1
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
R. Lambert J, K. Nordeen S. A role for the non-conserved N-terminal domain of the TATA-binding protein in the crosstalk between cell signaling pathways and steroid receptors. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Prigge JR, Eriksson S, Iverson SV, Meade TA, Capecchi MR, Arnér ES, Schmidt EE. Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1. Free Radic Biol Med 2012; 52:803-10. [PMID: 22198266 PMCID: PMC3267845 DOI: 10.1016/j.freeradbiomed.2011.11.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/03/2011] [Accepted: 11/14/2011] [Indexed: 12/24/2022]
Abstract
Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.
Collapse
Affiliation(s)
- Justin R. Prigge
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montana, USA
| | - Sofi Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sonya V. Iverson
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montana, USA
| | - Tesia A. Meade
- Biomedical Engineering Program, Case Western Reserve University, Cleveland, OH, USA
| | - Mario R. Capecchi
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Elias S.J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Edward E. Schmidt
- Department of Immunology and Infectious Disease, Montana State University, Bozeman, Montana, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Akhtar W, Veenstra GJC. TBP-related factors: a paradigm of diversity in transcription initiation. Cell Biosci 2011; 1:23. [PMID: 21711503 PMCID: PMC3142196 DOI: 10.1186/2045-3701-1-23] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/27/2011] [Indexed: 01/24/2023] Open
Abstract
TATA binding protein (TBP) is a key component of the eukaryotic transcription initiation machinery. It functions in several complexes involved in core promoter recognition and assembly of the pre-initiation complex. Through gene duplication eukaryotes have expanded their repertoire of TATA binding proteins, leading to a variable composition of the transcription machinery. In vertebrates this repertoire consists of TBP, TBP-like factor (TLF, also known as TBPL1, TRF2) and TBP2 (also known as TBPL2, TRF3). All three factors are essential, with TLF and TBP2 playing important roles in development and differentiation, in particular gametogenesis and early embryonic development, whereas TBP dominates somatic cell transcription. TBP-related factors may compete for promoters when co-expressed, but also show preferential interactions with subsets of promoters. Initiation factor switching occurs on account of differential expression of these proteins in gametes, embryos and somatic cells. Paralogs of TFIIA and TAF subunits account for additional variation in the transcription initiation complex. This variation in core promoter recognition accommodates the expanded regulatory capacity and specificity required for germ cells and embryonic development in higher eukaryotes.
Collapse
Affiliation(s)
- Waseem Akhtar
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | |
Collapse
|
5
|
Suvorova ES, Lucas O, Weisend CM, Rollins MF, Merrill GF, Capecchi MR, Schmidt EE. Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 2009; 4:e6158. [PMID: 19584930 PMCID: PMC2703566 DOI: 10.1371/journal.pone.0006158] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/01/2009] [Indexed: 01/05/2023] Open
Abstract
Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response.
Collapse
Affiliation(s)
- Elena S. Suvorova
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Olivier Lucas
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carla M. Weisend
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - MaryClare F. Rollins
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Gary F. Merrill
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Mario R. Capecchi
- Howard Hughes Medical Institute (HHMI), University of Utah, Salt Lake City, Utah, United States of America
| | - Edward E. Schmidt
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zheng B, Han M, Bernier M, Wen JK. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 2009; 276:2669-85. [PMID: 19459931 PMCID: PMC2978034 DOI: 10.1111/j.1742-4658.2009.06986.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear actin is involved in the transcription of all three RNA polymerases, in chromatin remodeling and in the formation of heterogeneous nuclear ribonucleoprotein complexes, as well as in recruitment of the histone modifier to the active gene. In addition, actin-binding proteins (ABPs) control actin nucleation, bundling, filament capping, fragmentation and monomer availability in the cytoplasm. In recent years, more and more attention has focused on the role of actin and ABPs in the modulation of the subcellular localization of transcriptional regulators. This review focuses on recent developments in the study of transcription and transcriptional regulation by nuclear actin, and the regulation of muscle-specific gene expression, nuclear receptor and transcription complexes by ABPs. Among the ABPs, striated muscle activator of Rho signaling and actin-binding LIM protein regulate actin dynamics and serum response factor-dependent muscle-specific gene expression. Functionally and structurally unrelated cytoplasmic ABPs interact cooperatively with nuclear receptor and regulate its transactivation. Furthermore, ABPs also participate in the formation of transcription complexes.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Michel Bernier
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Kundert JA, Sealey AL, Li Y, Capecchi MR, Schmidt EE. Syngeneic immune-dependent abortions in mice suggest paternal alloantigen-independent mechanisms. Am J Reprod Immunol 2008; 60:290-7. [PMID: 18759828 PMCID: PMC2605199 DOI: 10.1111/j.1600-0897.2008.00622.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Recurrent immune-associated miscarriages in humans are thought to result from maternal immune responses to paternal alloantigens. We investigated the role of paternal alloantigens in a mouse model of immune-dependent abortion. METHOD OF STUDY Sib-crosses of C57Bl/6J (haplotype b/b) mice heterozygous for a targeted hypomorphic allele of the tbp gene (tbp(deltaN/+)) resulted in selective mid-gestational abortion of 88% of the tbp(deltaN/deltaN) fetuses. In dams lacking mature lymphocytes (rag1-/-), nearly all tbp(deltaN/deltaN) fetuses survived to birth, indicating abortions were immune-dependent. Allogeneic pregnancies bearing tbp(deltaN/deltaN) fetuses were established by either hybridizing the paternal lineage to BALB/cJ (haplotype d/d) and mating hybrid tbp(deltaN/+) sires to haplotype b/b tbp(deltaN/+) C57Bl/6J dams, or by transfer of haplotype b/b zygotes from tbp(deltaN/+)x tbp(deltaN/+) matings into pseudopregnant wild-type CByD2F1/J dams (haplotype d/d). RESULTS Neither hemizygous paternal allogeneic loci nor homozygous allogeneic loci, including a haplotype-mismatched major histocompatibility complex (MHC), increased abortion frequencies. CONCLUSION Results suggested that mechanisms for maternal tolerance of paternal alloantigens, including mismatched MHC antigens, were intact in these pregnancies, yet maternal immune-dependent paternal antigen-independent abortion of mutants occurred. These data indicate that, in some cases of immune-mediated abortions, the presence of paternal alloantigens can be coincidental and superfluous to the compromising rejection response.
Collapse
Affiliation(s)
- Jean A. Kundert
- Animal Resources Center, Montana State University, Bozeman, MT, USA
| | - Amy L. Sealey
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA
| | - Yan Li
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA
| | - Mario R. Capecchi
- Howard Hughes Medical Institute, University of Utah, 530 Eccles Institute of Human Genetics, Salt Lake City, UT, USA
| | - Edward E. Schmidt
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 2007; 10:1519-28. [PMID: 17994014 DOI: 10.1038/nn2011] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/16/2007] [Indexed: 01/04/2023]
Abstract
Expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). It remains unclear how the polyQ tract regulates normal protein function and induces selective neuropathology in SCA17. We generated transgenic mice expressing polyQ-expanded TBP. These mice showed weight loss, progressive neurological symptoms and neurodegeneration before early death. Expanded polyQ tracts reduced TBP dimerization but enhanced the interaction of TBP with the general transcription factor IIB (TFIIB). In SCA17 transgenic mice, the small heat shock protein HSPB1, a potent neuroprotective factor, was downregulated, and TFIIB occupancy of the Hspb1 promoter was decreased. Overexpression of HSPB1 or TFIIB alleviated mutant TBP-induced neuritic defects. These findings implicate the polyQ domain of TBP in transcriptional regulation and provide insight into the molecular pathogenesis of SCA17.
Collapse
|
9
|
Bondareva AA, Capecchi MR, Iverson SV, Li Y, Lopez NI, Lucas O, Merrill GF, Prigge JR, Siders AM, Wakamiya M, Wallin SL, Schmidt EE. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic Biol Med 2007; 43:911-23. [PMID: 17697936 PMCID: PMC2099259 DOI: 10.1016/j.freeradbiomed.2007.05.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/04/2007] [Accepted: 05/19/2007] [Indexed: 01/08/2023]
Abstract
Thioredoxin reductases (Txnrd) maintain intracellular redox homeostasis in most organisms. Metazoan Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1-/- cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated that primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd-/- and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however, mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells.
Collapse
Affiliation(s)
- Alla A Bondareva
- VMB, Molecular Biosciences, 960 Technology Blvd., Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ferg M, Sanges R, Gehrig J, Kiss J, Bauer M, Lovas A, Szabo M, Yang L, Straehle U, Pankratz MJ, Olasz F, Stupka E, Müller F. The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. EMBO J 2007; 26:3945-56. [PMID: 17703193 PMCID: PMC1950726 DOI: 10.1038/sj.emboj.7601821] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 07/16/2007] [Indexed: 12/01/2022] Open
Abstract
Early steps of embryo development are directed by maternal gene products and trace levels of zygotic gene activity in vertebrates. A major activation of zygotic transcription occurs together with degradation of maternal mRNAs during the midblastula transition in several vertebrate systems. How these processes are regulated in preparation for the onset of differentiation in the vertebrate embryo is mostly unknown. Here, we studied the function of TATA-binding protein (TBP) by knock down and DNA microarray analysis of gene expression in early embryo development. We show that a subset of polymerase II-transcribed genes with ontogenic stage-dependent regulation requires TBP for their zygotic activation. TBP is also required for limiting the activation of genes during development. We reveal that TBP plays an important role in the degradation of a specific subset of maternal mRNAs during late blastulation/early gastrulation, which involves targets of the miR-430 pathway. Hence, TBP acts as a specific regulator of the key processes underlying the transition from maternal to zygotic regulation of embryogenesis. These results implicate core promoter recognition as an additional level of differential gene regulation during development.
Collapse
Affiliation(s)
- Marco Ferg
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Remo Sanges
- Bioinformatics–CBM Scrl, AREA Science Park, Basovizza, Trieste, Italy
- CBM, AREA Science Park, Basovizza, Trieste, Italy
| | - Jochen Gehrig
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Janos Kiss
- Institute of Agricultural Biotechnology Centre, Gödöllõ, Hungary
| | - Matthias Bauer
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Agnes Lovas
- Leibniz Institute for Age Research, Jena, Germany
| | - Monika Szabo
- Institute of Agricultural Biotechnology Centre, Gödöllõ, Hungary
| | - Lixin Yang
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Uwe Straehle
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Michael J Pankratz
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Ferenc Olasz
- Institute of Agricultural Biotechnology Centre, Gödöllõ, Hungary
| | - Elia Stupka
- Bioinformatics–CBM Scrl, AREA Science Park, Basovizza, Trieste, Italy
- CBM, AREA Science Park, Basovizza, Trieste, Italy
- Bioinformatics–CBM Scrl, AREA Science Park, ss 14 km 163.5-Basovizza, Trieste 34012, Italy. E-mail:
| | - Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Herrmann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76021, Germany. Tel.: + 49 7247 823444; Fax: + 49 7247 823354; E-mail:
| |
Collapse
|
11
|
Prigge JR, Schmidt EE. Interaction of protein inhibitor of activated STAT (PIAS) proteins with the TATA-binding protein, TBP. J Biol Chem 2006; 281:12260-9. [PMID: 16522640 PMCID: PMC2030495 DOI: 10.1074/jbc.m510835200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP co-immunoprecipitated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBP(CORE) and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors.
Collapse
Affiliation(s)
- Justin R Prigge
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
12
|
Tucker TA, Kundert JA, Bondareva AA, Schmidt EE. Reproductive and neurological Quaking(viable) phenotypes in a severe combined immune deficient mouse background. Immunogenetics 2005; 57:226-31. [PMID: 15900494 PMCID: PMC2604809 DOI: 10.1007/s00251-005-0792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 02/10/2005] [Indexed: 10/25/2022]
Abstract
The quaking(viable) (qkv) mutation, a spontaneous deletion of a multigenic region encompassing roughly 1 Mb at 5.9 cM on the proximal end of mouse chromosome 17, causes severe trembling in all homozygous animals and infertility in all homozygous males. Physiologically, quaking mice exhibit dysmyelination and postmeiotic spermatogenic arrest. Molecular defects in Qkv mice occur in the affected tissues, indicating the primary causes of these pathologies are cell autonomous. However, because both the reproductive and neurological defects are in immune-privileged sites and because some similar pathologies at both sites have been shown to be immune mediated, we tested whether the immune system participates secondarily in manifestation of Qkv phenotypes. The qkv mutation was bred into a severe combined immune-deficient mouse line (SCID; devoid of mature B and T cells) and penetrance of the neurological and the male sterile phenotypes was measured. Results showed that neither defect was ameliorated in the immune-deficient background. We conclude that the Qkv pathologies do not likely involve a B- or T-cell-dependent response against these immune-privileged sites.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Complementary/genetics
- Demyelinating Diseases/genetics
- Demyelinating Diseases/immunology
- Female
- Infertility, Male/genetics
- Infertility, Male/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Quaking/genetics
- Mice, Quaking/immunology
- Mice, Quaking/physiology
- Mice, SCID/genetics
- Mice, SCID/immunology
- Mice, SCID/physiology
- Phenotype
- Pregnancy
- Reproduction/genetics
- Reproduction/immunology
- Spermatogenesis/genetics
- Spermatogenesis/immunology
Collapse
Affiliation(s)
- Tammy A. Tucker
- Veterinary Molecular Biology, Montana State University, Molecular Biosciences Building, 960 Technology Boulevard, Bozeman, MT, 59718, USA
| | - Jean A. Kundert
- Animal Resource Center, Montana State University, Bozeman, MT, 59717, USA
| | - Alla A. Bondareva
- Veterinary Molecular Biology, Montana State University, Molecular Biosciences Building, 960 Technology Boulevard, Bozeman, MT, 59718, USA
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N4N1, Canada
| | - Edward E. Schmidt
- Veterinary Molecular Biology, Montana State University, Molecular Biosciences Building, 960 Technology Boulevard, Bozeman, MT, 59718, USA
- e-mail: , Tel.: +1-406-9946375, Fax: +1-406-9944303
| |
Collapse
|
13
|
Jallow Z, Jacobi UG, Weeks DL, Dawid IB, Veenstra GJC. Specialized and redundant roles of TBP and a vertebrate-specific TBP paralog in embryonic gene regulation in Xenopus. Proc Natl Acad Sci U S A 2004; 101:13525-30. [PMID: 15345743 PMCID: PMC518790 DOI: 10.1073/pnas.0405536101] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The general transcription factor TATA-binding protein (TBP) is a key initiation factor involved in transcription by all three eukaryotic RNA polymerases. In addition, the related metazoan-specific TBP-like factor (TLF/TRF2) is essential for transcription of a distinct subset of genes. Here we characterize the vertebrate-specific TBP-like factor TBP2, using in vitro assays, in vivo antisense knockdown, and mRNA rescue experiments, as well as chromatin immunoprecipitation. We show that TBP2 is recruited to promoters in Xenopus oocytes in the absence of detectable TBP recruitment. Furthermore, TBP2 is essential for gastrulation and for the transcription of a subset of genes during Xenopus embryogenesis. In embryos, TBP2 protein is much less abundant than TBP, and moderate overexpression of TBP2 partially rescues an antisense knockdown of TBP levels and restores transcription of many TBP-dependent genes. TBP2 may be a TBP replacement factor in oocytes, whereas in embryos both TBP and TBP2 are required even though they exhibit partial redundancy and gene selectivity.
Collapse
Affiliation(s)
- Zainab Jallow
- Department of Molecular Biology, Radboud University Nijmegen Center for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Abstract
The TATA binding protein (TBP) is a subunit of several macromolecular complexes required for transcription by the three nuclear RNA polymerases. This observation led to the idea that TBP is a "universal" transcription factor. The discovery of three TBP-related factors and a macromolecular complex which lacks TBP but can support RNA polymerase II transcription in vitro has led to a reappraisal of the universal character of TBP. Several in vivo studies have rather shown that TBP plays a specific role in the activation of a subset of cellular genes controlling the cell cycle. In mammals, the aminoterminal region of TBP plays a highly selective role in the maternal immunotolerance of pregnancy.
Collapse
Affiliation(s)
- Irwin Davidson
- Institut de génétique et de biologie moléculaire et cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France.
| | | | | |
Collapse
|
15
|
Müller F, Tora L. The multicoloured world of promoter recognition complexes. EMBO J 2004; 23:2-8. [PMID: 14685269 PMCID: PMC1271665 DOI: 10.1038/sj.emboj.7600027] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 11/18/2003] [Indexed: 11/09/2022] Open
Abstract
The expression pattern of regulated genes changes dynamically depending on the developmental stage and the differentiation state of the cell. Transcription factors regulate cellular events at the gene expression level by communicating signals to the general transcription machinery that forms a preinitiation complex (PIC) at class II core promoters. Recent data strongly suggest that PICs are composed of different sets of factors at distinct promoters, reflecting the spatiotemporal profile of gene expression in multicellular organisms. Thus, today it is important to ask the question: how universal are the promoter recognition factors? This review will focus on findings that support the new idea that core promoter recognition by distinct factors is an additional level of transcriptional regulation and that this step is developmentally regulated.
Collapse
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum, Karlsruhe, Germany
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|
16
|
Abstract
TBP functions in transcription initiation in all eukaryotes and in Archaebacteria. Although the 181-amino acid (aa) carboxyl (C-) terminal core of the protein is highly conserved, TBP proteins from different phyla exhibit diverse sequences in their amino (N-) terminal region. In mice, the TBP N-terminus plays a role in protecting the placenta from maternal rejection; however the presence of similar TBP N-termini in nontherian tetrapods suggests that this domain also has more primitive functions. To gain insights into the pretherian functions of the N-terminus, we investigated its phylogenetic distribution. TBP cDNAs were isolated from representative nontetrapod jawed vertebrates (zebrafish and shark), from more primitive jawless vertebrates (lamprey and hagfish), and from a prevertebrate cephalochordate (amphioxus). Results showed that the tetrapod N-terminus likely arose coincident with the earliest vertebrates. The primary structures of vertebrate N-termini indicates that, historically, this domain has undergone events involving intragenic duplication and modification of short oligopeptide-encoding DNA sequences, which might have provided a mechanism of de novo evolution of this polypeptide.
Collapse
Affiliation(s)
- Alla A Bondareva
- Veterinary Molecular Biology, Marsh Labs, Montana State University, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France.
| |
Collapse
|