1
|
Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021; 10:cells10092319. [PMID: 34571968 PMCID: PMC8467501 DOI: 10.3390/cells10092319] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has made an invaluable contribution to the field of regenerative medicine, paving way for identifying the true potential of human embryonic stem cells (ESCs). Since the controversy around ethicality of ESCs continue to be debated, iPSCs have been used to circumvent the process around destruction of the human embryo. The use of iPSCs have transformed biological research, wherein increasing number of studies are documenting nuclear reprogramming strategies to make them beneficial models for drug screening as well as disease modelling. The flexibility around the use of iPSCs include compatibility to non-invasive harvesting, and ability to source from patients with rare diseases. iPSCs have been widely used in cardiac disease modelling, studying inherited arrhythmias, neural disorders including Alzheimer’s disease, liver disease, and spinal cord injury. Extensive research around identifying factors that are involved in maintaining the identity of ESCs during induction of pluripotency in somatic cells is undertaken. The focus of the current review is to detail all the clinical translation research around iPSCs and the strength of its ever-growing potential in the clinical space.
Collapse
Affiliation(s)
- Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Correspondence:
| | - Alhusain J. Alzahrani
- Department of Clinical Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Amer Mahmoud
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| |
Collapse
|
2
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
3
|
Hisey E, Ross PJ, Meyers SA. A Review of OCT4 Functions and Applications to Equine Embryos. J Equine Vet Sci 2021; 98:103364. [PMID: 33663726 PMCID: PMC8603767 DOI: 10.1016/j.jevs.2020.103364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023]
Abstract
OCT4 is a core transcription factor involved in pluripotency maintenance in the early mammalian embryo. The POU5F1 gene that encodes the OCT4 protein is highly conserved across species, suggesting conserved function. However, studies in several species including mice, cattle, and pigs, suggest that there are differences in where and when OCT4 is expressed. Specifically, in the horse, several studies have shown that exposure to the uterine environment may be necessary to induce OCT4 expression restriction to the inner cell mass (ICM) of the developing embryo, suggesting that there may be equine-specific extrinsic regulators of OCT4 expression that have not yet been investigated. However, an alternative hypothesis is that this restriction may not be evident in equine embryos because of our inability to culture them to the epiblast stage, preventing the observation of this restriction. In vitro studies have identified that OCT4 is expressed in the immature equine oocyte and in the early equine embryo, but OCT4 expression has not been studied after the formation of the ICM in the equine embryo. Despite the gaps in knowledge about equine-specific functions of OCT4, this factor has been used in studies assessing equine embryonic stem cells and to induce pluripotency in equine somatic cells. This review describes the role of OCT4 in the equine embryo and its applications in equine stem cell research.
Collapse
Affiliation(s)
- Erin Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart A. Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA,Corresponding author at: Stuart A. Meyers, 1089 Veterinary Medicine Dr. Davis, CA 95616. (S.A. Meyers)
| |
Collapse
|
4
|
Huang X, Song L, Zhan Z, Gu H, Feng H, Li Y. Factors Affecting Mouse Somatic Cell Nuclear Reprogramming by Rabbit Ooplasms. Cell Reprogram 2017; 19:344-353. [PMID: 29135280 DOI: 10.1089/cell.2017.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos depends on compatibilities between ooplasmic and nuclear components. However, the mechanisms by which the compatibilities are regulated are still unknown. In this study, using mouse Oct4-green fluorescent protein (GFP) cells as donors and rabbit oocytes as recipients, we show that Oct4 and other pluripotency related genes were reactivated in some of mouse-rabbit iSCNT embryos, which could also activate Oct4 promoter-driven GFP reporter gene expression. Series nuclear transfer improved the efficiency of Oct4 reactivation. DNA demethylation of Oct4 promoter was detected in GFP positive iSCNT blastocysts, whereas GFP negative iSCNT embryos showed a low efficiency. Our results demonstrate that Oct4-GFP can well label the embryos with epigenetic remodeling and reactivation of pluripotent gene expression. Abundant rabbit mitochondria specific DNAs were identified in reconstructed mouse-rabbit embryos throughout preimplantation stages. Our data demonstrate that epigenetic remodeling and the complete mitochondrial match are not necessary for successful iSCNT embryo development before implantation.
Collapse
Affiliation(s)
- Xia Huang
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Lili Song
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiyan Zhan
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Haihui Gu
- 2 Department of Transfusion Medicine, Shanghai Changhai Hospital , Shanghai, China
| | - Haizhong Feng
- 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yanxin Li
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
5
|
Singh RK, Mallela RK, Hayes A, Dunham NR, Hedden ME, Enke RA, Fariss RN, Sternberg H, West MD, Nasonkin IO. Dnmt1, Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian retina. Exp Eye Res 2017; 159:132-146. [PMID: 27865785 DOI: 10.1016/j.exer.2016.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
Characterizing the role of epigenetic regulation in the mammalian retina is critical for understanding fundamental mechanisms of retinal development and disease. DNA methylation, an epigenetic modifier of genomic DNA, plays an important role in modulating networks of tissue and cell-specific gene expression. However, the impact of DNA methylation on retinal development and homeostasis of retinal neurons remains unclear. Here, we have created a tissue-specific DNA methyltransferase (Dnmt) triple mutant mouse in an effort to characterize the impact of DNA methylation on retinal development and homeostasis. An Rx-Cre transgene was used to drive targeted mutation of all three murine Dnmt genes in the mouse retina encoding major DNA methylation enzymes DNMT1, DNMT3A and DNMT3B. The triple mutant mice represent a hypomorph model since Dnmt1 catalytic activity was still present and excision of Dnmt3a and Dnmt3b had only about 90% efficiency. Mutation of all three Dnmts resulted in global genomic hypomethylation and dramatic reorganization of the photoreceptor and synaptic layers within retina. Transcriptome and proteomic analyses demonstrated enrichment of dysregulated phototransduction and synaptic genes. The 5 mC signal in triple mutant retina was confined to the central heterochromatin but reduced in the peripheral heterochromatin region of photoreceptor nuclei. In addition, we found a reduction of the 5 mC signal in ganglion cell nuclei. Collectively, this data suggests cooperation of all three Dnmts in the formation and homeostasis of photoreceptors and other retinal neurons within the mammalian retina, and highlight the relevance of epigenetic regulation to sensory retinal disorders and vision loss.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Department of Ophthalmology, University of Pittsburgh Medical School, USA.
| | - Ramya K Mallela
- Department of Ophthalmology, University of Pittsburgh Medical School, USA
| | - Abigail Hayes
- Department of Ophthalmology, West Virginia University, USA
| | | | | | - Raymond A Enke
- Department of Biology, James Madison University, USA; Center for Genome and Metagenome Studies, James Madison University, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, Bethesda, MD 20892, USA
| | - Hal Sternberg
- BioTime, 1010 Atlantic Avenue, Alameda, CA 94501, USA
| | | | - Igor O Nasonkin
- Department of Ophthalmology, University of Pittsburgh Medical School, USA.
| |
Collapse
|
6
|
Chatterton Z, Hartley BJ, Seok MH, Mendelev N, Chen S, Milekic M, Rosoklija G, Stankov A, Trencevsja-Ivanovska I, Brennand K, Ge Y, Dwork AJ, Haghighi F. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics Chromatin 2017; 10:4. [PMID: 28149327 PMCID: PMC5270321 DOI: 10.1186/s13072-017-0111-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Intrauterine exposure to maternal smoking is linked to impaired executive function and behavioral problems in the offspring. Maternal smoking is associated with reduced fetal brain growth and smaller volume of cortical gray matter in childhood, indicating that prenatal exposure to tobacco may impact cortical development and manifest as behavioral problems. Cellular development is mediated by changes in epigenetic modifications such as DNA methylation, which can be affected by exposure to tobacco. Results In this study, we sought to ascertain how maternal smoking during pregnancy affects global DNA methylation profiles of the developing dorsolateral prefrontal cortex (DLPFC) during the second trimester of gestation. When DLPFC methylation profiles (assayed via Illumina, HM450) of smoking-exposed and unexposed fetuses were compared, no differentially methylated regions (DMRs) passed the false discovery correction (FDR ≤ 0.05). However, the most significant DMRs were hypomethylated CpG Islands within the promoter regions of GNA15 and SDHAP3 of smoking-exposed fetuses. Interestingly, the developmental up-regulation of SDHAP3 mRNA was delayed in smoking-exposed fetuses. Interaction analysis between gestational age and smoking exposure identified significant DMRs annotated to SYCE3, C21orf56/LSS, SPAG1 and RNU12/POLDIP3 that passed FDR. Furthermore, utilizing established methods to estimate cell proportions by DNA methylation, we found that exposed DLPFC samples contained a lower proportion of neurons in samples from fetuses exposed to maternal smoking. We also show through in vitro experiments that nicotine impedes the differentiation of neurons independent of cell death. Conclusions We found evidence that intrauterine smoking exposure alters the developmental patterning of DNA methylation and gene expression and is associated with reduced mature neuronal content, effects that are likely driven by nicotine. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0111-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zac Chatterton
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Brigham J Hartley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Man-Ho Seok
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Natalia Mendelev
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Sean Chen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Maria Milekic
- Department of Psychiatry, Columbia University, New York, NY 10032 USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY 10032 USA.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia.,School of Medicine, Skopje, Macedonia
| | | | | | - Kristen Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY 10032 USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | - Fatemeh Haghighi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029 USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Floor 10, Room 10-70D, New York, NY 10029 USA.,Medical Epigenetics, James J. Peters VA Medical Center, Bronx, NY 10468 USA
| |
Collapse
|
7
|
Moosavi A, Ardekani AM. Role of Epigenetics in Biology and Human Diseases. IRANIAN BIOMEDICAL JOURNAL 2016; 20:246-58. [PMID: 27377127 PMCID: PMC5075137 DOI: 10.22045/ibj.2016.01] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
For a long time, scientists have tried to describe disorders just by genetic or environmental factors. However, the role of epigenetics in human diseases has been considered from a half of century ago. In the last decade, this subject has attracted many interests, especially in complicated disorders such as behavior plasticity, memory, cancer, autoimmune disease, and addiction as well as neurodegenerative and psychological disorders. This review first explains the history and classification of epigenetic modifications, and then the role of epigenetic in biology and connection between the epigenetics and environment are explained. Furthermore, the role of epigenetics in human diseases is considered by focusing on some diseases with some complicated features, and at the end, we have given the future perspective of this field. The present review article provides concepts with some examples to reveal a broad view of different aspects of epigenetics in biology and human diseases.
Collapse
Affiliation(s)
- Azam Moosavi
- Department of Biochemistry, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|
8
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
9
|
Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 2015; 35:1014-25. [PMID: 25582194 DOI: 10.1128/mcb.01105-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.
Collapse
|
10
|
Nakanishi MO, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S. Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics 2014; 7:173-82. [DOI: 10.4161/epi.7.2.18962] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Huang HS, Redmond TM, Kubish GM, Gupta S, Thompson RC, Turner DL, Uhler MD. Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J Mol Neurosci 2014; 55:684-705. [PMID: 25189318 DOI: 10.1007/s12031-014-0408-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, Xia X, Ma Z, Zhou Y, Zhang L, Ying W, Xu D, Zuo B, Ren Z, Xiong Y. Effects of histone deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram 2014; 16:253-65. [PMID: 24960409 PMCID: PMC4116115 DOI: 10.1089/cell.2013.0058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro.
Collapse
Affiliation(s)
- Liming Hou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Hasan Riaz
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoliang Xia
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhou
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqin Ying
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dequan Xu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zuo
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanzhu Xiong
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Abstract
Epigenetics refers to functionally relevant modifications of the genome that do not involve a change in the nucleotide sequence. Examples of such modifications are DNA methylation and histone modifications. Both modifications serve to regulate gene expression without altering the underlying DNA sequence. The epigenome encodes critical information to regulate gene expression. The cellular epigenome is established during development and differentiation and maintained during cell division. These instructions are different in each cell type; therefore, the epigenome is cell-type-specific. Nutrient availability and other environmental factors cause changes in the epigenome. Recent research suggests the critical contribution of the epigenome to the development of complex gene-environmental diseases including chronic kidney diseases.
Collapse
|
14
|
Yan Q, Xu J, Hu W, Li Z, Wu J, Zhang S. Transient folate deprivation facilitates the generation of mouse-induced pluripotent stem cells. Cell Biol Int 2014; 38:571-6. [PMID: 24375975 DOI: 10.1002/cbin.10233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/04/2013] [Indexed: 11/07/2022]
Abstract
Somatic cells can be reprogrammed into iPS (induced pluripotent stem) cells through the ectopic expression of defined transcription factors. However, the inefficiency and amount of time needed limited the potential application of iPS cells. We report an efficient method to generate iPS cells from MEF (mouse embryonic fibroblasts) through folate-depriviatoin, which was used to change the methylation of MEF. Without folate for 3 days, the induction efficiency is enhanced fivefold. Karyotype analysis showed that transient folate-depriving treatment did not negatively affect properties of iPS cells; characterised iPS cells show normal karyotypes. Thus, a new method has been found that can improve the induction efficiency, but not increase the chance of chromosomal mutation.
Collapse
Affiliation(s)
- Qiuyue Yan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061001, China
| | | | | | | | | | | |
Collapse
|
15
|
Sabag O, Zamir A, Keshet I, Hecht M, Ludwig G, Tabib A, Moss J, Cedar H. Establishment of methylation patterns in ES cells. Nat Struct Mol Biol 2013; 21:110-2. [PMID: 24336222 DOI: 10.1038/nsmb.2734] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023]
Abstract
After erasure in the early animal embryo, a new bimodal DNA methylation pattern is regenerated at implantation. We have identified a demethylation pathway in mouse embryonic cells that uses hydroxymethylation (Tet1), deamination (Aid), glycosylation (Mbd4) and excision repair (Gadd45a) genes. Surprisingly, this demethylation system is not necessary for generating the overall bimodal methylation pattern but does appear to be involved in resetting methylation patterns during somatic-cell reprogramming.
Collapse
Affiliation(s)
- Ofra Sabag
- 1] Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel. [2]
| | - Ayelet Zamir
- 1] Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel. [2]
| | - Ilana Keshet
- 1] Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel. [2]
| | - Merav Hecht
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Guy Ludwig
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Amalia Tabib
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
16
|
Gómez MC, Biancardi MN, Jenkins JA, Dumas C, Galiguis J, Wang G, Earle Pope C. Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reprod Domest Anim 2013; 47 Suppl 6:130-5. [PMID: 23279482 DOI: 10.1111/rda.12027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Somatic cell nuclear transfer offers the possibility of preserving endangered species including the black-footed cat, which is threatened with extinction. The effectiveness and efficiency of somatic cell nuclear transfer (SCNT) depends on a variety of factors, but 'inappropriate epigenetic reprogramming of the transplanted nucleus is the primary cause of the developmental failure of cloned embryos. Abnormal epigenetic events such as DNA methylation and histone modifications during SCNT perturb the expression of imprinted and pluripotent-related genes that, consequently, may result in foetal and neonatal abnormalities. We have demonstrated that pregnancies can be established after transfer of black-footed cat cloned embryos into domestic cat recipients, but none of the implanted embryos developed to term and the foetal failure has been associated to aberrant reprogramming in cloned embryos. There is growing evidence that modifying the epigenetic pattern of the chromatin template of both donor cells and reconstructed embryos with a combination of inhibitors of histone deacetylases and DNA methyltransferases results in enhanced gene reactivation and improved in vitro and in vivo developmental competence. Epigenetic modifications of the chromatin template of black-footed cat donor cells and reconstructed embryos with epigenetic-modifying compounds enhanced in vitro development, and regulated the expression of pluripotent genes, but these epigenetic modifications did not improve in vivo developmental competence.
Collapse
Affiliation(s)
- M C Gómez
- Audubon Center for Research of Endangered Species, New Orleans, LA 70131, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Shi J, Shi W, Ni L, Xu X, Su X, Xia L, Xu F, Chen J, Zhu J. OCT4 is epigenetically regulated by DNA hypomethylation of promoter and exon in primary gliomas. Oncol Rep 2013; 30:201-6. [PMID: 23670345 DOI: 10.3892/or.2013.2456] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/09/2013] [Indexed: 11/06/2022] Open
Abstract
Glioma is the leading cause of tumor-related mortality in the central nervous system. There is increasing evidence that the self-renewal capacity of cancer cells is critical for the initiation, growth and recurrence of tumors. OCT4 is a transcription factor that plays a key role in regulating the self-renewal ability of embryonic stem cells. DNA methylation is involved in the regulation of OCT4 expression during the development and differentiation of embryonic stem cells and neural stem cells. In the present study, we reported that OCT4 was highly expressed in primary gliomas and its expression levels increased in parallel with pathological grades. BSP analysis showed that the methylation levels of OCT4 gene promoter and exon were significantly reduced in comparison with the normal group and were negatively correlated with OCT4 gene expression in primary gliomas. In vitro, OCT4 gene expression was upregulated following treatment by a demethylation reagent in glioma cell lines. Our findings suggest that OCT4 is epigenetically regulated by DNA hypomethylation in primary gliomas, which may provide evidence for the role of DNA methylation in tumor and may present a new direction for developing more powerful strategies to treat glioma in the clinic.
Collapse
Affiliation(s)
- Jinlong Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013; 20:274-81. [PMID: 23463312 DOI: 10.1038/nsmb.2518] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic mark that is erased in the early embryo and then re-established at the time of implantation. In this Review, dynamics of DNA methylation during normal development in vivo are discussed, starting from fertilization through embryogenesis and postnatal growth, as well as abnormal methylation changes that occur in cancer.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| | | |
Collapse
|
19
|
Abstract
Embryonic stem cells (ESCs) can self renew and retain the potential to differentiate into each of the cell types within the body. During experimental reprogramming, many of the features of ESCs can be acquired by differentiated target cells. One of these is the unusual cell division cycle that characterizes ESCs in which the Gap (G) phases are short and DNA Synthesis (S) phase predominates. Growing evidence has suggested that this atypical cell-cycle structure may be important for maintaining pluripotency and for enhancing pluripotent conversion. Here, we review current knowledge of cell-cycle regulation in ESCs and outline how this unique cell-cycle structure might contribute to successful reprogramming.
Collapse
Affiliation(s)
- Tomomi Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, United Kingdom
| | | |
Collapse
|
20
|
Park Y, Lee JM, Hwang MY, Son GH, Geum D. NonO binds to the CpG island of oct4 promoter and functions as a transcriptional activator of oct4 gene expression. Mol Cells 2013; 35:61-9. [PMID: 23212346 PMCID: PMC3887857 DOI: 10.1007/s10059-013-2273-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022] Open
Abstract
We investigated the relationship between oct4 gene expression patterns and CpG sites methylation profiles during ES cell differentiation into neurons, and identified relevant binding factor. The oct4 gene expression level gradually declined as ES cell differentiation progressed, and the CpG sites in the oct4 proximal enhancer (PE) and promoter regions were methylated in concert with ES cell differentiation. An electro-mobility shift assay (EMSA) showed that putative proteins bind to CpG sites in the oct4 PE/promoter. We purified CpG binding proteins with DNAbinding purification method, and NonO was identified by liquid chromatography-mass spectrometry. EMSA with specific competitors revealed that NonO specifically binds to the conserved CCGGTGAC sequence in the oct4 promoter. Methylation at a specific cytosine residue (CC* GGTGAC) reduced the binding affinity of NonO for the recognition sequence. Chromatin immunoprecipitation analysis confirmed that NonO binds to the unmethylated oct4 promoter. There were no changes in the NonO mRNA and protein levels between ES cells and differentiated cells. The transcriptional role of NonO in oct4 gene expression was evaluated by luciferase assays and knockdown experiments. The luciferase activity significantly increased threefold when the NonO expression vector was cotransfected with the NonO recognition sequence, indicating that NonO has a transcription activator effect on oct4 gene expression. In accordance with this effect, when NonO expression was inhibited by siRNA treatment, oct4 expression was also significantly reduced. In summary, we purified NonO, a novel protein that binds to the CpG island of oct4 promoter, and positively regulates oct4 gene expression in ES cells.
Collapse
Affiliation(s)
| | | | | | - Gi-hoon Son
- Graduate School of Medicine, Department of Legal Medicine, Medical School, Korea University, Seoul 136-705,
Korea
| | - Dongho Geum
- Graduate School of Medicine, Department of Legal Medicine, Medical School, Korea University, Seoul 136-705,
Korea
| |
Collapse
|
21
|
Kelly RDW, Mahmud A, McKenzie M, Trounce IA, St John JC. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 2012; 40:10124-38. [PMID: 22941637 PMCID: PMC3488228 DOI: 10.1093/nar/gks770] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization.
Collapse
Affiliation(s)
- Richard D W Kelly
- Mitochondrial Genetics Group, Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
22
|
Guenther MG. Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics 2012; 3:323-43. [PMID: 22122341 DOI: 10.2217/epi.11.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) have the potential to generate virtually any cell type or tissue type in the body. This remarkable plasticity has yielded great interest in using these cells to understand early development and in treating human disease. In an effort to understand the basis of ESC pluripotency, genetic and genomic studies have revealed transcriptional regulatory circuitry that maintains the pluripotent cell state and poises the genome for downstream activation. Critical components of this circuitry include ESC transcription factors, chromatin regulators, histone modifications, signaling molecules and regulatory RNAs. This article will focus on our current understanding of these components and how they influence ESC and induced pluripotent stem cell states. Emerging themes include regulation of the pluripotent genome by a core set of transcription factors, transcriptional poising of developmental genes by chromatin regulatory complexes and the establishment of multiple layers of repression at key genomic loci.
Collapse
|
23
|
Abstract
DNA methylation represents a form of genome annotation that mediates gene repression by serving as a maintainable mark that can be used to reconstruct silent chromatin following each round of replication. During development, germline DNA methylation is erased in the blastocyst, and a bimodal pattern is established anew at the time of implantation when the entire genome gets methylated while CpG islands are protected. This brings about global repression and allows housekeeping genes to be expressed in all cells of the body. Postimplantation development is characterized by stage- and tissue-specific changes in methylation that ultimately mold the epigenetic patterns that define each individual cell type. This is directed by sequence information in DNA and represents a secondary event that provides long-term expression stability. Abnormal methylation changes play a role in diseases, such as cancer or fragile X syndrome, and may also occur as a function of aging or as a result of environmental influences.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel.
| | | |
Collapse
|
24
|
Zhang RP, Shao JZ, Xiang LX. GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. J Biol Chem 2011; 286:41083-94. [PMID: 21917922 PMCID: PMC3220515 DOI: 10.1074/jbc.m111.258715] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 09/14/2011] [Indexed: 12/13/2022] Open
Abstract
Methylation and demethylation of DNA are the complementary processes of epigenetic regulation. These two types of regulation influence a diverse array of cellular activities, including the maintenance of pluripotency and self-renewal in embryonic stem cells. It was generally believed that DNA demethylation occurs passively over several cycles of DNA replication and that active DNA demethylation is rare. Recently, evidence for active DNA demethylation has been obtained in several cancer, neuronal, and embryonic stem cell lines. Studies in embryonic stem cell models, however, suggested that active DNA demethylation might be restricted to the early development of progenitor cells. Whether active demethylation is involved in terminal differentiation of adult stem cells is poorly understood. We provide evidence that active DNA demethylation does occur during terminal specification of stem cells in an adipose-derived mesenchymal stem cell-derived osteogenic differentiation model. The medium CpG regions in promoters of the Dlx5, Runx2, Bglap, and Osterix osteogenic lineage-specific genes were demethylated during the increase in gene expression associated with osteogenic differentiation. The growth arrest and DNA damage-inducible protein GADD45A was up-regulated in these processes. Knockdown of GADD45A led to hypermethylation of Dlx5, Runx2, Bglap, and Osterix promoters, followed by suppression of the expression of these genes and interruption of osteogenic differentiation. These results reveal that GADD45A plays an essential role in gene-specific active DNA demethylation during adult stem cell differentiation. They enhance the current knowledge of osteogenic specification and may also lead to a better understanding of the common mechanisms underlying epigenetic regulation in adult stem cell differentiation.
Collapse
Affiliation(s)
- Rui-peng Zhang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058 and
- the Key Laboratory for Cell and Gene Engineering, Hangzhou 310058, Zhejiang Province, China
| | - Jian-zhong Shao
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058 and
- the Key Laboratory for Cell and Gene Engineering, Hangzhou 310058, Zhejiang Province, China
| | - Li-xin Xiang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058 and
- the Key Laboratory for Cell and Gene Engineering, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
25
|
Gu P, Xu X, Le Menuet D, Chung ACK, Cooney AJ. Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4. Stem Cells 2011; 29:1041-51. [PMID: 21608077 PMCID: PMC3468724 DOI: 10.1002/stem.652] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter. When compared with wild-type ESCs and gastrulating embryos, Oct4 repression is lost and its proximal promoter is significantly hypomethylated in retinoic acid (RA)-differentiated GCNF−/− ESCs and GCNF−/− embryos. Efforts to characterize mediators of GCNF's repressive function and DNA methylation of the Oct4 promoter identified MBD3, MBD2, and de novo Dnmts as GCNF interacting factors. Upon differentiation, endogenous GCNF binds to the Oct4 proximal promoter and differentially recruits MBD3 and MBD2 as well as Dnmt3A. In differentiated GCNF−/− ESCs, recruitment of MBD3 and MBD2 as well as Dnmt3A to Oct4 promoter is lost and subsequently Oct4 repression and DNA methylation failed to occur. Hypomethylation of the Oct4 promoter is also observed in RA-differentiated MBD3−/− and Dnmt3A−/− ESCs, but not in MBD2−/− and Dnmt3B−/− ESCs. Thus, recruitment of MBD3, MBD2, and Dnmt3A by GCNF links two events: gene-specific repression and DNA methylation, which occur differentially at the Oct4 promoter. GCNF initiates the repression and epigenetic modification of Oct4 gene during ESC differentiation. Stem Cells 2011;29:1041–1051
Collapse
Affiliation(s)
- Peili Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Jackson AA, Burdge GC, Lillicrop KA. Diet, nutrition and modulation of genomic expression in fetal origins of adult disease. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 3:192-208. [PMID: 21474951 PMCID: PMC3085525 DOI: 10.1159/000324356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alan A Jackson
- Institute of Human Nutrition, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK.
| | | | | |
Collapse
|
27
|
Huang K, Fan G. DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regen Med 2010; 5:531-44. [PMID: 20632857 DOI: 10.2217/rme.10.35] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Embryonic stem cells have the unique ability to indefinitely self-renew and differentiate into any cell type found in the adult body. Differentiated cells can, in turn, be reprogrammed to embryonic stem-like induced pluripotent stem cells, providing exciting opportunities for achieving patient-specific stem cell therapy while circumventing immunological obstacles and ethical controversies. Since both differentiation and reprogramming are governed by major changes in the epigenome, current directions in the field aim to uncover the epigenetic signals that give pluripotent cells their unique properties. DNA methylation is one of the major epigenetic factors that regulates gene expression in mammals and is essential for establishing cellular identity. Recent analyses of pluripotent and somatic cell methylomes have provided important insights into the extensive role of DNA methylation during cell-fate commitment and reprogramming. In this article, the recent progress of differentiation and reprogramming research illuminated by high-throughput studies is discussed in the context of DNA methylation.
Collapse
Affiliation(s)
- Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7088, USA
| | | |
Collapse
|
28
|
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24:2239-63. [PMID: 20952534 DOI: 10.1101/gad.1963910] [Citation(s) in RCA: 561] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. This discovery has raised fundamental questions about the mechanisms by which transcription factors influence the epigenetic conformation and differentiation potential of cells during reprogramming and normal development. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. In this review, we summarize the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.
Collapse
Affiliation(s)
- Matthias Stadtfeld
- Howard Hughes Medical Institute, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
29
|
Zhou SY, Zhang C, Baradaran E, Chuck RS. Human Corneal Basal Epithelial Cells Express an Embryonic Stem Cell Marker OCT4. Curr Eye Res 2010; 35:978-85. [DOI: 10.3109/02713683.2010.516465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shi-you Zhou
- Zhongshan Ophthalmic Center, The State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Cheng Zhang
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, New York, USA
| | - Ebrahimi Baradaran
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roy S. Chuck
- Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
30
|
Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 2010; 30:315-39. [PMID: 20415585 DOI: 10.1146/annurev.nutr.012809.104751] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, University of Southampton School of Medicine, Southampton, SO16 6YD, United Kingdom.
| | | |
Collapse
|
31
|
Effects of 17β-estradiol and xenoestrogens on mouse embryonic stem cells. Toxicol In Vitro 2010; 24:1538-45. [DOI: 10.1016/j.tiv.2010.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/03/2010] [Accepted: 06/30/2010] [Indexed: 01/05/2023]
|
32
|
Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res 2010; 6:60-9. [PMID: 20933485 DOI: 10.1016/j.scr.2010.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 12/12/2022] Open
Abstract
Unrestricted somatic stem cells (USSC) from human cord blood display a broad differentiation potential for ectodermal, mesodermal, and endodermal cell types. The molecular basis for these stem cell properties is unclear and unlike embryonic stem cells (ESC) none of the major stem cell factors OCT4, SOX2, and NANOG exhibits significant expression in USSC. Here, we report that these key stem cell genes hold an epigenetic state in between that of an ESC and a terminally differentiated cell type. DNA methylation analysis exhibits partial demethylation of the regulatory region of OCT4 and a demethylated state of the NANOG and SOX2 promoter/enhancer regions. Further genome-wide DNA methylation profiling identified a partially demethylated state of the telomerase gene hTERT. Moreover, none of the pluripotency factors exhibited a repressive histone signature. Notably, SOX2 exhibits a bivalent histone signature consisting of the opposing histone marks dimeH3K4 and trimeH3K27, which is typically found on genes that are "poised" for transcription. Consequently, ectopic expression of OCT4 in USSC led to rapid induction of expression of its known target gene SOX2. Our data suggest that incomplete epigenetic repression and a "poised" epigenetic status of pluripotency genes preserves the USSC potential to be able to react adequately to distinct differentiation and reprogramming cues.
Collapse
|
33
|
Abstract
DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
Collapse
|
34
|
Lee SH, Jeyapalan JN, Appleby V, Mohamed Noor DA, Sottile V, Scotting PJ. Dynamic methylation and expression of Oct4 in early neural stem cells. J Anat 2010; 217:203-13. [PMID: 20646110 DOI: 10.1111/j.1469-7580.2010.01269.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.
Collapse
Affiliation(s)
- Shih-Han Lee
- Children's Brain Tumour Research Centre, Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The rapid increase in incidence of obesity over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environments also strongly influence the risk of developing obesity in later life. Initially, human studies showed that low birth weight was associated with an increased risk of obesity but increasingly there is evidence that overnutrition in the early life can also increase susceptibility to future obesity. These findings have now been replicated in animal models, which have shown that both maternal under- and overnutrition can induce persistent changes in gene expression and metabolism. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. In this review, we discuss the recent evidence that shows that early-life environment can induce altered epigenetic regulation leading to the induction of an altered phenotype. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of obesity opens the possibility that interventions, either through nutrition or specific drugs, may modify long-term obesity risk and combat this rapid rise in obesity.
Collapse
|
36
|
Athanasiadou R, de Sousa D, Myant K, Merusi C, Stancheva I, Bird A. Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells. PLoS One 2010; 5:e9937. [PMID: 20376339 PMCID: PMC2848578 DOI: 10.1371/journal.pone.0009937] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 02/07/2023] Open
Abstract
Differentiation of embryonic stem (ES) cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the approximately 2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.
Collapse
Affiliation(s)
- Rodoniki Athanasiadou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dina de Sousa
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Myant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cara Merusi
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Redshaw Z, Strain AJ. Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression. J Negat Results Biomed 2010; 9:2. [PMID: 20356403 PMCID: PMC2853495 DOI: 10.1186/1477-5751-9-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/31/2010] [Indexed: 11/10/2022] Open
Abstract
The transcription factor Oct4 is well defined as a key regulator of embryonic stem (ES) cell pluripotency. In recent years, the role of Oct4 has purportedly extended to the self renewal and maintenance of multipotency in adult stem cell (ASC) populations. This profile has arisen mainly from reports utilising reverse transcription-polymerase chain reaction (RT-PCR) based methodologies and has since come under scrutiny following the discovery that many developmental genes have multiple pseudogenes associated with them. Six known pseudogenes exist for Oct4, all of which exhibit very high sequence homology (three >97%), and for this reason the generation of artefacts may have contributed to false identification of Oct4 in somatic cell populations. While ASC lack a molecular blueprint of transcription factors proposed to be involved with 'stemness' as described for ES cells, it is not unreasonable to assume that similar gene patterns may exist. The focus of this work was to corroborate reports that Oct4 is involved in the regulation of ASC self-renewal and differentiation, using a combination of methodologies to rule out pseudogene interference. Haematopoietic stem cells (HSC) derived from human umbilical cord blood (UCB) and various differentiated cell lines underwent RT-PCR, product sequencing and transfection studies using an Oct4 promoter-driven reporter. In summary, only the positive control expressed Oct4, with all other cell types expressing a variety of Oct4 pseudogenes. Somatic cells were incapable of utilising an exogenous Oct4 promoter construct, leading to the conclusion that Oct4 does not appear involved in the multipotency of human HSC from UCB.
Collapse
Affiliation(s)
- Zoe Redshaw
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | | |
Collapse
|
38
|
Xi S, Geiman TM, Briones V, Guang Tao Y, Xu H, Muegge K. Lsh participates in DNA methylation and silencing of stem cell genes. Stem Cells 2009; 27:2691-702. [PMID: 19650037 PMCID: PMC3327128 DOI: 10.1002/stem.183] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transcriptional control of stem cell genes is a critical step in differentiation of embryonic stem cells and in reprogramming of somatic cells into stem cells. Here we report that Lsh, a regulator of repressive chromatin at retrotransposons, also plays an important role in silencing of stem cell-specific genes such as Oct4. We found that CpG methylation is gained during in vitro differentiation of several stem cell-specific genes (in 11 of 12 promoter regions) and thus appears to be a common epigenetic mark. Lsh depletion prevents complete silencing of stem cell gene expression and moreover promotes the maintenance of stem cell characteristics in culture. Lsh is required for establishment of DNA methylation patterns at stem cell genes during differentiation, in part by regulating access of Dnmt3b to its genomic targets. Our results indicate that Lsh is involved in the control of stem cell genes and suggest that Lsh is an important epigenetic modulator during early stem cell differentiation.
Collapse
Affiliation(s)
- Sichuan Xi
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21701, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10:295-304. [PMID: 19308066 DOI: 10.1038/nrg2540] [Citation(s) in RCA: 1635] [Impact Index Per Article: 102.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both DNA methylation and histone modification are involved in establishing patterns of gene repression during development. Certain forms of histone methylation cause local formation of heterochromatin, which is readily reversible, whereas DNA methylation leads to stable long-term repression. It has recently become apparent that DNA methylation and histone modification pathways can be dependent on one another, and that this crosstalk can be mediated by biochemical interactions between SET domain histone methyltransferases and DNA methyltransferases. Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel.
| | | |
Collapse
|
40
|
He H, McHaney M, Hong J, Weiss ML. Cloning and Characterization of 3.1kb Promoter Region of the Oct4 Gene from the Fischer 344 Rat. ACTA ACUST UNITED AC 2009; 1:30-39. [PMID: 22347989 DOI: 10.2174/1876893800901010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here, the role of methylation in regulation of rat Oct4 gene was evaluated during embryonic development, in adult tissues and in embryo-derived cells. First, the region 3.1 kb upstream to the rat Oct4 ATG site was cloned and sequenced. The rat Oct4 upstream sequence was similar to that in bovine, mouse and human with two upstream elements: proximal (PE) and distal enhancers (DE) and four homology conserved regions (CR1-4). The conserved regions in the rat have 69% - 96% homology with bovine, human, mouse sequences. Next, the methylation pattern in the promoter was determined during embryonic development, in adult tissues, in rat embryonic stem cell (ESC)-like cells and umbilical cord-derived cells (the feeder for ESC-like cells) using the bisulfite method and DNA sequencing. The promoter was methylated in adult and fetal tissues, and in days post coitus (DPC) 10.5 and 12.5 embryos and hypomethylated in DPC4.5 embryos and in rat ESC-like cells. The expression of Oct4 was evaluated by qRT-PCR. DPC4.5 embryos and rat ESC-like cells had higher expression of the Oct4 gene compared to DPC10.5 and 12.5 embryos, adult tissues and embryoid bodies derived from rat ESC-like cells. Thus, the methylation status correlated with the qRT-PCR results. These results indicate that the rat Oct4 3.1kb promoter region is organized and contains transcription binding and regulatory sites similar to those described for bovine, mouse and human. The rat Oct4 promoter is methylated during embryonic development after 4.5 DPC and during differentiation of rat ESC-like cells to embryoid bodies.
Collapse
Affiliation(s)
- Hong He
- Department of Anatomy and Physiology and the Midwest Institute for Comparative Stem Cell Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
41
|
Association of differential and site-dependent CpG methylation and diverse expression of DNA methyltransferases with the tissue-specific expression of human β-globin gene in transgenic mice. Int J Hematol 2009; 89:414-421. [DOI: 10.1007/s12185-009-0319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/06/2009] [Accepted: 04/07/2009] [Indexed: 01/15/2023]
|
42
|
Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini Z, Cedar H. Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 2009; 16:564-71. [PMID: 19377480 DOI: 10.1038/nsmb.1594] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/24/2009] [Indexed: 12/14/2022]
Abstract
CpG island-like sequences are commonly thought to provide the sole signals for designating constitutively unmethylated regions in the genome, thus generating open chromatin domains within a sea of global repression. Using a new database obtained from comprehensive microarray analysis, we show that unmethylated regions (UMRs) seem to be formed during early embryogenesis, not as a result of CpG-ness, but rather through the recognition of specific sequence motifs closely associated with transcription start sites. This same system probably brings about the resetting of pluripotency genes during somatic cell reprogramming. The data also reveal a new class of nonpromoter UMRs that become de novo methylated in a tissue-specific manner during development, and this process may be involved in gene regulation. In short, we show that UMRs are an important aspect of genome structure that have a dynamic role in development.
Collapse
Affiliation(s)
- Ravid Straussman
- Department of Cellular Biochemistry and Human Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kawasumi M, Unno Y, Matsuoka T, Nishiwaki M, Anzai M, Amano T, Mitani T, Kato H, Saeki K, Hosoi Y, Iritani A, Kishigami S, Matsumoto K. Abnormal DNA methylation of the Oct-4 enhancer region in cloned mouse embryos. Mol Reprod Dev 2009; 76:342-50. [PMID: 18932201 DOI: 10.1002/mrd.20966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-4 is essential for normal embryonic development, and abnormal Oct-4 expression in cloned embryos contributes to cloning inefficiency. However, the causes of abnormal Oct-4 expression in cloned embryos are not well understood. As DNA methylation in regulatory regions is known to control transcriptional activity, we investigated the methylation status of three transcriptional regulatory regions of the Oct-4 gene in cloned mouse embryos--the distal enhancer (DE), the proximal enhancer (PE), and the promoter regions. We also investigated the level of Oct-4 gene expression in cloned embryos. Immunochemistry revealed that 85% of cloned blastocysts expressed Oct-4 in both trophectoderm and inner cell mass cells. DNA methylation analysis revealed that the PE region methylation was greater in cloned morulae than in normal morulae. However, the same region was less methylated in cloned blastocysts than in normal blastocysts. We found abnormal expression of de novo methyltransferase 3b in cloned blastocysts. These results indicate that cloned embryos have aberrant DNA methylation in the CpG sites of the PE region of Oct-4, and this may contribute directly to abnormal expression of this gene in cloned embryos.
Collapse
Affiliation(s)
- Miyuri Kawasumi
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Burdge GC, Lillycrop KA, Jackson AA. Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Br J Nutr 2009; 101:619-30. [PMID: 19079817 PMCID: PMC2649281 DOI: 10.1017/s0007114508145883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is substantial evidence which shows that constraints in the early life environment are an important determinant of risk of metabolic disease and CVD. There is emerging evidence that higher birth weight, which reflects a more abundant prenatal environment, is associated with increased risk of cancer, in particular breast cancer and childhood leukaemia. Using specific examples from epidemiology and experimental studies, this review discusses the hypothesis that increased susceptibility to CVD, metabolic disease and cancer have a common origin in developmental changes induced in the developing fetus by aspects of the intra-uterine environment including nutrition which involve stable changes to the epigenetic regulation of specific genes. However, the induction of specific disease risk is dependent upon the nature of the environmental challenge and interactions between the susceptibility set by the altered epigenome and the environment throughout the life course.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, Southampton General Hospital, Tremona Road, Southampton, UK.
| | | | | |
Collapse
|
45
|
Engel N, Tront JS, Erinle T, Nguyen N, Latham KE, Sapienza C, Hoffman B, Liebermann DA. Conserved DNA methylation in Gadd45a(-/-) mice. Epigenetics 2009; 4:98-9. [PMID: 19229137 DOI: 10.4161/epi.4.2.7858] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha) plays a pivotal role in cellular stress responses and is implicated in DNA repair, cell cycle arrest and apoptosis.(1) Recently, it was proposed that GADD45A is a key regulator of active DNA demethylation by way of its role in DNA repair.(2) Barreto et al. reported that Gadd45a overexpression activated transcription from methylation-silenced reporter plasmids and promoted global DNA demethylation. siRNA-mediated knockdown of Gadd45a levels resulted in increased levels of DNA methylation at specific endogenous loci. Based on these exciting results, Gadd45a(-/-) mice might be predicted to have a hypermethylation phenotype. We report here that neither global nor locus-specific methylation is increased in Gadd45a(-/-) mice.
Collapse
Affiliation(s)
- Nora Engel
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee ER, Murdoch FE, Fritsch MK. High Histone Acetylation and Decreased Polycomb Repressive Complex 2 Member Levels Regulate Gene Specific Transcriptional Changes During Early Embryonic Stem Cell Differentiation Induced by Retinoic Acid. Stem Cells 2009; 25:2191-9. [PMID: 17525233 DOI: 10.1634/stemcells.2007-0203] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone modifications play a crucial role during embryonic stem (ES) cell differentiation. During differentiation, binding of polycomb repressive complex 2 (PRC2), which mediates trimethylation of lysine 27 on histone H3 (K27me3), is lost on developmental genes that are transcriptionally induced. We observed a global decrease in K27me3 in as little as 3 days after differentiation of mouse ES cells induced by retinoic acid (RA) treatment. The global levels of the histone K27 methyltransferase EZH2 also decreased with RA treatment. A loss of EZH2 binding and K27me3 was observed locally on PRC2 target genes induced after 3 days of RA, including Nestin. In contrast, direct RA-responsive genes that are rapidly induced, such as Hoxa1, showed a loss of EZH2 binding and K27me3 after only a few hours of RA treatment. Following differentiation induced by leukemia inhibitor factor (LIF) withdrawal without RA, Hoxa1 was not transcriptionally activated. Small interfering RNA-mediated knockdown of EZH2 resulted in loss of K27me3 during LIF withdrawal, but the Hoxa1 gene remained transcriptionally silent after loss of this repressive mark. Induction of histone hyperacetylation overrode the repressive K27me3 modification and resulted in Hoxa1 gene expression. Together, these data show that there are multiple temporal phases of derepression of PRC2 target genes during ES cell differentiation and that other epigenetic marks (specifically, increased acetylation of histones H3 and H4), in addition to derepression, are important for gene-specific transcriptional activation. This report demonstrates the temporal interplay of various epigenetic changes in regulating gene expression during early ES cell differentiation.
Collapse
Affiliation(s)
- Elliot R Lee
- Cancer Biology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
47
|
Active DNA demethylation and DNA repair. Differentiation 2008; 77:1-11. [PMID: 19281759 DOI: 10.1016/j.diff.2008.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 12/17/2022]
Abstract
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic "active" DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that "pruning" of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.
Collapse
|
48
|
Lorthongpanich C, Laowtammathron C, Chan AWS, Ketudat-Cairns M, Parnpai R. Development of interspecies cloned monkey embryos reconstructed with bovine enucleated oocytes. J Reprod Dev 2008; 54:306-13. [PMID: 18591865 DOI: 10.1262/jrd.20049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was carried out to determine whether culture media reconstructed with bovine enucleated oocytes and the expression pattern of Oct-4 could support dedifferentiaton of monkey fibroblasts in interspecies cloned monkey embryos. In this study, monkey and bovine skin fibroblasts were used as donor cells for reconstruction with bovine enucleated oocytes. The reconstructed monkey interspecies somatic cell nuclear transfer (iSCNT) embryos were then cultured under six different culture conditions with modifications of the embryo culture media and normal bovine and monkey specifications. The Oct-4 expression patterns of the embryos were examined at the two-cell to blastocyst stages using immunocytochemistry. The monkey iSCNT embryos showed similar cleavage rates to those of bovine SCNT and bovine parthenogenetic activation (PA). However, the monkey iSCNT embryos were not able to develop beyond the 16-cell stage under any of the culture conditions. In monkey and bovine SCNT embryos, Oct-4 could be detected from the two-cell to blastocyst stage, and in bovine PA embryos, Oct-4 was detectable from the morula to blastocyst stage. These results suggested that bovine ooplasm could support dedifferentiation of monkey somatic cell nuclei but could not support embryo development to either the compact morula or blastocyst stage. In conclusion, we found that the culture conditions that tend to enhance monkey iSCNT embryo development and the expression pattern of Oct-4 in cloned embryos (monkey iSCNT and bovine SCNT) are different than in bovine PA embryos.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | | | |
Collapse
|
49
|
Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberger M, Reik W. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 2008; 4:e1000116. [PMID: 18584034 PMCID: PMC2432031 DOI: 10.1371/journal.pgen.1000116] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/04/2008] [Indexed: 12/11/2022] Open
Abstract
DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early embryo is thus crucial for transmission of pluripotency.
Collapse
Affiliation(s)
- Cassandra R. Farthing
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Gabriella Ficz
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Ray Kit Ng
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Chun-Fung Chan
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Wendy Dean
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Myriam Hemberger
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schübeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008; 30:755-66. [PMID: 18514006 DOI: 10.1016/j.molcel.2008.05.007] [Citation(s) in RCA: 691] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 05/10/2008] [Accepted: 05/16/2008] [Indexed: 12/22/2022]
Abstract
Cellular differentiation entails loss of pluripotency and gain of lineage- and cell-type-specific characteristics. Using a murine system that progresses from stem cells to lineage-committed progenitors to terminally differentiated neurons, we analyzed DNA methylation and Polycomb-mediated histone H3 methylation (H3K27me3). We show that several hundred promoters, including pluripotency and germline-specific genes, become DNA methylated in lineage-committed progenitor cells, suggesting that DNA methylation may already repress pluripotency in progenitor cells. Conversely, we detect loss and acquisition of H3K27me3 at additional targets in both progenitor and terminal states. Surprisingly, many neuron-specific genes that become activated upon terminal differentiation are Polycomb targets only in progenitor cells. Moreover, promoters marked by H3K27me3 in stem cells frequently become DNA methylated during differentiation, suggesting context-dependent crosstalk between Polycomb and DNA methylation. These data suggest a model how de novo DNA methylation and dynamic switches in Polycomb targets restrict pluripotency and define the developmental potential of progenitor cells.
Collapse
Affiliation(s)
- Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|