1
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
2
|
Shahid K, Khan K, Badshah Y, Mahmood Ashraf N, Hamid A, Trembley JH, Shabbir M, Afsar T, Almajwal A, Abusharha A, Razak S. Pathogenicity of PKCγ Genetic Variants-Possible Function as a Non-Invasive Diagnostic Biomarker in Ovarian Cancer. Genes (Basel) 2023; 14:236. [PMID: 36672978 PMCID: PMC9858858 DOI: 10.3390/genes14010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignancies, owing to its misdiagnosis or late diagnosis. Identification of its genetic determinants could improve disease outcomes. Conventional Protein Kinase C-γ (PKCγ) dysregulation is reported in several cancers. Similarly, its variant rs1331262028 is also reported to have an association with hepatocellular carcinoma. Therefore, the aim of the present study was to analyze the variant rs1331262028 association with ovarian cancer and to determine its impact on PKCγ's protein interactions. Association of variation was determined through genotyping PCR (cohort size:100). Protein-protein docking and molecular dynamic simulation were carried out to study the variant impact of PKCγ interactions. The study outcome indicated the positive association of variant rs1331262028 with ovarian cancer and its clinicopathological features. Molecular dynamics simulation depicted the potential influence of variation on PKCγ molecular signaling. Hence, this study provided the foundations for assessing variant rs1331262028 as a potential prognostic marker for ovarian cancer. Through further validation, it can be applied at the clinical level.
Collapse
Affiliation(s)
- Kanza Shahid
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44010, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44010, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44010, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Arslan Hamid
- LIMES Institute (AG-Netea), University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Janeen H. Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44010, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ali Abusharha
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| |
Collapse
|
3
|
Aslam N, Alvi F. Protein Kinase C Life Cycle: Explained Through Systems Biology Approach. Front Physiol 2022; 13:818688. [PMID: 35492590 PMCID: PMC9049586 DOI: 10.3389/fphys.2022.818688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Protein kinase C (PKC) enzymes are a family of kinases that mediate signal transduction originating at the cell surface. Most cell membranes can contain functional PKC enzymes. Aberrations in the PKC life cycle may result in cellular damage and dysfunction. For example, some cancerous cells exhibit alterations in PKC activity. Here, we use a systems biology approach to describe a molecular model of the PKC life cycle. Understanding the PKC life cycle is necessary to identify new drug targets. The PKC life cycle is composed of three key regulatory processes: maturation, activation, and termination. These processes precisely control PKC enzyme levels. This model describes the fate of PKC during de novo synthesis and PKC’s lipid-mediated activation cycle. We utilize a systems biology approach to show the PKC life cycle is controlled by multiple phosphorylation and dephosphorylation events. PKC processing events can be divided into two types: maturation via processing of newly synthesized enzyme and secondary messenger-dependent activation of dormant, but catalytically competent enzyme. Newly synthesized PKC enzyme is constitutively processed through three ordered phosphorylations and stored in the cytosol as a stable, signaling-competent inactive and autoinhibited molecule. Upon extracellular stimulation, diacylglycerol (DAG) and calcium ion (Ca2+) generated at the membrane bind PKC. PKC then undergoes cytosol-to-membrane translocation and subsequent activation. Our model shows that, once activated, PKC is prone to dephosphorylation and subsequent degradation. This model also describes the role of HSP70 in stabilization and re-phosphorylation of dephosphorylated PKC, replenishing the PKC pool. Our model shows how the PKC pool responds to different intensities of extracellular stimuli? We show that blocking PHLPP dephosphorylation replenishes the PKC pool in a dose-dependent manner. This model provides a comprehensive understanding of PKC life cycle regulation.
Collapse
Affiliation(s)
- Naveed Aslam
- BioSystOmics, Houston, TX, United States
- *Correspondence: Naveed Aslam,
| | - Farah Alvi
- BioSystOmics, Houston, TX, United States
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
4
|
The PKC universe keeps expanding: From cancer initiation to metastasis. Adv Biol Regul 2020; 78:100755. [PMID: 33017725 DOI: 10.1016/j.jbior.2020.100755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
Classical and novel protein kinase C (PKC) isozymes (c/nPKCs), members of the PKC family that become activated by the lipid second messenger diacylglycerol (DAG) and phorbol esters, exert a myriad of cellular effects that impact proliferative and motile cellular responses. While c/nPKCs have been indisputably associated with tumor promotion, their roles exceed by far their sole involvement as promoter kinases. Indeed, this original dogma has been subsequently redefined by the introduction of several new concepts: the identification of tumor suppressing roles for c/nPKCs, and their participation in early and late stages of carcinogenesis. This review dives deep into the intricate roles of c/nPKCs in cancer initiation as well as in the different stages of the metastatic cascade, with great emphasis in their involvement in cancer cell motility via regulation of small Rho GTPases, the production of extracellular matrix (ECM)-degrading proteases, and the epithelial-to-mesenchymal transition (EMT) program required for the acquisition of highly invasive traits. Here, we highlight functional interplays between either PKCα or PKCε and mesenchymal features that may ultimately contribute to anticancer drug resistance in cellular and animal models. We also introduce the novel hypothesis that c/nPKCs may be implicated in the control of immune evasion through the regulation of immune checkpoint protein expression. In summary, dissecting the colossal complexity of c/nPKC signaling in the wide spectrum of cancer progression may bring new opportunities for the development of meaningful tools aiding for cancer prognosis and therapy.
Collapse
|
5
|
Activity to Breast Cancer Cell Lines of Different Malignancy and Predicted Interaction with Protein Kinase C Isoforms of Royleanones. Int J Mol Sci 2020; 21:ijms21103671. [PMID: 32456148 PMCID: PMC7279380 DOI: 10.3390/ijms21103671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6β-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones’ bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.
Collapse
|
6
|
Singh RK, Kumar S, Tomar MS, Verma PK, Singh SP, Gautam PK, Acharya A. Classical Protein Kinase C: a novel kinase target in breast cancer. Clin Transl Oncol 2018; 21:259-267. [DOI: 10.1007/s12094-018-1929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/21/2018] [Indexed: 11/28/2022]
|
7
|
Toupchian O, Sotoudeh G, Mansoori A, Abdollahi S, Ali Keshavarz S, Djalali M, Nasli-Esfahani E, Alvandi E, Chahardoli R, Koohdani F. DHA-enriched fish oil upregulates cyclin-dependent kinase inhibitor 2A (P16INK) expression and downregulates telomerase activity without modulating effects of PPARγ Pro12Ala polymorphism in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2018; 37:91-98. [DOI: 10.1016/j.clnu.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
|
8
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
9
|
Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6235641. [PMID: 27418953 PMCID: PMC4932173 DOI: 10.1155/2016/6235641] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.
Collapse
|
10
|
Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J Clin Med 2016; 5:jcm5020025. [PMID: 26891335 PMCID: PMC4773781 DOI: 10.3390/jcm5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 01/11/2023] Open
Abstract
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis.
Collapse
|
11
|
Fajardo AM, Piazza GA. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am J Physiol Gastrointest Liver Physiol 2015; 309:G59-70. [PMID: 26021807 PMCID: PMC4504955 DOI: 10.1152/ajpgi.00101.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2015] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs.
Collapse
Affiliation(s)
- Alexandra M. Fajardo
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Gary A. Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| |
Collapse
|
12
|
Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG. Protein kinase C and cancer: what we know and what we do not. Oncogene 2014; 33:5225-5237. [PMID: 24336328 PMCID: PMC4435965 DOI: 10.1038/onc.2013.524] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 02/08/2023]
Abstract
Since their discovery in the late 1970s, protein kinase C (PKC) isozymes represent one of the most extensively studied signaling kinases. PKCs signal through multiple pathways and control the expression of genes relevant for cell cycle progression, tumorigenesis and metastatic dissemination. Despite the vast amount of information concerning the mechanisms that control PKC activation and function in cellular models, the relevance of individual PKC isozymes in the progression of human cancer is still a matter of controversy. Although the expression of PKC isozymes is altered in multiple cancer types, the causal relationship between such changes and the initiation and progression of the disease remains poorly defined. Animal models developed in the last years helped to better understand the involvement of individual PKCs in various cancer types and in the context of specific oncogenic alterations. Unraveling the enormous complexity in the mechanisms by which PKC isozymes have an impact on tumorigenesis and metastasis is key for reassessing their potential as pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Lorena G. Benedetti
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Mahlet B. Abera
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - HongBin Wang
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, CP:1900, Argentina
| | - Marcelo G. Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
13
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
14
|
Schönherr M, Bhattacharya A, Kottek T, Szymczak S, Köberle M, Wickenhauser C, Siebolts U, Saalbach A, Koczan D, Magin TM, Simon JC, Kunz M. Genomewide RNAi screen identifies protein kinase Cb and new members of mitogen-activated protein kinase pathway as regulators of melanoma cell growth and metastasis. Pigment Cell Melanoma Res 2014; 27:418-30. [PMID: 24406113 DOI: 10.1111/pcmr.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/07/2014] [Indexed: 01/13/2023]
Abstract
A large-scale RNAi screen was performed for eight different melanoma cell lines using a pooled whole-genome lentiviral shRNA library. shRNAs affecting proliferation of transduced melanoma cells were negatively selected during 10 days of culture. Overall, 617 shRNAs were identified by microarray hybridization. Pathway analyses identified mitogen-activated protein kinase (MAPK) pathway members such as ERK1/2, JNK1/2 and MAP3K7 and protein kinase C β (PKCβ) as candidate genes. Knockdown of PKCβ most consistently reduced cellular proliferation, colony formation and migratory capacity of melanoma cells and was selected for further validation. PKCβ showed enhanced expression in human primary melanomas and distant metastases as compared with benign melanocytic nevi. Moreover, treatment of melanoma cells with PKCβ-specific inhibitor enzastaurin reduced melanoma cell growth but had only small effects on benign fibroblasts. Finally, PKCβ-shRNA significantly reduced lung colonization capacity of stably transduced melanoma cells in mice. Taken together, this study identified new candidate genes for melanoma cell growth and proliferation. PKCβ seems to play an important role in these processes and might serve as a new target for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Madeleine Schönherr
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Choe BK, Kim SK, Park HJ, Park HK, Kwon KH, Lim SH, Yim SV. Polymorphisms of TGFBR2 contribute to the progression of papillary thyroid carcinoma. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Protein kinase C: an attractive target for cancer therapy. Cancers (Basel) 2011; 3:531-67. [PMID: 24212628 PMCID: PMC3756376 DOI: 10.3390/cancers3010531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays an important role during all stages of carcinogenesis and the development of chemoresistance in tumor cells may be due to their selective defects in the intracellular signaling proteins, central to apoptotic pathways. Consequently, many studies have focused on rendering the chemotherapy more effective in order to prevent chemoresistance and pre-clinical and clinical data has suggested that protein kinase C (PKC) may represent an attractive target for cancer therapy. Therefore, a complete understanding of how PKC regulates apoptosis and chemoresistance may lead to obtaining a PKC-based therapy that is able to reduce drug dosages and to prevent the development of chemoresistance.
Collapse
|
17
|
Khabar KSA. Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cell Mol Life Sci 2010; 67:2937-55. [PMID: 20495997 PMCID: PMC2921490 DOI: 10.1007/s00018-010-0383-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/01/2010] [Accepted: 04/21/2010] [Indexed: 12/21/2022]
Abstract
A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3'UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
18
|
|
19
|
Kajikawa S, Harada T, Kawashima A, Imada K, Mizuguchi K. Highly purified eicosapentaenoic acid ethyl ester prevents development of steatosis and hepatic fibrosis in rats. Dig Dis Sci 2010; 55:631-41. [PMID: 19856102 DOI: 10.1007/s10620-009-1020-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Pathogenesis of nonalcoholic steatohepatitis (NASH) is considered to be involved in fat accumulation, oxidative stress, inflammation, and fibrosis in liver, but no drug therapy has been established as yet. Eicosapentaenoic acid (EPA) is an agent used clinically to treat hypertriglyceridemia, and has been reported to suppress reactive oxygen species and inflammation. Here, we aimed to assess the effect of EPA on progression of hepatic fibrosis in an animal model of NASH. METHODS Wistar rats were fed a methionine- and choline-deficient (MCD) diet and given EPA ethyl ester (EPA-E) (1,000 mg/kg/day) or vehicle by gavage for 8 or 20 weeks. RESULTS The MCD diet caused development of hepatic fibrosis and nodule formation at 20 weeks. EPA-E treatment significantly suppressed MCD-induced increase in fibrosis and hepatic hydroxyproline, and inhibited nodule formation. EPA-E treatment also decreased hepatic transforming growth factor (TGF)-beta1, and messenger RNA (mRNA) levels of connective tissue growth factor. EPA-E suppressed MCD-induced elevation of serum levels of ferritin, 8-isoprostane, soluble tumor necrosis factor receptor 1 (sTNFR1), and sTNFR2 at 20 weeks, and hepatic triglyceride accumulation at 8 weeks. CONCLUSIONS EPA-E prevents progression of hepatic fibrosis in an MCD-induced NASH model with reduction of oxidative stress, inflammation, and initial hepatic steatosis. Thus, EPA-E treatment may be a potential therapy to treat NASH.
Collapse
Affiliation(s)
- Satoshi Kajikawa
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical Company Limited, Gotemba, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
20
|
Field Treatment of Actinic Keratoses – Focus on COX-2-Inhibitors. ACTAS DERMO-SIFILIOGRAFICAS 2009; 100 Suppl 2:55-8. [DOI: 10.1016/s0001-7310(09)73379-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Liu X, Zhao J, Li F, Guo YS, Hellmich MR, Townsend CM, Cao Y, Ko TC. Bombesin enhances TGF-beta growth inhibitory effect through apoptosis induction in intestinal epithelial cells. REGULATORY PEPTIDES 2009; 158:26-31. [PMID: 19631696 PMCID: PMC3894738 DOI: 10.1016/j.regpep.2009.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 06/01/2009] [Accepted: 07/02/2009] [Indexed: 12/17/2022]
Abstract
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-beta and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-beta and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E(2) (PGE2) production through p38(MAPK) in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-beta signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-beta and BBS. Treatment with TGF-beta1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 microM), a specific inhibitor of p38(MAPK), partially blocked the synergistic effect of TGF-beta and BBS on apoptosis. In conclusion, BBS enhanced TGF-beta growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38(MAPK).
Collapse
Affiliation(s)
- Xianghua Liu
- Department of Surgery, University of Texas Health Science Center, Houston, Texas 77030
| | - Junmei Zhao
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Fazhi Li
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Yan-shi Guo
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Mark R. Hellmich
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Courtney M. Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Yanna Cao
- Department of Surgery, University of Texas Health Science Center, Houston, Texas 77030
| | - Tien C. Ko
- Department of Surgery, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
22
|
Baskar R, Hande MP. A comparative study of protein kinase C activation in gamma-irradiated proliferating and confluent human lung fibroblast cells. JOURNAL OF RADIATION RESEARCH 2009; 50:415-423. [PMID: 19602851 DOI: 10.1269/jrr.08125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Exposure to low doses of radiation has been recently proven to be much more mutagenic and carcinogenic than previously thought. Since radiation sensitivity varies with different phases of cell cycle, we have investigated the activation of protein kinase C (PKC) after low doses (0.10-1 Gy) of gamma-irradiation on proliferating (log) and non-proliferating (confluent/plateau) human normal lung fibroblast (MRC-5) cells. PKC isoforms have been shown to play key roles in the regulation of proliferation, differentiation, migration and survival. In this study, we have examined the activation of phosphorylated forms of PKC isoforms (PKC-betaII, PKC-alpha/beta, PKC-theta) and non-phosphorylated PKC-alpha in an attempt to understand its kinases in total and subcellular (cytosolic and nuclear) fractions. Cytosolic fraction of the log phase cells showed an increase in activity of PKC-betaII, PKC-alpha/beta and PKC-theta with the radiation dose. However, in the nuclear fraction, PKC-betaII and PKC-theta showed higher activity than the PKC-alpha/beta. In the plateau phase cells of the cytosolic fraction, PKC-betaII showed higher activity than the PKC-alpha/beta and PKC-theta isoforms. Furthermore, in the nuclear fraction PKC-betaII and PKC-alpha/beta isoforms showed higher activity than the PKC-theta. In total cellular protein of the log phase cells, a dose dependent increase in PKC-betaII activity followed by PKC-alpha/ beta was observed and in the plateau phase of cells, PKC-betaII showed higher activity than the PKC-alpha/ beta. The specific activation of PKC isoforms in the plateau phase cells, as demonstrated for the first time, may help us to understand the radiation induced initiation of cellular transformation like hyper-proliferative phenotype, if any.
Collapse
Affiliation(s)
- Rajamanickam Baskar
- Department of Clinical Research, Singapore General Hospital, Outram Road, Singapore-169608.
| | | |
Collapse
|
23
|
Lintas C, Sacco R, Garbett K, Mirnics K, Militerni R, Bravaccio C, Curatolo P, Manzi B, Schneider C, Melmed R, Elia M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Persico AM. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry 2009; 14:705-18. [PMID: 18317465 DOI: 10.1038/mp.2008.21] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.
Collapse
Affiliation(s)
- C Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Spindler KLG, Lindebjerg J, Lahn M, Kjaer-Frifeldt S, Jakobsen A. Protein kinase C-beta II (PKC-beta II) expression in patients with colorectal cancer. Int J Colorectal Dis 2009; 24:641-5. [PMID: 19277684 DOI: 10.1007/s00384-009-0680-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2009] [Indexed: 02/04/2023]
Abstract
PURPOSE Current development of targeted agents for the treatment of colorectal cancer include the clinical evaluation of kinase inhibitors, such as enzastaurin, a serine/threonine kinase inhibitor designed to suppress signaling through Protein Kinase C (PKC) and AKT pathways. Little is known about the expression of PKC-beta in colorectal cancer or the prognostic value in colorectal cancer, which was the focus of the present study. METHODS PKC-beta II protein expression was examined in 99 primary colorectal adenocarcinomas and 33 corresponding regional lymph node metastases by immunohistochemistry (IHC). The PKC-beta II immunoreactivity was mutually compared and correlated with survival information of all examined patients. RESULTS Immunohistochemical expression of PKC-beta II was detected in 18/99 carcinomas (18.2%). There was no correlation between PKC-beta II staining and traditional clinicopathological parameters. However the median survival was 2.2 years in PKC-beta II expressing tumors compared to 5.4 in PKC-beta II negative tumors (p = 0.25), with a trend for association to poor prognosis. CONCLUSION We here describe for the first time the immunohistochemical detection of PKC-beta II in patients with colorectal cancer and show a trend associating with poor survival. The role of PKC-beta II staining in colorectal tumors deserves further evaluation.
Collapse
|
25
|
Habbel P, Weylandt KH, Lichopoj K, Nowak J, Purschke M, Wang JD, He CW, Baumgart DC, Kang JX. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells. World J Gastroenterol 2009; 15:1079-84. [PMID: 19266600 PMCID: PMC2655186 DOI: 10.3748/wjg.15.1079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth.
METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in cells incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2-ELISA.
RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dose-dependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly, DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation. DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dose-dependent manner.
CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.
Collapse
|
26
|
Fields AP, Calcagno SR, Krishna M, Rak S, Leitges M, Murray NR. Protein kinase Cbeta is an effective target for chemoprevention of colon cancer. Cancer Res 2009; 69:1643-50. [PMID: 19221092 PMCID: PMC2745055 DOI: 10.1158/0008-5472.can-08-3187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colon cancer develops over a period of 10 to 15 years, providing a window of opportunity for chemoprevention and early intervention. However, few molecular targets for effective colon cancer chemoprevention have been characterized and validated. Protein kinase CbetaII (PKCbetaII) plays a requisite role in the initiation of colon carcinogenesis in a preclinical mouse model by promoting proliferation and increased beta-catenin accumulation. In this study, we test the hypothesis that PKCbetaII is an effective target for colon cancer chemoprevention using enzastaurin (LY317615), a PKCbeta-selective inhibitor, in a mouse model of colon carcinogenesis. We find that enzastaurin potently reduces azoxymethane-induced colon tumor initiation and progression by inhibiting PKCbetaII-mediated tumor cell proliferation and beta-catenin accumulation. Biochemically, enzastaurin reduces expression of the PKCbetaII- and beta-catenin/T-cell factor-regulated genes PKCbetaII, cyclooxygenase II, and vascular endothelial growth factor, three genes implicated in colon carcinogenesis. Our results show that enzastaurin is an effective chemopreventive agent in a mouse model of sporadic colon cancer that significantly reduces both tumor initiation and progression by inhibiting expression of proproliferative genes. Thus, PKCbetaII is an important target for colon cancer chemoprevention and the PKCbeta-selective inhibitor enzastaurin may represent an effective chemopreventive agent in patients at high risk for colon cancer.
Collapse
Affiliation(s)
- Alan P. Fields
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Shelly R. Calcagno
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Murli Krishna
- Department of Pathology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Sofija Rak
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Michael Leitges
- Department of Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Nicole R. Murray
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| |
Collapse
|
27
|
Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ. Oncogene 2009; 28:1410-20. [DOI: 10.1038/onc.2008.500] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Lin CW, Hou WC, Shen SC, Juan SH, Ko CH, Wang LM, Chen YC. Quercetin inhibition of tumor invasion via suppressing PKC /ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 2008; 29:1807-15. [DOI: 10.1093/carcin/bgn162] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Nieminen R, Vuolteenaho K, Riutta A, Kankaanranta H, van der Kraan PM, Moilanen T, Moilanen E. Aurothiomalate inhibits COX-2 expression in chondrocytes and in human cartilage possibly through its effects on COX-2 mRNA stability. Eur J Pharmacol 2008; 587:309-16. [PMID: 18448096 DOI: 10.1016/j.ejphar.2008.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 02/28/2008] [Accepted: 03/13/2008] [Indexed: 01/22/2023]
Abstract
Cyclooxygenase-2 (COX-2) is expressed in rheumatoid and osteoarthritic cartilage and produces pro-inflammatory prostanoids in the joint. In the present study, we investigated the effects of disease modifying anti-rheumatic drugs on COX-2 expression in chondrocytes. Unlike the other tested drugs, aurothiomalate was found to inhibit COX-2 expression in chondrocytes. In the further studies, effects and mechanisms of action of aurothiomalate were investigated in more detail. Aurothiomalate inhibited IL-1beta-induced COX-2 protein expression and PGE(2) production in chondrocytes in a dose-dependent manner. Because aurothiomalate did not alter IL-1beta-induced mRNA levels when measured 0-3 h after addition of IL-1beta, its effects on COX-2 mRNA degradation were tested by Actinomycin D assay. The half-life of COX-2 mRNA was reduced from 3 h to less than 1.5 h in aurothiomalate-treated cells. The 3'-untranslated region (3'-UTR) of COX-2 mRNA contains an ARE element which has been shown to bind mRNA stabilizing factor HuR. Interestingly, aurothiomalate inhibited HuR expression which may explain its destabilizing effect on COX-2 mRNA. Aurothiomalate reduced COX-2 expression and PGE(2) production also in human cartilage at drug concentrations which have been measured in serum and synovial fluid during treatment with aurothiomalate. The results show that aurothiomalate reduces COX-2 expression and PGE(2) production in chondrocyte cultures and in human cartilage. The action is likely mediated by enhanced COX-2 mRNA degradation possibly through a mechanism related to reduced expression of HuR. The results provide a novel mechanism of action for aurothiomalate which may be important in the treatment of arthritis.
Collapse
Affiliation(s)
- Riina Nieminen
- The Immunopharmacology Research Group, Medical School, University of Tampere and Research Unit, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
Fields AP, Murray NR. Protein kinase C isozymes as therapeutic targets for treatment of human cancers. ADVANCES IN ENZYME REGULATION 2008; 48:166-78. [PMID: 18167314 PMCID: PMC2586109 DOI: 10.1016/j.advenzreg.2007.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alan P Fields
- Mayo Clinic Comprehensive Cancer Center, Department of Cancer Biology, Jacksonville, FL, USA.
| | | |
Collapse
|
31
|
Fecker LF, Stockfleth E, Nindl I, Ulrich C, Forschner T, Eberle J. The role of apoptosis in therapy and prophylaxis of epithelial tumours by nonsteroidal anti-inflammatory drugs (NSAIDs). Br J Dermatol 2008; 156 Suppl 3:25-33. [PMID: 17488403 DOI: 10.1111/j.1365-2133.2007.07856.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In addition to having anti-inflammatory activities, nonsteroidal anti-inflammatory drugs (NSAIDs) also inhibit neoplastic cell proliferation by inducing apoptosis. Diclofenac is the anti-neoplastic compound in diclofenac 3% gel (Solaraze) used for topical treatment of actinic keratosis (AK). Main target of NSAIDs seems to be the inhibition of cyclo-oxygenase-2 (COX-2), which is overexpressed in several epithelial tumours and catalyses the synthesis of prostaglandins. The precise mechanism of action of diclofenac in cutaneous cells is still unclear, but induction of apoptosis is a key effect of anti-neoplastic drugs, including NSAIDs. In this paper we give an overview of the anti-tumoural activities of NSAIDs with emphasis on induction of apoptosis. Cyclo-oxygenase-2-mediated synthesis of prostaglandin E(2) (PGE(2)) leads to activation of mitogen-activated protein kinase (MAPK), as well as phosphatidylinositol 3-kinase (PI3K)/Akt pathways. Induction of the anti-apoptotic Bcl-2 and Mcl-1, as well as activation of the caspase-8 inhibitor cFLIP have been reported. In addition, altered lipid concentrations in the cytoplasmic membrane may modulate death receptor activities. Downregulation of both the intrinsic mitochondrial and the extrinsic pathways have been reported. Our data demonstrate induced apoptosis and activation of the caspase cascade in three of four cutaneous squamous cell carcinoma (SCC) cell lines, after treatment with diclofenac plus hyaluronic acid and diclofenac alone; one cell line remained nonresponsive. The effects were less pronounced in normal keratinocytes and cytotoxic effects were not seen. Detailed analysis of apoptosis pathways employed by diclofenac in these cells may help to improve therapeutic strategies and to overcome possible mechanisms that are involved in nonresponsiveness.
Collapse
Affiliation(s)
- L F Fecker
- Department of Dermatology, Charité, Skin Cancer Center Charité, University Hospital of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|
33
|
Redondo S, Santos-Gallego CG, Tejerina T. TGF-β1: a novel target for cardiovascular pharmacology. Cytokine Growth Factor Rev 2007; 18:279-86. [PMID: 17485238 DOI: 10.1016/j.cytogfr.2007.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transforming growth factor beta-1 (TGF-beta1) plays a key role in cardiovascular disease by a process which allows the loss of its protective properties. The first therapeutic attempt to restore its function by selectively designed novel drugs are being made. In addition, it has been recognized that the TGF-beta1 pathway is involved in the vascular mechanism of action of some current clinical drugs, such as acetylsalicylic acid, thiazolidinediones and statins. The aim of this paper is to review the possible value of TGF-beta1 as both a disease marker and a therapeutical target for cardiovascular disease.
Collapse
Affiliation(s)
- Santiago Redondo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid Av Complutense s/n, Madrid, Spain
| | | | | |
Collapse
|
34
|
Abstract
Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes - effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters - have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
35
|
Li H, Weinstein IB. Protein kinase C beta enhances growth and expression of cyclin D1 in human breast cancer cells. Cancer Res 2007; 66:11399-408. [PMID: 17145886 DOI: 10.1158/0008-5472.can-06-2386] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although alterations in the expressions of protein kinase C (PKC) have been implicated in breast carcinogenesis, the roles of specific isoforms in this process remain elusive. In the present study, we examined the specific roles of PKCbeta1 and beta2 in growth control in human breast cancer cell lines. The PKCbeta-specific inhibitor LY379196 significantly inhibited growth of the breast cancer cell lines MCF-7, MDA-MB-231, and BT474, but not the normal mammary epithelial cell line MCF-10F. Treatment of MCF-7 cells with LY379196 caused an increase in the fraction of cells in the G(1) phase of the cell cycle. To explore the roles of PKCbeta1 and beta2, we used cDNA expression vectors that encode wild-type and constitutively activated or dominant negative mutants of these two proteins. When compared with vector controls, derivatives of MCF-7 cells that stably overexpress wild-type PKCbeta1 or PKCbeta2 displayed a slight increase in growth rate; derivatives that stably express the constitutively active mutants of PKCbeta1 or PKCbeta2 displayed a marked increase in growth rate; and derivatives that stably express a dominant negative mutant of PKCbeta1 or beta2 displayed inhibition of growth. The derivatives of MCF-7 cells that stably express the constitutively activated mutants of PKCbeta1 or beta2 were more resistant to growth inhibition by LY379196 than the vector control MCF-7 cells. Immunoblot analysis indicated that MCF-7 cells that stably overexpress wild-type or constitutively activated mutants of PKCbeta1 or beta2 had higher cellular levels of cyclin D1 than vector control cells, whereas cells that express a dominant negative mutant had decreased levels of cyclin D1. The derivatives that stably express the constitutively activated mutants of PKCbeta1 or beta2 also displayed increased cyclin D1 promoter activity in transient transfection luciferase reporter assays, and this induction of activity requires activator protein 1. Constitutively activated PKCbeta1 and beta2 also enhanced the transcription of c-fos in transient transfection luciferase reporter assays. Thus, PKCbeta1 and beta2 may play important positive roles in the growth of at least a subset of human breast cancers. Therefore, inhibitors of these isoforms may be useful in breast cancer chemoprevention or therapy.
Collapse
Affiliation(s)
- Haiyang Li
- Herbert Irving Comprehensive Cancer Center, Department of Medicine, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
36
|
|
37
|
Eitsuka T, Nakagawa K, Miyazawa T. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol. Biochem Biophys Res Commun 2006; 348:170-5. [PMID: 16875674 DOI: 10.1016/j.bbrc.2006.07.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 07/10/2006] [Indexed: 11/16/2022]
Abstract
As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with delta-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for the first time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.
Collapse
Affiliation(s)
- Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | |
Collapse
|
38
|
Chen L, Bush CR, Necela BM, Su W, Yanagisawa M, Anastasiadis PZ, Fields AP, Thompson EA. RS5444, a novel PPARgamma agonist, regulates aspects of the differentiated phenotype in nontransformed intestinal epithelial cells. Mol Cell Endocrinol 2006; 251:17-32. [PMID: 16574311 DOI: 10.1016/j.mce.2006.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/16/2006] [Accepted: 02/14/2006] [Indexed: 01/29/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is expressed in the intestinal epithelium, yet little is known about the physiological role of PPARgamma in the small bowel or the effects of PPARgamma on small intestinal epithelial cells. The present studies investigate cellular and genomic effects of PPARgamma in nontransformed rat intestinal epithelial cells (RIE). These cells were engineered to express mouse PPARgamma1, and thereby to model the molecular phenotype that obtains upon induction of PPARgamma at the crypt/villus junction in the small intestine. In these studies, we have used a novel third generation thiazolidinedione derivative, RS5444, which activates PPARgamma with an EC50 about 1/50th that of rosiglitazone and has no effect on RIE cells that do not express PPARgamma. We used Affymetrix oligonucleotide microarrays to identify potential PPARgamma-regulated processes in RIE cells, including lipid metabolism, cell proliferation and differentiation, remodeling of the extracellular matrix, cell morphology, cell-cell adhesion, and motility. The genomic profile reflects cellular events that occur following PPARgamma activation: RS5444 inhibited culture growth and caused irreversible G1 arrest, but did not induce apoptosis. In addition, RS5444 caused dramatic changes in cellular morphology which were associated with increased motility and diminished cellular adherence, but no increase in the ability of such cells to digest and invade Matrigel. Inhibition of proliferation, cell cycle arrest, increased motility, and altered adherence are aspects of the differentiated phenotype of villus epithelial cells, which withdraw from the cell cycle at the crypt/villus interface, migrate to the villus tips, and are subsequently shed by loss of contact with the epithelium and the underlying extracellular matrix. Our results are consistent with the hypothesis that PPARgamma regulates critical aspects of differentiation in the small intestinal epithelium. Many nuclear receptors regulate differentiation. However, our results point to novel effects of PPARgamma on cell-cell and cell-matrix interactions, which are not typical of other nuclear receptors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Griffin Cancer Research Bldg., Rm 310, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nieminen R, Lahti A, Jalonen U, Kankaanranta H, Moilanen E. JNK inhibitor SP600125 reduces COX-2 expression by attenuating mRNA in activated murine J774 macrophages. Int Immunopharmacol 2006; 6:987-96. [PMID: 16644485 DOI: 10.1016/j.intimp.2006.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/17/2005] [Accepted: 01/13/2006] [Indexed: 01/15/2023]
Abstract
Inducible prostaglandin synthase (cyclooxygenase-2, COX-2) is highly expressed in inflammation. The signaling mechanisms involved in the up-regulation of COX-2 are not known in detail. In the present study we investigated the role of c-Jun NH2-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in COX-2 expression and prostaglandin (PG) E2 production in murine J774 macrophages activated by bacterial lipopolysaccharide (LPS). LPS caused a transient activation of JNK which was followed by increased COX-2 expression. Anthra(1,9-cd)pyrazol-6(2H)-one (SP600125), an inhibitor of JNK, inhibited phosphorylation of c-Jun with an IC50 of 5-10 microM. At the same concentrations SP600125 suppressed also LPS-induced COX-2 protein levels and PGE2 production. SP600125 did not alter LPS-induced COX-2 mRNA levels when measured 3 h after addition of LPS, whereas mRNA levels were significantly reduced in SP600125-treated cells when measured 24 h after addition of LPS. LPS-induced COX-2 mRNA levels reduced faster in cells treated with SP600125 than in control cells. Cycloheximide (that is known to activate JNK) enhanced COX-2 expression and its effect was inhibited by SP600125. The present results suggest that JNK pathway is involved in the up-regulation of COX-2 expression possibly by a mechanism related to the stability of COX-2 mRNA.
Collapse
Affiliation(s)
- Riina Nieminen
- The Immunopharmacology Research Group, University of Tampere Medical School, and Tampere University Hospital, Research Unit, FIN-33014, Tampere, Finland
| | | | | | | | | |
Collapse
|
40
|
Shimojo N, Jesmin S, Zaedi S, Maeda S, Soma M, Aonuma K, Yamaguchi I, Miyauchi T. Eicosapentaenoic acid prevents endothelin-1-induced cardiomyocyte hypertrophy in vitro through the suppression of TGF-beta 1 and phosphorylated JNK. Am J Physiol Heart Circ Physiol 2006; 291:H835-45. [PMID: 16501010 DOI: 10.1152/ajpheart.01365.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cardiovascular benefit of fish oil in humans and experimental animals has been reported. Endothelin (ET)-1 is a well-known cardiac hypertrophic factor. However, although many studies link a fish oil extract, eicosapentaenoic acid (EPA), to cardiac protection, the effects of EPA on cardiac hypertrophy and underlying mechanism(s) are unclear. The present study investigated whether EPA prevents ET-1-induced cardiomyocyte hypertrophy; the potential pathways likely to underlie such an effect were also investigated. Cardiomyocytes were isolated from neonatal rat heart, cultured for 3 days, and then treated for 24 h with vehicle only (control), treated with 0.1 nM ET-1 only, or pretreated with 10 microM EPA and then treated with 0.1 nM ET-1. The cells were harvested, and changes in cell surface area, protein synthesis, expression of a cytoskeletal (alpha-actinin) protein, and cell signaling were analyzed. ET-1 induced a 97% increase in cardiomyocyte surface area, a 72% increase in protein synthesis rate, and an increase in expression of alpha-actinin and signaling molecule [transforming growth factor-beta 1 (TGF-beta 1), c-Jun NH2-terminal kinase (JNK), and c-Jun]. Development of these ET-1-induced cellular changes was attenuated by EPA. Moreover, the hypertrophied cardiomyocytes showed a 1.5- and a 1.7-fold increase in mRNA expression of atrial and brain natriuretic peptides, the classical molecular markers of cardiac hypertrophy, respectively; these changes were also suppressed by EPA. Here we show that ET-1 induces cardiomyocyte hypertrophy and expression of hypertrophic markers, possibly mediated by JNK and TGF-beta 1 signaling pathways. These ET-1-induced effects were blocked by EPA, a major fish oil ingredient, suggesting that fish oil may have beneficial protective effects on cardiac hypertrophy.
Collapse
Affiliation(s)
- Nobutake Shimojo
- Cardiovascular Division, Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gatalica Z, Loggie B. COX-2 expression in pseudomyxoma peritonei. Cancer Lett 2006; 244:86-90. [PMID: 16427185 DOI: 10.1016/j.canlet.2005.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 12/04/2005] [Indexed: 01/25/2023]
Abstract
COX-2 expression was studied using an immunohistochemical method in 75 patients with pseudomyxoma peritonei (PMP). Twenty-five patients presented with disseminated peritoneal adenomucinosis (DPAM) and 50 with peritoneal mucinous carcinomatosis (PMCA). COX-2 was expressed in neoplastic mucinous epithelium of 30 cases (40%): 20 in PMCA (40%), 10 in DPAM (40%). Weak COX-2 expression was also noted in four of five patients with appendiceal mucinous neoplasms without peritoneal dissemination. In addition, COX-2 was detected in stromal, endothelial, inflammatory cells and reactive mesothelium. This preliminary information indicates a potential for the use of COX-2 inhibitors in patients with PMP.
Collapse
Affiliation(s)
- Zoran Gatalica
- Department of Pathology, Creighton University Medical Center, 601 N 30th Street, Omaha, NE 68131, USA.
| | | |
Collapse
|
42
|
Eitsuka T, Nakagawa K, Suzuki T, Miyazawa T. Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: A dual mechanism approach. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1737:1-10. [PMID: 16216547 DOI: 10.1016/j.bbalip.2005.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 08/07/2005] [Accepted: 08/24/2005] [Indexed: 11/29/2022]
Abstract
As high telomerase activity is detected in most cancer cells, telomerase represents a promising cancer therapeutic target. We investigated the inhibitory effect of various fatty acids on telomerase, with particular emphasis on those with antitumor properties, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). To evaluate the direct effect of fatty acids on telomerase, cell lysates of DLD-1 human colorectal adenocarcinoma cells were mixed with sample fatty acids, and the telomerase activity was determined. Saturated fatty acids and trans-fatty acids showed very weak or no inhibition of telomerase. In contrast, cis-unsaturated fatty acids significantly inhibited the enzyme, and the inhibitory potency was elevated with an increase in the number of double bonds. Accordingly, polyunsaturated fatty acids (PUFAs), like EPA and DHA, appeared to be powerful telomerase inhibitors. To assess the transcriptional effect, DLD-1 cells were cultured in the presence of sample fatty acids, and telomerase activity and gene expression were subsequently evaluated. Culturing DLD-1 cells with either EPA or DHA resulted in a remarkable decrease in telomerase activity. EPA and DHA inhibited telomerase by down-regulating human telomerase reverse transcriptase (hTERT) and c-myc expression via protein kinase C inhibition. These results indicate that PUFAs can directly inhibit the enzymatic activity of telomerase as well as modulate the telomerase at the transcriptional level.
Collapse
Affiliation(s)
- Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
43
|
Nakagawa M, Oliva JL, Kothapalli D, Fournier A, Assoian RK, Kazanietz MG. Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cdelta-dependent induction of p21. J Biol Chem 2005; 280:33926-34. [PMID: 16055435 DOI: 10.1074/jbc.m505748200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although protein kinase C (PKC) has been widely implicated in the positive and negative control of proliferation, the underlying cell cycle mechanisms regulated by individual PKC isozymes are only partially understood. In this report, we show that PKCdelta mediates phorbol ester-induced G1 arrest in lung adenocarcinoma cells and establish an essential role for this novel PKC in controlling the expression of the cell cycle inhibitor p21. Activation of PKC with phorbol 12-myristate 13-acetate (PMA) in early G1 phase impaired progression of lung adenocarcinoma cells into S phase, an effect that was completely abolished by specific depletion of PKCdelta, but not PKCalpha. Although the PKC effect was unrelated to the inhibition of cyclin D1 expression, PKC activation significantly up-regulated p21 and down-regulated Rb hyperphosphorylation and cyclin A expression. Elevations in p21 mRNA and protein by PMA were mediated by PKCdelta but not PKCalpha. Studies using luciferase reporters also revealed an essential role for PKCdelta in the PMA-induced inhibition of Rb-dependent cyclin A promoter activity. Finally, we showed that the cell cycle inhibitory effect of PKCdelta is greatly attenuated by RNA interference-mediated knock-down of p21. Our results identify a novel link between PKCdelta and G1 arrest via p21 up-regulation and highlight the complexities in the downstream effectors of PKC isozymes in the context of cell cycle progression and proliferation.
Collapse
Affiliation(s)
- Motonori Nakagawa
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
44
|
Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP. Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 2005; 280:31109-15. [PMID: 15994303 DOI: 10.1074/jbc.m505402200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atypical protein kinase C (aPKC) isozymes function in epithelial cell polarity, proliferation, and survival and have been implicated in cellular transformation. However, the role of these enzymes in human cancer is largely unexplored. Here, we report that aPKCiota is highly expressed in human non-small cell lung cancer cell lines, whereas the closely related aPKC isozyme PKCzeta is undetectable in these cells. Disruption of PKCiota signaling reveals that PKCiota is dispensable for adherent growth of non-small cell lung cancer cells but is required for transformed growth in soft agar in vitro and for tumorigenicity in vivo. Molecular dissection of signaling down-stream of PKCiota demonstrates that Rac1 is a critical molecular target for PKCiota-dependent transformation, whereas PKCiota is not necessary for NFkappaB activation in vitro or in vivo. Expression of the PB1 domain of PKCiota (PKCiota-(1-113)) blocks PKCiota-dependent Rac1 activity and inhibits cellular transformation indicating a role for this domain in the transforming activity of PKCiota. Taken together, our data demonstrate that PKCiota is a critical lung cancer gene that activates a Rac1-->Pak-->Mek1,2-->Erk1,2 signaling pathway required for transformed growth. Our data indicate that PKCiota may be an attractive molecular target for mechanism-based therapies for treatment of lung cancer.
Collapse
Affiliation(s)
- Roderick P Regala
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- John F Di Mari
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555-1064, USA.
| | | | | |
Collapse
|
46
|
Fujimori K, Kadoyama K, Urade Y. Protein Kinase C Activates Human Lipocalin-type Prostaglandin D Synthase Gene Expression through De-repression of Notch-HES Signaling and Enhancement of AP-2β Function in Brain-derived TE671 Cells. J Biol Chem 2005; 280:18452-61. [PMID: 15743775 DOI: 10.1074/jbc.m411755200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we investigated the regulatory mechanism of lipocalin-type prostaglandin D synthase (L-PGDS) gene expression in human TE671 (medulloblastoma of cerebellum) cells. Reporter analysis of the promoter region from -730 to +75 of the human L-PGDS gene demonstrated that deletion or mutation of the N-box at -337 increased the promoter activity 220-300%. The N-box was bound by Hes-1, a mammalian homologue of Drosophila Hairy and enhancer of split, as examined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Functional expression of the Notch intracellular domain significantly increased Hes-1 expression and decreased L-PGDS expression level in TE671 cells. Moreover, knock-down of Hes-1 mRNA by RNA interference significantly enhanced the L-PGDS mRNA level, indicating that the L-PGDS gene expression is repressed by the Notch-Hes signaling. When the AP-2 element at -98 of the promoter region was deleted or mutated, the promoter activity was drastically decreased to approximately 10% of normal. The AP-2 element was bound by AP-2beta dominantly expressed in TE671 cells, according to the results of electrophoretic mobility shift assay and chromatin immunoprecipitation assay. L-PGDS expression was induced by 12-O-tetradecanoylphorbol-13-acetate in TE671 cells, and this induction was inhibited by a protein kinase C inhibitor. Stimulation of TE671 cells with 12-O-tetradecanoylphorbol-13-acetate or transfection with protein kinase Calpha expression vector induced phosphorylation of Hes-1, inhibition of DNA binding of Hes-1 to the N-box, and activation of the AP-2beta function to up-regulate L-PGDS gene expression. These results reveal a novel transcriptional regulatory mechanism responsible for the high level expression of the human L-PGDS gene in TE671 cells.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
47
|
SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24:87-138. [PMID: 15555528 DOI: 10.1016/j.preteyeres.2004.06.002] [Citation(s) in RCA: 528] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this work we advance the hypothesis that omega-3 (omega-3) long-chain polyunsaturated fatty acids (LCPUFAs) exhibit cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina. omega-3 LCPUFAs may modulate metabolic processes and attenuate effects of environmental exposures that activate molecules implicated in pathogenesis of vasoproliferative and neurodegenerative retinal diseases. These processes and exposures include ischemia, chronic light exposure, oxidative stress, inflammation, cellular signaling mechanisms, and aging. A number of bioactive molecules within the retina affect, and are effected by such conditions. These molecules operate within complex systems and include compounds classified as eicosanoids, angiogenic factors, matrix metalloproteinases, reactive oxygen species, cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immunoregulatory cytokines, and inflammatory phospholipids. We discuss the relationship of LCPUFAs with these bioactivators and bioactive compounds in the context of three blinding retinal diseases of public health significance that exhibit both vascular and neural pathology. How is omega-3 LCPUFA status related to retinal structure and function? Docosahexaenoic acid (DHA), a major dietary omega-3 LCPUFA, is also a major structural lipid of retinal photoreceptor outer segment membranes. Biophysical and biochemical properties of DHA may affect photoreceptor membrane function by altering permeability, fluidity, thickness, and lipid phase properties. Tissue DHA status affects retinal cell signaling mechanisms involved in phototransduction. DHA may operate in signaling cascades to enhance activation of membrane-bound retinal proteins and may also be involved in rhodopsin regeneration. Tissue DHA insufficiency is associated with alterations in retinal function. Visual processing deficits have been ameliorated with DHA supplementation in some cases. What evidence exists to suggest that LCPUFAs modulate factors and processes implicated in diseases of the vascular and neural retina? Tissue status of LCPUFAs is modifiable by and dependent upon dietary intake. Certain LCPUFAs are selectively accreted and efficiently conserved within the neural retina. On the most basic level, omega-3 LCPUFAs influence retinal cell gene expression, cellular differentiation, and cellular survival. DHA activates a number of nuclear hormone receptors that operate as transcription factors for molecules that modulate reduction-oxidation-sensitive and proinflammatory genes; these include the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and the retinoid X receptor. In the case of PPAR-alpha, this action is thought to prevent endothelial cell dysfunction and vascular remodeling through inhibition of: vascular smooth muscle cell proliferation, inducible nitric oxide synthase production, interleukin-1 induced cyclooxygenase (COX)-2 production, and thrombin-induced endothelin 1 production. Research on model systems demonstrates that omega-3 LCPUFAs also have the capacity to affect production and activation of angiogenic growth factors, arachidonic acid (AA)-based vasoregulatory eicosanoids, and MMPs. Eicosapentaenoic acid (EPA), a substrate for DHA, is the parent fatty acid for a family of eicosanoids that have the potential to affect AA-derived eicosanoids implicated in abnormal retinal neovascularization, vascular permeability, and inflammation. EPA depresses vascular endothelial growth factor (VEGF)-specific tyrosine kinase receptor activation and expression. VEGF plays an essential role in induction of: endothelial cell migration and proliferation, microvascular permeability, endothelial cell release of metalloproteinases and interstitial collagenases, and endothelial cell tube formation. The mechanism of VEGF receptor down-regulation is believed to occur at the tyrosine kinase nuclear factor-kappa B (NFkappaB). NFkappaB is a nuclear transcription factor that up-regulates COX-2 expression, intracellular adhesion molecule, thrombin, and nitric oxide synthase. All four factors are associated with vascular instability. COX-2 drives conversion of AA to a number angiogenic and proinflammatory eicosanoids. Our general conclusion is that there is consistent evidence to suggest that omega-3 LCPUFAs may act in a protective role against ischemia-, light-, oxygen-, inflammatory-, and age-associated pathology of the vascular and neural retina.
Collapse
Affiliation(s)
- John Paul SanGiovanni
- Division of Epidemiology and Clinical Research, National Eye Insitute, National Institutes of Health, 31 Center Drive, Building 31, Room 6A52, MSC 2510, Bethesda, MD 20892-2510, USA.
| | | |
Collapse
|
48
|
Khabar KSA. The AU-Rich Transcriptome: More Than Interferons and Cytokines, and Its Role in Disease. J Interferon Cytokine Res 2005; 25:1-10. [PMID: 15684617 DOI: 10.1089/jir.2005.25.1] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The AU-rich elements (AREs) are among the predominant cis-acting factors that exist primarily in the 3' untranslated region (3'-UTR) of messenger RNAs (mRNAs) and regulate mRNA stability. AREs were previously believed to be restricted to relatively few mRNAs, including those of interferons (IFNs) and cytokines, growth factors, and proto-oncogenes. Our recent analysis, however, showed that ARE mRNAs represent as much as 8% of mRNAs transcribed from human genes that encode functionally diverse proteins important in many transient biologic processes. Among those processes are cell growth and differentiation, immune responses, signal transduction, transcriptional and translational control, hematopoiesis, apoptosis, nutrient transport, and metabolism. Several recent studies examined signaling pathways that regulate ARE-mediated mRNA stability, notably the p38 mitogen-activated protein kinase (MAPK) pathway. In addition, several AU-rich binding proteins that regulate the ARE mRNA pathways have been characterized. Dysregulation of regulatory signaling pathways and regulatory proteins affecting ARE mRNA stability can lead to abnormalities in many critical cellular processes and to specific disease conditions. Thus, the heterogeneity in AREs, their signaling pathways, and effector proteins contribute to the functional diversity of the ARE gene family, which encompasses more than IFNs and cytokines.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
49
|
Shahidi F, Miraliakbari H. Omega-3 (n-3) Fatty Acids in Health and Disease: Part 1—Cardiovascular Disease and Cancer. J Med Food 2004; 7:387-401. [PMID: 15671680 DOI: 10.1089/jmf.2004.7.387] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The omega-3 (n-3) polyunsaturated fatty acids have a wide range of beneficial effects in several human health conditions. Animal and in vitro studies have indicated that omega-3 fatty acids affect blood lipid profiles, cardiovascular health, membrane lipid composition, eicosanoid biosynthesis, cell signaling cascades, and gene expression. Findings from epidemiological studies suggest that intake of omega-3 fatty acids from natural sources or supplements may influence the onset and progression of several disease states, including cardiovascular disease and cancer. This review highlights some recent research findings that help advance our understanding of how omega-3 fatty acids influence cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | | |
Collapse
|
50
|
Abstract
Dietary fat has a dual role in human physiology: a) it functions as a source of energy and structural components for cells; b) it functions as a regulator of gene expression that impacts lipid, carbohydrate, and protein metabolism, as well as cell growth and differentiation. Fatty acid effects on gene expression are cell-specific and influenced by fatty acid structure and metabolism. Fatty acids interact with the genome through several mechanisms. They regulate the activity or nuclear abundance of several transcription factors, including PPAR, LXR, HNF-4, NFkappaB, and SREBP. Fatty acids or their metabolites bind directly to specific transcription factors to regulate gene transcription. Alternatively, fatty acids indirectly act on gene expression through their effects on a) specific enzyme-mediated pathways, such as cyclooxygenase, lipoxygenase, protein kinase C, or sphingomyelinase signal transduction pathways; or b) pathways that involve changes in membrane lipid/lipid raft composition that affect G-protein receptor or tyrosine kinase-linked receptor signaling. Further definition of these fatty acid-regulated pathways will provide insight into the role dietary fat plays in human health and the onset and progression of several chronic diseases, like coronary artery disease and atherosclerosis, dyslipidemia and inflammation, obesity and diabetes, cancer, major depressive disorders, and schizophrenia.
Collapse
Affiliation(s)
- Donald B Jump
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|