1
|
Expression and Genetic Effects of GLI Pathogenesis-Related 1 Gene on Backfat Thickness in Pigs. Genes (Basel) 2022; 13:genes13081448. [PMID: 36011359 PMCID: PMC9407767 DOI: 10.3390/genes13081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Backfat thickness (BFT) is an important carcass composition trait and regarded as a breeding focus. Our initial transcriptome analysis of pig BFT identified GLI pathogenesis-related 1 (GLIPR1) as one of the promising candidate genes. This study was conducted to identify the expression profiles, polymorphisms, and genetic effects of the GLIPR1 gene on BFT in pigs. The expression of the GLIPR1 gene existed in every detected tissue, and there was a significantly higher expression in spleen and adipose tissue than others (p < 0.05). At the different ages of pig, the expression of the GLIPR1 gene was low at an early age, increased with growth, and reached the highest level at 180 days. Genetic polymorphism analysis was detected in 553 individuals of the Large White × Minzhu F2 population. Four SNPs in the promoter significantly associated with 6−7 rib BFT (p < 0.05) were predicted to alter the transcription factor binding sites (TFBS), and the mutations of g.38758089 T>G and g.38758114 G>C were predicted to change the TFs associated with the regulation of adipogenesis. Haplotypes were formed by the detected SNPs, and one block showed a strong association with BFT (p < 0.05). In summary, our results indicate that the expression profiles and genetic variants of GLIPR1 affected the BFT of pigs. To our knowledge, this study is the first to demonstrate the biological function and genetic effects of the GLIPR1 gene on the BFT of pig and provide genetic markers to optimize breeding for BFT in pigs.
Collapse
|
2
|
Aghanoori MR, Agarwal P, Gauvin E, Nagalingam RS, Bonomo R, Yathindranath V, Smith DR, Hai Y, Lee S, Jolivalt CG, Calcutt NA, Jones MJ, Czubryt MP, Miller DW, Dolinsky VW, Mansuy-Aubert V, Fernyhough P. CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth. Cell Mol Life Sci 2022; 79:193. [PMID: 35298717 PMCID: PMC8930798 DOI: 10.1007/s00018-022-04201-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPβ, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPβ overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPβ can be a promising therapeutic approach.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Antibodies, Neutralizing/pharmacology
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Base Sequence
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Cell Respiration/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Energy Metabolism/drug effects
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Gene Expression Regulation/drug effects
- Glycolysis/drug effects
- HEK293 Cells
- Humans
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Liver/metabolism
- Male
- Mitochondria/drug effects
- Mitochondria/metabolism
- NFATC Transcription Factors/metabolism
- Neuronal Outgrowth/drug effects
- Polymers/metabolism
- Promoter Regions, Genetic/genetics
- Protein Transport/drug effects
- Rats, Sprague-Dawley
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/pathology
- Signal Transduction/drug effects
- Rats
Collapse
Affiliation(s)
- Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
- Dept of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
- Dept of Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N2, Canada.
| | - Prasoon Agarwal
- Dept of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Evan Gauvin
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Raghu S Nagalingam
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Raiza Bonomo
- Cellular and Molecular Department, Stritch School of Medicine, Loyola University Chicago, Chicago, USA
| | - Vinith Yathindranath
- Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Donald W Miller
- Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Dept of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Virginie Mansuy-Aubert
- Cellular and Molecular Department, Stritch School of Medicine, Loyola University Chicago, Chicago, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Dept of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Que Y, Shu X, Wang L, Wang S, Li S, Hu P, Tong X. Inactivation of SERCA2 Cys 674 accelerates aortic aneurysms by suppressing PPARγ. Br J Pharmacol 2021; 178:2305-2323. [PMID: 33591571 DOI: 10.1111/bph.15411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Inactivation of Cys674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) causes intracellular Ca2+ accumulation, which activates calcineurin-mediated nuclear factor of activated T-lymphocytes (NFAT)/NF-κB pathways, and results in the phenotypic modulation of smooth muscle cells (SMCs) to accelerate angiotensin II-induced aortic aneurysms. Our goal was to investigate the mechanism involved. EXPERIMENTAL APPROACH We used heterozygous SERCA2 C674S knock-in (SKI) mice, where half of C674 was substituted by serine, to mimic partial irreversible oxidation of C674. The aortas of SKI mice and their littermate wild-type mice were collected for RNA sequencing, cell culture, protein expression, luciferase activity and aortic aneurysm analysis. KEY RESULTS Inactivation of C674 inhibited the promoter activity and protein expression of PPARγ, which could be reversed by inhibitors of calcineurin or NF-κB. In SKI SMCs, inhibition of NF-κB by pyrrolidinedithiocarbamic acid (PDTC) or overexpression of PPARγ2 reversed the protein expression of SMC phenotypic modulation markers and inhibited cell proliferation, migration, and macrophage adhesion to SMCs. Pioglitazone, a PPARγ agonist, blocked the activation of NFAT/NF-κB, reversed the protein expression of SMC phenotypic modulation markers, and inhibited cell proliferation, migration, and macrophage adhesion to SMCs in SKI SMCs. Furthermore, pioglitazone also ameliorated angiotensin II-induced aortic aneurysms in SKI mice. CONCLUSIONS AND IMPLICATIONS The inactivation of SERCA2 C674 promotes the development of aortic aneurysms by disrupting the balance between PPARγ and NFAT/NF-κB. Our study highlights the importance of C674 redox status in regulating PPARγ to maintain aortic homeostasis.
Collapse
Affiliation(s)
- Yumei Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xi Shu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Langtao Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Sai Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Chiasson VL, Bounds KR, Chatterjee P, Manandhar L, Pakanati AR, Hernandez M, Aziz B, Mitchell BM. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice. Hypertension 2018; 71:199-207. [PMID: 29133357 PMCID: PMC5730469 DOI: 10.1161/hypertensionaha.117.10306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA.
Collapse
Affiliation(s)
- Valorie L Chiasson
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Kelsey R Bounds
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Piyali Chatterjee
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Lochana Manandhar
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Abhinandan R Pakanati
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Marcos Hernandez
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Bilal Aziz
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Brett M Mitchell
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple.
| |
Collapse
|
5
|
Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, Darden CM, Zurawski S, Boyuk G, Kanak MA, Levy MF, Naziruddin B, Lawrence MC. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 2017; 66:2857-2867. [PMID: 28855240 PMCID: PMC5652609 DOI: 10.2337/db17-0578] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | - Carly M Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | | | - Gulbahar Boyuk
- Adacell Medical Research Center, Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Marlon F Levy
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX
| | | |
Collapse
|
6
|
Malsy M, Graf B, Almstedt K. Interaction between NFATc2 and the transcription factor Sp1 in pancreatic carcinoma cells PaTu 8988t. BMC Mol Biol 2017; 18:20. [PMID: 28774282 PMCID: PMC5543739 DOI: 10.1186/s12867-017-0097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nuclear factors of activated T-cells (NFATs) have been mainly characterized in the context of immune response regulation because, as transcription factors, they have the ability to induce gene transcription. NFAT proteins are found in several types of tumors, for instance, pancreatic carcinoma. The role of NFATs in carcinogenesis is regulating central genes in cell differentiation and cell growth. NFAT proteins are primarily located in cytoplasm and only transported to the cell nucleus after activation. Here, they interact with other transcription factors cooperating with NFAT proteins, thus influencing the selection and regulation of NFAT-controlled genes. To identify and characterize possible interaction partners of the transcription factor NFATc2 in pancreatic carcinoma cells PaTu 8988t. METHODS NFATc2 expression and the mode of action of Ionomycin in the pancreatic tumor cell lines PaTu 8988t were shown with Western blotting and immunofluorescence tests. Potential partner proteins were verified by means of immunoprecipitation and binding partners, their physical interactions with DNA pull-down assays, siRNA technologies, and GST pull-down assays. Functional evidence was complemented by reporter-promoter analyses. RESULTS NFATc2 and Sp1 are co-localized in cell nuclei and physically interact at the NFAT target sequence termed NFAT-responsive promotor construct. Sp1 increases the functional activity of its binding partner NFATc2. This interaction is facilitated by Ionomycin in the early stimulation phase (up to 60 min). CONCLUSIONS Oncological therapy concepts are becoming more and more specific, aiming at the efficient modulation of specific signal and transcription pathways. The oncogenic transcription partner Sp1 is important for the transcriptional and functional activity of NFATc2 in pancreatic carcinoma. The binding partners interact in cells. Further studies are necessary to identify the underlying mechanisms and establish future therapeutic options for treating this aggressive type of tumor.
Collapse
Affiliation(s)
- Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Bernhard Graf
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Almstedt
- Department of Obstetrics and Gynecology, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
7
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
8
|
Zeidler S, Meckbach C, Tacke R, Raad FS, Roa A, Uchida S, Zimmermann WH, Wingender E, Gültas M. Computational Detection of Stage-Specific Transcription Factor Clusters during Heart Development. Front Genet 2016; 7:33. [PMID: 27047536 PMCID: PMC4804722 DOI: 10.3389/fgene.2016.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Transcription factors (TFs) regulate gene expression in living organisms. In higher organisms, TFs often interact in non-random combinations with each other to control gene transcription. Understanding the interactions is key to decipher mechanisms underlying tissue development. The aim of this study was to analyze co-occurring transcription factor binding sites (TFBSs) in a time series dataset from a new cell-culture model of human heart muscle development in order to identify common as well as specific co-occurring TFBS pairs in the promoter regions of regulated genes which can be essential to enhance cardiac tissue developmental processes. To this end, we separated available RNAseq dataset into five temporally defined groups: (i) mesoderm induction stage; (ii) early cardiac specification stage; (iii) late cardiac specification stage; (iv) early cardiac maturation stage; (v) late cardiac maturation stage, where each of these stages is characterized by unique differentially expressed genes (DEGs). To identify TFBS pairs for each stage, we applied the MatrixCatch algorithm, which is a successful method to deduce experimentally described TFBS pairs in the promoters of the DEGs. Although DEGs in each stage are distinct, our results show that the TFBS pair networks predicted by MatrixCatch for all stages are quite similar. Thus, we extend the results of MatrixCatch utilizing a Markov clustering algorithm (MCL) to perform network analysis. Using our extended approach, we are able to separate the TFBS pair networks in several clusters to highlight stage-specific co-occurences between TFBSs. Our approach has revealed clusters that are either common (NFAT or HMGIY clusters) or specific (SMAD or AP-1 clusters) for the individual stages. Several of these clusters are likely to play an important role during the cardiomyogenesis. Further, we have shown that the related TFs of TFBSs in the clusters indicate potential synergistic or antagonistic interactions to switch between different stages. Additionally, our results suggest that cardiomyogenesis follows the hourglass model which was already proven for Arabidopsis and some vertebrates. This investigation helps us to get a better understanding of how each stage of cardiomyogenesis is affected by different combination of TFs. Such knowledge may help to understand basic principles of stem cell differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Sebastian Zeidler
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University GöttingenGöttingen, Germany; Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Cornelia Meckbach
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University Göttingen Göttingen, Germany
| | - Rebecca Tacke
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University Göttingen Göttingen, Germany
| | - Farah S Raad
- Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Angelica Roa
- Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Goethe University FrankfurtFrankfurt, Germany; DZHK (German Centre for Cardiovascular Research)Frankfurt, Germany
| | - Wolfram-Hubertus Zimmermann
- Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Edgar Wingender
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Mehmet Gültas
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University Göttingen Göttingen, Germany
| |
Collapse
|
9
|
Moioli B, D'Andrea S, De Grossi L, Sezzi E, De Sanctis B, Catillo G, Steri R, Valentini A, Pilla F. Genomic scan for identifying candidate genes for paratuberculosis resistance in sheep. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breeding objectives relating to health, functional traits and welfare need to receive priority in the research programs and selection schemes, but very few reports are available on natural resistant genotypes in livestock, where some important diseases cause severe economic losses and pose serious zoonotic threats. In this study, diagnosis of paratuberculosis was performed on 759 adult sheep, from a single flock, with the serum antibody enzyme-linked immunosorbent assay; 100 sheep were selected among the extreme divergent animals for the S/P ratio obtained from the test, and were genotyped on the Illumina Ovine SNP50K BeadChip. A genome-wide scan was then performed on the individual marker genotypes, in the attempt to identify genomic regions associated with disease resistance in sheep. For each marker, the allelic substitution effect was calculated by regressing the S/P value on the number of copies of the reference allele. The position on the OARv3.1 Genome Assembly was searched for 32 markers, which showed a statistically significant allelic substitution effect (Raw P < 0.0006 and FDR P < 0.09). All markers were located within, or close to, annotated genes. Five of these genes, SEMA3, CD109, PCP4, PRDM2 and ITFG2 are referred in literature to play a role in either disease resistance or cell-mediated immune response.
Collapse
|
10
|
Regulation of Interleukin-17 Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:139-166. [DOI: 10.1007/978-94-024-0921-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
C/EBPβ and Nuclear Factor of Activated T Cells Differentially Regulate Adamts-1 Induction by Stimuli Associated with Vascular Remodeling. Mol Cell Biol 2015. [PMID: 26217013 DOI: 10.1128/mcb.00494-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease.
Collapse
|
12
|
Dahiya S, Liu Y, Nonnemacher MR, Dampier W, Wigdahl B. CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 2014; 9:e88116. [PMID: 24551078 PMCID: PMC3925103 DOI: 10.1371/journal.pone.0088116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yujie Liu
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Will Dampier
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhu H, Guariglia S, Li W, Brancho D, Wang ZV, Scherer PE, Chow CW. Role of extracellular signal-regulated kinase 5 in adipocyte signaling. J Biol Chem 2014; 289:6311-22. [PMID: 24425864 DOI: 10.1074/jbc.m113.506584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased adiposity due to energy imbalance is a critical factor of the epidemic crisis of obesity and type II diabetes. In addition to the obvious role in energy storage, regulatory factors are secreted from adipose depots to control appetite and cellular homeostasis. Complex signaling cross-talks within adipocyte are also evident due to the metabolic and immune nature of adipose depots. Here, we uncover a role of extracellular signal-regulated kinase 5 (ERK5) in adipocyte signaling. We find that deletion of ERK5 in adipose depots (adipo-ERK5(-/-)) increases adiposity, in part, due to increased food intake. Dysregulated secretion of adipokines, leptin resistance, and impaired glucose handling are also found in adipo-ERK5(-/-) mice. Mechanistically, we show that ERK5 impinges on transcription factor NFATc4. Decreased phosphorylation at the conserved gate-keeping Ser residues and increased nuclear localization of NFATc4 are found in adipo-ERK5(-/-) mice. We also find attenuated PKA activation in adipo-ERK5(-/-) mice. In response to stimulation of β-adrenergic G-protein-coupled receptor, we find decreased NFATc4 phosphorylation and impaired PKA activation in adipo-ERK5(-/-) mice. Reduced cAMP accumulation and increased phosphodiesterase activity are also found. Together, these results demonstrate integration of ERK5 with NFATc4 nucleo-cytoplasmic shuttling and PKA activation in adipocyte signaling.
Collapse
Affiliation(s)
- Hong Zhu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | | | |
Collapse
|
14
|
Choi K, Ghaddar B, Moya C, Shi H, Sridharan GV, Lee K, Jayaraman A. Analysis of transcription factor network underlying 3T3-L1 adipocyte differentiation. PLoS One 2014; 9:e100177. [PMID: 25075860 PMCID: PMC4116336 DOI: 10.1371/journal.pone.0100177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/23/2014] [Indexed: 11/28/2022] Open
Abstract
Lipid accumulation in adipocytes reflects a balance between enzymatic pathways leading to the formation and breakdown of esterified lipids, primarily triglycerides. This balance is extremely important, as both high and low lipid levels in adipocytes can have deleterious consequences. The enzymes responsible for lipid synthesis and breakdown (lipogenesis and lipolysis, respectively) are regulated through the coordinated actions of several transcription factors (TFs). In this study, we examined the dynamics of several key transcription factors (TFs) - PPARγ, C/EBPβ, CREB, NFAT, FoxO1, and SREBP-1c - during adipogenic differentiation (week 1) and ensuing lipid accumulation. The activation profiles of these TFs at different times following induction of adipogenic differentiation were quantified using 3T3-L1 reporter cell lines constructed to secrete the Gaussia luciferase enzyme upon binding of a TF to its DNA binding element. The dynamics of the TFs was also modeled using a combination of logical gates and ordinary differential equations, where the logical gates were used to explore different combinations of activating inputs for PPARγ, C/EBPβ, and SREBP-1c. Comparisons of the experimental profiles and model simulations suggest that SREBP-1c could be independently activated by either insulin or PPARγ, whereas PPARγ activation required both C/EBPβ as well as a putative ligand. Parameter estimation and sensitivity analysis indicate that feedback activation of SREBP-1c by PPARγ is negligible in comparison to activation of SREBP-1c by insulin. On the other hand, the production of an activating ligand could quantitatively contribute to a sustained elevation in PPARγ activity.
Collapse
Affiliation(s)
- KyungOh Choi
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Bassel Ghaddar
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Colby Moya
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Hai Shi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Gautham V. Sridharan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
- * E-mail: (AJ); (KL)
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AJ); (KL)
| |
Collapse
|
15
|
Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA. Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K+ current in rat cerebellar granule neurons. J Biol Chem 2012; 287:41534-45. [PMID: 23066017 PMCID: PMC3510849 DOI: 10.1074/jbc.m112.390260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K(+) currents (I(A)) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of I(A) is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of I(A). Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced I(A) and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on I(A) amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling.
Collapse
Affiliation(s)
- Jin-Jing Yao
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
16
|
Esposito V, Manente L, Lucariello A, Perna A, Viglietti R, Gargiulo M, Parrella R, Parrella G, Baldi A, De Luca A, Chirianni A. Role of FAP48 in HIV‐associated lipodystrophy. J Cell Biochem 2012; 113:3446-54. [DOI: 10.1002/jcb.24221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Lucrezia Manente
- Department of Medicine and Public Health, Second University of Naples, Naples, Italy
| | - Angela Lucariello
- Department of Medicine and Public Health, Second University of Naples, Naples, Italy
| | - Angelica Perna
- Department of Medicine and Public Health, Second University of Naples, Naples, Italy
| | | | | | | | | | - Alfonso Baldi
- Department of Biochemistry, Section of Pathology, Second University of Naples, Naples, Italy
| | - Antonio De Luca
- Department of Medicine and Public Health, Second University of Naples, Naples, Italy
| | | |
Collapse
|
17
|
Yang TTC, Chow CW. Elucidating protein: DNA complex by oligonucleotide DNA affinity purification. Methods Mol Biol 2012; 809:75-84. [PMID: 22113269 DOI: 10.1007/978-1-61779-376-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Transcription factors recruit a wide variety of associated co-factors to regulate gene expression. These co-factors include protein kinases, phosphatases, deacetylases, methylases, and ubiquitin ligases, etc. To identify novel protein kinases associated with transcription factor NFAT, we took advantage of the increased ability of DNA binding and used an oligonucleotide affinity-binding approach. Coupling with in-gel kinase assays to detect phosphotransferase activity, we were able to identify p90 ribosomal S6 kinase (RSK) and p70 S6 kinase (S6K) that are present in the NFAT:DNA complex. We further demonstrated that RSK and S6K binds to and physically interacts with NFATc4. Similar oligonucleotide affinity-binding approach can be coupled with other enzymatic reactions, such as dephosphorylation, deacetylation, methylation, ubiquitination, etc. Mass spectrometry can also be carried out to systemically identify these transcription co-factors in the protein:DNA complex. Lastly, gene-specific enhancer elements can also be devised based on their respective sequence to identify distinctive protein:DNA complexes.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
18
|
Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. The calcineurin-nuclear factor of activated T cells signaling pathway mediates the effect of corticotropin releasing factor and urocortins on catecholamine synthesis. J Cell Physiol 2012; 227:1861-72. [DOI: 10.1002/jcp.22914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Abstract
In humans multiple pathways can induce TH-17 cell differentiation, whereas in mice this process is mostly modulated by IL-6 and TGF-β. IL-17 produced by TH-17 cells has been associated with a number of inflammatory autoimmune diseases including psoriasis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, and rheumatoid arthritis. In this review, we have primarily focused on the role of TH-17 cells/IL-17 in the pathogenesis of rheumatoid arthritis and experimental arthritis. The potential role of TH-17 cells in rheumatoid arthritis progression has been demonstrated by correlating the percent TH-17 cells or levels of IL-17 with rheumatoid arthritis disease activity score and C-reactive protein levels. Further, previous studies suggest that IL-17 mediated vascularization may lay the foundation for rheumatoid arthritis joint neutrophil and monocyte recruitment as well as cartilage and bone destruction. The profound role of IL-17 in the pathogenesis of experimental arthritis may be due to its synergistic effect with TNF-α and IL-1β. Although the initial clinical trial employing anti-IL-17 antibody has been promising for rheumatoid arthritis, future studies in humans will shed more light on how anti-IL-17 therapy affects rheumatoid arthritis and other autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Michael V Volin
- Department of Microbiology & Immunology, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL 60515
| | | |
Collapse
|
20
|
Wang Q, Zhou Y, Jackson LN, Johnson SM, Chow CW, Evers BM. Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation. Mol Biol Cell 2010; 22:412-20. [PMID: 21148296 PMCID: PMC3031470 DOI: 10.1091/mbc.e10-07-0598] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previously we demonstrated that overexpression of PTEN enhanced intestinal cell differentiation. In this study we provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation. The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27kip1 expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27kip1 expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, The University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | |
Collapse
|
21
|
An epigenetic chromatin remodeling role for NFATc1 in transcriptional regulation of growth and survival genes in diffuse large B-cell lymphomas. Blood 2010; 116:3899-906. [PMID: 20664054 DOI: 10.1182/blood-2009-12-257378] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors functions as integrators of multiple signaling pathways by binding to chromatin in combination with other transcription factors and coactivators to regulate genes central for cell growth and survival in hematopoietic cells. Recent experimental evidence has implicated the calcineurin/NFAT signaling pathway in the pathogenesis of various malignancies, including diffuse large B-cell lymphoma (DLBCL). However, the molecular mechanism(s) underlying NFATc1 regulation of genes controlling lymphoma cell growth and survival is still unclear. In this study, we demonstrate that the transcription factor NFATc1 regulates gene expression in DLBCL cells through a chromatin remodeling mechanism that involves recruitment of the SWItch/Sucrose NonFermentable chromatin remodeling complex ATPase enzyme SMARCA4 (also known as Brahma-related gene 1) to NFATc1 targeted gene promoters. The NFATc1/Brahma-related gene 1 complex induces promoter DNase I hypersensitive sites and recruits other transcription factors to the active chromatin site to regulate gene transcription. Targeting NFATc1 with specific small hairpin RNA inhibits DNase I hypersensitive site formation and down-regulates target gene expression. Our data support a novel epigenetic control mechanism for the transcriptional regulation of growth and survival genes by NFATc1 in the pathophysiology of DLBCL and suggests that targeting NFATc1 could potentially have therapeutic value.
Collapse
|
22
|
Kim HB, Kumar A, Wang L, Liu GH, Keller SR, Lawrence JC, Finck BN, Harris TE. Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors. Mol Cell Biol 2010; 30:3126-39. [PMID: 20385772 PMCID: PMC2876672 DOI: 10.1128/mcb.01671-09] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/25/2010] [Accepted: 03/31/2010] [Indexed: 11/20/2022] Open
Abstract
Lipin 1 is a bifunctional protein that regulates gene transcription and, as a Mg(2+)-dependent phosphatidic acid phosphatase (PAP), is a key enzyme in the biosynthesis of phospholipids and triacylglycerol. We describe here the functional interaction between lipin 1 and the nuclear factor of activated T cells c4 (NFATc4). Lipin 1 represses NFATc4 transcriptional activity through protein-protein interaction, and lipin 1 is present at the promoters of NFATc4 transcriptional targets in vivo. Catalytically active and inactive lipin 1 can suppress NFATc4 transcriptional activity, and this suppression may involve recruitment of histone deacetylases to target promoters. In fat pads from mice deficient for lipin 1 (fld mice) and in 3T3-L1 adipocytes depleted of lipin 1 there is increased expression of several NFAT target genes including tumor necrosis factor alpha, resistin, FABP4, and PPARgamma. Finally, both lipin 1 protein and total PAP activity are decreased with increasing adiposity in the visceral, but not subcutaneous, fat pads of ob/ob mice. These observations place lipin 1 as a potentially important link between triacylglycerol synthesis and adipose tissue inflammation.
Collapse
Affiliation(s)
- Hyun Bae Kim
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Anil Kumar
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Lifu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Guang-Hui Liu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Susanna R. Keller
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John C. Lawrence
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Brian N. Finck
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
23
|
Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K. P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J Neurochem 2010; 114:810-9. [PMID: 20477948 DOI: 10.1111/j.1471-4159.2010.06809.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microglia plays an important role in many neurodegenerative conditions. ATP leaked or released by damaged cells triggers microglial activation through P2 receptors, and stimulates the release of oxygen radicals, proinflammatory cytokines and chemokines from activated microglia. However, little is known about mechanisms underlying ATP-induced chemokine release from microglia. In this study, we found that a high concentration of ATP induces the mRNA expression and release of CXCL2 from microglia. A similar effect was observed following treatment of microglia with a P2X7 receptor (P2X7R) agonist, 2'-and 3'-O-(4-benzoylbenzoyl) ATP, and this was inhibited by pre-treatment with a P2X7R antagonist, Brilliant Blue G. ATP induced both activation of nuclear factor of activated T cells (NFAT) and MAPKs (p38, ERK, and JNK) through P2X7R. ATP-induced mRNA expression of CXCL2 was inhibited by INCA-6 (an NFAT inhibitor), SB203580 (a p38 inhibitor), U0126 (a MEK-ERK inhibitor) and JNK inhibitor II (a JNK inhibitor). However, MAPK inhibitors did not inhibit activation of NFAT. In addition, protein kinase C inhibitors suppressed ATP-induced ERK and JNK activation, and also inhibited ATP-induced CXCL2 expression in microglia. These results suggest that ATP increased CXCL2 production via both NFAT and protein kinase C/MAPK signaling pathways through P2X7 receptor stimulation in microglia.
Collapse
Affiliation(s)
- Miho Shiratori
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
24
|
Oh M, Dey A, Gerard RD, Hill JA, Rothermel BA. The CCAAT/enhancer binding protein beta (C/EBPbeta) cooperates with NFAT to control expression of the calcineurin regulatory protein RCAN1-4. J Biol Chem 2010; 285:16623-31. [PMID: 20371871 DOI: 10.1074/jbc.m109.098236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) inhibits the protein phosphatase calcineurin and is required for appropriate immune responses, synaptic plasticity, vascular tone, angiogenesis, and cardiac remodeling. Expression of the RCAN1-4 isoform is under the control of the calcineurin-responsive transcription factor NFAT. Typically, NFATs act in cooperation with other transcription factors to achieve maximal activation of gene expression. In this study, we identify the CCAAT/enhancer binding protein beta (C/EBPbeta) as an NFAT binding partner that cooperates with NFAT to regulate RCAN1-4 expression. Numerous C/EBPbeta binding sites are conserved in the RCAN1-4 proximal promoter. Overexpression of C/EBPbeta increased activity of both the endogenous mouse Rcan1-4 gene and a human RCAN1-4 luciferase reporter. Binding of C/EBPbeta to multiple sites in the promoter was verified using electrophoretic mobility shift assays and chromatin immunoprecipitation. A direct interaction between C/EBPbeta and NFAT was demonstrated by co-immunoprecipitation of proteins and complex formation at NFAT-C/EBPbeta composite sites. Depletion of endogenous C/EBPbeta decreased maximal activation of RCAN1-4 expression by calcineurin, whereas inhibition of calcineurin did not alter the ability of C/EBPbeta to activate RCAN1-4 expression. Together, these findings suggest that calcineurin/NFAT activation of RCAN1-4 expression is in part dependent upon C/EBPbeta, whereas activation by C/EBPbeta is not dependent on calcineurin and may provide a calcineurin-independent pathway for regulating RCAN1-4 expression. Importantly, nuclear localization, C/EBPbeta DNA binding activity and occupancy of the Rcan1-4 promoter increased in mouse models of heart failure demonstrating in vivo activation of this pathway to regulate Rcan1-4 expression and ultimately shape the dynamics of calcineurin-dependent signaling.
Collapse
Affiliation(s)
- Misook Oh
- Department of Internal Medicine Cardiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
25
|
Lagunas L, Clipstone NA. Deregulated NFATc1 activity transforms murine fibroblasts via an autocrine growth factor-mediated Stat3-dependent pathway. J Cell Biochem 2010; 108:237-48. [PMID: 19565565 DOI: 10.1002/jcb.22245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors has recently been implicated with a role in tumorigenesis. Forced expression of a constitutively active NFATc1 mutant (caNFATc1) has been shown to transform immortalized murine fibroblasts in vitro, while constitutive activation of the NFAT-signaling pathway has been found in a number of human cancers, where it has been shown to contribute towards various aspects of the tumor phenotype. Here we have investigated the molecular mechanisms underlying the oncogenic potential of deregulated NFAT activity. We now show that ectopic expression of caNFATc1 in murine 3T3-L1 fibroblasts induces the secretion of an autocrine factor(s) that is sufficient to promote the transformed phenotype. We further demonstrate that this NFATc1-induced autocrine factor(s) specifically induces the tyrosine phosphorylation of the Stat3 transcription factor via a JAK kinase-dependent pathway. Interestingly, this effect of sustained NFAT signaling on the autocrine growth factor-mediated activation of Stat3 is not restricted to murine fibroblasts, but is also observed in the PANC-1 and MCF10A human cell lines. Most importantly, we find that the shRNA-mediated depletion of endogenous Stat3 significantly attenuates the ability of caNFATc1 to transform 3T3-L1 fibroblasts. Taken together, our results afford significant new insights into the molecular mechanisms underlying the oncogenic potential of deregulated NFATc1 activity by demonstrating that constitutive NFATc1 activity transforms cells via an autocrine factor-mediated pathway that is critically dependent upon the activity of the Stat3 transcription factor.
Collapse
Affiliation(s)
- Lucio Lagunas
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
26
|
Hu Z, Gallo SM. Identification of interacting transcription factors regulating tissue gene expression in human. BMC Genomics 2010; 11:49. [PMID: 20085649 PMCID: PMC2822763 DOI: 10.1186/1471-2164-11-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue gene expression is generally regulated by multiple transcription factors (TFs). A major first step toward understanding how tissues achieve their specificity is to identify, at the genome scale, interacting TFs regulating gene expression in different tissues. Despite previous discoveries, the mechanisms that control tissue gene expression are not fully understood. RESULTS We have integrated a function conservation approach, which is based on evolutionary conservation of biological function, and genes with highest expression level in human tissues to predict TF pairs controlling tissue gene expression. To this end, we have identified 2549 TF pairs associated with a certain tissue. To find interacting TFs controlling tissue gene expression in a broad spatial and temporal manner, we looked for TF pairs common to the same type of tissues and identified 379 such TF pairs, based on which TF-TF interaction networks were further built. We also found that tissue-specific TFs may play an important role in recruiting non-tissue-specific TFs to the TF-TF interaction network, offering the potential for coordinating and controlling tissue gene expression across a variety of conditions. CONCLUSION The findings from this study indicate that tissue gene expression is regulated by large sets of interacting TFs either on the same promoter of a gene or through TF-TF interaction networks.
Collapse
Affiliation(s)
- Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Department of Biostatistics, Department of Medicine, State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Steven M Gallo
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
27
|
Nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) as a mediator of antiapoptotic transcription in NMDA receptor-stimulated cortical neurons. J Neurosci 2009; 29:15331-40. [PMID: 19955386 DOI: 10.1523/jneurosci.4873-09.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During cortical development, when NR2B subunit is the major component of the NMDA glutamate receptors (NMDARs), moderate NMDAR activity supports neuronal survival at least in part by regulating gene transcription. We report that, in cultured cortical neurons from newborn rats, the NMDARs activated the calcium-responsive transcription regulator nuclear factor of activated T cells (NFAT). Moreover, in developing rat cortex, the NFAT isoforms c3 and c4 (NFATc3 and NFATc4) were expressed at relatively higher levels at postnatal day 7 (P7) than P21, overlapping with the period of NMDAR-dependent survival. In cultured cortical neurons, NFATc3 and NFATc4 were regulated at least in part by the NR2B NMDAR. Conversely, knockdown of NFATc4 but not NFATc3 induced cortical neuron apoptosis. Likewise, NFATc4 inhibition prevented antiapoptotic neuroprotection in response to exogenous NMDA. Expression of the brain-derived neurotrophic factor (BDNF) was reduced by NFATc4 inhibition. NFATc4 regulated transcription by the NMDAR-responsive bdnf promoter IV. In addition, NMDAR blockers including NR2B-selective once reduced BDNF expression in P7 cortex and cultured cortical neurons. Finally, exogenous BDNF rescued from the proapoptotic effects of NFATc4 inhibition. These results identify bdnf as one of the target genes for the antiapoptotic signaling by NMDAR-NFATc4. Thus, the previously unrecognized NMDAR-NFATc4-BDNF pathway contributes to the survival signaling network that supports cortical development.
Collapse
|
28
|
Baine I, Abe BT, Macian F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 2009; 231:225-40. [PMID: 19754900 DOI: 10.1111/j.1600-065x.2009.00817.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells that escape negative selection in the thymus must be inactivated or eliminated in the periphery through a series of mechanisms that include the induction of anergy, dominant suppression by regulatory T cells, and peripheral deletion of self-reactive T cells. Calcium signaling plays a central role in the induction of anergy in T cells, which become functionally inactivated and incapable of proliferating and expressing cytokines following antigen re-encounter. Suboptimal stimulation of T cells results in the activation of a calcium/calcineurin/nuclear factor of activated T cells-dependent cell-intrinsic program of self-inactivation. The proteins encoded by those genes are required to impose a state of functional unresponsiveness through different mechanisms that include downregulation of T-cell receptor signaling and inhibition of cytokine transcription.
Collapse
Affiliation(s)
- Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
29
|
Zanotti S, Stadmeyer L, Smerdel-Ramoya A, Durant D, Canalis E. Misexpression of CCAAT/enhancer binding protein beta causes osteopenia. J Endocrinol 2009; 201:263-74. [PMID: 19218285 PMCID: PMC2674520 DOI: 10.1677/joe-08-0514] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CCAAT/enhancer binding proteins (C/EBPs) are expressed by osteoblasts and adipocytes during differentiation. C/EBP beta is critical for adipogenesis; however, its role in osteoblastogenesis is unclear, and its function in the postnatal skeleton is not known. To study C/EBP beta in osteoblasts in vivo, we created transgenic mice expressing full length C/EBP beta under the control of a 3.8 kb fragment of the human osteocalcin promoter. Two transgenic lines were established in a friend leukemia virus strain B genetic background, and compared with wild type littermate controls. Both C/EBP beta transgenic lines exhibited osteopenia, with a 30% decrease in bone volume, due to a decrease in trabecular number. The number of osteoblasts and osteoclasts per bone perimeter was not changed. Bone marrow stromal cells from C/EBP beta transgenics showed reduced mineralization, and reduced alkaline phosphatase mRNA levels. Calvarial osteoblasts from C/EBP beta transgenics displayed reduced alkaline phosphatase activity. To determine the consequences of the Cebpb deletion in vivo, the phenotype of Cebpb null mice was compared with that of wild type controls of identical genetic composition. Cebpb null mice exhibited reduced weight, body fat, and bone mineral density, and decreased bone volume, due to a decrease in trabecular number. The number of osteoblasts and osteoclasts per bone perimeter was not changed. C/EBP beta downregulation by RNA interference in calvarial osteoblasts had no effect on osteoblast differentiation/function. The phenotype of the Cebpb inactivation may be secondary to systemic indirect effects, and to direct effects of C/EBP beta in osteoblasts. In conclusion, C/EBP beta plays a role in mesenchymal cell differentiation and its misexpression in vivo causes osteopenia.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, 06105
| | - Lisa Stadmeyer
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, 06105
| | - Anna Smerdel-Ramoya
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, 06105
| | - Deena Durant
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, 06105
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT, 06105
- The University of Connecticut School of Medicine, Farmington, CT, 06030
| |
Collapse
|
30
|
Lai PH, Wang WL, Ko CY, Lee YC, Yang WM, Shen TW, Chang WC, Wang JM. HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1803-14. [DOI: 10.1016/j.bbamcr.2008.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 06/03/2008] [Accepted: 06/03/2008] [Indexed: 01/12/2023]
|
31
|
Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ, Murphy KM. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 2008; 9:603-12. [PMID: 18438409 PMCID: PMC2518613 DOI: 10.1038/ni.1609] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/17/2008] [Indexed: 01/01/2023]
Abstract
Calcineurin is required for B cell receptor (BCR)-induced proliferation of mature B cells. Paradoxically, loss of NFAT transcription factors, themselves calcineurin targets, induces hyperactivity, which suggests that calcineurin targets other than NFAT are required for BCR-induced proliferation. Here we demonstrate a function for the calcineurin-regulated transcription factor Mef2c in B cells. BCR-induced calcium mobilization was intact after Mef2c deletion, but loss of Mef2c caused defects in B cell proliferation and survival after BCR stimulation in vitro and lower T cell-dependent antibody responses and germinal center formation in vivo. Mef2c activity was specific to BCR stimulation, as Toll-like receptor and CD40 signaling induced normal responses in Mef2c-deficient B cells. Mef2c-dependent targets included the genes encoding cyclin D2 and the prosurvival factor Bcl-x(L). Our results emphasize an unrecognized but critical function for Mef2c in BCR signaling.
Collapse
Affiliation(s)
- Peter R Wilker
- Department of Pathology and Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 2008; 41:92-104. [PMID: 18178098 PMCID: PMC2667118 DOI: 10.1016/j.cyto.2007.11.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/18/2007] [Accepted: 11/16/2007] [Indexed: 12/18/2022]
Abstract
IL-17 is the defining cytokine of a newly-described "Th17" population that plays critical roles in mediating inflammation and autoimmunity. The IL-17/IL-17 receptor superfamily is the most recent class of cytokines and receptors to be described, and until recently very little was known about its function or molecular biology. However, in the last year important new insights into the composition and dynamics of the receptor complex and mechanisms of downstream signal transduction have been made, which will be reviewed here.
Collapse
Affiliation(s)
- Fang Shen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah L. Gaffen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Zhu M, Lee GD, Ding L, Hu J, Qiu G, de Cabo R, Bernier M, Ingram DK, Zou S. Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction. Exp Gerontol 2007; 42:733-44. [PMID: 17624709 PMCID: PMC1978194 DOI: 10.1016/j.exger.2007.05.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/12/2007] [Accepted: 05/04/2007] [Indexed: 12/11/2022]
Abstract
Alterations in adipogenesis could have significant impact on several aging processes. We previously reported that calorie restriction (CR) in rats significantly increases the level of circulating adiponectin, a distinctive marker of differentiated adipocytes, leading to a concerted modulation in the expression of key transcription target genes and, as a result, to increased fatty acid oxidation and reduced deleterious lipid accumulation in other tissues. These findings led us to investigate further the effects of aging on adipocytes and to determine how CR modulates adipogenic signaling in vivo. CR for 2 and 25 months, significantly increased the expression of PPARgamma, C/EBPbeta and Cdk-4, and partially attenuated age-related decline in C/EBPalpha expression relative to rats fed ad libitum (AL). As a result, adiponectin was upregulated at both mRNA and protein levels, resulting in activation of target genes involved in fatty acid oxidation and fatty acid synthesis, and greater responsiveness of adipose tissue to insulin. Moreover, CR significantly decreased the ratio of C/EBPbeta isoforms LAP/LIP, suggesting the suppression of gene transcription associated with terminal differentiation while facilitating preadipocytes proliferation. Morphometric analysis revealed a greater number of small adipocytes in CR relative to AL feeding. Immunostaining confirmed that small adipocytes were more strongly positive for adiponectin than the large ones. Overall these results suggest that CR increased the expression of adipogenic factors, and maintained the differentiated state of adipocytes, which is critically important for adiponectin biosynthesis and insulin sensitivity.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Garrick D. Lee
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Liusong Ding
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Jingping Hu
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Guang Qiu
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Rafa de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Michel Bernier
- Diabetes Section, Laboratory of Clinical Investigation, Gerontology Research Center, Intramural Research Program, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Donald K. Ingram
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Sige Zou
- Laboratory of Experimental Gerontology, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| |
Collapse
|
34
|
Zhu H, Gao W, Jiang H, Wu J, Shi YF, Zhang XJ. Calcineurin mediates acetylcholinesterase expression during calcium ionophore A23187-induced HeLa cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:593-602. [PMID: 17320203 DOI: 10.1016/j.bbamcr.2007.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
We previously reported that acetylcholinesterase plays a critical role in apoptosis and its expression is regulated by Ca(2+) mobilization. In the present study, we show that activated calpain, a cytosolic calcium-activated cysteine protease, and calcineurin, a calcium-dependent protein phosphatase, regulate acetylcholinesterase expression during A23187-induced apoptosis. The calpain inhibitor, calpeptin, and the calcineurin inhibitors, FK506 and cyclosporine A, inhibited acetylcholinesterase expression at both mRNA and protein levels and suppressed the activity of the human acetylcholinesterase promoter. In contrast, overexpression of constitutively active calcineurin significantly activated the acetylcholinesterase promoter. Furthermore, we identify a role for the transcription factor NFAT (nuclear factor of activated T cells), a calcineurin target, in regulating the acetylcholinesterase promoter during ionophore-induced apoptosis. Overexpression of human NFATc3 and NFATc4 greatly increased the acetylcholinesterase promoter activity in HeLa cells treated with A23187. Overexpression of constitutive nuclear NFATc4 activated the acetylcholinesterase promoter independent of A23187, whereas overexpression of dominant-negative NFAT blocked A23187-induced acetylcholinesterase promoter activation. These results indicate that calcineurin mediates acetylcholinesterase expression during apoptosis.
Collapse
Affiliation(s)
- Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
35
|
Yang XY, Yang TTC, Schubert W, Factor SM, Chow CW. Dosage-dependent transcriptional regulation by the calcineurin/NFAT signaling in developing myocardium transition. Dev Biol 2006; 303:825-37. [PMID: 17198697 DOI: 10.1016/j.ydbio.2006.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/09/2006] [Accepted: 11/22/2006] [Indexed: 01/08/2023]
Abstract
Thin spongy myocardium is critical at early embryonic stage [before embryonic day (E) 13.5 in mice] to allow diffusion of oxygen and nutrients to the developing cardiomyocytes. However, establishment of compact myocardium at later stage ( approximately E16.5) during development is necessary to prepare for the increase in demand for blood circulation. Elucidating molecular targets of the spongy-compact myocardium transition between E13.5 and E16.5 in heart development is thus important. Previous studies demonstrated that multiple transcription factors and signaling pathways are involved in the regulation and function of the myocardium in heart development. Disruption of certain transcription factors or critical components of signaling pathways frequently causes structural malformation in heart and persistence of "thin spongy myocardium". We have recently demonstrated activation of the calcineurin/NFAT signaling pathway at E14.5 in developing myocardium. Constitutive inhibition of the calcineurin/NFAT signaling pathway caused embryonic lethality. Molecular targets downstream of the calcineurin/NFAT signaling pathway, however, remains elusive. Here, we report transcription targets, independently and dependently, regulated by the calcineurin/NFAT signaling during the E13.5-E16.5 myocardium transition. We have uncovered that expression of one-third of the induced genes during myocardium transition is calcineurin/NFAT-dependent. Among these calcineurin/NFAT-dependent transcription targets, there is a dosage-dependent regulation. Molecular studies indicate that formation of distinct NFAT:DNA complex, in part, accounts for the dosage-dependent regulation. Thus, in addition to temporal and spatial regulation, dosage-dependent threshold requirement provides another mechanism to modulate transcription response mediated by the calcineurin/NFAT signaling during heart development.
Collapse
Affiliation(s)
- Xiao Yong Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
36
|
Yang TTC, Suk HY, Yang X, Olabisi O, Yu RYL, Durand J, Jelicks LA, Kim JY, Scherer PE, Wang Y, Feng Y, Rossetti L, Graef IA, Crabtree GR, Chow CW. Role of transcription factor NFAT in glucose and insulin homeostasis. Mol Cell Biol 2006; 26:7372-87. [PMID: 16908540 PMCID: PMC1636854 DOI: 10.1128/mcb.00580-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/16/2006] [Accepted: 08/02/2006] [Indexed: 12/11/2022] Open
Abstract
Compromised immunoregulation contributes to obesity and complications in metabolic pathogenesis. Here, we demonstrate that the nuclear factor of activated T cell (NFAT) group of transcription factors contributes to glucose and insulin homeostasis. Expression of two members of the NFAT family (NFATc2 and NFATc4) is induced upon adipogenesis and in obese mice. Mice with the Nfatc2-/- Nfatc4-/- compound disruption exhibit defects in fat accumulation and are lean. Nfatc2-/- Nfatc4-/- mice are also protected from diet-induced obesity. Ablation of NFATc2 and NFATc4 increases insulin sensitivity, in part, by sustained activation of the insulin signaling pathway. Nfatc2-/- Nfatc4-/- mice also exhibit an altered adipokine profile, with reduced resistin and leptin levels. Mechanistically, NFAT is recruited to the transcription loci and regulates resistin gene expression upon insulin stimulation. Together, these results establish a role for NFAT in glucose/insulin homeostasis and expand the repertoire of NFAT function to metabolic pathogenesis and adipokine gene transcription.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Davé V, Childs T, Xu Y, Ikegami M, Besnard V, Maeda Y, Wert SE, Neilson JR, Crabtree GR, Whitsett JA. Calcineurin/Nfat signaling is required for perinatal lung maturation and function. J Clin Invest 2006; 116:2597-609. [PMID: 16998587 PMCID: PMC1570374 DOI: 10.1172/jci27331] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 07/25/2006] [Indexed: 01/11/2023] Open
Abstract
Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body-associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.
Collapse
Affiliation(s)
- Vrushank Davé
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hidalgo-Estévez AM, González E, Punzón C, Fresno M. Human immunodeficiency virus type 1 Tat increases cooperation between AP-1 and NFAT transcription factors in T cells. J Gen Virol 2006; 87:1603-1612. [PMID: 16690925 DOI: 10.1099/vir.0.81637-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat affects cellular gene expression through modulation of the activity of different transcription factors. Here, the role of Tat in the cooperation between nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) transcription factors was investigated. Constitutive or transient Tat expression in Jurkat T cells enhanced cooperative NFAT/AP-1- but not AP-1-dependent transcription independent of its ability to transactivate the HIV-1 LTR. The enhancing effect of Tat took place after nuclear translocation of NFAT. Furthermore, transactivation of an NFAT/AP-1 reporter by transfection of NFAT and c-Jun was strongly enhanced by simultaneous Tat transfection. Moreover, intracellular Tat expression increased the binding of NFAT/AP-1 complexes to the interleukin 2 promoter without significantly altering NFAT- and AP-1-independent binding. HIV-1 Tat interacted with NFAT but not c-Jun. These results indicate that Tat interacts with NFAT, affecting its cooperation with AP-1, without altering independent binding of these transcription factors to DNA.
Collapse
Affiliation(s)
- Alicia M Hidalgo-Estévez
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Esther González
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
39
|
Yang TTC, Ung PMU, Rincón M, Chow CW. Role of the CCAAT/enhancer-binding protein NFATc2 transcription factor cascade in the induction of secretory phospholipase A2. J Biol Chem 2006; 281:11541-52. [PMID: 16500900 DOI: 10.1074/jbc.m511214200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammatory cytokines such as interleukin-1 and tumor necrosis factor-alpha modulate a transcription factor cascade in the liver to induce and sustain an acute and systemic defense against foreign entities. The transcription factors involved include NF-kappaB, STAT, and CCAAT/enhancer-binding protein (C/EBP). Whether the NFAT group of transcription factors (which was first characterized as playing an important role in cytokine gene expression in the adaptive response in immune cells) participates in the acute-phase response in hepatocytes is not known. Here, we have investigated whether NFAT is part of the transcription factor cascade in hepatocytes during inflammatory stress. We report that interleukin-1 or tumor necrosis factor-alpha increases expression of and activates NFATc2. C/EBP-mediated NFATc2 induction is temporally required for expression of type IIA secretory phospholipase A2. NFATc2 is also required for expression of phospholipase D1 and the calcium-binding protein S100A3. Thus, a C/EBP-NFATc2 transcription factor cascade provides an additional means to modulate the acute-phase response upon stimulation with inflammatory cytokines.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
40
|
Ding J, Zhang R, Li J, Xue C, Huang C. Involvement of nuclear factor of activated T cells 3 (NFAT3) in cyclin D1 induction by B[a]PDE or B[a]PDE and ionizing radiation in mouse epidermal Cl 41 cells. Mol Cell Biochem 2006; 287:117-25. [PMID: 16645724 DOI: 10.1007/s11010-005-9087-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/22/2005] [Indexed: 01/07/2023]
Abstract
The results from animal studies have shown that mouse skin is highly susceptible to both ionizing radiation and benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE). Previous studies have also indicated that cyclin D1 plays a crucial role in controlling cell proliferation and tumorigenesis. We, therefore, investigated here the effect of ionizing radiation and B[a]PDE on cyclin D1 transcription and potential involvement of NFAT3 in regulation of cyclin D1 transcription in mouse epidermal Cl 41 cells. We found that B[a]PDE exposure induced a high level of NFAT activation and cyclin D1 transcription in mouse epidermal Cl 41 cells. Ionizing radiation exhibited an enhancement for NFAT activation and cyclin D1 induction by B[a]PDE, even though ionizing radiation by itself had only a marginal effect. By stably knockdown of NFAT3 protein expression using specific NFAT3 small interfering RNA (siRNA), we found that cyclin D1 induction by B[a]PDE or B[a]PDE plus ionizing radiation was dramatically impaired. These results indicate that ionizing radiation is able to enhance cyclin D1 transcription induced by B[a]PDE, and NFAT3 is involved in the regulation of cyclin D1 transcription by B[a]PDE or B[a]PDE plus ionizing radiation.
Collapse
Affiliation(s)
- Jin Ding
- Department of Etiology, Fourth Military Medical University, 17 Chunglexi Road, Xi'an, Shaanxi, 770032, China
| | | | | | | | | |
Collapse
|
41
|
Canellada A, Cano E, Sánchez-Ruiloba L, Zafra F, Redondo JM. Calcium-dependent expression of TNF-α in neural cells is mediated by the calcineurin/NFAT pathway. Mol Cell Neurosci 2006; 31:692-701. [PMID: 16458016 DOI: 10.1016/j.mcn.2005.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022] Open
Abstract
We report induction of TNF-alpha via the calcium/calcineurin/NFAT pathway in PC12 neural cells. In PC12, expression of TNF-alpha mRNA, protein and TNF-alpha gene promoter activity was induced by co-stimulation with phorbol ester and either calcium ionophore A23187 or the L-type Voltage Gated Calcium Channel agonist Bay K 8644. Pre-treatment with calcineurin inhibitors CsA or FK506 inhibited the dominant calcium-dependent component of this induction, limiting it to the level achieved with phorbol ester alone. Promoter activation by Bay was abolished by nifedipine, a specific inhibitor of L-type Voltage Gated Calcium Channels. Exogenous NFAT protein transactivated the TNF-alpha promoter, and the peptide VIVIT-a specific inhibitor of calcineurin/NFAT binding-blocked calcium-inducible transactivation of the TNF-alpha promoter. Given proposed functions of TNF-alpha in spatial learning, memory and the pathogenesis of neurodegenerative diseases, the data presented suggest an important role for calcineurin/NFAT signaling in these key neurological processes.
Collapse
Affiliation(s)
- Andrea Canellada
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Universidad Autónoma de Madrid (UAM), Facultad de Ciencias, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
42
|
Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood 2005; 106:3940-7. [PMID: 16099873 PMCID: PMC1895110 DOI: 10.1182/blood-2005-03-1167] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abnormalities in B-lymphocyte CD40 ligand (CD154) expression have been described for a number of immunologic diseases, including B-cell lymphomas. Although functional analysis of the CD154 gene and protein has been extensive, little is known about the mechanisms controlling CD154 expression in activated T cells, and even less is known for normal and malignant B cells. In this study we describe the transcriptional mechanism controlling CD154 expression in large B-cell lymphoma (LBCL). We show that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL. We demonstrate that the constitutively active NFATc1 and c-rel members of the NFAT and nuclear factor-kappaB (NF-kappaB) families of transcription factors, respectively, directly interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 or c-rel with small interfering RNA (siRNA) or chemical inhibitors inhibits CD154 gene transcription and lymphoma cell growth. These findings suggest that targeting NF-kappaB and NFAT, by inhibiting the expression of these transcription factors, or interdicting their interaction may provide a therapeutic rationale for patients with non-Hodgkin lymphoma of B-cell origin, and possibly other disorders that display dysregulated CD154 expression.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, Box 54, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
43
|
Cano E, Canellada A, Minami T, Iglesias T, Redondo JM. Depolarization of neural cells induces transcription of the Down syndrome critical region 1 isoform 4 via a calcineurin/nuclear factor of activated T cells-dependent pathway. J Biol Chem 2005; 280:29435-43. [PMID: 15975916 DOI: 10.1074/jbc.m506205200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study we showed that the transcriptional regulation of Down syndrome critical region isoform 4 (DSCR1.4) is mediated by the calcineurin/nuclear factor of activated T cells (NFAT) pathway in neural cells. Stimuli that elicit an increase in the intracellular concentrations of calcium, such as membrane depolarization, induced de novo transcription of DSCR1.4, with mRNA expression peaking after 4 h and then declining. Action via the physiologically relevant L-type calcium channel was confirmed by blockade with nifedipine and verapamil. This calcium-dependent transcription of DSCR1.4 was inhibited by the calcineurin inhibitors cyclosporin A and FK506. Deletional analysis showed that the calcium- and calcineurin-dependent activation is mediated by the promoter region between nucleotides -350 and -166, a region that contains putative NFAT-binding motifs. Exogenous NFATc2 potently augmented the DSCR1.4 promoter transcriptional activity, and the involvement of endogenous NFAT signaling pathway in DSCR1.4 transcription was confirmed by the suppression of depolarization-inducible promoter activity with the NFAT inhibitor peptide VIVIT. Exogenous overexpression of DSCR1 protein (calcipressin 1) resulted in the inhibition of the transcription of DSCR1.4 and NFAT-dependent signaling. These findings suggest that calcineurin-dependent induction of DSCR1.4 product may represent an important auto-regulatory mechanism for the homeostatic control of NFAT signaling in neural cells.
Collapse
Affiliation(s)
- Eva Cano
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Abstract
Since the discovery of the first nuclear factor of activated T cells (NFAT) protein more than a decade ago, the NFAT family of transcription factors has grown to include five members. It has also become clear that NFAT proteins have crucial roles in the development and function of the immune system. In T cells, NFAT proteins not only regulate activation but also are involved in the control of thymocyte development, T-cell differentiation and self-tolerance. The functional versatility of NFAT proteins can be explained by their complex mechanism of regulation and their ability to integrate calcium signalling with other signalling pathways. This Review focuses on the recent advances in our understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.
Collapse
Affiliation(s)
- Fernando Macian
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
45
|
Yang TTC, Xiong Q, Graef IA, Crabtree GR, Chow CW. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 2005; 25:907-20. [PMID: 15657420 PMCID: PMC544015 DOI: 10.1128/mcb.25.3.907-920.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of protein kinases into transcription activation complexes influences the magnitude of gene expression. The nuclear factor of activated T cells (NFAT) group of proteins are critical transcription factors that direct gene expression in immune and nonimmune cells. A balance of phosphotransferase activity is necessary for optimal NFAT activation. Activation of NFAT requires dephosphorylation by the calcium-mediated calcineurin phosphatase to promote NFAT nuclear accumulation, and the Ras-activated extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase, which targets NFAT partners, to potentiate transcription. Whether protein kinases operate on NFAT and contribute positively to transcription activation is not clear. Here, we coupled DNA affinity isolation with in-gel kinase assays to avidly pull down the activated NFAT and identify its associated protein kinases. We demonstrate that p90 ribosomal S6 kinase (RSK) is recruited to the NFAT-DNA transcription complex upon activation. The formation of RSK-NFATc4-DNA transcription complex is also apparent upon adipogenesis. Bound RSK phosphorylates Ser(676) and potentiates NFATc4 DNA binding by escalating NFAT-DNA association. Ser(676) is also targeted by the ERK MAP kinase, which interacts with NFAT at a distinct region than RSK. Thus, integration of the ERK/RSK signaling pathway provides a mechanism to modulate NFATc4 transcription activity.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
46
|
Alfonso-Jaume MA, Mahimkar R, Lovett DH. Co-operative interactions between NFAT (nuclear factor of activated T cells) c1 and the zinc finger transcription factors Sp1/Sp3 and Egr-1 regulate MT1-MMP (membrane type 1 matrix metalloproteinase) transcription by glomerular mesangial cells. Biochem J 2004; 380:735-47. [PMID: 14979875 PMCID: PMC1224202 DOI: 10.1042/bj20031281] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 02/06/2004] [Accepted: 02/23/2004] [Indexed: 01/17/2023]
Abstract
The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of proteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation.
Collapse
Affiliation(s)
- Maria Alejandra Alfonso-Jaume
- The Department of Medicine, San Francisco VAMC/University of California, 111J Medical Service, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
47
|
Park BH, Qiang L, Farmer SR. Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 2004; 24:8671-80. [PMID: 15367685 PMCID: PMC516726 DOI: 10.1128/mcb.24.19.8671-8680.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of adipogenesis in mouse preadipocytes requires C/EBPbeta as well as activation of the MEK/extracellular signal-regulated kinase (ERK) signaling pathway. In this study, we demonstrate that phosphorylation of C/EBPbeta at a consensus ERK/glycogen synthase kinase 3 (GSK3) site regulates adiponectin gene expression during the C/EBPbeta-facilitated differentiation of mouse fibroblasts into adipocytes. First, we show that exposure of 3T3-L1 preadipocytes to insulin, dexamethasone (DEX), and isobutylmethylxanthine (MIX) leads to the phosphorylation of C/EBPbeta at threonine 188. Pretreating the cells with a MEK1-specific inhibitor (U0126) significantly attenuates this activity. Similarly, these effectors activate the phosphorylation of T188 within an ectopic C/EBPbeta overexpressed in Swiss mouse fibroblasts, and this event involves both MEK1 and GSK3 activity. We further show that expression of C/EBPbeta (p34kD LAP isoform) in Swiss mouse fibroblasts exposed to DEX, MIX, and insulin induces expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and some adiponectin but that it does not activate expression of FABP4/aP2. In fact, complete conversion of these fibroblasts into lipid-laden adipocytes, which includes activation of FABP4 and adiponectin expression, requires their exposure to a potent PPARgamma ligand such as troglitazone. Expression of a mutant C/EBPbeta in which threonine 188 has been modified to alanine (C/EBPbeta T188A) can induce PPARgamma production in the mouse fibroblasts, but it is incapable of stimulating adiponectin expression in the absence or presence of troglitazone. Interestingly, replacement of T188 with aspartic acid creates a C/EBPbeta molecule (C/EBPbeta T188D) that possesses adipogenic activity similar to that of the wild-type molecule. The absence of adiponectin expression correlates with a reduced amount of C/EBPalpha in the adipocytes expressing the T188A mutant suggesting that C/EBPalpha is required for expression of adiponectin. In fact, ectopic expression of PPARgamma in C/EBPalpha-deficient fibroblasts (NIH 3T3 cells) produces a modest amount of adiponectin, whereas expression of both PPARgamma and C/EBPalpha in NIH 3T3 cells facilitates production of abundant quantities of adiponectin. These data demonstrate that phosphorylation of C/EBPbeta at a consensus ERK/GSK3 site is required for both C/EBPalpha and adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes.
Collapse
Affiliation(s)
- Bae-Hang Park
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | | | | |
Collapse
|
48
|
Schubert W, Yang XY, Yang TTC, Factor SM, Lisanti MP, Molkentin JD, Rincon M, Chow CW. Requirement of transcription factor NFAT in developing atrial myocardium. J Cell Biol 2003; 161:861-74. [PMID: 12796475 PMCID: PMC2172977 DOI: 10.1083/jcb.200301058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor of activated T cell (NFAT) is a ubiquitous regulator involved in multiple biological processes. Here, we demonstrate that NFAT is temporally required in the developing atrial myocardium between embryonic day 14 and P0 (birth). Inhibition of NFAT activity by conditional expression of dominant-negative NFAT causes thinning of the atrial myocardium. The thin myocardium exhibits severe sarcomere disorganization and reduced expression of cardiac troponin-I (cTnI) and cardiac troponin-T (cTnT). Promoter analysis indicates that NFAT binds to and regulates transcription of the cTnI and the cTnT genes. Thus, regulation of cytoskeletal protein gene expression by NFAT may be important for the structural architecture of the developing atrial myocardium.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Animals
- Animals, Newborn
- Binding Sites/genetics
- Cell Nucleus/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Genes, Regulator/genetics
- Heart Atria/abnormalities
- Heart Atria/growth & development
- Heart Atria/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Mutation/genetics
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Troponin I/biosynthesis
- Troponin I/genetics
- Troponin T/biosynthesis
- Troponin T/genetics
Collapse
Affiliation(s)
- William Schubert
- Dept. of Molecular Pharmacology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|