance-associated protein. We also attempt to convey new insights from in-vivo and in-vitro models, including studies that do not support the differential toxicity of APOL1 renal risk variants and recapitulate the clinical variability of individuals at genotypic risk. SUMMARY Along with major progress that had been achieved in the field of APOL1 nephropathy, controversies and enigmatic issues persist. It remains to be determined which of the pathways which have been demonstrated to mediate cell injury by ectopically expressed APOL1 risk variants in cellular and organismal models are relevant to human disease and can pave the way to potential therapy.
Collapse
|
31
|
Abstract
The apolipoprotein L1 (APOL1) gene is unique to humans and gorillas and appeared ~33 million years ago. Since the majority of the mammals do not carry APOL1, it seems to be dispensable for kidney function. APOL1 renal risk variants (RRVs; G1 and G2) are associated with the development as well as progression of chronic kidney diseases (CKDs) at higher rates in populations with African ancestry. Cellular expression of two APOL1 RRVs has been demonstrated to induce cytotoxicity, including necrosis, apoptosis, and pyroptosis, in several cell types including podocytes; mechanistically, these toxicities were attributed to lysosomal swelling, K+ depletion, mitochondrial dysfunction, autophagy blockade, protein kinase receptor activation, ubiquitin D degradation, and endoplasmic reticulum stress; notably, these effects were found to be dose dependent and occurred only in overtly APOL1 RRV-expressing cells. However, cellular protein expressions as well as circulating blood levels of APOL1 RRVs were not elevated in patients suffering from APOL1 RRV-associated CKDs. Therefore, the question arises as to whether it is gain or loss of function on the part of APOL1 RRVs contributing to kidney cell injury. The question seems to be more pertinent after the recognition of the role of APOL1 nonrisk (G0) in the transition of parietal epithelial cells and preservation of the podocyte molecular phenotype through modulation of the APOL1-miR-193a axis. With this background, the present review analyzed the available literature in terms of the known function of APOL1 nonrisk and how the loss of these functions could have contributed to two APOL1 RRV-associated CKDs.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Department of Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Department of Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York
| |
Collapse
|
32
|
Leeder WM, Giehler F, Joswig J, Göringer HU. Bioinspired Design of Lysolytic Triterpenoid-Peptide Conjugates that Kill African Trypanosomes. Chembiochem 2019; 20:1251-1255. [PMID: 30609206 DOI: 10.1002/cbic.201800674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Indexed: 11/07/2022]
Abstract
Humans have evolved a natural immunity against Trypanosoma brucei infections, which is executed by two serum (lipo)protein complexes known as trypanolytic factors (TLF). The active TLF ingredient is the primate-specific apolipoprotein L1 (APOL1). The protein has a pore-forming activity that kills parasites by lysosomal and mitochondrial membrane fenestration. Of the many trypanosome subspecies, only two are able to counteract the activity of APOL1; this illustrates its evolutionarily optimized design and trypanocidal potency. Herein, we ask whether a synthetic (syn) TLF can be synthesized by using the design principles of the natural TLF complexes but with different chemical building blocks. We demonstrate the stepwise development of triterpenoid-peptide conjugates, in which the triterpenoids act as a cell-binding, uptake and lysosomal-transport modules and the synthetic peptide GALA acts as a pH-sensitive, pore-forming lysolytic toxin. As designed, the conjugate kills infective-stage African trypanosomes through lysosomal lysis thus demonstrating a proof-of-principle for the bioinspired, forward-design of a synTLF.
Collapse
Affiliation(s)
- W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Fabian Giehler
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.,Present address: Helmholtz Zentrum München für Gesundheit und Umwelt (GmbH), Research Unit Gene Vectors Munich (Germany) and, German Center for Infection Research (DZIF), Partner Site Munich, Marchionistrasse 25, 81377, Munich, Germany
| | - Juliane Joswig
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| |
Collapse
|
33
|
Kumar V, Paliwal N, Ayasolla K, Vashistha H, Jha A, Chandel N, Chowdhary S, Saleem MA, Malhotra A, Chander PN, Skorecki K, Singhal PC. Disruption of APOL1-miR193a Axis Induces Disorganization of Podocyte Actin Cytoskeleton. Sci Rep 2019; 9:3582. [PMID: 30837512 PMCID: PMC6401370 DOI: 10.1038/s41598-019-39376-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023] Open
Abstract
APOL1-miR193a axis participates in the preservation of molecular phenotype of differentiated podocytes (DPDs). We examined the hypothesis that APOL1 (G0) preserves, but APOL1 risk alleles (G1 and G2) disrupt APOL1-miR193a axis in DPDs. DPDG0s displayed down-regulation of miR193a, but upregulation of nephrin expression. DPDG1s/G2s exhibited an increase in miR193a and down-regulation of the expression of adherens complex's constituents (CD2AP, nephrin, and dendrin). DPDG0s showed decreased Cathepsin L, enhanced dynamin expressions, and the intact actin cytoskeleton. On the contrary, DPDG1s/G2s displayed an increase in Cathepsin L, but down-regulation of dynamin expressions and disorganization of the actin cytoskeleton. APOL1 silencing enhanced miR193a and Cathepsin L, but down-regulated dynamin expressions. DPDG1s/G2s displayed nuclear import of dendrin, indicating an occurrence of destabilization of adherens complexes in APOL1 risk milieu. These findings suggest that DPDG1s and DPDG2s developed disorganized actin cytoskeleton as a consequence of disrupted APOL1-miR193a axis. Interestingly, docking and co-labeling studies suggested an interaction between APOL1 and CD2AP. APOL1G1/G1 and APOL1G1/G2 transgenic mice displayed nuclear import of dendrin indicating destabilization of adherens complexes in podocytes; moreover, these mice showed a four-fold increase in urinary albumin to creatinine ratio and development of focal segmental glomerular lesions.
Collapse
Affiliation(s)
- Vinod Kumar
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | - Nitpriya Paliwal
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | - Kamesh Ayasolla
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | | | - Alok Jha
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | - Nirupama Chandel
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | - Sheetal Chowdhary
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | | | - Ashwani Malhotra
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA
| | | | - Karl Skorecki
- Technion - Israel Institute of Technology, and Rambam Health Care Campus, Haifa, Israel
| | - Pravin C Singhal
- Immunology and Inflammation Center, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, USA.
| |
Collapse
|
34
|
Abstract
BACKGROUND An improved understanding of the pathogenesis in apolipoprotein L1 (APOL1) gene-associated chronic kidney disease (CKD) arose from observations in kidney transplantation. APOL1 genotyping could soon improve the safety of living kidney donation in individuals with recent African ancestry and alter the allocation of deceased donor kidneys. METHODS This article reviews the potential mechanisms that underlie development of APOL1-associated nephropathy. Roles for circulating APOL1 protein versus intrinsic renal expression of APOL1 are discussed, as well as the requirement for modifying genetic and/or environmental factors. RESULTS Abundant evidence supports local kidney production of APOL1 renal-risk variant protein in the development of nephropathy; this is true in both native kidney disease and after renal transplantation. Only a minority of kidneys from individuals with APOL1 high-risk genotypes will develop CKD or manifest shorter renal allograft survival after transplantation. Therefore, modifying factors that explain why only a subset of kidneys develops nephropathy remain critical to identify. It appears likely that environmental exposures, as opposed to major APOL1-second gene interactions, will prove to be stronger modifiers of the risk for nephropathy. CONCLUSIONS The evolving understanding of the pathogenesis in APOL1-associated nephropathy will identify biomarkers predicting nephropathy in individuals at high genetic risk and lead to novel therapies to prevent or slow native CKD progression and prolong survival of transplanted kidneys. In the interim, the National Institutes of Health-sponsored "APOL1 Long-term Kidney Transplantation Outcomes" Network will determine whether APOL1 genotyping in individuals with recent African ancestry improves outcomes and safety in kidney transplantation.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Internal Medicine, Section on Nephrology; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jasmin Divers
- Division of Public Health Sciences, Department of Biostatistical Sciences; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
35
|
APOL1: The Balance Imposed by Infection, Selection, and Kidney Disease. Trends Mol Med 2018; 24:682-695. [PMID: 29886044 DOI: 10.1016/j.molmed.2018.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) affects millions of people and constitutes a major health and financial burden worldwide. People of African descent are at an increased risk of developing kidney disease, which is mostly explained by two variants in the Apolipoprotein L1 (APOL1) gene that are found only in people of west African origin. It is hypothesized that these variants were genetically selected due to the protection they afford against African sleeping sickness, caused by the parasite Trypanosoma brucei. Targeting mutant APOL1 could have substantial therapeutic potential for treating kidney disease. In this review, we will describe the intriguing interplay between microbiology, genetics, and kidney disease as revealed in APOL1-associated kidney disease, discuss APOL1-induced cytotoxicity and its therapeutic implications.
Collapse
|
36
|
Reidy KJ, Hjorten R, Parekh RS. Genetic risk of APOL1 and kidney disease in children and young adults of African ancestry. Curr Opin Pediatr 2018; 30:252-259. [PMID: 29406442 PMCID: PMC6002812 DOI: 10.1097/mop.0000000000000603] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Understanding the genetic risk of APOL1 in children and young adults is important given the lifetime risk of hypertension and kidney disease among children of African descent. We review recent epidemiologic and biologic findings on the effects of APOL1 and kidney disease. RECENT FINDINGS APOL1 in children and young adults is associated with hypertension, albuminuria and more rapid decline in kidney function and progression to end-stage kidney disease, especially among those with glomerular causes of kidney disease, and those affected by sickle cell disease or HIV. There are conflicting data on the APOL1 association with cardiovascular disease in children and young adults. APOL1 functions as part of the innate immune system. Podocyte expression of APOL1 likely contributes to the development of kidney disease. In cell culture and model organisms, APOL1 expression disrupts autophagic and ion flux, leads to defects in mitochondrial respiration and induces cell death. SUMMARY APOL1 explains almost 70% of the excess risk of kidney disease in those of African descent, and is common in children with glomerular disease. An evolving understanding of the pathogenesis of APOL1-mediated kidney damage may aid in personalized medicine approaches to APOL1 attributable kidney disease.
Collapse
Affiliation(s)
- Kimberly J Reidy
- Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Hjorten
- Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center
| | - Rulan S. Parekh
- Departments of Pediatrics and Medicine, Hospital for Sick Children, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
O'Toole JF, Schilling W, Kunze D, Madhavan SM, Konieczkowski M, Gu Y, Luo L, Wu Z, Bruggeman LA, Sedor JR. ApoL1 Overexpression Drives Variant-Independent Cytotoxicity. J Am Soc Nephrol 2017; 29:869-879. [PMID: 29180397 DOI: 10.1681/asn.2016121322] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Coding variants in the APOL1 gene are associated with kidney diseases in African ancestral populations; yet, the underlying biologic mechanisms remain uncertain. Variant-dependent autophagic and cytotoxic cell death have been proposed as pathogenic pathways mediating kidney injury. To examine this possibility, we conditionally expressed APOL1-G0 (reference), -G1, and -G2 (variants) using a tetracycline-regulated system in HEK293 cells. Autophagy was monitored biochemically and cell death was measured using multiple assays. We measured intracellular Na+ and K+ content with atomic absorption spectroscopy and APOL1-dependent currents with whole-cell patch clamping. Neither reference nor variant APOL1s induced autophagy. At high expression levels, APOL1-G0, -G1, and -G2 inserted into the plasma membrane and formed pH-sensitive cation channels, causing collapse of cellular Na+ and K+ gradients, phosphorylation of p38 mitogen-activated protein kinase, and cell death, without variant-dependent differences. APOL1-G0 and -G2 exhibited similar channel properties in whole-cell patch clamp experiments. At low expression levels, neither reference nor variant APOL1s localized on the plasma membrane, Na+ and K+ gradients were maintained, and cells remained viable. Our results indicate that APOL1-mediated pore formation is critical for the trypanolytic activity of APOL1 and drives APOL1-mediated cytotoxicity in overexpression systems. The absence of cytotoxicity at physiologic expression levels suggests variant-dependent intracellular K+ loss and cytotoxicity does not drive kidney disease progression.
Collapse
Affiliation(s)
- John F O'Toole
- Department of Nephrology and Hypertension, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - William Schilling
- Rammelkamp Center, MetroHealth System.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | | | - Yaping Gu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Liping Luo
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zhenzhen Wu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Leslie A Bruggeman
- Department of Nephrology and Hypertension, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - John R Sedor
- Department of Nephrology and Hypertension, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; and.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|