1
|
Banik A, Datta Chaudhuri R, Vashishtha S, Gupta S, Kar A, Bandyopadhyay A, Kundu B, Sarkar S. Deoxyelephantopin-a novel PPARγ agonist regresses pressure overload-induced cardiac fibrosis via IL-6/STAT-3 pathway in crosstalk with PKCδ. Eur J Pharmacol 2023:175841. [PMID: 37329972 DOI: 10.1016/j.ejphar.2023.175841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo was performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.
Collapse
Affiliation(s)
- Anirban Banik
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Soumyadeep Gupta
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Abhik Kar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
2
|
Rojas-Zambrano PM, Meyer-Herrera JE, Ruiz-Aparicio PF, Vernot JP. Simultaneously Targeting Two Coupled Signalling Molecules in the Mesenchymal Stem Cell Support Efficiently Sensitises the Multiple Myeloma Cell Line H929 to Bortezomib. Int J Mol Sci 2023; 24:ijms24098157. [PMID: 37175864 PMCID: PMC10178910 DOI: 10.3390/ijms24098157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Several studies have shown that diverse components of the bone marrow (BM) microenvironment play a central role in the progression, pathophysiology, and drug resistance in multiple myeloma (MM). In particular, the dynamic interaction between BM mesenchymal stem cells (BM-MSC) and MM cells has shown great relevance. Here we showed that inhibiting both PKC and NF-κB signalling pathways in BM-MSC reduced cell survival in the MM cell line H929 and increased its susceptibility to the proteasome inhibitor bortezomib. PKC-mediated cell survival inhibition and bortezomib susceptibility induction were better performed by the chimeric peptide HKPS than by the classical enzastaurin inhibitor, probably due to its greatest ability to inhibit cell adhesion and its increased capability to counteract the NF-κB-related signalling molecules increased by the co-cultivation of BM-MSC with H929 cells. Thus, inhibiting two coupled signalling molecules in BM-MSC was more effective in blocking the supportive cues emerging from the mesenchymal stroma. Considering that H929 cells were also directly susceptible to PKC and NF-κB inhibition, we showed that treatment of co-cultures with the HKPS peptide and BAY11-7082, followed by bortezomib, increased H929 cell death. Therefore, targeting simultaneously connected signalling elements of BM-MSC responsible for MM cells support with compounds that also have anti-MM activity can be an improved treatment strategy.
Collapse
Affiliation(s)
- P M Rojas-Zambrano
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J E Meyer-Herrera
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - P F Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J P Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
3
|
Aftabizadeh M, Li YJ, Zhao Q, Zhang C, Ambaye N, Song J, Nagao T, Lahtz C, Fakih M, Ann DK, Yu H, Herrmann A. Potent antitumor effects of cell-penetrating peptides targeting STAT3 axis. JCI Insight 2021; 6:136176. [PMID: 33491667 PMCID: PMC7934871 DOI: 10.1172/jci.insight.136176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
To date, there are no inhibitors that directly and specifically target activated STAT3 and c-Myc in the clinic. Although peptide-based inhibitors can selectively block activated targets, their clinical usage is limited because of low cell penetration and/or serum stability. Here, we generated cell-penetrating acetylated (acet.) STAT3, c-Myc, and Gp130 targeting peptides by attaching phosphorothioated (PS) polymer backbone to peptides. The cell-penetrating peptides efficiently penetrated cells and inhibited activation of the intended targets and their downstream genes. Locally or systemically treating tumor-bearing mice with PS-acet.-STAT3 peptide at low concentrations effectively blocked STAT3 in vivo, resulting in significant antitumor effects in 2 human xenograft models. Moreover, PS-acet.-STAT3 peptide penetrated and activated splenic CD8+ T cells in vitro. Treating immune-competent mice bearing mouse melanoma with PS-acet.-STAT3 peptide inhibited STAT3 in tumor-infiltrating T cells, downregulating tumor-infiltrating CD4+ T regulatory cells while activating CD8+ T effector cells. Similarly, systemic injections of the cell-penetrating c-Myc and Gp130 peptides prevented pancreatic tumor growth and induced antitumor immune responses. Taken together, we have developed therapeutic peptides that effectively and specifically block challenging cancer targets, resulting in antitumor effects through both direct tumor cell killing and indirectly through antitumor immune responses.
Collapse
Affiliation(s)
| | | | - Qianqian Zhao
- Department of Immuno-Oncology and
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | | | | | | | - Christoph Lahtz
- Department of Immuno-Oncology and
- Sorrento Therapeutics, San Diego, California, USA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics and
| | - David K. Ann
- Diabetes & Metabolism Research Institute, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Hua Yu
- Department of Immuno-Oncology and
| | - Andreas Herrmann
- Department of Immuno-Oncology and
- Sorrento Therapeutics, San Diego, California, USA
| |
Collapse
|
4
|
Xu S, Wu X, Zhang X, Chen C, Chen H, She F. CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells. Gut Pathog 2020; 12:31. [PMID: 32636937 PMCID: PMC7333391 DOI: 10.1186/s13099-020-00368-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori colonises the stomach of approximately 50% of the global population. Cytotoxin-associated gene A protein (CagA) is one of the important virulent factors responsible for the increased inflammation and increases the risk of developing peptic ulcers and gastric carcinoma. The cytokine interleukin-6 (IL-6) has particularly important roles in the malignant transformation of gastric and intestinal epithelial cells as it is upregulated in H. pylori-infected gastric mucosa. In this study, we investigated the underlying mechanisms of CagA-induced IL-6 up-regulation during H. pylori infection. AGS cells, a human gastric adenocarcinoma cell line, lacking eEF1A1 were infected with CagA+ H. pylori (NCTC11637), CagA- H. pylori (NCTC11637ΔcagA), or transduced by Ad-cagA/Ad-GFP. The expression and production of IL-6 were measured by quantitative real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The interactions among CagA, eukaryotic translation elongation factor 1-alpha 1 (eEF1A1), protein kinase Cδ (PKCδ), and signal transducer and activator of transcription 3 (STAT3) were determined by western blot or co-immunoprecipitation. Results During H. pylori infection, CagA-M (residues 256‒871aa) was found to interact with eEF1A1-I (residues 1‒240aa). NCTC11637 increased the expression of IL-6 in AGS cells compared with NCTC11637ΔcagA whereas knockdown of eEF1A1 in AGS cells completely abrogated these effects. Moreover, the CagA-eEF1A1 complex promoted the expression of IL-6 in AGS cells. CagA and eEF1A1 cooperated to mediate the expression of IL-6 by affecting the activity of p-STATS727 in the nucleus. Further, CagA-eEF1A1 affected the activity of STAT3 by recruiting PKCδ. However, blocking PKCδ inhibited the phosphorylation of STAT3S727 and induction of IL-6 by CagA. Conclusions CagA promotes the expression of IL-6 in AGS cells by recruiting PKCδ through eEF1A1 in the cytoplasm to increase the phosphorylation of STAT3S727 in the nucleus. These findings provide new insights into the function of CagA-eEF1A1 interaction in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Shaohan Xu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China.,First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001 People's Republic of China
| | - Xiaoqian Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Chu Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Hao Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| |
Collapse
|
5
|
Lu J, Xu Z, Duan H, Ji H, Zhen Z, Li B, Wang H, Tang H, Zhou J, Guo T, Wu B, Wang D, Liu Y, Niu Y, Zhang R. Tumor-associated macrophage interleukin-β promotes glycerol-3-phosphate dehydrogenase activation, glycolysis and tumorigenesis in glioma cells. Cancer Sci 2020; 111:1979-1990. [PMID: 32259365 PMCID: PMC7293068 DOI: 10.1111/cas.14408] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-immune crosstalk within the tumor microenvironment (TME) occurs at all stages of tumorigenesis. Tumor-associated M2 macrophages play a central role in tumor development, but the molecular underpinnings have not been fully elucidated. We demonstrated that M2 macrophages produce interleukin 1β (IL-1β), which activates phosphorylation of the glycolytic enzyme glycerol-3-phosphate dehydrogenase (GPD2) at threonine 10 (GPD2 pT10) through phosphatidylinositol-3-kinase-mediated activation of protein kinase-delta (PKCδ) in glioma cells. GPD2 pT10 enhanced its substrate affinity and increased the catalytic rate of glycolysis in glioma cells. Inhibiting PKCδ or GPD2 pT10 in glioma cells or blocking IL-1β generated by macrophages attenuated the glycolytic rate and proliferation of glioma cells. Furthermore, human glioblastoma tumor GPD2 pT10 levels were positively correlated with tumor p-PKCδ and IL-1β levels as well as intratumoral macrophage recruitment, tumor grade and human glioblastoma patient survival. These results reveal a novel tumorigenic role for M2 macrophages in the TME. In addition, these findings suggest possible treatment strategies for glioma patients through blockade of cytokine crosstalk between M2 macrophages and glioma cells.
Collapse
Affiliation(s)
- Jian Lu
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Zhongye Xu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Zigang Zhen
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bo Li
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Huangsuo Wang
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Huoquan Tang
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Jie Zhou
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Tao Guo
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Bin Wu
- Department of Central Laboratory, General Hospital of TISCO, Taiyuan, China
| | - Dawei Wang
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| | - Yueting Liu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuhu Niu
- Biochemical Laboratory in Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Ruisheng Zhang
- Department of Neurosurgery, General Hospital of TISCO, Taiyuan, China
| |
Collapse
|
6
|
Wang J, Sun L, Nie Y, Duan S, Zhang T, Wang W, Ye RD, Hou S, Qian F. Protein Kinase C δ (PKCδ) Attenuates Bleomycin Induced Pulmonary Fibrosis via Inhibiting NF-κB Signaling Pathway. Front Physiol 2020; 11:367. [PMID: 32390869 PMCID: PMC7188947 DOI: 10.3389/fphys.2020.00367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal interstitial lung disease characterized by consistent pulmonary inflammation. Although protein kinase C delta (PKCδ) is involved in broad scope cellular response, the role of PKCδ in IPF is complicated and has not been fully defined yet. Here, we reported that PKCδ deficiency (PKCδ-/-) aggravated bleomycin (BLM)-induced pulmonary fibrosis and inflammation. Upon challenge with BLM, the pulmonary capillary permeability, immune cell infiltration, inflammatory cytokine production, and collagen deposition were enhanced in PKCδ-/- mice compared to that in PKCδ+/+ mice. In response to poly(I:C) stimulation, PKCδ deficient macrophages displayed an increased production of IL-1β, IL-6, TNF-α, and IL-33, which were associated with an enhanced NF-κB activation. Furthermore, we found that PKCδ could directly bind to and phosphorylate A20, an inhibitory protein of NF-κB signal. These results suggested that PKCδ may inhibit the NF-κB signaling pathway via enhancing the stability and activity of A20, which in turn attenuates pulmonary fibrosis, suggesting that PKCδ is a promising target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shixin Duan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Wang
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Shangwei Hou
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Inhibition of IL-13 and IL-13Rα2 Expression by IL-32θ in Human Monocytic Cells Requires PKCδ and STAT3 Association. Int J Mol Sci 2019; 20:ijms20081949. [PMID: 31010051 PMCID: PMC6514684 DOI: 10.3390/ijms20081949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-32θ, a newly identified IL-32 isoform, has been reported to exert pro-inflammatory effects through the association with protein kinase C delta (PKCδ). In this study, we further examined the effects of IL-32θ on IL-13 and IL-13Rα2 expression and the related mechanism in THP-1 cells. Upon stimulating IL-32θ-expressing and non-expressing cells with phorbol 12-myristate 13-acetate (PMA), the previous microarray analysis showed that IL-13Rα2 and IL-13 mRNA expression were significantly decreased by IL-32θ. The protein expression of these factors was also confirmed to be down-regulated. The nuclear translocation of transcription factors STAT3 and STAT6, which are necessary for IL-13Rα2 and IL-13 promoter activities, was suppressed by IL-32θ. Additionally, a direct association was found between IL-32θ, PKCδ, and signal transducer and activator of transcription 3 (STAT3), but not STAT6, revealing that IL-32θ might act mainly through STAT3 and indirectly affect STAT6. Moreover, the interaction of IL-32θ with STAT3 requires PKCδ, since blocking PKCδ activity eliminated the interaction and consequently limited the inhibitory effect of IL-32θ on STAT3 activity. Interfering with STAT3 or STAT6 binding by decoy oligodeoxynucleotides (ODNs) identified that IL-32θ had additive effects with the STAT3 decoy ODN to suppress IL-13 and IL-13Rα2 mRNA expression. Taken together, our data demonstrate the intracellular interaction of IL-32θ, PKCδ, and STAT3 to regulate IL-13 and IL-13Rα2 synthesis, supporting the role of IL-32θ as an inflammatory modulator.
Collapse
|
8
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
9
|
Affiliation(s)
- Hassan Ghasemi
- Department of Ophthalmology, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Wu J, Guo W, Lin SZ, Wang ZJ, Kan JT, Chen SY, Zhu YZ. Gp130-mediated STAT3 activation by S-propargyl-cysteine, an endogenous hydrogen sulfide initiator, prevents doxorubicin-induced cardiotoxicity. Cell Death Dis 2016; 7:e2339. [PMID: 27537522 PMCID: PMC5108313 DOI: 10.1038/cddis.2016.209] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Doxorubicin (Dox) could trigger a large amount of apoptotic cells in the myocardium, which leads to dilated cardiomyopathy and heart failure. S-propargyl-cysteine (SPRC), a producing agent of endogenous hydrogen sulfide (H2S), possesses cardioprotective efficacy. However, the specific effect and mechanism of SPRC in Dox-induced cardiotoxicity remain elusive. Given gp130 with its main downstream signaling molecule, signal transducer and activator of transcription 3 (STAT3), is involved in cardiac myocyte survival and growth; the present study was performed to elucidate whether SPRC counteracts Dox-induced cardiotoxicity, and if so, whether the gp130/STAT3 pathway is involved in this cardioprotective activity. SPRC stimulated the activation of STAT3 via gp130-mediated transduction tunnel in vitro and in vivo. In Dox-stimulated cardiotoxicity, SPRC enhanced cell viability, restored expression of gp130/STAT3-regulated downstream genes, inhibited apoptosis and oxidative stress, and antagonized mitochondrial dysfunction and intracellular Ca(2+) overload. Intriguingly, blockade of gp130/STAT3 signaling abrogated all these beneficial capacities of SPRC. Our findings present the first piece of evidence for the therapeutic properties of SPRC in alleviating Dox cardiotoxicity, which could be attributed to the activation of gp130-mediated STAT3 signaling. This will offer a novel molecular basis and therapeutic strategy of H2S donor for the treatment of heart failure.
Collapse
Affiliation(s)
- J Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - W Guo
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - S-Z Lin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Z-J Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - J-T Kan
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - S-Y Chen
- Department of Cardiovascular Surgery, Guangdong General Hospital, Guangzhou, Guangdong, China
| | - Y-Z Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,School of Pharmacy, Macau University of Science & Technology, Macau, China
| |
Collapse
|
11
|
Qvit N, Disatnik MH, Sho J, Mochly-Rosen D. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo. J Am Chem Soc 2016; 138:7626-35. [PMID: 27218445 PMCID: PMC5065007 DOI: 10.1021/jacs.6b02724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Jie Sho
- Kunming Biomed International Chenggong, Kunming, P.R. China
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| |
Collapse
|
12
|
Qvit N, Joshi AU, Cunningham AD, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J Biol Chem 2016; 291:13608-21. [PMID: 27129213 DOI: 10.1074/jbc.m115.711630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy.
Collapse
Affiliation(s)
- Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Amit U Joshi
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Anna D Cunningham
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Julio C B Ferreira
- the Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| |
Collapse
|
13
|
Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 2015; 26:475-87. [DOI: 10.1016/j.cytogfr.2015.07.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
|
14
|
Analysis of Cellular Proliferation and Survival Signaling by Using Two Ligand/Receptor Systems Modeled by Pathway Logic. HYBRID SYSTEMS BIOLOGY 2015. [DOI: 10.1007/978-3-319-26916-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Abstract
Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype requires the activation of pro-survival transcription factor like the signal transducers and activators of transcription-3 (STAT3). Using multidisciplinary and translational approaches, we and others have demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the modulation of the expression of several proteins already known as implicated in PAH pathogenesis, as well as for signal transduction to other transcription factors. Furthermore, recent data demonstrated that STAT3 could be therapeutically targeted in different animal models and some molecules are actually in clinical trials for cancer or PAH treatment.
Collapse
Affiliation(s)
- Roxane Paulin
- Vascular Biology Research Group; Department of Medicine; University of Alberta; Edmonton, AB Canada
| | | | | |
Collapse
|
16
|
A non-canonical function of eukaryotic elongation factor 1A1: Regulation of interleukin-6 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:965-75. [DOI: 10.1016/j.bbamcr.2014.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 11/22/2022]
|
17
|
Abstract
Multiple studies have shown that the cytokine leukemia inhibitory factor (LIF) is protective of the myocardium in the acute stress of ischemia-reperfusion. All three major intracellular signaling pathways that are activated by LIF in cardiac myocytes have been linked to actions that protect against oxidative stress and cell death, either at the level of the mitochondrion or via nuclear transcription. In addition, LIF has been shown to contribute to post-myocardial infarction cardiac repair and regeneration, by stimulating the homing of bone marrow-derived cardiac progenitors to the injured myocardium, the differentiation of resident cardiac stem cells into endothelial cells, and neovascularization. Whether LIF offers protection to the heart under chronic stress such as hypertension-induced cardiac remodeling and heart failure is not known. However, mice with cardiac myocyte restricted knockout of STAT3, a principal transcription factor activated by LIF, develop heart failure with age, and cardiac STAT3 levels are reported to be decreased in heart failure patients. In addition, endogenously produced LIF has been implicated in the cholinergic transdiffrentiation that may serve to attenuate sympathetic overdrive in heart failure and in the peri-infarct region of the heart after myocardial infarction. Surprisingly, therapeutic strategies to exploit the beneficial actions of LIF on the injured myocardium have received scant attention. Nor is it established whether the purported so-called adverse effects of LIF observed in isolated cardiac myocytes have physiological relevance in vivo. Here we present an overview of the actions of LIF in the heart with the goal of stimulating further research into the translational potential of this pleiotropic cytokine.
Collapse
|
18
|
Zgheib C, Zouein FA, Kurdi M, Booz GW. Differential STAT3 signaling in the heart: Impact of concurrent signals and oxidative stress. JAKSTAT 2013; 1:101-10. [PMID: 23904970 PMCID: PMC3670289 DOI: 10.4161/jkst.19776] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple lines of evidence suggest that the transcription factor STAT3 is linked to a protective and reparative response in the heart. Thus, increasing duration or intensity of STAT3 activation ought to minimize damage and improve heart function under conditions of stress. Two recent studies using genetic mouse models, however, report findings that appear to refute this proposition. Unfortunately, studies often approach the question of the role of STAT3 in the heart from the perspective that all STAT3 signaling is equivalent, particularly when it comes to signaling by IL-6 type cytokines, which share the gp130 signaling protein. Moreover, STAT3 activation is typically equated with phosphorylation of a critical tyrosine residue. Yet, STAT3 transcriptional behavior is subject to modulation by serine phosphorylation, acetylation, and redox status of the cell. Unphosphorylated STAT3 is implicated in gene induction as well. Thus, how STAT3 is activated and also what other signaling events are occurring at the same time is likely to impact on the outcome ultimately linked to STAT3. Notably STAT3 may serve as a scaffold protein allowing it to interact with other singling pathways. In this context, canonical gp130 cytokine signaling may function to integrate STAT3 signaling with a protective PI3K/AKT signaling network via mutual involvement of JAK tyrosine kinases. Differences in the extent of integration may occur between those cytokines that signal through gp130 homodimers and those through heterodimers of gp130 with a receptor α chain. Signal integration may have importance not only for deciding the particular gene profile linked to STAT3, but for the newly described mitochondrial stabilization role of STAT3 as well. In addition, disruption of integrated gp130-related STAT3 signaling may occur under conditions of oxidative stress, which negatively impacts on JAK catalytic activity. For these reasons, understanding the importance of STAT3 signaling to heart function requires a greater appreciation of the plasticity of this transcription factor in the context in which it is investigated.
Collapse
Affiliation(s)
- Carlos Zgheib
- Department of Pharmacology and Toxicology; School of Medicine; and the Center for Excellence in Cardiovascular-Renal Research; The University of Mississippi Medical Center; Jackson, MS USA
| | | | | | | |
Collapse
|
19
|
Nagata N, Matsuo K, Bettaieb A, Bakke J, Matsuo I, Graham J, Xi Y, Liu S, Tomilov A, Tomilova N, Gray S, Jung DY, Ramsey JJ, Kim JK, Cortopassi G, Havel PJ, Haj FG. Hepatic Src homology phosphatase 2 regulates energy balance in mice. Endocrinology 2012; 153:3158-69. [PMID: 22619361 PMCID: PMC3380313 DOI: 10.1210/en.2012-1406] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding.
Collapse
Affiliation(s)
- Naoto Nagata
- Department of Nutrition, University of California Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wallerstedt E, Smith U, Andersson CX. Protein kinase C-delta is involved in the inflammatory effect of IL-6 in mouse adipose cells. Diabetologia 2010; 53:946-54. [PMID: 20151299 DOI: 10.1007/s00125-010-1668-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/17/2009] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS The aim of the study was to address the role of protein kinase C-delta (PKCdelta) on phosphorylation of signal transducer and activator of transcription 3 (STAT3) and activation of inflammatory genes in response to IL-6 in adipose cells. METHODS Differentiated mouse 3T3-L1 adipocytes preincubated with the PKCdelta inhibitor rottlerin and mouse embryonic fibroblasts (MEFs) lacking PKCdelta were incubated with IL-6 and/or insulin. RNA was extracted and the gene expression was analysed by real-time PCR, while the proteins from total, nuclear and cytoplasmic lysates were analysed by immunoblotting. RESULTS Inhibition of PKCdelta by rottlerin significantly reduced both Ser-727 and Tyr-705 phosphorylation of STAT3. Consequently, nuclear translocation of STAT3 and the IL-6-induced gene transcription and protein release of the inflammatory molecule serum amyloid A 3 (SAA3) were reduced. Similarly, the IL-6-regulated gene transcription of Il-6 (also known as Il6) to Hp and the feedback inhibitor of IL-6, Socs3, were also attenuated by rottlerin. Furthermore, PKCdelta was found to translocate to the nucleus following IL-6 treatment and this was also reduced by rottlerin. In agreement with the effect of rottlerin, Pkcdelta (also known as Prkcd) ( -/- ) MEFs also displayed a markedly reduced ability of IL-6 to activate the transcription of Saa3, Hp, Socs3 and Il6 genes compared with wild-type MEFs. These results correlated with a reduced nuclear translocation and phosphorylation of STAT3. CONCLUSIONS/INTERPRETATION These results show that PKCdelta plays a key role in the inflammatory effect of IL-6 in adipose cells and may be a suitable target for novel anti-inflammatory agents.
Collapse
Affiliation(s)
- E Wallerstedt
- The Lundberg Laboratory for Diabetes Research, Center of Excellence for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine/Diabetes, The Sahlgrenska Academy at University of Gothenburg, Blå Stråket 5, SE-413 45, Gothenburg, Sweden
| | | | | |
Collapse
|
21
|
Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem Pharmacol 2009; 79:1242-50. [PMID: 20026083 DOI: 10.1016/j.bcp.2009.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/05/2009] [Accepted: 12/10/2009] [Indexed: 11/21/2022]
Abstract
Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer properties. In this study, we sought to examine the effect of Andro on signal transducer and activator of transcription 3 (STAT3) pathway and evaluate whether suppression of STAT3 activity by Andro could sensitize cancer cells to a chemotherapeutic drug doxorubicin. First, we demonstrated that Andro is able to significantly suppress both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Such inhibition is found to be achieved through suppression of Janus-activated kinase (JAK)1/2 and interaction between STAT3 and gp130. For understanding the biological significance of the inhibitory effect of Andro on STAT3, we next investigated the effect of Andro on doxorubicin-induced apoptosis in human cancer cells. In our study the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to doxorubicin-induced apoptosis. Both the short-term MTT assay and the long-term colony formation assay showed that Andro dramatically promoted doxorubicin-induced cell death in cancer cells, indicating that Andro enhances the sensitivity of cancer cells to doxorubicin mainly via STAT3 suppression. These observations thus reveal a novel anticancer function of Andro and suggest a potential therapeutic strategy of using Andro in combination with chemotherapeutic agents for treatment of cancer.
Collapse
|
22
|
Abstract
Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.e., on neurons activated by painful stimuli). We found indeed that the IL-6/gp130 ligand-receptor complex induced heat hypersensitivity both in vitro and in vivo. This process was mediated by activation of PKC-delta via Gab1/2/PI(3)K and subsequent regulation of TRPV1, a member of the transient receptor potential (TRP) family of ion channels. To assess the relevance of this direct pain promoting effect of IL-6, we generated conditional knock-out mice, which lack gp130 specifically in nociceptors, and tested them in models of inflammatory and tumor-induced pain. These mice showed significantly reduced levels of inflammatory and tumor-induced pain but no changes in immune reactions or tumor growth. Our results uncover the significance of gp130 expressed in peripheral pain sensing neurons in the pathophysiology of major clinical pain disorders and suggest their use as novel pain relieving agents in inflammatory and tumor pain.
Collapse
|
23
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171:59-76. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.x] [Citation(s) in RCA: 551] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kelly M, Gauthier MS, Saha AK, Ruderman NB. Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle: association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes 2009; 58:1953-60. [PMID: 19502419 PMCID: PMC2731526 DOI: 10.2337/db08-1293] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Interleukin-6 (IL-6) directly activates AMP-activated protein kinase (AMPK) in vivo and in vitro; however, the mechanism by which it does so is unknown. RESEARCH DESIGN AND METHODS We examined this question in skeletal muscle using an incubated rat extensor digitorum longus (EDL) muscle preparation as a tool. RESULTS AMPK activation by IL-6 coincided temporally with a nearly threefold increase in the AMP:ATP ratio in the EDL. The effects of IL-6 on both AMPK activity and energy state were inhibited by coincubation with propranolol, suggesting involvement of beta-adrenergic signaling. In keeping with this notion, IL-6 concurrently induced a transient increase in cAMP, and its ability to activate AMPK was blocked by the adenyl cyclase inhibitor 2'5'-dideoxyadenosine. In addition, like other beta-adrenergic stimuli, IL-6 increased glycogen breakdown and lipolysis in the EDL. Similar effects of IL-6 on AMPK, energy state, and cAMP content were observed in C2C12 myotubes and gastrocnemius muscle in vivo, indicating that they were not unique to the incubated EDL. CONCLUSIONS These studies demonstrate that IL-6 activates AMPK in skeletal muscle by increasing the concentration of cAMP and, secondarily, the AMP:ATP ratio. They also suggest that substantial increases in IL-6 concentrations, such as those that can result from its synthesis by muscles during exercise, may play a role in the mobilization of fuel stores within skeletal muscle as an added means of restoring energy balance.
Collapse
Affiliation(s)
- Meghan Kelly
- From the Department of Medicine, Section of Endocrinology, Diabetes Research Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Marie-Soleil Gauthier
- From the Department of Medicine, Section of Endocrinology, Diabetes Research Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Asish K. Saha
- From the Department of Medicine, Section of Endocrinology, Diabetes Research Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Neil B. Ruderman
- From the Department of Medicine, Section of Endocrinology, Diabetes Research Unit, Boston University School of Medicine, Boston, Massachusetts
- Corresponding author: Neil B. Ruderman,
| |
Collapse
|
26
|
Abstract
BACKGROUND INFORMATION The transcription factor NFAT (nuclear factor of activated T-cell) family comprises important regulators in immuno-responses and mouse embryonic development, including early cardiovascular and heart valve development. The mechanism involved, however, is not fully understood. Nkx2-5 (NK2 transcription factor related, locus 5) is one of the earliest genes expressed in early cardiac progenitor cells and is essential for heart tube development by control of a subset of cardiac muscle-specific genes. Previously we found that downregulation of mitochondrial respiratory chain complex I caused severe cardiac deficiencies during heart tube development in Xenopus embryos associated with compromised Nkx2-5 expression. However, the heart defects and Nkx2-5 expression could be rescued by a constitutively activated NFAT, suggesting a possible link between NFAT and Nkx2-5 during early heart development. RESULTS In the present study, we demonstrate that NFAT regulates Nkx2-5 expression in both mouse ES (embryonic stem) cells and P19 cells, a mouse model for embryonic differentiation. We found that there are six core NFAT-binding elements in the 5' regulatory region of the Nkx2-5 gene. Although NFAT is able to bind directly to all but one of these elements, it activates Nkx2-5 transcription only via a specific binding site in the distal enhancer region. Interestingly, the transcriptional activity of NFAT is largely dependent on the co-factor GATA (GATA-binding transcription factor), which binds to an element adjacent to this key NFAT-binding site. Furthermore, binding of the endogenous NFAT to this particular site was observed during cardiac differentiation in mouse ES and P19 cells. CONCLUSIONS The results suggest that Nkx2-5 is a direct target of NFAT that co-ordinates with other transcription factors such as GATA4 to regulate Nkx2-5 during cardiogenesis.
Collapse
|
27
|
Suh HN, Lee YJ, Han HJ. Interleukin-6 promotes 2-deoxyglucose uptake through p44/42 MAPKs activation via Ca2+/PKC and EGF receptor in primary cultured chicken hepatocytes. J Cell Physiol 2009; 218:643-52. [DOI: 10.1002/jcp.21641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA, Dalton WS. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009; 69:1009-15. [PMID: 19155309 DOI: 10.1158/0008-5472.can-08-2419] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bone marrow microenvironmental components interleukin (IL)-6 and fibronectin (FN) individually influence the proliferation and survival of multiple myeloma (MM) cells; however, in vivo, these effectors most likely work together. We examined signaling events, cell cycle progression, and levels of drug response in MM cells either adhered to FN via beta1 integrins, stimulated with IL-6, or treated with the two combined. Although G(1)-S cell cycle arrest associated with FN adhesion was overcome when IL-6 was added, the cell adhesion-mediated drug resistance (CAM-DR) was maintained in the presence of IL-6. Concomitant exposure of MM cells to IL-6 and FN adhesion revealed a dramatic increase in signal transducers and activators of transcription 3 (STAT3) phosphorylation, nuclear translocation, and DNA binding, compared with either IL-6 or FN adhesion alone in four MM cell lines. Importantly, this increase in STAT3 activation correlated with a novel association between STAT3 and gp130 in cells adhered to FN before stimulation with IL-6, relative to nonadherent cells. Taken together, these results suggest a mechanism by which collaborative signaling by beta1 integrin and gp130 confers an increased survival advantage to MM cells.
Collapse
Affiliation(s)
- Kenneth H Shain
- Experimental Therapeutics and Oncologic Sciences Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Chang CW, Chou HY, Lin YS, Huang KH, Chang CJ, Hsu TC, Lee SC. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol 2008; 9:61. [PMID: 18590578 PMCID: PMC2474647 DOI: 10.1186/1471-2199-9-61] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023] Open
Abstract
Background As an epigenetic regulator, the transcriptional intermediary factor 1β (TIF1β)/KAP1/TRIM28) has been linked to gene expression and chromatin remodeling at specific loci by association with members of the heterochromatin protein 1 (HP1) family and various other chromatin factors. The interaction between TIF1β and HP1 is crucial for heterochromatin formation and maintenance. The HP1-box, PXVXL, of TIF1β is responsible for its interaction with HP1. However, the underlying mechanism of how the interaction is regulated remains poorly understood. Results This work demonstrates that TIF1β is phosphorylated on Ser473, the alteration of which is dynamically associated with cell cycle progression and functionally linked to transcriptional regulation. Phosphorylation of TIF1β/Ser473 coincides with the induction of cell cycle gene cyclin A2 at the S-phase. Interestingly, chromatin immunoprecipitation demonstrated that the promoter of cyclin A2 gene is occupied by TIF1β and that such occupancy is inversely correlated with Ser473 phosphorylation. Additionally, when HP1β was co-expressed with TIF1β/S473A, but not TIF1β/S473E, the colocalization of TIF1β/S473A and HP1β to the promoters of Cdc2 and Cdc25A was enhanced. Non-phosphorylated TIF1β/Ser473 allowed greater TIF1β association with the regulatory regions and the consequent repression of these genes. Consistent with possible inhibition of TIF1β's corepressor function, the phosphorylation of the Ser473 residue, which is located near the HP1-interacting PXVXL motif, compromised the formation of TIF1β-HP1 complex. Finally, we found that the phosphorylation of TIF1β/Ser473 is mediated by the PKCδ pathway and is closely linked to cell proliferation. Conclusion The modulation of HP1β-TIF1β interaction through the phosphorylation/de-phosphorylation of TIF1β/Ser473 may constitute a molecular switch that regulates the expression of particular genes. Higher levels of phosphorylated TIF1β/Ser473 may be associated with the expression of key regulatory genes for cell cycle progression and the proliferation of cells.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol 2007; 50:126-41. [PMID: 17703129 DOI: 10.1097/fjc.0b013e318068dd49] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of the transcription factor signal transducers and activators of transcription (STAT) 3 is a defining feature of the interleukin (IL)-6 family of cytokines, which include IL-6, leukemia inhibitory factor, and cardiotrophin-1. These cytokines, as well as STAT3 activation, have been shown to be protective for cardiac myocytes and necessary for ischemia preconditioning. However, the mechanisms that regulate IL-6-type cytokine signaling in cardiac myocytes are largely unexplored. We propose that the protective character of IL-6-type cytokine signaling in cardiac myocytes is determined principally by three mechanisms: redox status of the nonreceptor tyrosine kinase Janus kinase 1 (JAK) 1 that activates STAT3, phosphorylation of STAT3 within the transcriptional activation domain on serine 727, and STAT3-mediated induction of suppressor of cytokine signaling (SOCS) 3 that terminates IL-6-type cytokine signaling. Moreover, we hypothesize that hyperactivation of the JAK kinases, particularly JAK2, mismatched STAT3 serine-tyrosine phosphorylation or heightened STAT3 transcriptional activity, and SOCS3 induction may ultimately prove detrimental. Here we summarize recent evidence that supports this hypothesis, as well as additional possible mechanisms of JAK-STAT regulation. Understanding how IL-6-type cytokine signaling is regulated in cardiac myocytes has great significance for exploiting the therapeutic potential of these cytokines and the phenomenon of preconditioning.
Collapse
Affiliation(s)
- Mazen Kurdi
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System Health Science Center, College Station, TX 76504, USA
| | | |
Collapse
|
31
|
ephrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc Natl Acad Sci U S A 2007; 104:17305-10. [PMID: 17954917 DOI: 10.1073/pnas.0702337104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Eph (erythropoietin-producing hepatoma) family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. The transmembrane ephrinB (Eph receptor interactor B) protein is a bidirectional signaling molecule that sends a forward signal through the activation of its cognate receptor tyrosine kinase, residing on another cell. A reverse signal can be transduced into the ephrinB-expressing cell via tyrosine phosphorylation of its conserved C-terminal cytoplasmic domain. Although some insight has been gained regarding how ephrinB may send signals affecting cytoskeletal components, little is known about how ephrinB1 reverse signaling affects transcriptional processes. Here we report that signal transducer and activator of transcription 3 (STAT3) can interact with ephrinB1 in a phosphorylation-dependent manner that leads to enhanced activation of STAT3 transcriptional activity. This activity depends on the tyrosine kinase Jak2, and two tyrosines within the intracellular domain of ephrinB1 are critical for the association with STAT3 and its activation. The recruitment of STAT3 to ephrinB1, and its resulting Jak2-dependent activation and transcription of reporter targets, reveals a signaling pathway from ephrinB1 to the nucleus.
Collapse
|
32
|
Schwegmann A, Guler R, Cutler AJ, Arendse B, Horsnell WGC, Flemming A, Kottmann AH, Ryan G, Hide W, Leitges M, Seoighe C, Brombacher F. Protein kinase C delta is essential for optimal macrophage-mediated phagosomal containment of Listeria monocytogenes. Proc Natl Acad Sci U S A 2007; 104:16251-6. [PMID: 17913887 PMCID: PMC2000452 DOI: 10.1073/pnas.0703496104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of macrophages and subsequent "killing" effector functions against infectious pathogens are essential for the establishment of protective immunity. NF-IL6 is a transcription factor downstream of IFN-gamma and TNF in the macrophage activation pathway required for bacterial killing. Comparison of microarray expression profiles of Listeria monocytogenes (LM)-infected macrophages from WT and NF-IL6-deficient mice enabled us to identify candidate genes downstream of NF-IL6 involved in the unknown pathways of LM killing independent of reactive oxygen intermediates and reactive nitrogen intermediates. One differentially expressed gene, PKCdelta, had higher mRNA levels in the LM-infected NF-IL6-deficient macrophages as compared with WT. To define the role of PKCdelta during listeriosis, we infected PKCdelta-deficient mice with LM. PKCdelta-deficient mice were highly susceptible to LM infection with increased bacterial burden and enhanced histopathology despite enhanced NF-IL6 mRNA expression. Subsequent studies in PKCdelta-deficient macrophages demonstrated that, despite elevated levels of proinflammatory cytokines and NO production, increased escape of LM from the phagosome into the cytoplasm and uncontrolled bacterial growth occurred. Taken together these data identified PKCdelta as a critical factor for confinement of LM within macrophage phagosomes.
Collapse
Affiliation(s)
- Anita Schwegmann
- *Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, and
| | - Reto Guler
- *Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, and
| | - Antony J. Cutler
- *Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, and
| | - Berenice Arendse
- *Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, and
| | | | - Alexandra Flemming
- *Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, and
| | - Andreas H. Kottmann
- Psychogenics Inc., Genome Center, and Department of Psychiatry, Columbia University, New York, NY 10032
| | - Gregory Ryan
- Intracellular Therapies, Inc., New York, NY 10032
| | - Winston Hide
- South African National Bioinformatics Institute, University of Western Cape, Bellville 7535, South Africa; and
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway
| | - Cathal Seoighe
- National Bioinformatics Network Node, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- *Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, and
- **To whom correspondence should be addressed at:
Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Anzio Road, Observatory, Cape Town 7925, South Africa. E-mail:
| |
Collapse
|
33
|
Coles B, Fielding CA, Rose-John S, Scheller J, Jones SA, O'Donnell VB. Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:315-25. [PMID: 17591976 PMCID: PMC1941613 DOI: 10.2353/ajpath.2007.061078] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 acts via a receptor complex consisting of the cognate IL-6 receptor (IL-6R) or the soluble IL-6 receptor (sIL-6R) and glycoprotein 130 (gp130). Here, we investigated the role of these IL-6R components in hypertension and vascular hypertrophy in mice. Angiotensin (Ang) II (1.1 mg/kg/day) caused hypertension and cardiac/aortic hypertrophy in wild-type, but not IL-6(-/-), mice throughout 7 days. A recombinant dimeric soluble gp130 (sgp130Fc; 50 to 100 microg, i.p.) blocked Ang II hypertension but not hypertrophy in wild-type mice. Cognate IL-6R was detected in aortic smooth muscle, but its levels and those of plasma sIL-6R were approximately 50% decreased in IL-6(-/-) mice. Ang II infusion activated signal transducer and activator of transcription-3 in heart of WT and decreased Ang II receptor 1 (ATR1) expression in aorta. Both responses were unaffected by sgp130Fc and absent in IL-6(-/-) mice. In summary, we show that IL-6 trans-signaling is required for Ang II-dependent hypertension, but that hypertrophy, down-regulation of AT1R, and cardiac signal transducer and activator of transcription-3 activation are mediated via cognate IL-6R. These data show that IL-6 responses in a single disease context are governed by both modes of IL-6 signaling, with each pathway eliciting different outcomes. Inhibition of IL-6 signaling is suggested as a potential therapy for hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Barbara Coles
- Dept of Medical Biochemistry and Immunology, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
34
|
Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T. Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol 2007; 133:793-808. [PMID: 17661083 DOI: 10.1007/s00432-007-0280-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 07/03/2007] [Indexed: 12/28/2022]
Abstract
The protein kinase C (PKC) family represents a large group of phospholipid dependent enzymes catalyzing the covalent transfer of phosphate from ATP to serine and threonine residues of proteins. Phosphorylation of the substrate proteins induces a conformational change resulting in modification of their functional properties. The PKC family consists of at least ten members, divided into three subgroups: classical PKCs (alpha, betaI, betaII, gamma), novel PKCs (delta, epsilon, eta, theta), and atypical PKCs (zeta, iota/lambda). The specific cofactor requirements, tissue distribution, and cellular compartmentalization suggest differential functions and fine tuning of specific signaling cascades for each isoform. Thus, specific stimuli can lead to differential responses via isoform specific PKC signaling regulated by their expression, localization, and phosphorylation status in particular biological settings. PKC isoforms are activated by a variety of extracellular signals and, in turn, modify the activities of cellular proteins including receptors, enzymes, cytoskeletal proteins, and transcription factors. Accordingly, the PKC family plays a central role in cellular signal processing. Accumulating data suggest that various PKC isoforms participate in the regulation of cell proliferation, differentiation, survival and death. These findings have enabled identification of abnormalities in PKC isoform function, as they occur in several cancers. Specifically, the initiation of squamous cell carcinoma formation and progression to the malignant phenotype was found to be associated with distinct changes in PKC expression, activation, distribution, and phosphorylation. These studies were recently further extended to transgenic and knockout animals, which allowed a more direct analysis of individual PKC functions. Accordingly, this review is focused on the involvement of PKC in physiology and pathology of the skin.
Collapse
Affiliation(s)
- D Breitkreutz
- Division of Differentiation and Carcinogenesis (A080/A110), German Cancer Research Center (DKFZ), POB 101949, Im Neuenheimer Feld 280, 69009, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
35
|
Wang HW, Lin CP, Chiu JH, Chow KC, Kuo KT, Lin CS, Wang LS. Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer 2007; 120:2019-27. [PMID: 17266043 DOI: 10.1002/ijc.22402] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dihydrodiol dehydrogenase (DDH) is a member of the aldo-keto reductases superfamily (AKR1C1-AKR1C4), which plays central roles in the metabolism of steroid hormone, prostaglandin and xenobiotics. We have previously detected overexpression of DDH as an indicator of poor prognosis and chemoresistance in human non-small lung cancer (NSCLC). We also found DDH expression to be closely related to chronic inflammatory conditions. The aim of this study was to investigate the links between inflammation, DDH expression and drug resistance in NSCLC cells. We showed that pro-inflammatory mediators including interleukin-6 (IL-6) could induce AKR1C1/1C2 expression in NSCLC cells and increase cellular resistance to cisplatin and adriamycin. This effect was nullified by Safingol, a protein kinase C inhibitor. Moreover, the expression of AKR1C1/1C2 was inversely correlated to NBS1 and apoptosis-inducing factor (AIF). We also showed that IL-6-induced AKR1C1/1C2 expression and drug resistance were inhibited by wogonin and chrysin, which are major flavonoids in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. In conclusion, this study demonstrated novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in NSCLC. The protein kinase C pathway may play an important role in this process. Overexpression of AKR1C1/1C2 may serve as a marker of chemoresistance. Further studies are warranted to evaluate wogonin and chrysin as a potential adjuvant therapy for drug-resistant NSCLC, especially for those with AKR1C1/1C2 overexpression.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Gong KZ, Zhang H, Du JH, Zhang YY. Crosstalk between signaling pathways of adrenoreceptors and signal transducers and activators of transcription 3 (STAT3) in heart. Acta Pharmacol Sin 2007; 28:153-65. [PMID: 17241516 DOI: 10.1111/j.1745-7254.2007.00525.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently, there have been important advancements in our understanding of the signaling mechanisms of adrenoreceptors (AR) and signal transducers and activators of transcription 3 (STAT3). While their crucial roles in the pathological processes of the heart are well established, accumulating evidence suggests there is a complex pattern of crosstalk between these 2 signaling pathways. Moreover, the potential for crosstalk occurs at multiple levels in each signaling cascade and involves receptor transactivation, G proteins, small GTPases, cyclic adenosine 3',5'-monophosphate/protein kinase A, protein kinase C, scaffold/adaptor proteins, protein tyrosine kinases, and mitogen-activated protein kinases. In addition, post-translational modification (eg acetylation) of STAT3 may provide a link between STAT3 and AR signaling. In particular, crosstalk between these 2 systems in the heart would appear to be dependent upon the species/tissue studied, developmental stage, and eliciting stimulus. This at least partly accounts for the epigenetic effects on biological function that is mediated by the 2 signaling pathways. Elucidation of these mechanisms will provide new targets in the development of novel clinical strategies for heart disorders.
Collapse
Affiliation(s)
- Kai-zheng Gong
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, China
| | | | | | | |
Collapse
|
37
|
Jasavala R, Martinez H, Thumar J, Andaya A, Gingras AC, Eng JK, Aebersold R, Han DK, Wright ME. Identification of Putative Androgen Receptor Interaction Protein Modules. Mol Cell Proteomics 2007; 6:252-71. [PMID: 17052974 DOI: 10.1074/mcp.m600169-mcp200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed a novel androgen receptor (AR) expression system in the 293 human embryonic kidney cell line that recapitulates AR biochemical activity as a steroid hormone receptor in prostate cancer cells. We used this system to identify putative AR-binding proteins in the cytosolic and nuclear compartments of mammalian cells using a large scale co-immunoprecipitation strategy coupled to quantitative mass spectrometry. For example, the heat shock 70 and 90 chaperones, which are known regulators of steroid hormone receptor, were identified as AR-binding proteins. AR purification enriched for proteins involved in RNA processing, protein transport, and cytoskeletal organization, suggesting a functional link between AR and these protein modules in mammalian cells. For example, AR purification in the nuclear compartment led to the specific enrichment of alpha-actinin-4, clathrin heavy chain, and serine-threonine protein kinase C delta. Short interfering RNA knockdown studies and co-transcriptional reporter assays revealed that clathrin heavy chain possessed co-activator activity during AR-mediated transcription, whereas alpha-actinin-4 and protein kinase C delta displayed both co-activator and co-repressor activity during AR-mediated transcription that was dependent upon their relative expression levels. Lastly immunohistochemical staining of prostate tissue showed that alpha-actinin-4 levels decreased in the nucleus of high grade cancerous prostate samples, suggesting its possible deregulation in advanced prostate cancers as previously observed in late stage metastatic breast cancers. Taken together, these findings suggest AR binds to specific protein modules in mammalian cells and that these protein modules may provide a molecular framework for interrogating AR function in normal and cancerous prostate epithelial cells.
Collapse
Affiliation(s)
- Rohini Jasavala
- University of California Davis Genome Center, Department of Pharmacology, UC Davis School of Medicine, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fulop T, Larbi A, Douziech N, Levesque I, Varin A, Herbein G. Cytokine receptor signalling and aging. Mech Ageing Dev 2006; 127:526-37. [PMID: 16530252 DOI: 10.1016/j.mad.2006.01.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/01/2005] [Accepted: 01/16/2006] [Indexed: 01/22/2023]
Abstract
With ageing the immune system is deregulated and this leads to the development of immunosenescence mainly affecting the adaptive immune response. There is much knowledge accumulated concerning various receptor functions and signalling with ageing such as TCR, FcRs, TLRs. Cytokines are playing a major role in haematopoietic cell functions and in the harmonious and integrated coordination of the innate and adaptive immune response. There exists a large amount of data on cytokine production changes with ageing, as IL-2 production is decreasing, while IL-6 production is increasing. In contrast, there is only scarce knowledge concerning the cytokine receptors and their signalling in ageing. However, there is some evidence that the signalling of IL-2 receptors is altered in T cells and macrophages, mainly in relation to the JAK/STAT pathway. We present here evidence that the IL-6 induced signalling is also altered in T cells with ageing. An alteration in the JAKs and STATs activations in T cells and macrophages was demonstrated. The exact cause of these altered activations is not known and future studies are needed to elucidate them. In this review we summarise our present knowledge on cytokine signalling with ageing, mainly focusing on IL-2 and IL-6 receptors signalling.
Collapse
Affiliation(s)
- T Fulop
- Centre de Recherche sur le vieillissement, Service de Gériatrie, Département de Médecine, Université de Sherbrooke, Sherbrooke, Que., Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Gartsbein M, Alt A, Hashimoto K, Nakajima K, Kuroki T, Tennenbaum T. The role of protein kinase C δ activation and STAT3 Ser727 phosphorylation in insulin-induced keratinocyte proliferation. J Cell Sci 2006; 119:470-81. [PMID: 16418226 DOI: 10.1242/jcs.02744] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the STAT family of transcription factors is regulated by cytokines and growth factors. STAT tyrosine and serine phosphorylation are linked to the transcriptional activation and function of STAT. We have previously described a unique pathway inducing keratinocyte proliferation, which is mediated by insulin stimulation and depends on protein kinase C δ (PKCδ). In this study, we assessed STAT3 activation downstream of this pathway and characterized the role of PKCδ activation in STAT3 tyrosine and serine phosphorylation and keratinocyte proliferation. Following insulin stimulation, STAT3 interacted with PKCδ but not with any other PKC isoform expressed in skin. Activated forms of PKCδ and STAT3 were essential for insulin-induced PKCδ-STAT3 activation in keratinocyte proliferation. Abrogation of PKCδ activity inhibited insulin-induced STAT3 phosphorylation, PKCδ-STAT3 association and nuclear translocation. In addition, overexpression of STAT3 tyrosine mutant eliminated insulin-induced PKCδ activation and keratinocyte proliferation. Finally, overexpression of a STAT3 serine mutant abrogated insulin-induced STAT3 serine phosphorylation and STAT3-induced keratinocyte proliferation, whereas STAT3 tyrosine phosphorylation was induced and nuclear localization remained intact. This study indicates that PKCδ activation is a primary regulator of STAT3 serine phosphorylation and that PKCδ is essential in directing insulin-induced signaling in keratinocyte proliferation.
Collapse
Affiliation(s)
- Marina Gartsbein
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900 Israel
| | | | | | | | | | | |
Collapse
|
40
|
Weigert C, Hennige AM, Lehmann R, Brodbeck K, Baumgartner F, Schaüble M, Häring HU, Schleicher ED. Direct cross-talk of interleukin-6 and insulin signal transduction via insulin receptor substrate-1 in skeletal muscle cells. J Biol Chem 2006; 281:7060-7. [PMID: 16418171 DOI: 10.1074/jbc.m509782200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exercise-induced interleukin (IL)-6 production and secretion within skeletal muscle fibers has raised the question of a putative tissue-specific function of IL-6 in the energy metabolism of the muscle during and after the exercise. In the present study, we followed the hypothesis that IL-6 signaling may directly interact with insulin receptor substrate (IRS)-1, a keystone in the insulin signaling cascade. We showed that IL-6 induces a rapid recruitment of IRS-1 to the IL-6 receptor complex in cultured skeletal muscle cells. Moreover, IL-6 induced a rapid and transient phosphorylation of Ser-318 of IRS-1 in muscle cells and in muscle tissue, but not in the liver of IL-6-treated mice, probably via the IL-6-induced co-recruitment of protein kinase C-delta. This Ser-318 phosphorylation improved insulin-stimulated Akt phosphorylation and glucose uptake in myotubes since transfection with an IRS-1/Glu-318 mutant simulating a permanent phospho-Ser-318 modification increased Akt phosphorylation and glucose uptake. Noteworthily, two inhibitory mechanisms of IL-6 on insulin action, phosphorylation of the inhibitory Ser-307 residue of IRS-1 and induction of SOCS-3 expression, were only found in liver but not in muscle of IL-6-treated mice. Thus, the data provided evidence for a possible molecular mechanism of the physiological metabolic effects of IL-6 in skeletal muscle, thereby exerting short term beneficial effects on insulin action.
Collapse
Affiliation(s)
- Cora Weigert
- Department of Internal Medicine, Division of Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, University of Tübingen, Otfried-Müller-Strasse 10, D-72076 Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tabata C, Kubo H, Tabata R, Wada M, Sakuma K, Ichikawa M, Fujita S, Mio T, Mishima M. All-trans retinoic acid modulates radiation-induced proliferation of lung fibroblasts via IL-6/IL-6R system. Am J Physiol Lung Cell Mol Physiol 2005; 290:L597-606. [PMID: 16257998 DOI: 10.1152/ajplung.00282.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although high-dose thoracic radiotherapy is an effective strategy for some malignancies including lung cancers and malignant lymphomas, it often causes complications of radiation fibrosis. To study the mechanism initiating tissue fibrosis, we investigated irradiation-induced cytokine production from human lung fibroblastic cells and found that IL-6 production was stimulated by irradiation. IL-6 is an autocrine growth factor for human myeloma cells, and retinoic acid is reported to inhibit their growth. Thus we evaluated the effect of all-trans retinoic acid (ATRA) on cell proliferation of lung fibroblasts along with the cytokine/receptor system. Irradiation-dependent stimulation of IL-6 production was correlated with increased NF-kappaB activity, and ATRA reduced this effect. Irradiation also increased the levels of mRNA for IL-6R and gp130, which were blocked by coexisting ATRA. Furthermore, IL-6 stimulated cell proliferation in dose-dependent manner but was overcome by pharmacological concentration of ATRA. These effects of ATRA were inhibited by rottlerin, which suggests ATRA abolished irradiation-induced stimulation through a PKCdelta-dependent pathway. Finally, we demonstrated that IL-6 transcripts in the lung were upregulated at 2 mo after irradiation, and the effect was inhibited by the intraperitoneal administration of ATRA. ATRA is expected to have an advantage for radiotherapy in its antitumor effects, as reported previously, and to prevent radiotherapy-induced pulmonary injury.
Collapse
Affiliation(s)
- Chiharu Tabata
- Dept. of Respiratory Medicine, Graduate School of Medicine, Kyoto Univ. 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, Japan 606-8507.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PKCdelta (protein kinase Cdelta) is a serine/threonine kinase that plays a key role in growth regulation and tissue remodelling. Traditional models of PKC activation have focused on lipid cofactors and anchoring proteins that localize the active conformation of PKCdelta to membranes, in close proximity with its target substrates. However, recent studies identify a distinct mode for PKCdelta activation involving tyrosine phosphorylation by Src family kinases. The tyrosine-phosphorylated form of PKCdelta (which accumulates in the soluble fraction of cells exposed to oxidant stress) displays lipid-independent kinase activity and is uniquely positioned to phosphorylate target substrates throughout the cell (not just on lipid membranes). This review summarizes (1) recent progress towards understanding structure-activity relationships for PKCdelta, with a particular focus on the stimuli that induce (and the distinct functional consequences that result from) tyrosine phosphorylation events in PKCdelta's regulatory, hinge and catalytic domains; (2) current concepts regarding the role of tyrosine phosphorylation as a mechanism to regulate PKCdelta localization and actions in mitochondrial and nuclear compartments; and (3) recent literature delineating distinct roles for PKCdelta (relative to other PKC isoforms) in transcriptional regulation, cell cycle progression and programmed cell death (including studies in PKCdelta-/- mice that implicate PKCdelta in immune function and cardiovascular remodelling). Collectively, these studies argue that the conventional model for PKCdelta activation must be broadened to allow for stimulus-specific differences in PKCdelta signalling during growth factor stimulation and oxidant stress.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA.
| |
Collapse
|
43
|
Obreja O, Biasio W, Andratsch M, Lips KS, Rathee PK, Ludwig A, Rose-John S, Kress M. Fast modulation of heat-activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. Brain 2005; 128:1634-41. [PMID: 15817518 DOI: 10.1093/brain/awh490] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pro-inflammatory cytokine interleukin-6 (IL-6) together with its soluble receptor (sIL-6R) induces and maintains thermal hyperalgesia. It facilitates the heat-induced release of calcitonin gene-related peptide from rat cutaneous nociceptors in vivo and in vitro. Here we report that exposure of nociceptive neurons to the IL-6-sIL-6R complex or the gp130-stimulating designer IL-6-sIL-6R fusion protein Hyper-IL-6 (HIL-6) resulted in a potentiation of heat-activated inward currents (I(heat)) and a shift of activation thresholds towards lower temperatures without affecting intracellular calcium levels. The Janus tyrosine kinase inhibitor AG490, the selective protein kinase C (PKC) inhibitor, bisindolylmaleimide 1 (BIM1), as well as rottlerin, a selective blocker of the PKCdelta isoform, but not the cyclooxygenase inhibitor indomethacin, effectively reduced the effect. Reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization revealed expression of mRNA for the signal-transducing beta subunit of the receptor gp130 in neuronal somata, rather than satellite cells in rat dorsal root ganglia. Together, the results suggest that IL-6-sIL-6R acts directly on sensory neurons. It increases their susceptibility to noxious heat via the gp130/Jak/PKCdelta signalling pathway.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Benzopyrans/pharmacology
- Calcium/metabolism
- Cells, Cultured
- Cyclooxygenase Inhibitors/pharmacology
- Cytokine Receptor gp130
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Hot Temperature/adverse effects
- In Situ Hybridization
- Indoles/pharmacology
- Indomethacin/pharmacology
- Interleukin-6/genetics
- Interleukin-6/pharmacology
- Janus Kinase 1
- Maleimides/pharmacology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C-delta
- Protein-Tyrosine Kinases/antagonists & inhibitors
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/metabolism
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sensory Thresholds/drug effects
- Signal Transduction/drug effects
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- O Obreja
- Institut für Physiologie und Experimentelle Pathophysiologie, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Novotny-Diermayr V, Lin B, Gu L, Cao X. Modulation of the Interleukin-6 Receptor Subunit Glycoprotein 130 Complex and Its Signaling by LMO4 Interaction. J Biol Chem 2005; 280:12747-57. [PMID: 15677447 DOI: 10.1074/jbc.m500175200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interleukin (IL)-6-type cytokines play major roles in a variety of biological processes by signaling through a common receptor subunit, glycoprotein (gp) 130. We performed yeast two-hybrid screening to identify new binding partners of the activated gp130 and the associated Janus kinases. LMO4, a LIM domain-containing protein that belongs to a family of oncogenes, was identified in this assay. Further studies show that LMO4 associates with gp130 and Janus kinase1 in several mammalian cell types. It also interacts with protein-tyrosine phosphatase 2 (SHP2) and suppressor of cytokine signaling 3 (SOCS3). The binding domains involved in these interactions were mapped, and the interactions were shown to be in a direct manner by in vitro binding assays. It is likely that LMO4 exists in the gp130 complex. The cellular localization of LMO4 was detected primarily in the nucleus with a substantial amount also detected in the cytoplasm in several cell types. The effect of LMO4 in IL-6 signaling was subsequently examined. Overexpression of LMO4 enhanced the transcriptional activity and target gene expression of Stat 3 (signal transducers and activators of transcription 3). Consistent with this, silencing LMO4 expression in stable cell lines expressing the small interfering RNA of LMO4 decreased Stat3 activity. Furthermore, the half-life of gp130 was shortened, and the production of acute phase proteins induced by IL-6 was reduced. Together, our data reveal a positive regulatory role of LMO4 in IL-6 signaling, possibly by acting as a scaffold for stabilization of the gp130 complex. These studies may open up a link between the oncogenic effect of LMO proteins and their regulatory role in cytokine signaling in general.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/chemistry
- Antigens, CD/physiology
- Blotting, Northern
- COS Cells
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytokine Receptor gp130
- Cytokines/metabolism
- Cytoplasm/metabolism
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Gene Silencing
- Genes, Reporter
- Glutathione Transferase/metabolism
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/physiology
- Humans
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/physiology
- Microscopy, Fluorescence
- Phosphorylation
- Plasmids/metabolism
- Protein Binding
- Protein Phosphatase 2
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/chemistry
- RNA, Small Interfering/metabolism
- STAT3 Transcription Factor
- Signal Transduction
- Trans-Activators/metabolism
- Transcription Factors/chemistry
- Transcription Factors/physiology
- Transfection
- Two-Hybrid System Techniques
- Tyrosine/chemistry
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Veronica Novotny-Diermayr
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research of Singapore, Singapore, 138673
| | | | | | | |
Collapse
|
45
|
Jelacic T, Linnekin D. PKCδ plays opposite roles in growth mediated by wild-type Kit and an oncogenic Kit mutant. Blood 2005; 105:1923-9. [PMID: 15542581 DOI: 10.1182/blood-2004-04-1450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe Kit receptor tyrosine kinase is critical for normal hematopoiesis. Mutation of the aspartic acid residue encoded by codon 816 of human c-kit or codon 814 of the murine gene results in an oncogenic form of Kit. Here we investigate the role of protein kinase Cδ (PKCδ) in responses mediated by wild-type murine Kit and the D814Y mutant in a murine mast cell-like line. PKCδ is activated after wild-type (WT) Kit binds stem cell factor (SCF), is constitutively active in cells expressing the Kit catalytic domain mutant, and coprecipitates with both forms of Kit. Inhibition of PKCδ had opposite effects on growth mediated by wild-type and mutant Kit. Both rottlerin and a dominant-negative PKCδ construct inhibited the growth of cells expressing mutant Kit, while SCF-induced growth of cells expressing wild-type Kit was not inhibited. Further, overexpression of PKCδ inhibited growth of cells expressing wild-type Kit and enhanced growth of cells expressing the Kit mutant. These data demonstrate that PKCδ contributes to factor-independent growth of cells expressing the D814Y mutant, but negatively regulates SCF-induced growth of cells expressing wild-type Kit. This is the first demonstration that PKCδ has different functions in cells expressing normal versus oncogenic forms of a receptor.
Collapse
Affiliation(s)
- Tanya Jelacic
- Basic Research Laboratory, Center for Cancer Research, Bldg 469, Rm 205, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
46
|
Doganci A, Eigenbrod T, Krug N, De Sanctis GT, Hausding M, Erpenbeck VJ, Haddad EB, Lehr HA, Schmitt E, Bopp T, Kallen KJ, Herz U, Schmitt S, Luft C, Hecht O, Hohlfeld JM, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Rose-John S, Renz H, Neurath MF, Galle PR, Finotto S. The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J Clin Invest 2005; 115:313-25. [PMID: 15668741 PMCID: PMC544603 DOI: 10.1172/jci22433] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 11/23/2004] [Indexed: 01/10/2023] Open
Abstract
The cytokine IL-6 acts via a specific receptor complex that consists of the membrane-bound IL-6 receptor (mIL-6R) or the soluble IL-6 receptor (sIL-6R) and glycoprotein 130 (gp130). In this study, we investigated the role of IL-6R components in asthma. We observed increased levels of sIL-6R in the airways of patients with allergic asthma as compared to those in controls. In addition, local blockade of the sIL-6R in a murine model of late-phase asthma after OVA sensitization by gp130-fraction constant led to suppression of Th2 cells in the lung. By contrast, blockade of mIL-6R induced local expansion of Foxp3-positive CD4+CD25+ Tregs with increased immunosuppressive capacities. CD4+CD25+ but not CD4+CD25- lung T cells selectively expressed the IL-6R alpha chain and showed IL-6-dependent STAT-3 phosphorylation. Finally, in an in vivo transfer model of asthma in immunodeficient Rag1 mice, CD4+CD25+ T cells isolated from anti-IL-6R antibody-treated mice exhibited marked immunosuppressive and antiinflammatory functions. IL-6 signaling therefore controls the balance between effector cells and Tregs in the lung by means of different receptor components. Furthermore, inhibition of IL-6 signaling emerges as a novel molecular approach for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Aysefa Doganci
- Laboratory of Cellular and Molecular Immunology of the Lung, First Medical Clinic, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Doganci A, Eigenbrod T, Krug N, De Sanctis GT, Hausding M, Erpenbeck VJ, Haddad EB, Schmitt E, Bopp T, Kallen KJ, Herz U, Schmitt S, Luft C, Hecht O, Hohlfeld JM, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Rose-John S, Renz H, Neurath MF, Galle PR, Finotto S. The IL-6R α chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J Clin Invest 2005. [DOI: 10.1172/jci200522433] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Hao A, Novotny-Diermayr V, Bian W, Lin B, Lim CP, Jing N, Cao X. The LIM/homeodomain protein Islet1 recruits Janus tyrosine kinases and signal transducer and activator of transcription 3 and stimulates their activities. Mol Biol Cell 2005; 16:1569-83. [PMID: 15659653 PMCID: PMC1073642 DOI: 10.1091/mbc.e04-08-0664] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Islet1 (Isl1) belongs to the LIM homeodomain transcription factor family. Its roles in differentiation of motor neurons and organogenesis of pancreas and heart have been revealed. However, less is known about its regulatory mechanism and the target genes. In this study, we identified interactions between Isl1 and Janus tyrosine kinase (JAK), as well as signal transducer and activator of transcription (Stat)3, but not Stat1 and Stat5, in mammalian cells. We found that Isl1 not only forms a complex with Jak1 and Stat3 but also triggers the tyrosine phosphorylation of Jak1 and its kinase activity, thereby elevating the tyrosine phosphorylation, DNA binding activity, and target gene expression of Stat3. In vivo, the tyrosine-phosphorylated Stat3 was colocalized with Isl1 in the nucleus of the mouse motor neurons in spinal cord after nerve injury. Correspondingly, electroporation of Isl1 and Stat3 into the neural tube of chick embryos resulted in the activation of a reporter gene expression controlled by a Stat3 regulatory sequence, and cotransfection of Isl1 and Stat3 promoted the proliferation of the mouse motor neuron cells. Our data suggest a novel role of Isl1 as an adaptor for Jak1 and Stat3 and reveal a possible functional link between LIM homeodomain transcription factors and the Jak-Stat pathway.
Collapse
Affiliation(s)
- Aijun Hao
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
49
|
Shah M, Patel K, Sehgal PB. Monocrotaline pyrrole-induced endothelial cell megalocytosis involves a Golgi blockade mechanism. Am J Physiol Cell Physiol 2004; 288:C850-62. [PMID: 15561761 DOI: 10.1152/ajpcell.00327.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrrolizidine alkaloids initiate disease in the lung (pulmonary hypertension), liver (veno-occlusive disease and cirrhosis), and kidneys (afferent arteriolar block and mesangiolysis) by inducing a megalocytotic phenotype in target endothelial and parenchymal cells. A "hit-and-run" type of exposure to the bioactive pyrrolizidine results, within 2-3 days, in enlarged cells with large nuclei and enlarged Golgi and endoplasmic reticulum, while the cells remain in G2/M block. In the present study, we recapitulated monocrotaline pyrrole (MCTP)-induced megalocytosis in cultures of bovine pulmonary arterial endothelial cells (PAEC), human Hep3B hepatocytes, human type II-like alveolar epithelial cells (A549), and human pulmonary arterial smooth muscle cells (PASMC) and investigated the subcellular mechanism involved. There was an inverse relationship between reduction in caveolin (Cav)-1 levels and stimulation of promitogenic STAT3 and ERK1/2 cell signaling. In megalocytotic PAEC, the Golgi scaffolding protein GM130 was shifted from membranes with heavy density to those with a lighter density. This lighter Golgi fraction was enriched for hypo-oligomeric Cav-1, indicating dysfunctional trafficking of cargo. Immunofluorescence imaging studies confirmed the trapping of Cav-1 in a GM130-positive Golgi compartment. There was an increase in Ser25 phosphorylation of GM130 (typically a prelude to Golgi fragmentation and mitosis) and increased association between pGM130, cdc2 kinase, and Cav-1. Nevertheless, megalocytotic MCTP-treated cells showed reduced entry into mitosis upon stimulation with 2-methoxyestradiol (2-ME), reduced 2-ME-induced Golgi fragmentation, and a slowing of Golgi reassembly after nocodazole-induced fragmentation. These data suggest that a disruption of the trafficking and mitosis sensor functions of the Golgi may represent the subcellular mechanism leading to MCTP-induced megalocytosis ("the Golgi blockade hypothesis").
Collapse
Affiliation(s)
- Mehul Shah
- Dept. of Cell Biology and Anatomy, New York Medical College, 201 Basic Sciences Bldg., Valhalla, NY 10595, USA
| | | | | |
Collapse
|
50
|
Poole AW, Pula G, Hers I, Crosby D, Jones ML. PKC-interacting proteins: from function to pharmacology. Trends Pharmacol Sci 2004; 25:528-35. [PMID: 15380937 DOI: 10.1016/j.tips.2004.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a ubiquitously expressed family of kinases that have key roles in regulating multiple cellular activities. The activity of this family is controlled tightly by several molecular mechanisms, including interaction with binding-partner proteins. These PKC-interacting proteins (C-KIPs) confer specificity for individual PKC isoforms by regulating the activity and cellular localization of PKC isoforms and, subsequently, the ability of these isoforms to specifically regulate cellular functional events. Although many C-KIPs have been identified by genome and proteome-mining approaches, it is important to address the specificity and function of the interactions in greater detail because they might form novel drug targets. In this article, we review recent work on C-KIPs and the implications for pharmacological and therapeutic development.
Collapse
Affiliation(s)
- Alastair W Poole
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|