1
|
Chen X, Yu H, Yin Y, Cai B, shi G, Xu Y, Rong L, Yu X, Wang B, Zhou C, Wang J, Ding C, Li T, Xu Y. Abnormal lineage differentiation of peri-implantation aneuploid embryos revealed by single-cell RNA sequencing. Clin Transl Med 2025; 15:e70326. [PMID: 40329849 PMCID: PMC12056499 DOI: 10.1002/ctm2.70326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Affiliation(s)
- Xueyao Chen
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Hanwen Yu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouGuangdongChina
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yu Yin
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Bing Cai
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Gaohui shi
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yan Xu
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Lujuan Rong
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiu Yu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouGuangdongChina
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Boyan Wang
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Canquan Zhou
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Jichang Wang
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐Sen University), Ministry of EducationGuangzhouGuangdongChina
- Department of Histology and Embryology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Chenhui Ding
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yanwen Xu
- Department of Gynecology & Obstetrics, Center for Reproductive Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Reproductive MedicineGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesGuangzhouGuangdongChina
| |
Collapse
|
2
|
Vajeethaveesin N, Kanitwithayanun J, Suriyo T, Chujan S, Satayavivad J. Perfluorooctane sulfonic acid: a possible risk factor of endothelial dysfunction based on in silico and in vitro studies. Arch Toxicol 2025:10.1007/s00204-025-04047-7. [PMID: 40244404 DOI: 10.1007/s00204-025-04047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a fluorinated chemical utilized in a variety of industrial and household products. PFOS has been detected in human serum and is associated with multiple human adverse health effects. Epidemiological evidence has linked PFOS exposure to endothelial dysfunction, which is a key contributor to atherosclerosis. However, the underlying mechanisms of PFOS-induced endothelial dysfunction associated atherosclerosis has not been investigated. In the present study, human microvascular endothelial cells (HMEC-1) exposed to PFOS (15 μM) for 72 h, mimicking long-term exposure. We further employed integrated RNA-sequencing (RNA-seq) and transcriptomic analysis to identify differentially expressed genes (DEGs) for biological alterations: gene ontology (GO), pathway enrichment analysis (KEGG), protein-protein interaction network and modular clustering analysis. Furthermore, the Metascape database was used for disease association, tissue specificity, and transcription factor analysis. Hub genes were verified using atherosclerosis patient data sets from the GEO dataset. Alteration of hub genes in patients was then validated using immunoblotting and ELISA. Our results revealed that PFOS altered amino acid biosynthesis, lipid metabolism and induced the ER-stress response through the HRI/eIF2α/ATF4 pathway, leading to endothelial dysfunction. Interestingly, we found that PFOS induced inflammation by increasing COX-2, ICAM-1 and IL-6 expression through NF-κB and JAK2/STAT3 pathway in endothelial cells. Moreover, up-regulated C/EBPβ and ATF4 were observed in both patients and PFOS-exposed endothelium, which may use as an early biomarker and may have a potential role in PFOS-induced endothelial dysfunction. These findings provide novel insight into the underlying molecular mechanisms of PFOS-induced endothelial dysfunction associated with atherosclerosis.
Collapse
Affiliation(s)
- Nutsira Vajeethaveesin
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Jantamas Kanitwithayanun
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| | - Jutamaad Satayavivad
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Zaini MA, Müller C, de Jong TV, Ackermann T, Hartleben G, Kortman G, Gührs KH, Fusetti F, Krämer OH, Guryev V, Calkhoven CF. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function. Cell Rep 2019; 22:497-511. [PMID: 29320743 DOI: 10.1016/j.celrep.2017.12.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/26/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP) transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα). Protein lysine acetylation is a key post-translational modification (PTM) that integrates cellular metabolic cues with other physiological processes. Here, we show that C/EBPα is acetylated by the lysine acetyl transferase (KAT) p300 and deacetylated by the lysine deacetylase (KDAC) sirtuin1 (SIRT1). SIRT1 is activated in times of energy demand by high levels of nicotinamide adenine dinucleotide (NAD+) and controls mitochondrial biogenesis and function. A hypoacetylated mutant of C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. Our study identifies C/EBPα as a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply.
Collapse
Affiliation(s)
- Mohamad A Zaini
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands; Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Tobias Ackermann
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Götz Hartleben
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Gertrud Kortman
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Karl-Heinz Gührs
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Fabrizia Fusetti
- Department of Biochemistry, Netherlands Proteomics Centre, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Victor Guryev
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands.
| |
Collapse
|
4
|
Beddow SA, Gattu AK, Vatner DF, Paolella L, Alqarzaee A, Tashkandi N, Popov VB, Church CD, Rodeheffer MS, Cline GW, Geisler JG, Bhanot S, Samuel VT. PEPCK1 Antisense Oligonucleotide Prevents Adiposity and Impairs Hepatic Glycogen Synthesis in High-Fat Male Fed Rats. Endocrinology 2019; 160:205-219. [PMID: 30445425 PMCID: PMC6307100 DOI: 10.1210/en.2018-00630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022]
Abstract
The increased hepatic gluconeogenesis in type 2 diabetes mellitus has often been ascribed to increased transcription of phosphoenolpyruvate carboxykinase 1, cystolic form (PEPCK1), although recent evidence has questioned this attribution. To assess the metabolic role of PEPCK1, we treated regular chow fed and high-fat fed (HFF) male Sprague-Dawley rats with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) against PEPCK1 and compared them with control ASO-treated rats. PEPCK1 ASO effectively decreased PEPCK1 expression in the liver and white adipose tissue. In chow fed rats, PEPCK1 ASO did not alter adiposity, plasma glucose, or insulin. In contrast, PEPCK1 ASO decreased the white adipose tissue mass in HFF rats but without altering basal rates of lipolysis, de novo lipogenesis, or glyceroneogenesis in vivo. Despite the protection from adiposity, hepatic insulin sensitivity was impaired in HFF PEPCK1 ASO-treated rats. PEPCK1 ASO worsened hepatic steatosis, although without additional impairments in hepatic insulin signaling or activation of inflammatory signals in the liver. Instead, the development of hepatic insulin resistance and the decrease in hepatic glycogen synthesis during a hyperglycemic clamp was attributed to a decrease in hepatic glucokinase (GCK) expression and decreased synthesis of glycogen via the direct pathway. The decrease in GCK expression was associated with increased expression of activating transcription factor 3, a negative regulator of GCK transcription. These studies have demonstrated that PEPCK1 is integral to coordinating cellular metabolism in the liver and adipose tissue, although it does not directly effect hepatic glucose production or adipose glyceroneogenesis.
Collapse
Affiliation(s)
- Sara A Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Arijeet K Gattu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Daniel F Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lauren Paolella
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | | | - Nedda Tashkandi
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| | - Violeta B Popov
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher D Church
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- West Haven Veterans Affairs Medical Center, West Haven, Connecticut
| |
Collapse
|
5
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Qu J, Jusko WJ. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J Pharmacokinet Pharmacodyn 2018; 45:557-575. [PMID: 29704219 DOI: 10.1007/s10928-018-9585-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
A multiscale pharmacodynamic model was developed to characterize the receptor-mediated, transcriptomic, and proteomic determinants of corticosteroid (CS) effects on clinically relevant hepatic processes following a single dose of methylprednisolone (MPL) given to adrenalectomized (ADX) rats. The enhancement of tyrosine aminotransferase (TAT) mRNA, protein, and enzyme activity were simultaneously described. Mechanisms related to the effects of MPL on glucose homeostasis, including the regulation of CCAAT-enhancer binding protein-beta (C/EBPβ) and phosphoenolpyruvate carboxykinase (PEPCK) as well as insulin dynamics were evaluated. The MPL-induced suppression of circulating lymphocytes was modeled by coupling its effect on cell trafficking with pharmacogenomic effects on cell apoptosis via the hepatic (STAT3-regulated) acute phase response. Transcriptomic and proteomic time-course profiles measured in steroid-treated rat liver were utilized to model the dynamics of mechanistically relevant gene products, which were linked to associated systemic end-points. While time-courses of TAT mRNA, protein, and activity were well described by transcription-mediated changes, additional post-transcriptional processes were included to explain the lack of correlation between PEPCK mRNA and protein. The immune response model quantitatively discerned the relative roles of cell trafficking versus gene-mediated lymphocyte apoptosis by MPL. This systems pharmacodynamic model provides insights into the contributions of selected molecular events occurring in liver and explores mechanistic hypotheses for the multi-factorial control of clinically relevant pharmacodynamic outcomes.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
6
|
Bai S, Pan S, Zhang K, Ding X, Wang J, Zeng Q, Xuan Y, Su Z. Long-term effect of dietary overload lithium on the glucose metabolism in broiler chickens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:191-198. [PMID: 28778020 DOI: 10.1016/j.etap.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Lithium, like insulin, activates glycogen synthase and stimulates glucose transport in rat adipocytes. To investigate the effect of dietary overload lithium on glucose metabolism in broiler chickens, one-day-old chicks were fed a basal diet supplemented with 0 (control) or 100mg lithium/kg (overload lithium) for 35days. Compared to controls, glucose disappearance rates were lower (p=0.035) 15-120min after glucose gavage, and blood glucose concentrations were lower (p=0.038) 30min after insulin injection in overload lithium broilers. Overload lithium decreased (p<0.05) glycogen and glucose-6-phosphate concentrations in liver, but increased (p<0.05) their concentrations in pectoralis major. Overload lithium increased (p<0.05) mRNA expression of glucose transporter (GLUT) 3 and GLUT9 in liver, and GLUT1, GLUT3, GLUT8, and GLUT9 in pectoralis major, but decreased (p<0.05) cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in liver and mitochondrial PEPCK in pectoralis major. These results suggest that dietary overload lithium decreases glucose tolerance and gluconeogenesis, but increases insulin sensitivity and glucose transport in broiler chickens.
Collapse
Affiliation(s)
- Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shuqin Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yue Xuan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zuowei Su
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
7
|
Acetylation of C/EBPα inhibits its granulopoietic function. Nat Commun 2016; 7:10968. [PMID: 27005833 PMCID: PMC4814574 DOI: 10.1038/ncomms10968] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. C/EBPα is an essential transcription factor for myeloid lineage commitment. Here, the authors show that acetylation of C/EBPα at K298 and K302, mediated at least in part by GCN5, impairs C/EBPα DNA binding ability and modulates C/EBPα transcriptional activity.
Collapse
|
8
|
Insights into Transcriptional Regulation of Hepatic Glucose Production. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:203-53. [DOI: 10.1016/bs.ircmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ, Birkenfeld AL, Kahn M, Perler BK, Puchowicz MA, Manchem VP, Bhanot S, Still CD, Gerhard GS, Petersen KF, Cline GW, Shulman GI, Samuel VT. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 2013; 62:2183-94. [PMID: 23423574 PMCID: PMC3712050 DOI: 10.2337/db12-1311] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat-fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Naoki Kumashiro
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sara A. Beddow
- Veterans Affairs Medical Center, West Haven, Connecticut
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sachin K. Majumdar
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer L. Cantley
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Ioana Fat
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Blas Guigni
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J. Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Bryce K. Perler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | - Glenn S. Gerhard
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W. Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gerald I. Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Medical Center, West Haven, Connecticut
- Corresponding author: Varman T. Samuel,
| |
Collapse
|
10
|
Nash JT, Szabo DT, Carey GB. Polybrominated diphenyl ethers alter hepatic phosphoenolpyruvate carboxykinase enzyme kinetics in male Wistar rats: implications for lipid and glucose metabolism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:142-156. [PMID: 23294302 DOI: 10.1080/15287394.2012.738457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Xenobiotics such as phenobarbital, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and Aroclor 1254 significantly suppress the activity of a key gluconeogenic and glyceroneogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK), suggesting that xenobiotics disrupt hepatic glucose and fat metabolism. The effects of polybrominated diphenyl ethers (PBDE), a family of synthetic flame-retardant chemicals, on PEPCK activity is unknown. This study investigated the effect of DE-71, a commercial PBDE mixture, on PEPCK enzyme kinetics. Forty-eight 1-mo-old male Wistar rats were gavaged daily with either corn oil or corn oil containing 14 mg/kg DE-71 for 3, 14, or 28 d (n = 8/group). At each time point, fasting plasma glucose, insulin, and C-peptide were measured and hepatic PEPCK activity, lipid content, and three cytochrome P-450 enzymes (CYP1A, -2B, and -3A) were assayed. PBDE treatment for 28 d significantly decreased PEPCK Vmax ( μ mol/min/g liver weight) by 43% and increased liver lipid by 20%, compared to control. CYP1A, -2B, and -3A Vmax values were enhanced by 5-, 6-, and 39-fold, respectively, at both 14 and 28 d in treated rats compared to control. There was a significant inverse and temporal correlation between CYP3A and PEPCK Vmax for the treatment group. Fasting plasma glucose, insulin, and C-peptide levels were not markedly affected by treatment, but the glucose:insulin ratio was significantly higher in treated compared to control rats. Data suggest that in vivo PBDE treatment compromises liver glucose and lipid metabolism, and may influence whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Jessica T Nash
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | |
Collapse
|
11
|
Thakran S, Sharma P, Attia RR, Hori RT, Deng X, Elam MB, Park EA. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J Biol Chem 2012; 288:807-18. [PMID: 23209300 DOI: 10.1074/jbc.m112.437970] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a nuclear deacetylase that modulates lipid metabolism and enhances mitochondrial activity. SIRT1 targets multiple transcription factors and coactivators. Thyroid hormone (T(3)) stimulates the expression of hepatic genes involved in mitochondrial fatty acid oxidation and gluconeogenesis. We reported that T(3) induces genes for carnitine palmitoyltransferase (cpt1a), pyruvate dehydrogenase kinase 4 (pdk4), and phosphoenolpyruvate carboxykinase (pepck). SIRT1 increases the expression of these genes via the activation of several factors, including peroxisome proliferator-activated receptor α, estrogen-related receptor α, and peroxisome proliferator-activated receptor γ coactivator (PGC-1α). Previously, we reported that PGC-1α participates in the T(3) induction of cpt1a and pdk4 in the liver. Given the overlapping targets of T(3) and SIRT1, we investigated whether SIRT1 participated in the T(3) regulation of these genes. Resveratrol is a small phenolic compound whose actions include the activation of SIRT1. Addition of resveratrol increased the T(3) induction of the pdk4 and cpt1a genes in hepatocytes. Furthermore, expression of SIRT1 in hepatocytes mimicked resveratrol in the regulation of gene expression by T(3). The deacetylase activity of SIRT1 was required and PGC-1α was deacetylated following addition of T(3). We found that SIRT1 interacted directly with T(3) receptor (TRβ). Knockdown of SIRT1 decreased the T(3) induction of cpt1a and pdk4 and reduced the T(3) inhibition of sterol response element binding protein (srebp-1c) both in isolated hepatocytes and in rat liver. Our results indicate that SIRT1 contributes to the T(3) regulation of hepatic genes.
Collapse
Affiliation(s)
- Shalini Thakran
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.
Collapse
|
13
|
Bennett CE, Nsengimana J, Bostock JA, Cymbalista C, Futers TS, Knight BL, McCormack LJ, Prasad UK, Riches K, Rolton D, Scarrott T, Barrett JH, Carter AM. CCAAT/enhancer binding protein alpha, beta and delta gene variants: associations with obesity related phenotypes in the Leeds Family Study. Diab Vasc Dis Res 2010; 7:195-203. [PMID: 20460359 DOI: 10.1177/1479164110366274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To identify novel polymorphisms in the genes encoding the transcription factors CCAAT/enhancer binding protein alpha, beta and delta ( CEBPA, CEBPB, CEBPD) and investigate associations between polymorphisms and obesity-related phenotypes. METHODS Denaturing high-performance liquid chromatography (HPLC) was used to screen for novel gene variants and polymorphisms were genotyped in stored DNA from participants of the Leeds Family Study (537 subjects from 89 families). Genotype and haplotype analyses were carried out in STATA and PBAT, respectively. RESULTS Twenty-five polymorphisms were identified; 11 in CEBPA, 12 in CEBPB and 2 in CEBPD. Several allelic variants were associated at a nominal 5% level with waist-to-hip ratio (-919G>A in CEBPA, -412G>T and 646C>T in CEBPB), leptin (1558G>A in CEBPA, -1051A>G and 1383T>- in CEBPB) and adiponectin (1382G>T and 1903G>T in CEBPB). Effects of CEBPA and CEBPB allelic variants were independent, but variants within each gene were in linkage disequilibrium. Several associations were observed between other obesity-related traits and allelic variants in CEBPA and CEBPB, but not CEBPD. CONCLUSION These findings suggest that common allelic variants in CEBPA and CEBPB could influence abdominal obesity and related metabolic abnormalities associated with type 2 diabetes and cardiovascular disease in healthy White Northern European families, although results require independent confirmation.
Collapse
Affiliation(s)
- Claire E Bennett
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A 2009; 106:12121-6. [PMID: 19587243 DOI: 10.1073/pnas.0812547106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasting hyperglycemia in patients with type 2 diabetes mellitus (T2DM) is attributed to increased hepatic gluconeogenesis, which has been ascribed to increased transcriptional expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase, catalytic (G6Pc). To test this hypothesis, we examined hepatic expression of these 2 key gluconeogenic enzymes in 2 rodent models of fasting hyperglycemia and in patients with T2DM. In rats, high-fat feeding (HFF) induces insulin resistance but a robust beta-cell response prevents hyperglycemia. Fasting hyperglycemia was induced in the first rat model by using nicotinamide and streptozotocin to prevent beta-cell compensation, in combination with HFF (STZ/HFF). In a second model, control and HFF rats were infused with somatostatin, followed by portal vein infusion of insulin and glucagon. Finally, the expression of these enzymes was measured in liver biopsy samples obtained from insulin sensitive, insulin resistant, and untreated T2DM patients undergoing bariatric surgery. Rats treated with STZ/HFF developed modest fasting hyperglycemia (119 +/- 4 vs. 153 +/- 6 mg/dL, P < 0.001) and increased rates of endogenous glucose production (EGP) (4.6 +/- 0.6 vs. 6.9 +/- 0.6 mg/kg/min, P = 0.02). Surprisingly, the expression of PEPCK or G6Pc was not increased. Matching plasma insulin and glucagon with portal infusions led to higher plasma glucoses in the HFF rats (147 +/- 4 vs. 161 +/- 4 mg/dL, P = 0.05) with higher rates of EGP and gluconeogenesis. However, PEPCK and G6Pc expression remained unchanged. Finally, in patients with T2DM, hepatic expression of PEPCK or G6Pc was not increased. Thus, in contrast to current dogma, these data demonstrate that increased transcriptional expression of PEPCK1 and G6Pc does not account for increased gluconeogenesis and fasting hyperglycemia in patients with T2DM.
Collapse
|
15
|
Li T, Bai L, Li J, Igarashi S, Ghishan FK. Sp1 is required for glucose-induced transcriptional regulation of mouse vesicular glutamate transporter 2 gene. Gastroenterology 2008; 134:1994-2003. [PMID: 18440316 PMCID: PMC2747381 DOI: 10.1053/j.gastro.2008.02.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 02/13/2008] [Accepted: 02/26/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Vesicular glutamate transporter (VGLUT) has been reported to be involved in glucose-induced insulin secretion. It has been shown that glucose stimulates the expression of VGLUT isoform 2 (VGLUT2) in beta cells via transcriptional mechanism. In this study, we identified the mouse VGLUT2 (mVGLUT2) promoter and characterized the transcriptional mechanism of glucose-stimulated mVGLUT2 expression in beta-cells. METHODS A promoter region of mVGLUT2 was cloned by genomic polymerase chain reaction. The mechanism of Sp1 in glucose-induced transactivation of mVGLUT2 was investigated by luciferase assay, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, and Western blot analysis. RESULTS A promoter containing 2133 base pairs of upstream sequence of the 5'-flanking region of mVGLUT2 complementary DNA was cloned. Transient transfection of various 5'-end deletion constructs of the mVGLUT2 promoter/luciferase reporter indicated that the region between -96 to +68 base pair contains the basal promoter for mVGLUT2. Mutational analysis and electromobility shift assay showed an important role for the transcription factor Sp1 in both basal and glucose-induced mVGLUT2 transcription. The interaction between Sp1 and mVGLUT2 was confirmed by chromatin immunoprecipitation assays. Glucose stimulates the phosphorylation of Sp1 via mitogen-activated protein kinase P38 and P44/42. This leads to increased binding activity of Sp1 to the mVGLUT2 promoter and results in activation of the gene. CONCLUSIONS We cloned the mouse VGLUT2 promoter and showed a novel molecular mechanism of glucose-induced mVGLUT2 transcription.
Collapse
Affiliation(s)
- Tao Li
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Science Center, Tucson, Arizona 85724
| | - Liqun Bai
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Science Center, Tucson, Arizona 85724,Department of Medicine, Steele Children’s Research Center, University of Arizona Health Science Center, Tucson, Arizona 85724
| | - Jing Li
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Science Center, Tucson, Arizona 85724
| | - Suzu Igarashi
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Science Center, Tucson, Arizona 85724
| | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Science Center, Tucson, Arizona 85724,Corresponding author: Fayez K. Ghishan, M.D., Professor and Head, Department of Pediatrics, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, E-mail:
| |
Collapse
|
16
|
Wang X, Carré W, Saxton AM, Cogburn LA. Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken. Cytogenet Genome Res 2007; 117:174-88. [PMID: 17675858 DOI: 10.1159/000103178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/19/2007] [Indexed: 11/19/2022] Open
Abstract
Both thyroid hormone (T3) and growth hormone (GH) are important regulators of somatic growth in birds and mammals. Although T3-mediated gene transcription is well known, the molecular basis of T3 interaction with GH on growth and development of birds remains unknown. In earlier studies, we discovered that exogenous GH alone increased accumulation of visceral fat in young chickens, while the combination of GH injections and dietary T3 worked synergistically to deplete body fat. In the present study, cDNA microarray and quantitative RT-PCR analyses enabled us to examine hepatic gene expression in young chickens after chronic manipulation of thyroid status and GH injection alone or in combination with T3. Thyroid status modulates expression of common and unique sets of genes involved in a wide range of molecular functions (i.e., energy metabolism, storage and transport, signal transduction, protein turnover and drug detoxification). Hepatic expression of 35 genes was altered by hypothyroidism (e.g., ADFP, ANGPTL3, GSTalpha, CAT, PPARG, HMGCL, GHR, IGF1, STAT3, THRSPalpha), whereas hyperthyroidism affected expression of another cluster of 13 genes (e.g., IGFBP1, KHK, LDHB, BAIA2L1, SULT1B, TRIAD3). Several genes were identified which have not been previously ascribed as T3 responsive (e.g., DEFB9, EPS8L2, ARHGAP1, LASS2, INHBC). Exogenous GH altered expression of 17 genes (e.g., CCAR1, CYP2C45, GYS2, ENOB, HK1, FABP1, SQLE, SOCS2, UPG2). The T3+GH treatment depleted the greatest amount of body fat, where 34 differentially expressed genes were unique to this group (e.g., C/EBP, CDC42EP1, SYDE2, PCK2, PIK4CA, TH1L, GPT2, BHMT). The marked reduction in body fat brought about by the T3+GH synergism could involve modulation of hormone signaling via altered activity of the Ras superfamily of molecular switches, which control diverse biological processes. In conclusion, this study provides the first global analysis of endocrine (T3 and GH) regulation of hepatic gene transcription in the chicken.
Collapse
Affiliation(s)
- X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | | | | | | |
Collapse
|
17
|
Deng X, Yellaturu C, Cagen L, Wilcox HG, Park EA, Raghow R, Elam MB. Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1). J Biol Chem 2007; 282:17517-29. [PMID: 17449871 DOI: 10.1074/jbc.m702228200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The induction of genes involved in lipid biosynthesis by insulin is mediated in part by the sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c is directly regulated by insulin by transcriptional and post-transcriptional mechanisms. Previously, we have demonstrated that the insulin-responsive cis-acting unit of the rat SREBP-1c promoter is composed of several elements that include a sterol regulatory element, two liver X receptor elements, and a number of conserved GC boxes. Here we systematically dissected the role of these GC boxes and report that five bona fide Sp1-binding elements of the SREBP-1c promoter determine its basal and insulin-induced activation. Luciferase expression driven by the rat SREBP-1c promoter was accelerated by ectopic expression of Sp1, and insulin further enhanced the transactivation potential of Sp1. Introduction of a small interfering RNA against Sp1 reduced both basal and insulin-induced activation of the SREBP-1c promoter. We also found that Sp1 interacted with both SREBP-1c and LXRalpha proteins and that insulin promoted these interactions. Chromatin immunoprecipitation studies revealed that insulin facilitated the recruitment of the steroid receptor coactivator-1 to the SREBP-1c promoter. These studies identify a novel mechanism by which maximal activation of the rat SREBP-1c gene expression by insulin is mediated by Sp1 and its enhanced ability to interact with other transcriptional regulatory proteins.
Collapse
Affiliation(s)
- Xiong Deng
- Medical and Research Service, Department of Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, Delattre O, Stern MH, Aurias A. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 2007; 11:361-74. [PMID: 17418412 DOI: 10.1016/j.ccr.2007.02.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 08/16/2006] [Accepted: 02/08/2007] [Indexed: 01/12/2023]
Abstract
The human oncogene JUN encodes a component of the AP-1 complex and is consequently involved in a wide range of pivotal cellular processes, including cell proliferation, transformation, and apoptosis. Nevertheless, despite extensive analyses of its functions, it has never been directly involved in a human cancer. We demonstrate here that it is highly amplified and overexpressed in undifferentiated and aggressive human sarcomas, which are blocked at an early step of adipocyte differentiation. We confirm by cellular and xenograft mouse models recapitulating these sarcoma genetics that the failure to differentiate is dependent upon JUN amplification/overexpression.
Collapse
Affiliation(s)
- Odette Mariani
- Institut Curie, Genetics and Biology of Cancers, 26 rue d'Ulm, 75248 Paris cedex 05, France; INSERM U830, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Park M, Kong H, Kim H, Kim H, Kim J, Cheong J. Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem J 2007; 402:567-74. [PMID: 17094771 PMCID: PMC1863575 DOI: 10.1042/bj20061549] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHP (short heterodimer partner) is an orphan nuclear receptor that plays an important role in regulating glucose and lipid metabolism. A variety of transcription factors are known to regulate transcription of the PEPCK (phosphoenolpyruvate carboxykinase) gene, which encodes a rate-determining enzyme in hepatic gluconeogenesis. Previous reports identified glucocorticoid receptor and Foxo1 as novel downstream targets regulating SHP inhibition [Borgius, Steffensen, Gustafsson and Treuter (2002) J. Biol. Chem. 277, 49761-49796; Yamagata, Daitoku, Shimamoto, Matsuzaki, Hirota, Ishida and Fukamizu (2004) J. Biol. Chem. 279, 23158-23165]. In the present paper, we show a new molecular mechanism of SHP-mediated inhibition of PEPCK transcription. We also show that the CRE1 (cAMP regulatory element 1; -99 to -76 bp relative to the transcription start site) of the PEPCK promoter is also required for the inhibitory regulation by SHP. SHP repressed C/EBPalpha (CCAAT/enhancer-binding protein alpha)-driven transcription of PEPCK through direct interaction with C/EBPalpha protein both in vitro and in vivo. The formation of an active transcriptional complex of C/EBPalpha and its binding to DNA was inhibited by SHP, resulting in the inhibition of PEPCK gene transcription. Taken together, these results suggest that SHP might regulate a level of hepatic gluconeogenesis driven by C/EBPalpha activation.
Collapse
Affiliation(s)
- Min Jung Park
- *Department of Molecular Biology, Pusan National University, Busan 609-735, Korea
| | - Hee Jeong Kong
- †Laboratory of Molecular Growth Regulation, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892-2753, U.S.A
| | - Hye Young Kim
- *Department of Molecular Biology, Pusan National University, Busan 609-735, Korea
| | - Hyeong Hoe Kim
- ‡Department of Laboratory Medicine, College of Medicine, Pusan National University, Busan 602-739, Korea
| | - Joon Hong Kim
- §Department of Internal Medicine, College of Medicine, Pusan National University, Busan 602-739, Korea
| | - Jae Hun Cheong
- *Department of Molecular Biology, Pusan National University, Busan 609-735, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Mounier C, Posner BI. Transcriptional regulation by insulin: from the receptor to the gene. Can J Physiol Pharmacol 2007; 84:713-24. [PMID: 16998535 DOI: 10.1139/y05-152] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin, after binding to its receptor, regulates many cellular processes and the expression of several genes. For a subset of genes, insulin exerts a negative effect on transcription; for others, the effect is positive. Insulin controls gene transcription by modifying the binding of transcription factors on insulin-response elements or by regulating their transcriptional activities. Different insulin-signaling cascades have been characterized as mediating the insulin effect on gene transcription. In this review, we analyze recent data on the molecular mechanisms, mostly in the liver, through which insulin exerts its effect. We first focus on the key transcription factors (viz. Foxo, sterol-response-element-binding protein family (SREBP), and Sp1) involved in the regulation of gene transcription by insulin. We then present current information on the way insulin downregulates and upregulates gene transcription, using as examples of downregulation phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor binding protein 1 (IGFBP-1) genes and of upregulation the fatty acid synthase and malic enzyme genes. The last part of the paper focuses on the signaling cascades activated by insulin in the liver, leading to the modulation of gene transcription.
Collapse
Affiliation(s)
- Catherine Mounier
- BioMed, Department of Biological Science, University of Quebec in Montreal, 141 President Kennedy, Montreal, QC H2X 3Y7, Canada
| | | |
Collapse
|
21
|
McFie PJ, Wang GL, Timchenko NA, Wilson HL, Hu X, Roesler WJ. Identification of a Co-repressor That Inhibits the Transcriptional and Growth-Arrest Activities of CCAAT/Enhancer-binding Protein α. J Biol Chem 2006; 281:18069-80. [PMID: 16644732 DOI: 10.1074/jbc.m512734200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a yeast two-hybrid screening approach to identify novel interactors of CCAAT/enhancer-binding protein alpha (C/EBPalpha) that may offer insight into its mechanism of action and regulation. One clone obtained was that for CA150, a nuclear protein previously characterized as a transcriptional elongation factor. In this report, we show that CA150 is a widely expressed co-repressor of C/EBP proteins. Two-hybrid and co-immunoprecipitation analyses indicated that CA150 interacts with C/EBPalpha. Overexpression of CA150 inhibited the transactivation produced by C/EBPalpha and was also able to reverse the enhancing effect of the co-activator p300 on C/EBPbeta-mediated transactivation. Analysis of C/EBPalpha mutants indicated that CA150 interacts with C/EBPalpha primarily through a domain spanning amino acids 135-150. Chromatin immunoprecipitation assays showed that CA150 was present on a promoter that is repressed by C/EBPalpha but not present on a promoter that is activated by C/EBPalpha. Finally, we showed that in cells in which growth arrest had been induced by ectopic expression of C/EBPalpha, CA150 was able to release them from growth arrest. Interestingly, CA150 could not reverse the growth arrest produced by the minimal growth-arrest domain of C/EBPalpha (amino acids 175-217), suggesting that the effect of CA150 was directed at a region of C/EBPalpha outside of this minimal domain, consistent with our two-hybrid analysis. Taken together, these data indicate that CA150 is a co-repressor of C/EBP proteins and provides a possible mechanism for how C/EBPalpha can repress transcription of specific genes.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Liu HK, Perrier S, Lipina C, Finlay D, McLauchlan H, Hastie CJ, Hundal HS, Sutherland C. Functional characterisation of the regulation of CAAT enhancer binding protein alpha by GSK-3 phosphorylation of Threonines 222/226. BMC Mol Biol 2006; 7:14. [PMID: 16600022 PMCID: PMC1456981 DOI: 10.1186/1471-2199-7-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/06/2006] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glycogen Synthase Kinase-3 (GSK3) activity is repressed following insulin treatment of cells. Pharmacological inhibition of GSK3 mimics the effect of insulin on Phosphoenolpyruvate Carboxykinase (PEPCK), Glucose-6 Phosphatase (G6Pase) and IGF binding protein-1 (IGFBP1) gene expression. CAAT/enhancer binding protein alpha (C/EBPalpha) regulates these gene promoters in liver and is phosphorylated on two residues (T222/T226) by GSK3, although the functional outcome of the phosphorylation has not been established. We aimed to establish whether CEBPalpha is a link between GSK3 and these gene promoters. RESULTS C/EBPalpha represses the IGFBP1 thymine-rich insulin response element (TIRE), but mutation of T222 or T226 of C/EBPalpha to non-phosphorylatable alanines has no effect on C/EBPalpha activity in liver cells (towards the TIRE or a consensus C/EBP binding sequence). Phosphorylation of T222/T226 is decreased by GSK3 inhibition, suggesting GSK3 does phosphorylate T222/226 in intact cells. However, phosphorylation was not altered by treatment of liver cells with insulin. Meanwhile C/EBPalpha activity in 3T3 L1 preadipocytes was enhanced by mutation of T222/T226 and/or S230 to alanine residues. Finally, we demonstrate that C/EBPalpha is a very poor substrate for GSK3 in vitro and in cells. CONCLUSION The work demonstrates an important role for this domain in the regulation of C/EBPalpha activity in adipocytes but not hepatocytes, however GSK3 phosphorylation of these residues does not mediate regulation of this C/EBP activity. In short, we find no evidence that C/EBPalpha activity is regulated by direct phosphorylation by GSK3.
Collapse
Affiliation(s)
- H-K Liu
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, UK
- National Research Institute of Chinese Medicine, Taipei, Taiwan, Republic of China
| | - S Perrier
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, UK
| | - C Lipina
- Division of Pathology and Neurosciences, Ninewells Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - D Finlay
- Division of Pathology and Neurosciences, Ninewells Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - H McLauchlan
- Division of Signal Transduction and Therapy, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, UK
| | - CJ Hastie
- Division of Signal Transduction and Therapy, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, UK
| | - HS Hundal
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, DD1 4HN, UK
| | - C Sutherland
- Division of Pathology and Neurosciences, Ninewells Medical School, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
23
|
Yin L, Wang Y, Dridi S, Vinson C, Hillgartner FB. Role of CCAAT/enhancer-binding protein, histone acetylation, and coactivator recruitment in the regulation of malic enzyme transcription by thyroid hormone. Mol Cell Endocrinol 2005; 245:43-52. [PMID: 16293364 DOI: 10.1016/j.mce.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/23/2022]
Abstract
In chick embryo hepatocytes, activation of malic enzyme gene transcription by triiodothyronine (T3) is mediated by a T3 response unit (T3RU) that contains five T3 response elements (T3REs) plus five accessory elements that enhance T3 responsiveness conferred by the T3REs. Results from in vitro binding assays indicate that one of the accessory elements (region F) binds CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Here, we investigated the role of C/EBPalpha in the regulation of malic enzyme transcription by T3. Transfection analyses demonstrated that the stimulation of T3RE function by region F did not require the presence of additional malic enzyme gene promoter sequences. Expression of a dominant negative C/EBP inhibited the ability of region F to stimulate T3 responsiveness. In chromatin immunoprecipitation assays, C/EBPalpha and TR associated with the malic enzyme T3RU in the absence and presence of T3 with the extent of the association being greater in the presence of T3. These observations indicate that C/EBPalpha interacts with TR on the malic enzyme T3RU to enhance T3 regulation of malic enzyme gene transcription. T3 treatment increased the acetylation of histones, decreased the recruitment of nuclear receptor corepressor and increased the recruitment of steroid receptor coactivator-1, CREB binding protein, and the thyroid hormone associated protein/mediator complex at the malic enzyme T3RU. In contrast, T3 treatment had no effect on the acetylation of histones and the recruitment of corepressors and coactivators at the T3RU that mediates the T3 activation of acetyl-CoA carboxylase-alpha gene transcription. We propose that differences between the malic enzyme T3RU and the ACCalpha T3RU in the ability of T3 to modulate histone acetylation and coregulatory protein recruitment are due to differences in the composition of the nuclear receptor complexes that bind these regulatory regions.
Collapse
Affiliation(s)
- Liya Yin
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, P.O. Box 9142, West Virginia University, Morgantown, 26506-9142, USA
| | | | | | | | | |
Collapse
|
24
|
Scribner KB, Odom DP, McGrane MM. Vitamin A status in mice affects the histone code of the phosphoenolpyruvate carboxykinase gene in liver. J Nutr 2005; 135:2774-9. [PMID: 16317119 DOI: 10.1093/jn/135.12.2774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vitamin A deficiency decreases hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene expression in mice, and expression is restored with retinoic acid (RA) treatment in vivo. In the studies reported here, we examined changes in histone modification and coregulator association with the regulatory domains of the PEPCK gene in response to alterations in vitamin A status. We identified nuclear receptors that bind to retinoic acid response elements (RAREs) in the PEPCK promoter by electrophoretic mobility shift assay and verified these in vivo using chromatin immunoprecipitation in mouse liver. Hypothetically, nuclear receptors at PEPCK RAREs recruit specific coactivator molecules that contribute to the acetylation of core histones and/or serve as bridging molecules between nuclear receptors and basal transcription factors at the transcription start site. We identified 3 coactivator molecules, cAMP-response element binding protein (CBP), steroid receptor coactivator (SRC)-1, and peroxisome-proliferator activated receptor (PPAR)-gamma-coactivator (PGC)-1alpha, that bound in association with the PEPCK RAREs in vivo. Furthermore, there was differential binding of these coactivators in vitamin A-deficient mice. Related to this, specific lysine residues were acetylated on histones H3 and H4 at the 3 RAREs of the PEPCK promoter, consistent with the action of the above coactivators, and acetylation of certain lysines was significantly decreased with vitamin A deficiency. These results demonstrate the associated changes that occur in nuclear receptor binding, coactivator recruitment, and histone acetylation in response to vitamin A status, identified at specific RAREs in the PEPCK gene in vivo.
Collapse
Affiliation(s)
- Kelly B Scribner
- Departments of Nutritional Sciences and Molecular and Cellular Biology, The University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
25
|
Ma K, Zhang Y, Elam MB, Cook GA, Park EA. Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator. J Biol Chem 2005; 280:29525-32. [PMID: 15967803 DOI: 10.1074/jbc.m502236200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the metabolism of glucose to acetyl-CoA. Phosphorylation of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases (PDK) inhibits pyruvate dehydrogenase complex activity. There are four PDK isoforms, and expression of PDK4 and PDK2 genes is elevated in starvation and diabetes, allowing glucose to be conserved while fatty acid oxidation is increased. In these studies we have investigated the transcriptional mechanisms by which the expression of the PDK4 gene is increased. The peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of genes involved in hepatic gluconeogenesis and mitochondrial fatty acid oxidation. We have found that PGC-1alpha will induce the expression of both the PDK2 and PDK4 genes in primary rat hepatocytes and ventricular myocytes. We cloned the promoter for the rat PDK4 gene. Hepatic nuclear factor 4 (HNF4), which activates many genes in the liver, will induce PDK4 expression. Although HNF4 and PGC-1alpha interact to stimulate several genes encoding gluconeogenic enzymes, the induction of PDK4 does not involve interactions of PGC-1alpha with HNF4. Using the chromatin immunoprecipitation assay, we have demonstrated that HNF4 and PGC-1alpha are associated with the PDK4 gene in vivo. Our data suggest that by inducing PDK genes PGC-1alpha will direct pyruvate away from metabolism into acetyl-CoA and toward the formation of oxaloacetate and into the gluconeogenic pathway.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | | | | | |
Collapse
|
26
|
Svotelis A, Doyon G, Bernatchez G, Désilets A, Rivard N, Asselin C. IL-1 beta-dependent regulation of C/EBP delta transcriptional activity. Biochem Biophys Res Commun 2005; 328:461-70. [PMID: 15694370 DOI: 10.1016/j.bbrc.2005.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
We have previously shown that the transcription factor C/EBP delta is involved in the intestinal inflammatory response. C/EBP delta regulates several inflammatory response genes, such as haptoglobin, in the rat intestinal epithelial cell line IEC-6 in response to IL-1. However, the different C/EBP delta domains involved in IL-1 beta-mediated transcriptional activation and the kinases implicated have not been properly defined. To address this, we determined the role of the p38 MAP kinase in the regulation of C/EBP delta transcriptional activity. The IL-1-dependent induction of the acute phase protein gene haptoglobin in IEC-6 cells was decreased in response to the p38 MAP kinase inhibitor SB203580, as determined by Northern blot. Transcriptional activity of C/EBP delta was repressed by the specific inhibitor of the p38 MAP kinase, as assessed by transient transfection assays. Mutagenesis studies and transient transfection assays revealed an important domain for transcriptional activation between amino acids 70 and 108. This domain overlapped with a docking site for the p38 MAP kinase, between amino acids 75 and 85, necessary to insure C/EBP delta phosphorylation. Deletion of this domain led to a decrease in basal transcriptional activity of C/EBP delta and in p300-dependent transactivation, as assessed by transient transfection assays, and in IL-1-dependent haptoglobin induction. This unusual arrangement of a kinase docking site within a transactivation domain may functionally be important for the regulation of C/EBP delta transcriptional activity.
Collapse
Affiliation(s)
- Amy Svotelis
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
27
|
Song S, Zhang Y, Ma K, Jackson-Hayes L, Lavrentyev EN, Cook GA, Elam MB, Park EA. Peroxisomal proliferator activated receptor gamma coactivator (PGC-1alpha) stimulates carnitine palmitoyltransferase I (CPT-Ialpha) through the first intron. ACTA ACUST UNITED AC 2004; 1679:164-73. [PMID: 15297149 DOI: 10.1016/j.bbaexp.2004.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/17/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Peroxisomal proliferator activated receptor gamma coactivator-1 (PGC-1alpha) is a transcriptional coactivator that promotes mitochondrial biogenesis and energy metabolism in brown fat, skeletal muscle and heart. Previous studies demonstrated that PGC-1alpha is present at low levels in the liver but that the hepatic abundance of PGC-1alpha is elevated in diabetic and fasted animals. Elevated PGC-1alpha expression is associated with increased fatty acid oxidation and hepatic glucose production. Carnitine palmitoyltransferase-I (CPT-I) is a rate controlling step in the mitochondrial oxidation of long chain fatty acids. CPT-I transfers the acyl moiety from fatty acyl-CoA to carnitine for the translocation of long chain fatty acids across the mitochondrial membrane. There are two isoforms of CPT-I including a liver isoform CPT-Ialpha and a muscle isoform CPT-Ibeta. Here, we characterized the regulation of CPT-Ialpha isoform by PGC-1alpha. PGC-1alpha stimulates CPT-Ialpha primarily through multiple sites in the first intron. We found that PGC-1alpha can induce CPT-Ialpha gene expression in cardiac myocytes and primary hepatocytes. Our results indicate that PGC-1alpha elevates the expression of CPT-Ialpha via a unique mechanism that utilizes elements within the intron.
Collapse
Affiliation(s)
- Shulan Song
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
29
|
Shih CH, Chen SL, Yen CC, Huang YH, Chen CD, Lee YS, Lin KH. Thyroid hormone receptor-dependent transcriptional regulation of fibrinogen and coagulation proteins. Endocrinology 2004; 145:2804-14. [PMID: 14977860 DOI: 10.1210/en.2003-1372] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T(3)) regulates growth, development, and differentiation. These activities are mediated by the nuclear thyroid hormone receptors (TRs), which belong to the steroid/TR superfamily of ligand-dependent transcription factors. The effect of T(3) treatment on target gene regulation was investigated in a TRalpha-overexpressing hepatoma cell line (HepG2-TRalpha), by performing cDNA microarrays. We demonstrate that 148 of the 7597 genes represented were up-regulated by T(3), including fibrinogen and several other components of the coagulation factor system. To confirm the microarray results, fibrinogen and a small number of the blood clotting components were further investigated using quantitative RT-PCR. The T(3)-induction ratios observed with quantitative RT-PCR for factors such as thrombin (8-fold), coagulation factor X (4.9-fold), and hepatoglobin (30-fold) were similar to those observed by the cDNA microarray analysis. Further investigation, using HepG2-TRalpha (cell lines, revealed a 2- to 3-fold induction of fibrinogen transcription after 24 h of T(3) treatment. In addition, T(3) treatment increased the level of fibrinogen protein expression 2.5- to 6-fold at 48 h. The protein synthesis inhibitor, cycloheximide, did not inhibit the induction of fibrinogen by T(3), indicating that this regulation was direct. Furthermore, transcription run-on experiments indicate that the induction of fibrinogen by T(3) is regulated largely at the level of transcription. Similar observations were made on the regulation of fibrinogen by T(3) using rats that received surgical thyroidectomy (TX) as an in vivo model. These results suggest that T(3) plays an important role in the process of blood coagulation and inflammation and may contribute to the understanding of the association between thyroid diseases and the misregulation of the inflammatory and clotting profile evident in the circulatory system of these patients.
Collapse
Affiliation(s)
- Chung-Hsuan Shih
- Department of Biochemistry, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, Taiwan 333, Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Scribner KB, McGrane MM. RNA polymerase II association with the phosphoenolpyruvate carboxykinase (PEPCK) promoter is reduced in vitamin A-deficient mice. J Nutr 2004; 133:4112-7. [PMID: 14652357 DOI: 10.1093/jn/133.12.4112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) gene expression is decreased in vitamin A-deficient (VAD) mice. However, the underlying molecular mechanism at the PEPCK promoter that contributes to this alteration in gene expression remains unexplained and thus serves as the basis for our investigation in this report. Using liver from vitamin A-sufficient (VAS) and VAD mice in the chromatin immunoprecipitation (ChIP) assay, we determined that histones H3 and H4 were in the acetylated or active state in VAS mice at each of the three retinoic acid response elements (RARE1, RARE2 and RARE3) of the PEPCK promoter. The same acetylation pattern was seen in VAD mice, but with relatively lower levels of acetylated H3 and H4 bound at the region encompassing PEPCK RARE1/RARE2. In ChIP assays conducted with an antibody to RNA polymerase II (RNA Pol II), the association of RNA Pol II with PEPCK RARE1/RARE2 was significantly decreased in vitamin A deficiency. The reduction in RNA Pol II association is indicative of an interruption in the direct interactions of RNA Pol II with the PEPCK promoter, with general transcription factors and/or with coregulator molecules that contribute to the activation of the PEPCK gene. These results increase our understanding of the molecular basis for decreased PEPCK gene expression in VAD mice in vivo and offer additional insight into the regulation of other retinoid-responsive genes.
Collapse
Affiliation(s)
- Kelly B Scribner
- Department of Nutritional Sciences, The University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
31
|
Vogel CFA, Sciullo E, Park S, Liedtke C, Trautwein C, Matsumura F. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A. J Biol Chem 2003; 279:8886-94. [PMID: 14684744 DOI: 10.1074/jbc.m310190200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD = dioxin) has been shown to increase the expression of C/EBPbeta. The modulated expression of C/EBPbeta has been suggested to be associated with toxic responses of TCDD such as wasting syndrome, diabetes, and inhibition of adipocyte differentiation. This study focused on the regulatory mechanism of TCDD-mediated transcriptional activation of C/EBPbeta. Elevated C/EBPbeta mRNA and protein levels in mouse embryonic fibroblasts (C3H10T(1/2)) and in mouse hepatoma cells (Hepa1c1c7) were correlated with increased binding affinity of the C/EBPbeta protein. Transfection studies with different deletion constructs of the CCAAT/enhancer-binding protein promoter indicated that a small region located 60-120 bp upstream of the start site of transcription is required for activation of the C/EBPbeta gene by TCDD in both cell lines tested. Further analysis using mutation constructs of the C/EBPbeta promoter demonstrated that activation of the C/EBPbeta promoter is mediated through incomplete cAMP-response element-binding protein (CREB) sites located close to the TATA box of the C/EBPbeta gene. The protein kinase A (PKA) inhibitor H89 completely blocks the TCDD-dependent effect on C/EBPbeta promoter activity, indicating that TCDD activates CREB binding via a cAMP/PKA pathway, which is supported by the increased cAMP level and PKA activity observed after TCDD treatment. Gel shift analyses demonstrated that CREB itself binds to the putative CREB motif that mediates the TCDD-dependent effect on C/EBPbeta gene transcription. Cotransfection experiments with CREB and PKA expression plasmids further supported our conclusions that the TCDD-dependent effect on C/EBPbeta transcription is mediated via PKA-dependent CREB activation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR. CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 2003; 278:36959-65. [PMID: 12857754 DOI: 10.1074/jbc.m303147200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.
Collapse
Affiliation(s)
- Krisztián A Kovács
- Department of Child and Adolescent Psychiatry, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Jackson-Hayes L, Song S, Lavrentyev EN, Jansen MS, Hillgartner FB, Tian L, Wood PA, Cook GA, Park EA. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. J Biol Chem 2003; 278:7964-72. [PMID: 12493735 DOI: 10.1074/jbc.m211062200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carnitine palmitoyltransferase-I (CPT-I) catalyzes the rate-controlling step of fatty acid oxidation. CPT-I converts long-chain fatty acyl-CoAs to acylcarnitines for translocation across the mitochondrial membrane. The mRNA levels and enzyme activity of the liver isoform, CPT-Ialpha, are greatly increased in the liver of hyperthyroid animals. Thyroid hormone (T3) stimulates CPT-Ialpha transcription far more robustly in the liver than in non-hepatic tissues. We have shown that the thyroid hormone receptor (TR) binds to a thyroid hormone response element (TRE) located in the CPT-Ialpha promoter. In addition, elements in the first intron participate in the T3 induction of CPT-Ialpha gene expression, but the CPT-Ialpha intron alone cannot confer a T3 response. We found that deletion of sequences in the first intron between +653 and +744 decreased the T3 induction of CPT-Ialpha. Upstream stimulatory factor (USF) and CCAAT enhancer binding proteins (C/EBPs) bind to elements within this region, and these factors are required for the T3 response. The binding of TR and C/EBP to the CPT-Ialpha gene in vivo was shown by the chromatin immunoprecipitation assay. We determined that TR can physically interact with USF-1, USF-2, and C/EBPalpha. Transgenic mice were created that carry CPT-Ialpha-luciferase transgenes with or without the first intron of the CPT-Ialpha gene. In these mouse lines, the first intron is required for T3 induction as well as high levels of hepatic expression. Our data indicate that the T3 stimulates CPT-Ialpha gene expression in the liver through a T3 response unit consisting of the TRE in the promoter and additional factors, C/EBP and USF, bound in the first intron.
Collapse
Affiliation(s)
- Loretta Jackson-Hayes
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|