1
|
Giammaria S, Pandino I, Zingale GA, Atzori MG, Cavaterra D, Cecere M, Michelessi M, Roberti G, Tanga L, Carnevale C, Vercellin AV, Siesky B, Harris A, Grasso G, Bocedi A, Coletta M, Tundo GR, Oddone F, Sbardella D. Profiling of the Peripheral Blood Mononuclear Cells Proteome by Shotgun Proteomics Identifies Alterations of Immune System Components, Proteolytic Balance, Autophagy, and Mitochondrial Metabolism in Glaucoma Subjects. ACS OMEGA 2025; 10:14866-14883. [PMID: 40291004 PMCID: PMC12019430 DOI: 10.1021/acsomega.4c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Glaucoma is a chronic optic neuropathy and is the second cause of irreversible blindness worldwide. Although the pathogenesis of the disease is not fully understood, the death of retinal ganglion cells and degeneration of the optic nerve are likely promoted by a combination of local and systemic factors. Growing attention has been paid to nonintraocular pressure risk factors, including mechanisms of inflammation and neuroinflammation. Phenotypical and molecular alterations of circulating immune cells, in particular, lymphocyte subsets, have been documented in murine models of glaucoma and in human subjects. Very recently, oxygen consumption rate and nicotinamide adenine dinucleotide levels of human peripheral blood mononuclear cells (PBMC) have been proposed as biomarkers of disease progression, thus suggesting that immune cells of glaucoma subjects present severe molecular and metabolic alterations. In this framework, this pilot study aimed to be the first to characterize global proteome perturbations of PBMC of patients with primary open-angle glaucoma (POAG) compared to nonglaucomatous controls (control) by shotgun proteomics. The approach identified >4,500 proteins and a total of 435 differentially expressed proteins between POAG and control subjects. Clustering and rationalization of proteomic data sets and immunodetection of selected proteins by Western blotting highlighted significant alterations of immune system compartments (i.e., complement factors, regulators of immune functions, and lymphocyte activation) and pathways serving key roles for immune system such as proteolysis (i.e., matrix metalloproteinases and their inhibitors), autophagy (i.e., beclin-1 and LC3B), cell proliferation (Bcl2), mitochondrial (i.e., sirtuin), and energetic/redox metabolism (i.e., NADK). Based on these findings, this proteomic study suggests that circulating immune cells suffer from heterogeneous alterations of central pathways involved in cell metabolism and homeostasis. Larger, properly designed studies are required to confirm specifically how immune cellular alterations may be involved in the pathogenesis of both neuroinflammation and glaucomatous disease.
Collapse
Affiliation(s)
- Sara Giammaria
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | - Irene Pandino
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | | | - Dario Cavaterra
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Michela Cecere
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | - Gloria Roberti
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | - Lucia Tanga
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | | | - Brent Siesky
- Icahn
School
of Medicine at Mount Sinai, New York 10029-6574, United States
| | - Alon Harris
- Icahn
School
of Medicine at Mount Sinai, New York 10029-6574, United States
| | - Giuseppe Grasso
- Department
of Chemical SciencesUniversity of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Alessio Bocedi
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | | | - Grazia Raffaella Tundo
- Department
of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | | | | |
Collapse
|
2
|
Yadav KS, Bisen AC, Ishteyaque S, Sharma I, Verma S, Sanap SN, Verma S, Washimkar KR, Kumar A, Tripathi V, Bhatta RS, Mugale MN. Solanum nigrum Toxicity and Its Neuroprotective Effect Against Retinal Ganglion Cell Death Through Modulation of Extracellular Matrix in a Glaucoma Rat Model. J Ocul Pharmacol Ther 2024; 40:309-324. [PMID: 38603587 DOI: 10.1089/jop.2023.0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 μg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.
Collapse
Affiliation(s)
- Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Sharmeen Ishteyaque
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Nashik Sanap
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Vineeta Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Botany, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
4
|
Thakur N, Pandey RK, Mannan R, Pruthi A, Mehrotra S. Genetic association of IL1B gene variants with primary glaucoma in a North Indian Punjabi cohort: An original study and meta-analysis. Exp Eye Res 2024; 238:109720. [PMID: 37952723 DOI: 10.1016/j.exer.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Interleukin (IL) 1B is an important candidate gene in glaucoma pathogenesis as it affects the survival of retinal ganglion cells (RGCs). In the present study, -511T/C and +3953C/T polymorphisms in the IL1B were assessed as genetic risk factors for primary open angle (POAG) and angle closure glaucoma (PACG) in a North Indian Punjabi cohort comprising 867 samples (POAG cases = 307; PACG cases = 133 and controls = 427). Genetic association, diplotype and linkage disequilibrium (LD) analyses were performed. Corrections for confounding variables and multiple testing were applied. An updated meta-analysis was also performed. Pooled OR with 95% CI was calculated for dominant, over dominant, and recessive models. Level of heterozygosity among studies was tested using I2 statistic with fixed or random effect model based on the extent of heterogeneity. For -511T > C polymorphism, a positive association was observed with PACG under dominant (p = 0.038; OR = 0.65; pcorr = 0.011; OR = 0.55) and over dominant models (p = 0.010; OR = 0.59; pcorr = 0.001; OR = 0.46). Significant association of +3953C > T was also observed with POAG under dominant (p = 0.011; OR = 1.46; pcorr = 0.018; OR = 1.48) and PACG under recessive models (p < 0.0001; OR = 4.47; pcorr<0.0001; OR = 4.06). While C-C diplotype provided protection against primary glaucoma (0.67-fold; p = 0.0004), T-T and T-C diplotypes predisposed individuals to higher risk (1.31-fold; p = 0.030 and 1.36-fold; p = 0.022 respectively). In meta-analysis, a significant association between +3453 C>T and POAG was observed under dominant (pooled OR = 1.33, p = 0.0046) and over dominant (pooled OR = 1.25; p = 0.0269) models with overall heterogeneity of 15% and 0% respectively. The study provides strong evidence of IL1B variants in modifying genetic susceptibility to primary glaucoma in the targeted North Indian Punjabi population. Replication of the present findings in other populations, and functional studies are warranted to further assess the relevance of IL1B variants in the pathogenesis of primary glaucoma.
Collapse
Affiliation(s)
- Nanamika Thakur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India; Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | | | - Rashim Mannan
- All India Institute of Medical Sciences, New Delhi, India
| | - Archna Pruthi
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
5
|
Zhang Y, Han R, Xu S, Chen J, Zhong Y. Matrix Metalloproteinases in Glaucoma: An Updated Overview. Semin Ophthalmol 2023; 38:703-712. [PMID: 37224230 DOI: 10.1080/08820538.2023.2211149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are important regulators of the extracellular matrix (ECM) and are involved in many stages of cellular growth and development. An imbalance of MMP expression is also the basis of many diseases, including eye diseases, such as diabetic retinopathy (DR), glaucoma, dry eye, corneal ulcer, keratoconus. This paper describes the role of MMPs in the glaucoma and their role in the glaucomatous trabecular meshwork (TM), aqueous outflow channel, retina, and optic nerve (ON). This review also summarizes several treatments for glaucoma that target MMPs imbalance and suggests that MMPs may represent a viable therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
Abstract
Vision is an ability that depends on the precise structure and functioning of the retina. Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment, vision loss, and blindness. Immune system and immune response function maintain homeostasis in the microenvironment. Several genetic, metabolic, and environmental factors may alter retinal homeostasis, and these events may initiate various inflammatory cascades. The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma, age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which pose a threat to vision. In the current review, we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders. Moreover, this review paves the way to focus on therapeutic targets of the disease, which are found to be promising.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University; Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University; Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
7
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Kim MH, Lim SH. Matrix Metalloproteinases and Glaucoma. Biomolecules 2022; 12:biom12101368. [PMID: 36291577 PMCID: PMC9599265 DOI: 10.3390/biom12101368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that decompose extracellular matrix (ECM) proteins. MMPs are thought to play important roles in cellular processes, such as cell proliferation, differentiation, angiogenesis, migration, apoptosis, and host defense. MMPs are distributed in almost all intraocular tissues and are involved in physiological and pathological mechanisms of the eye. MMPs are also associated with glaucoma, a progressive neurodegenerative disease of the eyes. MMP activity affects intraocular pressure control and apoptosis of retinal ganglion cells, which are the pathological mechanisms of glaucoma. It also affects the risk of glaucoma development based on genetic pleomorphism. In addition, MMPs may affect the treatment outcomes of glaucoma, including the success rate of surgical treatment and side effects on the ocular surface due to glaucoma medications. This review discusses the various relationships between MMP and glaucoma.
Collapse
Affiliation(s)
- Moo Hyun Kim
- Department of Ophthalmology, Daegu Premier Eye Center, Suseong-ro 197, Suseong-Gu, Daegu 42153, Korea
| | - Su-Ho Lim
- Department of Ophthalmology, Daegu Veterans Health Service Medical Center, 60 Wolgok-Ro, Dalseo-Gu, Daegu 42835, Korea
- Correspondence: ; Tel.: +82-53-630-7572
| |
Collapse
|
9
|
Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Functionally significant polymorphisms of the MMP9 gene are associated with primary open-angle glaucoma in the population of Russia. Eur J Ophthalmol 2022; 32:3208-3219. [PMID: 35254145 DOI: 10.1177/11206721221083722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of functionally significant loci of the matrix metalloproteinases genes 1, 3, 9 (MMP1, MMP3, and MMP9) in the development of primary open-angle glaucoma (POAG) in Caucasians of the Central region of Russia. METHODS In total 604 participants were recruited for the study, including 208 patients with POAG and 396 healthy controls. They were genotyped at eight single nucleotide polymorphisms (SNPs) of the three MMP genes. The association was analyzed using logistic and log-linear regression. POAG-associated loci and their proxies were in silico assessed for their functional prediction. RESULTS Variant allele G*rs2250889 of MMP9 was significantly associated with higher risk of POAG (ORcov = 1.57-1.71). Haplotype CCA [rs3918242-rs3918249-rs17576] of the MMP9 gene was associated with lower risk of POAG (ORcov = 0.33). Allele А*rs3787268 of MMP9 was associated with the low intraocular pressure in the POAG patients (βcov = -0.176 - -0.272), and so were haplotypes AA [rs17576-rs3787268] (βcov = -0.577) and AAC [rs17576-rs3787268- rs2250889] (βcov = -0.742) of the same gene, whereas allele 2G*rs1799750 of MMP1 was associated with the earlier onset of the disease (βcov = -0.112 - -0.218). In silico analysis of the polymorphisms suggested the functionality of POAG-associated SNPs and their proxies (epigenetic potential, expression and alternative splicing effects for several genes). CONCLUSIONS The MMP9 gene polymorphisms are associated with POAG and intraocular pressure in POAG patients; rs1799750 of MMP1 was associated with the earlier age of manifestation of the disease symptoms.
Collapse
Affiliation(s)
- Irina Ponomarenko
- Department of Medical Biological Disciplines, 64903Belgorod State University, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, 64903Belgorod State University, Belgorod, Russia
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, 101686Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, 64903Belgorod State University, Belgorod, Russia
| |
Collapse
|
10
|
Bu J, Zhang M, Wu Y, Jiang N, Guo Y, He X, He H, Jeyalatha MV, Reinach PS, Liu Z, Li W. High-Fat Diet Induces Inflammation of Meibomian Gland. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34398199 PMCID: PMC8374999 DOI: 10.1167/iovs.62.10.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To determine if a high-fat diet (HFD) induces meibomian gland (MG) inflammation in mice. Methods Male C57BL/6J mice were fed a standard diet (SD), HFD, or HFD supplemented with the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist rosiglitazone for various durations. Body weight, blood lipid levels, and eyelid changes were monitored at regular intervals. MG sections were subjected to hematoxylin and eosin staining, LipidTox staining, TUNEL assay, and immunostaining. Quantitative RT-PCR and western blot analyses were performed to detect relative gene expression and signaling pathway activation in MGs. Results MG acinus accumulated more lipids in the mice fed the HFD. Periglandular CD45-positive and F4/80-positive cell infiltration were more evident in the HFD mice, and they were accompanied by upregulation of inflammation-related cytokines. PPAR-γ downregulation accompanied activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways in the HFD mice. There was increased acini cell apoptosis and mitochondria damage in mice fed the HFD. MG inflammation was ameliorated following a shift to the standard diet and rosiglitazone treatment in the mice fed the HFD. Conclusions HFD-induced declines in PPAR-γ expression and MAPK and NF-κB signaling pathway activation resulted in MG inflammation and dysfunction in mice.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Minjie Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| | - Nan Jiang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hui He
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - M Vimalin Jeyalatha
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peter Sol Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Pita-Thomas W, Gonçalves TM, Kumar A, Zhao G, Cavalli V. Genome-wide chromatin accessibility analyses provide a map for enhancing optic nerve regeneration. Sci Rep 2021; 11:14924. [PMID: 34290335 PMCID: PMC8295311 DOI: 10.1038/s41598-021-94341-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Retinal Ganglion Cells (RGCs) lose their ability to grow axons during development. Adult RGCs thus fail to regenerate their axons after injury, leading to vision loss. To uncover mechanisms that promote regeneration of RGC axons, we identified transcription factors (TF) and open chromatin regions that are enriched in rat embryonic RGCs (high axon growth capacity) compared to postnatal RGCs (low axon growth capacity). We found that developmental stage-specific gene expression changes correlated with changes in promoter chromatin accessibility. Binding motifs for TFs such as CREB, CTCF, JUN and YY1 were enriched in the regions of the chromatin that were more accessible in embryonic RGCs. Proteomic analysis of purified rat RGC nuclei confirmed the expression of TFs with potential role in axon growth such as CREB, CTCF, YY1, and JUND. The CREB/ATF binding motif was widespread at the open chromatin region of known pro-regenerative TFs, supporting a role of CREB in regulating axon regeneration. Consistently, overexpression of CREB fused to the VP64 transactivation domain in mouse RGCs promoted axon regeneration after optic nerve injury. Our study provides a map of the chromatin accessibility during RGC development and highlights that TF associated with developmental axon growth can stimulate axon regeneration in mature RGC.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Ajeet Kumar
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
MMP2 Modulates Inflammatory Response during Axonal Regeneration in the Murine Visual System. Cells 2021; 10:cells10071672. [PMID: 34359839 PMCID: PMC8307586 DOI: 10.3390/cells10071672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been put forward as a mechanism triggering axonal regrowth in the mammalian central nervous system (CNS), yet little is known about the underlying cellular and molecular players connecting these two processes. In this study, we provide evidence that MMP2 is an essential factor linking inflammation to axonal regeneration by using an in vivo mouse model of inflammation-induced axonal regeneration in the optic nerve. We show that infiltrating myeloid cells abundantly express MMP2 and that MMP2 deficiency results in reduced long-distance axonal regeneration. However, this phenotype can be rescued by restoring MMP2 expression in myeloid cells via a heterologous bone marrow transplantation. Furthermore, while MMP2 deficiency does not affect the number of infiltrating myeloid cells, it does determine the coordinated expression of pro- and anti-inflammatory molecules. Altogether, in addition to its role in axonal regeneration via resolution of the glial scar, here, we reveal a new mechanism via which MMP2 facilitates axonal regeneration, namely orchestrating the expression of pro- and anti-inflammatory molecules by infiltrating innate immune cells.
Collapse
|
13
|
Extracellular Matrix Remodeling in the Retina and Optic Nerve of a Novel Glaucoma Mouse Model. BIOLOGY 2021; 10:biology10030169. [PMID: 33668263 PMCID: PMC7996343 DOI: 10.3390/biology10030169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Glaucoma is a leading cause of blindness worldwide, and increased age and intraocular pressure (IOP) are the major risk factors. Glaucoma is characterized by the death of nerve cells and the loss of optic nerve fibers. Recently, evidence has accumulated indicating that proteins in the environment of nerve cells, called the extracellular matrix (ECM), play an important role in glaucomatous neurodegeneration. Depending on its constitution, the ECM can influence either the survival or the death of nerve cells. Thus, the aim of our study was to comparatively explore alterations of various ECM molecules in the retina and optic nerve of aged control and glaucomatous mice with chronic IOP elevation. Interestingly, we observed elevated levels of blood vessel and glial cell-associated ECM components in the glaucomatous retina and optic nerve, which could be responsible for various pathological processes. A better understanding of the underlying signaling mechanisms may help to develop new diagnostic and therapeutic strategies for glaucoma patients. Abstract Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and progressive IOP elevation, severe RGCs loss, and optic nerve damage, and represent a valuable model for IOP-dependent primary open-angle glaucoma (POAG). Previously, evidence accumulated suggesting that glaucomatous neurodegeneration is associated with the extensive remodeling of extracellular matrix (ECM) molecules. Unfortunately, little is known about the exact ECM changes in the glaucomatous retina and optic nerve. Hence, the goal of the present study was to comparatively explore ECM alterations in glaucomatous PTP-Meg2 HET and control wild type (WT) mice. Due to their potential relevance in glaucomatous neurodegeneration, we specifically analyzed the expression pattern of the ECM glycoproteins fibronectin, laminin, tenascin-C, and tenascin-R as well as the proteoglycans aggrecan, brevican, and members of the receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) family. The analyses were carried out in the retina and optic nerve of glaucomatous PTP-Meg2 HET and WT mice using quantitative real-time PCR (RT-qPCR), immunohistochemistry, and Western blot. Interestingly, we observed increased fibronectin and laminin levels in the glaucomatous HET retina and optic nerve compared to the WT group. RT-qPCR analyses of the laminins α4, β2 and γ3 showed an altered isoform-specific regulation in the HET retina and optic nerve. In addition, an upregulation of tenascin-C and its interaction partner RPTPβ/ζ/phosphacan was found in glaucomatous tissue. However, comparable protein and mRNA levels for tenascin-R as well as aggrecan and brevican were observed in both groups. Overall, our study showed a remodeling of various ECM components in the glaucomatous retina and optic nerve of PTP-Meg2 HET mice. This dysregulation could be responsible for pathological processes such as neovascularization, inflammation, and reactive gliosis in glaucomatous neurodegeneration.
Collapse
|
14
|
Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66:693-713. [PMID: 33582161 DOI: 10.1016/j.survophthal.2021.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is an optic neuropathy characterized by well-defined optic disc morphological changes (i.e., cup enlargement, neuroretinal border thinning, and notching, papillary vessel modifications) consequent to retinal ganglion cell loss, axonal degeneration, and lamina cribrosa remodeling. These modifications tend to be progressive and are the main cause of functional damage in glaucoma. Despite the latest findings about the pathophysiology of the disease, the exact trigger mechanisms and the mechanism of degeneration of retinal ganglion cells and their axons have not been completely elucidated. Neuroinflammation may play a role in both the development and the progression of the disease as a result of its effects on retinal environment and retinal ganglion cells. We summarize the latest findings about neuroinflammation in glaucoma and examine the connection between risk factors, neuroinflammation, and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- Luciano Quaranta
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Carlo Bruttini
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Eleonora Micheletti
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anastasios G P Konstas
- 1st and 3rd University Departments of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | | | - Giovanni De Angelis
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
15
|
Fini ME, Jeong S, Wilson MR. Therapeutic Potential of the Molecular Chaperone and Matrix Metalloproteinase Inhibitor Clusterin for Dry Eye. Int J Mol Sci 2020; 22:E116. [PMID: 33374364 PMCID: PMC7794831 DOI: 10.3390/ijms22010116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Evidence is presented herein supporting the potential of the natural homeostatic glycoprotein CLU (clusterin) as a novel therapeutic for the treatment of dry eye. This idea began with the demonstration that matrix metalloproteinase MMP9 is required for damage to the ocular surface in mouse dry eye. Damage was characterized by degradation of OCLN (occludin), a known substrate of MMP9 and a key component of the paracellular barrier. Following up on this finding, a yeast two-hybrid screen was conducted using MMP9 as the bait to identify other proteins involved. CLU emerged as a strong interacting protein that inhibits the enzymatic activity of MMP9. Previously characterized as a molecular chaperone, CLU is expressed prominently by epithelia at fluid-tissue interfaces and secreted into bodily fluids, where it protects cells and tissues against damaging stress. It was demonstrated that CLU also protects the ocular surface in mouse dry eye when applied topically to replace the natural protein depleted from the dysfunctional tears. CLU is similarly depleted from tears in human dry eye. The most novel and interesting finding was that CLU binds selectively to the damaged ocular surface. In this position, CLU protects against epithelial cell death and barrier proteolysis, and dampens the autoimmune response, while the apical epithelial cell layer is renewed. When present at high enough concentration, CLU also blocks staining by vital dyes used clinically to diagnose dry eye. None of the current therapeutics have this combination of properties to "protect, seal, and heal". Future work will be directed towards human clinical trials to investigate the therapeutic promise of CLU.
Collapse
Affiliation(s)
- M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences Tufts University, Boston, MA 02111, USA
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA;
| | - Mark R. Wilson
- The Illawarra Health and Medical Research Institute, Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
16
|
Starikova D, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Novel Data about Association of the Functionally Significant Polymorphisms of the MMP9 Gene with Exfoliation Glaucoma in the Caucasian Population of Central Russia. Ophthalmic Res 2020; 64:458-464. [PMID: 33099542 DOI: 10.1159/000512507] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
AIM This study aimed to investigate the role of functionally significant polymorphisms of the MMP1, MMP3, and MMP9 genes in the development of exfoliation glaucoma (XFG) in the Caucasian population of Central Russia. METHODS The study sample consisted of 724 participants, including 328 patients with XFG and 396 individuals in the control group. The participants were of Russian ethnicity (self-reported) born in Central Russia. The participants were genotyped at 8 functionally significant polymorphisms of the MMP genes (rs3918242, rs3918249, rs17576, rs3787268, rs2250889, rs17577 MMP9, rs679620 MMP3, and rs1799750 MMP1). The association analysis was performed using logistic regression. Two polymorphisms, which were associated with XFG, and 12 polymorphisms linked to them (r2 ≥ 0.8) were analyzed for their functional significance in silico. RESULTS Allele C of rs3918249 MMP9 was associated with XFG according to the additive model (OR = 0.75, 95% CI: 0.56-0.93, pperm = 0.015), and allele G of the rs2250889 MMP9 locus was associated with XFG according to the additive (OR = 1.59, 95% CI: 1.10-2.29, pperm = 0.013) and dominant (OR = 1.68, 95% CI: 1.11-2.56, pperm = 0.016) models. Two XFG-associated loci of the MMP9 gene and 12 SNPs linked to them had a significant regulatory potential (they are located in the evolutionarily conserved regions, promoter and enhancer histone marks, the DNAase-hypersensitivity regions, a region binding to regulatory protein, and a region of regulatory motifs) and may influence the expression of 13 genes and alternative splicing of 4 genes in various tissues and organs related to the pathogenesis of XFG. CONCLUSION Allele C rs3918249 MMP9 decreased risk for XFG (OR = 0.75), and allele G of the rs2250889 MMP9 locus increased risk for XFG (OR = 1.59-1.68) in the Caucasian population of Central Russia.
Collapse
Affiliation(s)
- Dina Starikova
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation,
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| |
Collapse
|
17
|
Resveratrol protects retinal ganglion cell axons through regulation of the SIRT1-JNK pathway. Exp Eye Res 2020; 200:108249. [PMID: 32956685 DOI: 10.1016/j.exer.2020.108249] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023]
Abstract
It is reported that Ischemia and reperfusion damage (I/R damage) can lead to retinal ganglion cell (RGC) death and neurodegeneration, which in turn can lead to irreversible vision loss. In this study, we sought to understand the neuroprotective effect of resveratrol, the important activator of sirtuin1 (SIRT1), on RGC survival in I/R damage model and the molecular mechanism that mediate this effect. Our results show that resveratrol could reverse axonal swelling, holes, and the chaos of the nucleus in axons of RGCs caused by I/R. At the same time, resveratrol could also reverse the activation of retinal astrocytes and the loss of RGCs caused by I/R. Resveratrol increased the expression of SIRT1 while decreasing the phosphorylation of N-terminal kinase (JNK). SP600125(JNK inhibitor) decreased the phosphorylation of JNK while increasing the expression of SIRT1, indicating that SIRT1 and JNK can interact with each other. Simultaneous administration of resveratrol and sirtinol (SIRT1 inhibitor) neither increased the expression of SIRT1 nor decreased the phosphorylation of JNK, indicating that resveratrol affects the phosphorylation of JNK by SIRT1. In total, our research shows that resveratrol treatment significantly reduces apoptosis and axonal degeneration of RGCs, and this protection is partly mediated through the SIRT1-JNK pathway.
Collapse
|
18
|
Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46:1707-1720. [PMID: 32901846 PMCID: PMC7521588 DOI: 10.3892/ijmm.2020.4711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Loss of idiopathic retinal ganglion cells (RGCs) leads to irreversible vision defects and is considered the primary characteristic of glaucoma. However, effective treatment strategies in terms of RGC neuroprotection remain elusive. In the present study, the protective effects of resveratrol on RGC apoptosis, and the mechanisms underlying its effects were investigated, with a particular emphasis on the function of optic atrophy 1 (Opa1). In an ischemia/reperfusion (I/R) injury model, the notable thinning of the retina, significant apoptosis of RGCs, reduction in Opa1 expression and long Opa1 isoform to short Opa1 isoform ratios (L-Opa1/S-Opa1 ratio) were observed, all of which were reversed by resveratrol administration. Serum deprivation resulted in reductions in R28 cell viability, superoxide dismutase (SOD) activity, Opa1 expression and induced apoptosis, which were also partially reversed by resveratrol treatment. To conclude, results from the present study suggest that resveratrol treatment significantly reduced retinal damage and RGC apoptosis in I/R injury and serum deprivation models. In addition, resveratrol reversed the downregulated expression of Opa1 and reduced SOD activity. Mechanistically, resveratrol influenced mitochondrial dynamics by regulating the L-Opa1/S-Opa1 ratio. Therefore, these observations suggest that resveratrol may exhibit potential as a therapeutic agent for RGC damage in the future.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Kaibao Ji
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Ruihan Xiao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Sun
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xinghui Pan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Yan Y, Yu H, Sun L, Liu H, Wang C, Wei X, Song F, Li H, Ge H, Qian H, Li X, Tang X, Liu P. Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract. Aging (Albany NY) 2020; 11:2699-2723. [PMID: 31076560 PMCID: PMC6535067 DOI: 10.18632/aging.101943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/27/2019] [Indexed: 12/16/2022]
Abstract
Senescence is a leading cause of age-related cataract (ARC). The current study indicated that the senescence-associated protein, p53, total laminin (LM), LMα4, and transforming growth factor-beta1 (TGF-β1) in the cataractous anterior lens capsules (ALCs) increase with the grades of ARC. In cataractous ALCs, patient age, total LM, LMα4, TGF-β1, were all positively correlated with p53. In lens epithelial cell (HLE B-3) senescence models, matrix metalloproteinase-9 (MMP-9) alleviated senescence by decreasing the expression of total LM and LMα4; TGF-β1 induced senescence by increasing the expression of total LM and LMα4. Furthermore, MMP-9 silencing increased p-p38 and LMα4 expression; anti-LMα4 globular domain antibody alleviated senescence by decreasing the expression of p-p38 and LMα4; pharmacological inhibition of p38 MAPK signaling alleviated senescence by decreasing the expression of LMα4. Finally, in cataractous ALCs, positive correlations were found between LMα4 and total LM, as well as between LMα4 and TGF-β1. Taken together, our results implied that the elevated LMα4, which was possibly caused by the decreased MMP-9, increased TGF-β1 and activated p38 MAPK signaling during senescence, leading to the development of ARC. LMα4 and its regulatory factors show potential as targets for drug development for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Yu Yan
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Haiyang Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hanruo Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, 100000, China
| | - Chao Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xi Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Fanqian Song
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hulun Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Harbin, 150081, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Hua Qian
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xiaoguang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
20
|
Pang IH, Clark AF. Inducible rodent models of glaucoma. Prog Retin Eye Res 2020; 75:100799. [PMID: 31557521 PMCID: PMC7085984 DOI: 10.1016/j.preteyeres.2019.100799] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022]
Abstract
Glaucoma is one of the leading causes of vision impairment worldwide. In order to further understand the molecular pathobiology of this disease and to develop better therapies, clinically relevant animal models are necessary. In recent years, both the rat and mouse have become popular models in glaucoma research. Key reasons are: many important biological similarities shared among rodent eyes and the human eye; development of improved methods to induce glaucoma and to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent models address the most important risk factor of elevated IOP, whereas the pressure-independent models assess "normal tension" glaucoma and other "non-IOP" related factors associated with glaucomatous damage. The current article provides descriptions of these models, their characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and limitations.
Collapse
Affiliation(s)
- Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
21
|
Xu S, Liu S, Yan G. Lycium Barbarum Exerts Protection against Glaucoma-Like Injury Via Inhibition of MMP-9 Signaling In Vitro. Med Sci Monit 2019; 25:9794-9800. [PMID: 31860907 PMCID: PMC6936211 DOI: 10.12659/msm.919187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The phytochemical ingredients of berries have been used in the treatment of various bodily ailments; while their roles in preventing the severity of glaucoma are poorly understood. Hence, the present study was framed to investigate whether ethanolic extracts of Lycium barbarum exerts protection against the onset of glaucoma using cultured PC12 neuronal cells by modulating the expression of extracellular matrix proteins. Material/Methods In order to develop glaucoma like condition in cells, cultured PC12 cells were subjected to 50 and 100 mmHg hydrostatic pressure for 24 hours. The pressure exposed cells were analyzed for the expression of glaucoma markers such as ANGPTL7 and the expressions of extracellular matrix proteins in the presence and absence of L. barbarum, matrix metalloproteinase (MMP)-9 inhibitor, and latanoprost, a current drug for the treatment of glaucoma. Results PC12 cells exposed to hydrostatic pressures (50 and 100 mmHg) increased the expression of glaucoma marker, ANGPTL7. Moreover, results have demonstrated the significant changes in the expression of MMP-2, MMP-9, collagen I, and TGF-β at the gene level. In contrast, cells pretreated with L. barbarum extracts showed reduced expression of ANGPTL7 and extracellular matrix proteins compared to control. Furthermore, to elucidate the role of MMP-9 in the onset of glaucoma, cells were silenced using MMP-9 inhibitor along with L. barbarum demonstrated a significant reduction in the glaucoma marker ANGPTL7 while improving the expression of caveolin-1 expression in cells subjected to pressure. Conclusions The extract of L. barbarum protects the cells from intraocular pressure by activating caveolin-1 dependent pathway via inhibition of MMP-9 expression.
Collapse
Affiliation(s)
- Shan Xu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Shaoyi Liu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| | - Guigang Yan
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
22
|
Liu Y, Tapia ML, Yeh J, He RC, Pomerleu D, Lee RK. Differential Gamma-Synuclein Expression in Acute and Chronic Retinal Ganglion Cell Death in the Retina and Optic Nerve. Mol Neurobiol 2019; 57:698-709. [PMID: 31463876 DOI: 10.1007/s12035-019-01735-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 11/28/2022]
Abstract
We used genetic naturally occurring glaucoma (DBA/2J) and experimentally induced optic nerve crush (ONC) as models to study gamma-synuclein expression change in retinal ganglion cells and optic nerves. Gene chip microarray analysis demonstrated downregulated expression of the gamma-synuclein gene in DBA/2J mice as they developed age-associated glaucoma with concomitant with retinal ganglion cell loss. Real-time PCR, Western blot, and immunostaining results confirmed that the expression of gamma-synuclein at the mRNA and protein level was significantly reduced in the retinas and optic nerves of aged DBA/2J mice. We also observed similar reduced expression of gamma-synuclein in the retinas from mice after optic nerve crush. Surprisingly, the expression of gamma-synuclein was increased in optic nerves after crush. This is the first study demonstrating gamma-synuclein-expressing cells accumulate in the optic nerve crush site. Gamma-synuclein was found in axons colocalizing largely with neurofilaments in control mice without injury but was found inside cells within the scar in the crush site. Gamma-synuclein expression is predominantly expressed at the optic nerve crush site associated with CD68+ macrophage-like cells, not GFAP-expressing astroglial cells, suggesting gamma-synuclein expression is associated with glial scar formation inhibitory to optic nerve regeneration. We propose gamma-synuclein labels macrophage-like cells recruited to the site of acute optic nerve injury.
Collapse
Affiliation(s)
- Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Mary L Tapia
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Justin Yeh
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Rossana Cheng He
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dustin Pomerleu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.,Eye Surgery Associates, Vermont South Medical Centre, 645 Burwood Highway, Vermont South, Victoria, 3133, Australia
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
D'Onofrio PM, Shabanzadeh AP, Choi BK, Bähr M, Koeberle PD. MMP Inhibition Preserves Integrin Ligation and FAK Activation to Induce Survival and Regeneration in RGCs Following Optic Nerve Damage. Invest Ophthalmol Vis Sci 2019; 60:634-649. [PMID: 30743263 DOI: 10.1167/iovs.18-25257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Integrin adherence to the extracellular matrix (ECM) is essential for retinal ganglion cell (RGC) survival: damage causes production and release of ECM degrading matrix metalloproteinases (MMPs) that disrupt integrin ligation, leading to RGC death. The interplay of MMPs, integrins, and focal adhesion kinase (FAK) was studied in RGCs after optic nerve injury. Methods Optic nerve transection and optic nerve crush were used to study RGC survival and regeneration, respectively. Treatments were administered intravitreally or into the cut end of the optic nerve. RGC survival was assessed by fluorescence or confocal microscopy; cell counting, peptide levels, and localization were assessed by Western blot and immunohistochemistry. Results MMP-9 was most strongly increased and localized to RGCs after injury. Pan-MMP, MMP-2/-9, and MMP-3 inhibition all significantly enhanced RGC survival and increased RGC axon regeneration. FAK activation was decreased at 4 days postaxotomy, when apoptosis begins. FAK inhibition reduced RGC survival and abrogated the neuroprotective effects of MMP inhibition, whereas FAK activation increased RGC survival despite MMP activation. Integrin ligation with CD29 antibody or glycine-arginine-glycine-aspatate-serine (GRGDS) peptide increased RGC survival after axotomy. Conclusions ECM-integrin ligation promotes RGC survival and axon regeneration via FAK activation.
Collapse
Affiliation(s)
- Philippe M D'Onofrio
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alireza P Shabanzadeh
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Brian K Choi
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Paulo D Koeberle
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Huang J, Zhao Q, Li M, Duan Q, Zhao Y, Zhang H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model. FASEB J 2019; 33:11194-11209. [PMID: 31295013 DOI: 10.1096/fj.201900756r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Vascular factors play a substantial role in the pathogenesis of glaucoma. Expressed in the vascular endothelium, cytochrome P450 (CYP) 2J2 is one of the CYP epoxygenases that metabolize arachidonic acid to produce epoxyeicosatrienoic acids and exert pleiotropic protective effects on the vasculature. In the present study, we investigated whether endothelium-specific overexpression of CYP2J2 (tie2-CYP2J2-Tr) protects against retinal ganglion cell (RGC) loss induced by glaucoma and in what way retinal vessels are involved in this process. We used a glaucoma model of retinal ischemia-reperfusion (I/R) injury in rats and found that endothelium-specific overexpression of CYP2J2 attenuated RGC loss induced by retinal I/R. Moreover, retinal I/R triggered retinal vascular senescence, indicated by up-regulated senescence-related proteins p53, p16, and β-galactosidase activity. The senescent endothelial cells resulted in pericyte loss and increased endothelial secretion of matrix metallopeptidase 9, which further contributed to RGC loss. CYP2J2 overexpression alleviated vascular senescence, pericyte loss, and matrix metallopeptidase 9 secretion. CYP2J2 suppressed endothelial senescence by down-regulating senescence-associated proteins p53 and p16. These 2 proteins were positively regulated by microRNA-128-3p, which was inhibited by CYP2J2. These results suggest that CYP2J2 protects against endothelial senescence and RGC loss in glaucoma, a discovery that may lead to the development of a potential treatment strategy for glaucoma.-Huang, J., Zhao, Q., Li, M., Duan, Q., Zhao, Y., Zhang, H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model.
Collapse
Affiliation(s)
- Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinshuo Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, University of California-San Francisco (UCSF), San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Luo H, Zhuang J, Hu P, Ye W, Chen S, Pang Y, Li N, Deng C, Zhang X. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation From Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2019; 59:3879-3888. [PMID: 30073348 DOI: 10.1167/iovs.18-23806] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Resveratrol has been shown to enhance the survival of retinal ganglion cells (RGCs) following ischemia-reperfusion (I/R) injury for glaucoma. However, the precise mechanisms for resveratrol's protective effects are still unclear. The aim of this study is to determine whether resveratrol can inhibit RGC apoptosis, retinal gliosis, and inflammation, all of which are critical events in retinal degeneration following I/R injury. Methods Right retinal ischemia was induced in adult male Sprague Dawley rats by increasing intraocular pressure to 110 mm Hg for 60 minutes, and the left eyes maintained at normal pressure serve as the control. Intraperitoneal injection of resveratrol or control buffer was performed continuously for 3 days from pre- to post-I/R injury and the protective effects were evaluated and compared. RGCs were retrogradely labeled with Fluoro-Gold by injection into superior colliculi. Apoptosis was detected by TUNEL staining. Western blotting and immunostaining for Bax, Bcl-2, and Caspase-3 were used to explore the Bax-associated apoptotic pathway. Gliosis was assessed by western blotting and immunostaining of retinal cross sections with anti-glial fibrillary acidic protein (GFAP) antibodies. Results In this study, resveratrol treatment significantly reduced retinal damage and RGC loss as demonstrated by the relatively intact tissue structure in hematoxylin and eosin staining at day 7 and increased Fluoro-Gold labeling of RGCs at day 14, respectively. We found that resveratrol exhibited an anti-apoptotic effect as assessed by reduced TUNEL staining, inhibition of the early upregulated expression of the apoptosis-related protein Bax, and decreased subsequently cleaved caspase-3. However, it did not affect Bcl-2 levels. Moreover, in our I/R injury model, the combined response of reactive gliosis and related inflammation, which were demonstrated by an early induction of pro-inflammatory mediators and subsequently increased GFAP level, were significantly attenuated after resveratrol treatment. Conclusions These results demonstrate that resveratrol can prevent RGC death by blocking the Bax-caspase-3-dependent apoptotic pathway and suppressed gliosis-related inflammation in the retina after I/R injury. Together these results support the use of resveratrol as a possible therapeutic strategy for glaucoma.
Collapse
Affiliation(s)
- Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Jiejie Zhuang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Wei Ye
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Shanshan Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ningfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Cong Deng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Asano D, Morita A, Mori A, Sakamoto K, Ishii K, Nakahara T. Involvement of matrix metalloproteinases in capillary degeneration following NMDA-induced neurotoxicity in the neonatal rat retina. Exp Eye Res 2019; 182:101-108. [PMID: 30885712 DOI: 10.1016/j.exer.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023]
Abstract
Interactions between neuronal cells and vascular cells in the retina are critical for maintaining retinal tissue homeostasis. Impairment of cellular interactions contributes to development and progression of retinal diseases. Previous studies demonstrated that neuronal cell damage leads to capillary degeneration in an N-methyl-D-aspartic acid (NMDA)-induced retinal degeneration model. However, the mechanisms underlying this phenomenon are not fully understood. In this study, we examined the possible role of matrix metalloproteinase (MMP)-9 in neuronal cell loss and capillary degeneration in NMDA-treated retinas of neonatal rats. Intravitreal injection of NMDA (50 or 200 nmol) was performed on postnatal day (P) 7 and morphological changes in retinal neurons and vasculature were examined on P14. The MMP inhibitor CP101537 (100 nmol) or vehicle (dimethyl sulfoxide) was intravitreally injected simultaneously with, or 2 days after, NMDA injection. CP101537 protected against neurovascular degeneration in a time-dependent manner as follows: 1) simultaneous injection of CP101537 with NMDA prevented morphological changes in retinal neurons induced by NMDA (50 nmol); and 2) reduction in capillary density and number of vertical sprouts induced by NMDA (200 nmol) was prevented when CP101537 was injected 2 days after NMDA injection. Gelatin zymography and western blot analyses indicated that activity and protein levels of MMP-9 were enhanced from 4 h to 2 days after NMDA injection. Increased activity and protein levels of MMP-9 were suppressed by MMP inhibitors (CP101537 and GM6001). In situ zymography revealed that MMP activity was enhanced throughout the retinal vasculature in NMDA-treated retinas. These results indicate that MMP-9 plays an important role in neurovascular degeneration in the injured retina. Inhibition of MMP-9 may be an effective strategy for preventing and reducing neurovascular degeneration.
Collapse
Affiliation(s)
- Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
27
|
Lin FL, Cheng YW, Yu M, Ho JD, Kuo YC, Chiou GCY, Chang HM, Lee TH, Hsiao G. The fungus-derived retinoprotectant theissenolactone C improves glaucoma-like injury mediated by MMP-9 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:207-214. [PMID: 30668341 DOI: 10.1016/j.phymed.2018.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that has been found to induce matrix metalloproteinase-9 (MMP-9) activation and result in eventual retinal dysfunction. Proinflammatory cytokines such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-1β (IL-1β) were also found to be involved in disease progression by mediating MMP-9 production. We previously reported that fungal derivative theissenolactone C (LC53) could exert ocular protective effects by suppressing neuroinflammation in experimental uveitis. PURPOSE The aim of this study was to investigate the retinoprotective effects of natural compound LC53 on the high IOP-induced ischemia/reperfusion (I/R)-injury model of glaucoma and its cellular mechanisms. METHODS A high IOP-induced I/R-injury model was manipulated by normal saline injection into the anterior chamber of the rat eye. MCP-1-stimulated monocytes and IL-1β-activated primary astrocytes were used to investigate the cellular mechanisms of LC53. Retinal function was evaluated with the scotopic threshold response (STR) and combined rod-cone response by electroretinography (ERG). As a positive control, rats were treated with memantine. MMP-9 gelatinolysis, mRNA expression and protein expression were analyzed by gelatin zymography, RT-PCR, and Western Blot, respectively. The phosphorylation levels of MAPKs and NF-κB p65 were tested by Western Blot. Additionally, the levels of inflammatory MCP-1 and IL-1β were determined by ELISA. RESULTS The present study revealed that LC53 preserved the retina functional deficiency assessed by scotopic threshold response (STR) and combined rod-cone response of ERG after high IOP-induced I/R injury. These retinal protective effects of LC53 were positively correlated with inhibitory activities in I/R injury-elicited ocular MMP-9 activation and expression. The increased level of MCP-1 was not affected, and the enhanced IL-1β production was partially reduced by LC53 in the retina after I/R injury. According to cellular studies, LC53 significantly and concentration-dependently abrogated MMP-9 activation and expression in MCP-1-stimulated THP-1 monocytes. We found the inhibitory activities of LC53 were through the ERK- and NF-κB-dependent pathways. In addition, LC53 dramatically suppressed IL-1β-induced MMP-9 activation and expression in primary astrocytes. The phosphorylation of 65-kD protein (p65) of NF-κB was substantially blocked by LC53 in IL-1β-stimulated primary astrocytes. CONCLUSION LC53 exerted a retinal protective effect through NF-κB inhibition and was highly potent against MMP-9 activities after high IOP-induced I/R injury, suggesting that LC53 would be a promising drug lead for glaucoma or related medical conditions attributed to retinal ischemia.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Min Yu
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, 252 Wu-Hsing St. Taipei 110, Taiwan
| | - Yu-Cheng Kuo
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan; Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing St. Taipei 110, Taiwan.
| |
Collapse
|
28
|
Likhvantseva VG, Sokolov VA, Levanova ON, Kovelenova IV. [Predicting the probability of development and progression of primary open angle glaucoma by regression modeling]. Vestn Oftalmol 2018; 134:35-41. [PMID: 29953080 DOI: 10.17116/oftalma2018134335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prediction of the clinical course of primary open-angle glaucoma (POAG) is one of the main directions in solving the problem of vision loss prevention and stabilization of the pathological process. Simple statistical methods of correlation analysis show the extent of each risk factor's impact, but do not indicate the total impact of these factors in personalized combinations. The relationships between the risk factors is subject to correlation and regression analysis. The regression equation represents the dependence of the mathematical expectation of the resulting sign on the combination of factor signs. PURPOSE To develop a technique for predicting the probability of development and progression of primary open-angle glaucoma based on a personalized combination of risk factors by linear multivariate regression analysis. MATERIAL AND METHODS The study included 66 patients (23 female and 43 male; 132 eyes) with newly diagnosed primary open-angle glaucoma. The control group consisted of 14 patients (8 male and 6 female). Standard ophthalmic examination was supplemented with biochemical study of lacrimal fluid. Concentration of matrix metalloproteinase MMP-2 and MMP-9 in tear fluid in both eyes was determined using 'sandwich' enzyme-linked immunosorbent assay (ELISA) method. RESULTS The study resulted in the development of regression equations and step-by-step multivariate logistic models that can help calculate the risk of development and progression of POAG. Those models are based on expert evaluation of clinical and instrumental indicators of hydrodynamic disturbances (coefficient of outflow ease - C, volume of intraocular fluid secretion - F, fluctuation of intraocular pressure), as well as personalized morphometric parameters of the retina (central retinal thickness in the macular area) and concentration of MMP-2 and MMP-9 in the tear film. CONCLUSION The newly developed regression equations are highly informative and can be a reliable tool for studying of the influence vector and assessment of pathogenic potential of the independent risk factors in specific personalized combinations.
Collapse
Affiliation(s)
- V G Likhvantseva
- Institution of Advanced Training of the Federal Medical and Biological Agency of Russia, 91 Volokolamskoe Highway, Moscow, Russian Federation, 125310
| | - V A Sokolov
- Ryazan State Medical University named after academician I.P. Pavlov, Ministry of Public Health of the Russian Federation, 9 Vysokovoltnaya St., Ryazan, Russian Federation, 390026
| | - O N Levanova
- Ryazan State Medical University named after academician I.P. Pavlov, Ministry of Public Health of the Russian Federation, 9 Vysokovoltnaya St., Ryazan, Russian Federation, 390026
| | - I V Kovelenova
- Ulyanovsk Regional Clinical Hospital, 7 Tret'ego Internacionala St., Ulyanovsk, Russian Federation, 432017
| |
Collapse
|
29
|
Li N, Wang F, Zhang Q, Jin M, Lu Y, Chen S, Guo C, Zhang X. Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss. Exp Eye Res 2018; 176:10-19. [PMID: 29928901 DOI: 10.1016/j.exer.2018.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/20/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
Abstract
Damage and loss of retinal ganglion cells (RGCs) can cause visual impairment. The underlying molecular mechanisms that mediate RGC death in ischemic retinal diseases are still unclear. In this study, we sought to understand the neuroprotective effect of rapamycin, the selective inhibitor of mTORC1, on RGC survival and the cellular mechanics that mediate this effect. Recent studies have reported that the epidermal growth factor (EGF) receptor shows an increase in expression in astrocytes after injury, and this receptor can promote their transformation into reactive astrocytes. Our results, along with previous works from others, show the colocalization of phosphor-EGF receptors with the astrocyte marker glial fibrillary acidic proteins in reactive astrocytes in the injured retina. In our in vitro studies, using primary astrocyte cultures of the optic nerve head of rats, showed that rapamycin significantly blocked EGF-induced mTOR signaling mainly through the PI3K/Akt pathway in primary astrocytes, but not through the MAPK/Erk pathway. Additionally, rapamycin dramatically inhibited the activation of mTOR signaling in our ratinal ischemia-reperfusion (I/R) injury model in vivo. Astrocyte activation was assessed by immunostaining retinal flat mounts or cross sections with antibody against GFAP, and we also used western blots to detect the expression of GFAP. Taken together, these results revealed that rapamycin decreases the activation of astrocytes after retinal ischemia-reperfusion injury. Furthermore, rapamycin can improve retinal RGC survival in rats during I/R, as detected by FluoroGold labeling. Our data reveals the neuroprotective effects of rapamycin in an experimental retina injury model, possibly through decreasing glial-dependent intracellular signaling mechanisms for suppressing apoptosis of RGCs. Our study also presents an approach to targeting reactive astrocytes for the treatment of optic neurodegenerations.
Collapse
Affiliation(s)
- Ningfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Qinglin Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Shanshan Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Cuiju Guo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China.
| |
Collapse
|
30
|
Kasture VV, Sundrani DP, Joshi SR. Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia. Life Sci 2018; 206:61-69. [PMID: 29772225 DOI: 10.1016/j.lfs.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/24/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023]
Abstract
Adequate maternal nutrition is critical for a healthy pregnancy outcome and poor maternal nutrition is known to be associated with pregnancy complications like preeclampsia. We have earlier demonstrated that there is an imbalance in the levels of micronutrients (folate and vitamin B12) along with low levels of long chain polyunsaturated fatty acids (LCPUFA) and high homocysteine levels in women with preeclampsia. Homocysteine is known to be involved in the formation of free radicals leading to increased oxidative stress. Higher oxidative stress has been shown to be associated with increased apoptotic markers in the placenta. Preeclampsia is of placental origin and is associated with increased oxidative stress, disturbed angiogenesis and placental apoptosis. The process of angiogenesis is important for placental and fetal development and various angiogenic growth factors inhibit apoptosis by inactivation of proapoptotic proteins through a series of cellular signalling pathways. We propose that an altered one carbon cycle resulting in increased oxidative stress and impaired angiogenesis will contribute to increased placental apoptosis leading to preeclampsia. Understanding the association of one carbon cycle components and the possible mechanisms through which they regulate apoptosis will provide clues for reducing risk of pregnancy complications.
Collapse
Affiliation(s)
- Vaishali V Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Deepali P Sundrani
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
31
|
Kim HS, Vargas A, Eom YS, Li J, Yamamoto KL, Craft CM, Lee EJ. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina. PLoS One 2018; 13:e0197322. [PMID: 29742163 PMCID: PMC5942829 DOI: 10.1371/journal.pone.0197322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/29/2018] [Indexed: 01/06/2023] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1 works in the mouse animal model of RP.
Collapse
Affiliation(s)
- Hwa Sun Kim
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yun Sung Eom
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Justin Li
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kyra L. Yamamoto
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Thakur N, Kupani M, Pandey RK, Mannan R, Pruthi A, Mehrotra S. Genetic association of -1562C>T polymorphism in the MMP9 gene with primary glaucoma in a north Indian population. PLoS One 2018; 13:e0192636. [PMID: 29432439 PMCID: PMC5809065 DOI: 10.1371/journal.pone.0192636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
MMP (Matrix metalloproteinase) 9 is reported to affect glaucoma pathogenesis by altering intraocular pressure (IOP) through its role in remodeling the extracellular matrix (ECM) in the trabecular meshwork. A genetic variant at the promoter region in the MMP9 gene (-1562C>T) has a putative role in regulating its transcription rate and hence can affect genetic predisposition to primary glaucoma. The present study examined the association of -1562C>T promoter polymorphism in the MMP9 gene with Primary Open Angle Glaucoma (POAG) and Primary Angle Closure Glaucoma (PACG) in a north Indian population. A total of 729 subjects (POAG = 224, PACG = 138 and 367 controls) were recruited for the study. Genotyping for the promoter sequence variant was done with PCR-RFLP method. Genotypic and allelic frequency distribution of the POAG and PACG data sets were compared to that of controls by chi-square test and genetic association was tested under different genetic models as implemented under PLINK. Statistically significant difference was observed in the genotype frequencies between PACG cases and controls (p = 0.030). However, in the POAG cases, this difference was only borderline (p = 0.052). Genetic model analysis, under the dominant model revealed 1.6 and 1.4 fold increased susceptibility to PACG and POAG (p = 0.012, p = 0.032) respectively. A higher frequency of CT genotype was observed in PACG as well as POAG males as compared to female subjects. According to the dominant model, CT+TT genotype conferred 1.8 fold higher risk of developing PACG among male patients as compared to the control group (p = 0.048, OR = 1.87;1.00–3.50). Current findings suggest significant association of MMP9 -1562C>T polymorphism with primary glaucoma in the targeted north Indian population and warrant further replication of the findings in other populations.
Collapse
Affiliation(s)
- Nanamika Thakur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajeev Kumar Pandey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rashim Mannan
- Baba Deep Singh Charitable Hospital, Amritsar, Punjab, India
| | - Archna Pruthi
- Baba Deep Singh Charitable Hospital, Amritsar, Punjab, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail:
| |
Collapse
|
33
|
Li J, Feng Y, Sung MS, Lee TH, Park SW. Association of Interleukin-1 gene clusters polymorphisms with primary open-angle glaucoma: a meta-analysis. BMC Ophthalmol 2017; 17:218. [PMID: 29179746 PMCID: PMC5704439 DOI: 10.1186/s12886-017-0616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/19/2017] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have associated the Interleukin-1 (IL-1) gene clusters polymorphisms with the risk of primary open-angle glaucoma (POAG). However, the results were not consistent. Here, we performed a meta-analysis to evaluate the role of IL-1 gene clusters polymorphisms in POAG susceptibility. Methods PubMed, EMBASE and Cochrane Library (up to July 15, 2017) were searched by two independent investigators. All case-control studies investigating the association between single-nucleotide polymorphisms (SNPs) of IL-1 gene clusters and POAG risk were included. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for quantifying the strength of association that has been involved in at least two studies. Results Five studies on IL-1β rs16944 (c. -511C > T) (1053 cases and 986 controls), 4 studies on IL-1α rs1800587 (c. -889C > T) (822 cases and 714 controls), and 4 studies on IL-1β rs1143634 (c. +3953C > T) (798 cases and 730 controls) were included. The results suggest that all three SNPs were not associated with POAG risk. Stratification analyses indicated that the rs1143634 has a suggestive associated with high tension glaucoma (HTG) under dominant (P = 0.03), heterozygote (P = 0.04) and allelic models (P = 0.02), however, the weak association was nullified after Bonferroni adjustments for multiple tests. Conclusions Based on current meta-analysis, we indicated that there is lack of association between the three SNPs of IL-1 and POAG. However, this conclusion should be interpreted with caution and further well designed studies with large sample-size are required to validate the conclusion as low statistical powers. Electronic supplementary material The online version of this article (doi: 10.1186/s12886-017-0616-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junhua Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, 42 Jebongro, Gwang-ju, 61469, Republic of Korea
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, 42 Jebongro, Gwang-ju, 61469, Republic of Korea
| | - Tae Hee Lee
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, 42 Jebongro, Gwang-ju, 61469, Republic of Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, 42 Jebongro, Gwang-ju, 61469, Republic of Korea.
| |
Collapse
|
34
|
De Groef L, Andries L, Siwakoti A, Geeraerts E, Bollaerts I, Noterdaeme L, Etienne I, Papageorgiou AP, Stalmans I, Billen J, West-Mays JA, Moons L. Aberrant Collagen Composition of the Trabecular Meshwork Results in Reduced Aqueous Humor Drainage and Elevated IOP in MMP-9 Null Mice. Invest Ophthalmol Vis Sci 2017; 57:5984-5995. [PMID: 27820954 PMCID: PMC5102567 DOI: 10.1167/iovs.16-19734] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Homeostatic turnover of the trabecular meshwork extracellular matrix (ECM) is essential to regulate aqueous humor outflow and to maintain intraocular pressure homeostasis. In this study, we evaluated aqueous humor turnover, intraocular pressure, and trabecular meshwork organization in MMP-9 null mice. Methods Intraocular pressure and aqueous humor turnover were measured in MMP-9 null versus wild-type mice. Morphology of the anterior segment of the eye, with special attention to the structural organization of the trabecular meshwork, was investigated by means of optical coherence tomography, light microscopy, and transmission electron microscopy. Furthermore, using quantitative real-time polymerase chain reaction and immunostainings, we evaluated the ECM composition of the trabecular meshwork. Finally, the integrity and function of the retina and optic nerve were assessed, via optical coherence tomography, histologic techniques, and optomotor testing. Results MMP-9 null mice displayed early-onset ocular hypertension and reduced aqueous humor turnover. While transmission electron microscopic analysis did not reveal any abnormalities in the cellular organization of the trabecular meshwork, detailed investigation of collagen expression indicated that there is an aberrant trabecular meshwork ECM composition in MMP-9 null mice. Notably, at the age of 13 months, no glaucomatous neurodegeneration was seen in MMP-9 null mice. Conclusions Our observations corroborate MMP-9 as an important remodeler of the collagenous composition of the trabecular meshwork and provide evidence for a causal link between MMP-9 deficiency, trabecular meshwork ultrastructure, and ocular hypertension.
Collapse
Affiliation(s)
- Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium 2Laboratory of Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Lien Andries
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anuja Siwakoti
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Emiel Geeraerts
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilse Bollaerts
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Anna-Pia Papageorgiou
- Centre for Molecular and Vascular Biology (CMVB), Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium 6Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Ingeborg Stalmans
- Laboratory of Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Johan Billen
- Laboratory of Socioecology and Social Evolution, Ecology, Evolution and Biodiversity Conservation Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury. Cell Death Dis 2017; 8:e2847. [PMID: 28569783 PMCID: PMC5520884 DOI: 10.1038/cddis.2017.212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023]
Abstract
Damage-induced neuronal endopeptidase (DINE)/endothelin-converting enzyme-like 1 (ECEL1) is a membrane-bound metalloprotease that we identified as a nerve regeneration-associated molecule. The expression of DINE is upregulated in response to nerve injury in both the peripheral and central nervous systems, while its transcription is regulated by the activating transcription factor 3 (ATF3), a potent hub-transcription factor for nerve regeneration. Despite its unique hallmark of injury-induced upregulation, the physiological relevance of DINE in injured neurons has been unclear. In this study, we have demonstrated that the expression of DINE is upregulated in injured retinal ganglion cells (RGCs) in a coordinated manner with that of ATF3 after optic nerve injury, whereas DINE and ATF3 are not observed in any normal retinal cells. Recently, we have generated a mature DINE-deficient (KOTg) mouse, in which exogenous DINE is overexpressed specifically in embryonic motor neurons to avoid aberrant arborization of motor nerves and lethality after birth that occurs in the conventional DINE KO mouse. The DINE KOTg mice did not show any difference in retinal structure and the projection to brain from that of wild–type (wild type) mice under normal conditions. However, injured RGCs of DINE KOTg mice failed to regenerate even after the zymosan treatment, which is a well-known regeneration-promoting reagent. Furthermore, a DINE KOTg mouse crossed with a Atf3:BAC Tg mouse, in which green fluorescent protein (GFP) is visualized specifically in injured RGCs and optic nerves, has verified that DINE deficiency leads to regeneration failure. These findings suggest that injury-induced DINE is a crucial endopeptidase for injured RGCs to promote axonal regeneration after optic nerve injury. Thus, a DINE-mediated proteolytic mechanism would provide us with a new therapeutic strategy for nerve regeneration.
Collapse
|
36
|
Ischemic injury leads to extracellular matrix alterations in retina and optic nerve. Sci Rep 2017; 7:43470. [PMID: 28262779 PMCID: PMC5338032 DOI: 10.1038/srep43470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal ischemia occurs in a variety of eye diseases. Restrained blood flow induces retinal damage, which leads to progressive optic nerve degeneration and vision loss. Previous studies indicate that extracellular matrix (ECM) constituents play an important role in complex tissues, such as retina and optic nerve. They have great impact on de- and regeneration processes and represent major candidates of central nervous system glial scar formation. Nevertheless, the importance of the ECM during ischemic retina and optic nerve neurodegeneration is not fully understood yet. In this study, we analyzed remodeling of the extracellular glycoproteins fibronectin, laminin, tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans (CSPGs) aggrecan, brevican and phosphacan/RPTPβ/ζ in retinae and optic nerves of an ischemia/reperfusion rat model via quantitative real-time PCR, immunohistochemistry and Western blot. A variety of ECM constituents were dysregulated in the retina and optic nerve after ischemia. Regarding fibronectin, significantly elevated mRNA and protein levels were observed in the retina following ischemia, while laminin and tenascin-C showed enhanced immunoreactivity in the optic nerve after ischemia. Interestingly, CSPGs displayed significantly increased expression levels in the optic nerve. Our study demonstrates a dynamic expression of ECM molecules following retinal ischemia, which strengthens their regulatory role during neurodegeneration.
Collapse
|
37
|
Shin JA, Kim HS, Vargas A, Yu WQ, Eom YS, Craft CM, Lee EJ. Inhibition of Matrix Metalloproteinase 9 Enhances Rod Survival in the S334ter-line3 Retinitis Pigmentosa Model. PLoS One 2016; 11:e0167102. [PMID: 27893855 PMCID: PMC5125676 DOI: 10.1371/journal.pone.0167102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
Retinitis Pigmentosa (RP) is one of the most common forms of inherited visual loss with the initial degeneration of rod photoreceptors, followed by a progressive cone photoreceptor deterioration. Coinciding with this visual loss, the extracellular matrix (ECM) is reorganized, which alters matrix metalloproteinase (MMP) activity levels. A potential pathological role of MMPs, MMP-9 in particular, involves an excitotoxicity-mediated physiological response. In the current study, we examine the MMP-9 and MMP-2 expression levels in the rhodopsin S334ter-line3 RP rat model and investigate the impact of treatment with SB-3CT, a specific MMP-9 and MMP-2 inhibitor, on rod cell survival was tested. Retinal MMP-9 and MMP-2 expression levels were quantified by immunoblot analysis from S334ter-line3 rats compared to controls. Gelatinolytic activities of MMP-9 and MMP-2 by zymography were examined. The geometry of rod death was further evaluated using Voronoi analysis. Our results revealed that MMP-9 was elevated while MMP-2 was relatively unchanged when S334ter-line 3 retinas were compared to controls. With SB-3CT treatment, we observed gelatinolytic activity of both MMPs was decreased and diminished clustering associated with rod death, in addition to a robust preservation of rod photoreceptors. These results demonstrate that up-regulation of MMP-9 in retinas of S334ter-line3 are associated with rod death. The application of SB-3CT dramatically interferes with mechanisms leading to apoptosis in an MMP-9-dependent manner. Future studies will determine the feasibility of using SB-3CT as a potential therapeutic strategy to slow progression of vision loss in genetic inherited forms of human RP.
Collapse
Affiliation(s)
- Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Anatomy, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hwa Sun Kim
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Wan-Qing Yu
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Yun Sung Eom
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Metalloproteinase 9 and TIMP-1 expression in retina and optic nerve in absolute angle closure glaucoma. Adv Med Sci 2016; 61:6-10. [PMID: 26342670 DOI: 10.1016/j.advms.2015.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/26/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Glaucoma is one of the most important reason causes of the blindness, associated with retinal ganglion cells (RGC) death. This process is not fully understood, however apoptosis due to hypoxia is one of the most important processes leading to RGC death. Glaucomatous optic neuropathy is characterized by remodeling of the extracellular matrix due to metalloproteinase activation, which leads to loss of RGC and axons at the optic nerve head. The aim of the study was to evaluate metalloproteinase 9 (MMP-9) and tissue metalloproteinase inhibitor-1 (TIMP-1) expression in the retinal ganglion cells and optic nerve axons in 33 eyes with absolute primary glaucoma. MATERIAL/METHODS To evaluate MMP-9 and TIMP-1 expression primary polyclonal goat antibodies against MMP-9 and TIMP-1 were used. The control group was composed of 8 cases of eyes enucleated and fixed in the first day after trauma. RESULTS MMP-9 expression was observed in retinal ganglion cells and in the inner nuclear layer of the retina in all the examined cases. In 28 out of 33 glaucomatous eyes, MMP-9 expression was observed in the proliferating glial cells surrounding the optic nerve axons. TIMP-1 expression was observed in 10 out of 33 glaucomatous eyes, only in retinal ganglion cells. None of the examined injured eyes showed MMP-9 and TIMP-1 expression. CONCLUSIONS MMP-9 activation rather than TIMP-1 may by associated with the pathomechanism of retinal ganglion cell and optic nerve damage in absolute glaucoma.
Collapse
|
39
|
Zhang Y, Wang M, Zhang S. Association of MMP-9 Gene Polymorphisms with Glaucoma: A Meta-Analysis. Ophthalmic Res 2016; 55:172-9. [PMID: 26872021 DOI: 10.1159/000443627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the associations between matrix metalloproteinase-9 (MMP-9) gene polymorphisms (rs17576 and rs3918249) and glaucoma risk. All eligible studies were searched in PubMed, Embase, the Cochrane Library and the China Knowledge Resource Integrated Database. Pooled odds ratios and 95% confidence intervals were used to assess associations between MMP-9 gene polymorphisms and glaucoma. Seven studies on rs17576 (1,357 cases and 1,432 controls) and 3 studies on rs3918249 (550 cases and 794 controls) were included. The results suggest that rs17576 was not associated with glaucoma risk based on current publications. However, stratification analyses indicated that GG genotypes increased the risk of primary open-angle glaucoma in a recessive model (GG vs. AA + AG). The rs3918249 polymorphism was also associated with a decreased risk of glaucoma, especially for Caucasian patients. To sum up, our data indicate that rs17576 polymorphism is not related to glaucoma and rs3918249 polymorphism might be a protective factor against glaucoma.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Ophthalmology, Affiliated Hospital of Suzhou University, Changzhou No. 4 People's Hospital, Changzhou, China
| | | | | |
Collapse
|
40
|
Donegan RK, Lieberman RL. Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. J Med Chem 2016; 59:788-809. [PMID: 26356532 PMCID: PMC5547565 DOI: 10.1021/acs.jmedchem.5b00828] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glaucoma, a heterogeneous ocular disorder affecting ∼60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
41
|
Ozler S, Oztas E, Guler BG, Ergin M, Uygur D, Yucel A, Erel O, Danisman N. ADAMTS4 and Oxidative/Antioxidative Status in Preterm Premature Rupture of Membranes. Fetal Pediatr Pathol 2016; 35:239-50. [PMID: 27182768 DOI: 10.1080/15513815.2016.1175529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To determine the function of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4), total oxidant status (TOS), total antioxidant status (TAS), and aryl esterase (ARES) in preterm premature rupture of membranes (PPROM) and to investigate the association with premature rupture of membranes (PROMs). MATERIAL AND METHODS 58 pregnant women were included in this prospective study which comprised 29 PPROM patients as the study group and 29 patients, having healthy amniotic membranes, as the control group. ADAMTS4, TAS, TOS, and ARES levels were studied in the amniotic membrane homogenates of the patients. RESULTS ADAMTS4, TAS TOS, and ARES levels of amniotic membrane lysates were significantly different between PPROM and control groups (p < 0.001, p < 0.001, p = 0.008 and p = 0.002, respectively). Increased amniotic membrane ADAMTS4 (OR: 1.051 95% CI 1.006-1.098, p = 0.024) and TOS (OR: 12.777 95% CI 1.595-102.323, p = 0.016) were found to be significantly associated with the increased risk of PPROM. CONCLUSION ADAMTS4, TOS, and ARES levels were higher and TAS level was lower in PPROM patients than the normal healthy control group which had healthy amniotic membranes at term. As a result, ADAMTS4 may have a role in the pathogenesis by causing increased oxidative and inflammatory environment in PPROM.
Collapse
Affiliation(s)
- Sibel Ozler
- a Department of Perinatology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey
| | - Efser Oztas
- a Department of Perinatology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey
| | - Basak Gumus Guler
- b Department of Obstetrics and Gynecology, Liv Hospital , Ankara , Turkey
| | - Merve Ergin
- c Department of Biochemistry , Gaziantep 25th Aralik State Hospital , Gaziantep , Turkey
| | - Dilek Uygur
- a Department of Perinatology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey
| | - Aykan Yucel
- a Department of Perinatology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey
| | - Ozcan Erel
- d Department of Clinical Biochemistry , Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Nuri Danisman
- a Department of Perinatology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey
| |
Collapse
|
42
|
De Groef L, Andries L, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinases in the mouse retina: a comparative study of expression patterns and MMP antibodies. BMC Ophthalmol 2015; 15:187. [PMID: 26714639 PMCID: PMC4696081 DOI: 10.1186/s12886-015-0176-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/17/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), a family of Zn(2+)-dependent endoproteases, have been shown to act as fine regulators of both health and disease. Limited research revealed that they are essential to maintaining ocular physiology and inordinate MMP activities have been linked to several neurodegenerative disorders of the retina, including age-related macular degeneration, proliferative diabetic retinopathy and glaucomatous optic neuropathies (GONs). Nevertheless, a clear definition of their pathology-exacerbating and/or -resolving actions is lacking, especially in the context of GONs, as most studies thus far merely focused on expression profiling in human patients. Therefore, in an initial step towards an improved understanding of MMP functions in the retina, we studied the spatial expression pattern of MMP-2, -3, -9 and MT1-MMP in the healthy mouse retina. METHODS The spatial expression pattern of MMP-2, -3, -9 and MT1-MMP was studied in the healthy mouse retina via immunohistochemical stainings, and immunoreactivity profiles were compared to existing literature. Moreover, we considered sensitivity and specificity issues with commercially available MMP antibodies via Western blot. RESULTS Basal expression of MMP-2,-3, -9 and MT1-MMP was found in the retina of healthy, adult mice. MMP-2 expression was seen in Müller glia, predominantly in their end feet, which is in line with available literature. MMP-3 expression was described for the first time in the retina, and was observed in vesicle-like structures along the radial fibers of Müller glia. MMP-9 expression, about which still discords exists, was seen in microglia and in a sparse subset of (apoptosing) RGCs. MT1-MMP localization was for the first time studied in adult mice and was found in RGC axons and Müller glia, mimicking the MT1-MMP expression pattern seen in rabbits and neonatal mice. Moreover, one antibody was selected for each MMP, based on its staining pattern in Western blot. CONCLUSIONS The present MMP immunoreactivity profiles in the mouse retina and validation of MMP antibodies, can be instrumental to study MMP expression in mouse models of ocular pathologies and to compare these expression profiles to observations from clinical studies, which would be a first step in the disentanglement of the exact role MMPs in ocular/retinal diseases.
Collapse
Affiliation(s)
- Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Lien Andries
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Kim Lemmens
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven, Naamsestraat 61, Box 2464, B-3000, Leuven, Belgium.
| |
Collapse
|
43
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
44
|
De Groef L, Salinas-Navarro M, Van Imschoot G, Libert C, Vandenbroucke RE, Moons L. Decreased TNF Levels and Improved Retinal Ganglion Cell Survival in MMP-2 Null Mice Suggest a Role for MMP-2 as TNF Sheddase. Mediators Inflamm 2015; 2015:108617. [PMID: 26451076 PMCID: PMC4586990 DOI: 10.1155/2015/108617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been designated as both friend and foe in the central nervous system (CNS): while being involved in many neurodegenerative and neuroinflammatory diseases, their actions appear to be indispensable to a healthy CNS. Pathological conditions in the CNS are therefore often related to imbalanced MMP activities and disturbances of the complex MMP-dependent protease network. Likewise, in the retina, various studies in animal models and human patients suggested MMPs to be involved in glaucoma. In this study, we sought to determine the spatiotemporal expression profile of MMP-2 in the excitotoxic retina and to unravel its role during glaucoma pathogenesis. We reveal that intravitreal NMDA injection induces MMP-2 expression to be upregulated in the Müller glia. Moreover, MMP-2 null mice display attenuated retinal ganglion cell death upon excitotoxic insult to the retina, which is accompanied by normal glial reactivity, yet reduced TNF levels. Hence, we propose a novel in vivo function for MMP-2, as an activating sheddase of tumor necrosis factor (TNF). Given the pivotal role of TNF as a proinflammatory cytokine and neurodegeneration-exacerbating mediator, these findings generate important novel insights into the pathological processes contributing to glaucomatous neurodegeneration and into the interplay of neuroinflammation and neurodegeneration in the CNS.
Collapse
Affiliation(s)
- Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Manuel Salinas-Navarro
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Griet Van Imschoot
- Inflammation Research Center, VIB, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052 Ghent, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, McCawley L, Nangia-Makker P, Ahmed N, Luqmani Y, Chen Z, Papagerakis S, Wolf GT, Dong C, Zhou BP, Brown DG, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi I, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Al-Temaimi R, Al-Mulla F, Bisson WH, Eltom SE. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015; 36 Suppl 1:S128-S159. [PMID: 26106135 PMCID: PMC4565611 DOI: 10.1093/carcin/bgv034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Collapse
Affiliation(s)
- Josiah Ochieng
- *To whom correspondence should be addressed. Tel: +1 615 327 6119; Fax: +1 615 327 6442;
| | - Gladys N. Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Lisa McCawley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yunus Luqmani
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Silvana Papagerakis
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Gregory T. Wolf
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Chenfang Dong
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Binhua P. Zhou
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
| | - Rabeah Al-Temaimi
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Fahd Al-Mulla
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sakina E. Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
46
|
Vecino E, Heller JP, Veiga-Crespo P, Martin KR, Fawcett JW. Influence of extracellular matrix components on the expression of integrins and regeneration of adult retinal ganglion cells. PLoS One 2015; 10:e0125250. [PMID: 26018803 PMCID: PMC4446304 DOI: 10.1371/journal.pone.0125250] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/22/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Retinal ganglion cells (RGCs) are exposed to injury in a variety of optic nerve diseases including glaucoma. However, not all cells respond in the same way to damage and the capacity of individual RGCs to survive or regenerate is variable. In order to elucidate factors that may be important for RGC survival and regeneration we have focussed on the extracellular matrix (ECM) and RGC integrin expression. Our specific questions were: (1) Do adult RGCs express particular sets of integrins in vitro and in vivo? (2) Can the nature of the ECM influence the expression of different integrins? (3) Can the nature of the ECM affect the survival of the cells and the length or branching complexity of their neurites? METHODS Primary RGC cultures from adult rat retina were placed on glass coverslips treated with different substrates: Poly-L-Lysine (PL), or PL plus laminin (L), collagen I (CI), collagen IV (CIV) or fibronectin (F). After 10 days in culture, we performed double immunostaining with an antibody against βIII-Tubulin to identify the RGCs, and antibodies against the integrin subunits: αV, α1, α3, α5, β1 or β3. The number of adhering and surviving cells, the number and length of the neurites and the expression of the integrin subunits on the different substrates were analysed. RESULTS PL and L were associated with the greatest survival of RGCs while CI provided the least favourable conditions. The type of substrate affected the number and length of neurites. L stimulated the longest growth. We found at least three different types of RGCs in terms of their capacity to regenerate and extend neurites. The different combinations of integrins expressed by the cells growing on different substrata suggest that RGCs expressed predominantly α1β1 or α3β1 on L, α1β1 on CI and CIV, and α5β3 on F. The activity of the integrins was demonstrated by the phosphorylation of focal adhesion kinase (FAK). CONCLUSIONS Adult rat RGCs can survive and grow in the presence of different ECM tested. Further studies should be done to elucidate the different molecular characteristics of the RGCs subtypes in order to understand the possible different sensitivity of different RGCs to damage in diseases like glaucoma in which not all RGCs die at the same time.
Collapse
Affiliation(s)
- Elena Vecino
- Dept. of Cell Biology and Histology, University of the Basque Country, UPV/EHU, Leioa, Vizcaya, Spain
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Janosch P. Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Veiga-Crespo
- Dept. of Cell Biology and Histology, University of the Basque Country, UPV/EHU, Leioa, Vizcaya, Spain
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Welcome Trust—MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Altered Expression Levels of MMP1, MMP9, MMP12, TIMP1, and IL-1β as a Risk Factor for the Elevated IOP and Optic Nerve Head Damage in the Primary Open-Angle Glaucoma Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:812503. [PMID: 26120586 PMCID: PMC4442285 DOI: 10.1155/2015/812503] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/28/2022]
Abstract
The aim of presented work was to analyze the impact of particular polymorphic changes in the promoter regions of the -1607 1G/2G MMP1, -1562 C/T MMP9, -82 A/G MMP12, -511 C/T IL-1β, and 372 T/C TIMP1 genes on their expression level in POAG patients. Blood and aqueous humor samples acquired from 50 patients with POAG and 50 control subjects were used for QPCR and protein levels analysis by ELISA. In vivo promoter activity assays were carried on HTM cells using dual luciferase assay. All studied subjects underwent ophthalmic examination, including BCVA, intraocular pressure, slit-lamp examination, gonioscopy, HRT, and OCT scans. Patients with POAG are characterized by an increased mRNA expression of MMP1, MMP9, MMP12, and IL-1β genes as compared to the control group (P < 0.001). Aqueous humor acquired from patients with POAG displayed increased protein expression of MMP1, MMP9, MMP12, and IL-1β compared to the control group (P < 0.001). Allele -1607 1G of MMP1 gene possesses only 42,91% of the -1607 2G allele transcriptional activity and allele -1562 C of MMP9 gene possesses only 21,86% of the -1562 T allele. Increased expression levels of metalloproteinases can be considered as a risk factor for the development of POAG.
Collapse
|
48
|
Li Y, Zhou GM. MMP-9 inhibition facilitates amacrine cell loss after ouabain-induced retinal damage. Exp Eye Res 2015; 135:174-81. [PMID: 25752698 DOI: 10.1016/j.exer.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/20/2015] [Accepted: 03/05/2015] [Indexed: 02/05/2023]
Abstract
Retinal ischemia is a common risk factor for visual impairment and blindness. Two common changes after retinal ischemia are retinal ganglion cell (RGC) loss and Müller glial cell (MGC)-mediated endogenous repair. Matrix metalloproteinase 9 (MMP-9) has been shown to be responsible to RGC death. However, the effects of MMP-9 on the loss of other neurons and the reactivity of MGCs after retinal injury remain unclear. Ouabain, a Na/K-ATPase inhibitor, was injected into the vitreous body of rat eyes to induce cell death in the inner nuclear layer (INL). MMP-9 expression and activation in the retinas were examined by gelatin zymography and immunohistochemistry. The role of MMP-9 inhibitor (MMP-9i) in ouabain-treated retinas was assessed. After ouabain injection, there was an upregulation of MMP-9 activity in the inner retinas, and the activation of MMP-9 reached a maximum at 2 day. Unexpectedly, MMP-9i enhanced the thinning of the INL, the loss of Calbindin D-28k-positive cells and Syntaxin-positive amacrine cells (ACs) in the INL and decreased levels of Calbindin D-28k protein, while leaving the outer nuclear layer (ONL) unchanged. In addition, MMP-9i led to a minor increase in the number of BrdU positive cells that did not express GS in the INL. Collectively, these results revealed that the inhibition of MMP-9 activity facilitated AC loss and promoted the generation of MGC-derived cells in ouabain-treated retinas, which indicates that treating retinal diseases with drugs that inhibit MMP-9 activity should be considered with caution.
Collapse
Affiliation(s)
- Yan Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China.
| | - Guo-Min Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
49
|
Dang Y, Xu Y, Wu W, Li W, Sun Y, Yang J, Zhu Y, Zhang C. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB and ERK signaling pathways in BV2 cells. PLoS One 2014; 9:e102522. [PMID: 25115855 PMCID: PMC4130469 DOI: 10.1371/journal.pone.0102522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background and Objective Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra Moore. Recent studies have suggested that TET can reduce the inflammatory response in microglia, but the mechanisms remain unclear. The aim of this study is to investigate whether TET can inhibit lipopolysaccharide (LPS)-induced microglial activation and clarify its possible mechanisms. Study Design/Materials and Methods Cell viability assays and cell apoptosis assays were used to determine the working concentrations of TET. Then, BV2 cells were seeded and pretreated with TET for 2 h. LPS was then added and incubated for an additional 24 hours. qRT-PCR and ELISA were used to measure the mRNA or protein levels of IL1β and TNFα. Western blotting was utilized to quantify the expression of CD11b and cell signaling proteins. Results TET at optimal concentrations (0.1 µM, 0.5 µM or 1 µM) did not affect the cell viability. After TET pretreatment, the levels of IL1β and TNFα (both in transcription and translation) were significantly inhibited in a dose-dependent manner. Further studies indicated that phospho-p65, phospho-IKK, and phospho-ERK 1/2 expression were also suppressed by TET. Conclusions Our results indicate that TET can effectively suppress microglial activation and inhibit the production of IL1β and TNFα by regulating the NF-kB and ERK signaling pathways. Together with our previous studies, we suggest that TET would be a promising candidate to effectively suppress overactivated microglia and alleviate neurodegeneration in glaucoma.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yongsheng Xu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wentao Wu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weiyi Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yanran Sun
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Yu Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
- * E-mail: (YZ); (CZ)
| | - Chun Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, People's Republic of China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, People's Republic of China
- * E-mail: (YZ); (CZ)
| |
Collapse
|
50
|
Sung M, Wei E, Chavez E, Jain N, Levano S, Binkert L, Ramseier A, Setz C, Bodmer D, Ryan AF, Brand Y. Inhibition of MMP-2 but not MMP-9 influences inner ear spiral ganglion neurons in vitro. Cell Mol Neurobiol 2014; 34:1011-21. [PMID: 24935409 DOI: 10.1007/s10571-014-0077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in modeling of the extracellular matrix. There is increasing evidence that these proteases are important in neurite elongation and axonal guidance during development in the central nervous system and retina. Moreover, they are also expressed after acute injury and can be the key mediators of pathogenesis. However, the role of MMPs in the inner ear is largely unknown. Our group recently demonstrated that general inhibition of MMPs resulted in auditory hair cell loss in vitro. In the present study, we investigated the role of MMPs in inner ear spiral ganglion neuron (SGN) survival, neuritogenesis and neurite extension by blocking MMPs known to be involved in axonal guidance, neurite elongation, and apoptosis in other neuronal systems. Spiral ganglion (SG) explants from 5-day-old Wistar rats were treated with different concentrations of the general MMP inhibitor GM6001, a specific MMP-2 inhibitor, and a specific MMP-9 inhibitor, in vitro. The general inhibitor of MMPs and the specific inhibition of MMP-2 significantly reduced both the number of neurites that extended from SG explants, as well as the length of individual neurites. However, neither the general inhibitor of MMPs nor the specific inhibition of MMP-2 influenced SGN survival. Inhibition of MMP-9 had no influence on SGNs. The data suggest that MMPs, and more specifically MMP-2, influence the growth of developing afferent neurites in the mammalian inner ear in vivo.
Collapse
Affiliation(s)
- Michael Sung
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|