1
|
Du YX, Qi YH, Lu YH, Li BX, He YJ, Zhang Y, Lin L, Zhang CX, Wang XW, Chen JP, Lu G, Li JM. A plant virus attenuates the Toll immune pathway by degradation of Pellino to facilitate viral infection in insect vectors. J Virol 2025; 99:e0002125. [PMID: 40162791 PMCID: PMC12090757 DOI: 10.1128/jvi.00021-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Many plant viruses are persistently transmitted by insect vectors. The viral antagonism of insect innate immune responses is a critical step in ensuring persistent viral infection. Recent studies have shown that the Toll immune pathway mediates the persistent and propagative transmission of rice stripe virus (RSV) in its insect vector (Laodelphax striatellus). However, whether other host factors are involved in the Toll pathway and how RSV counteracts the Toll immune response in L. striatellus remain unclear. Here, we reported that LsPellino also inhibited RSV infection in L. striatellus by interacting with LsTube and participating in the Toll immune pathway. In contrast, the viral nonstructural protein NS3 hijacked the suppressor of cytokine signaling 5 (LsSOCS5) to promote the degradation of LsPellino via the 26S proteasome pathway, thereby suppressing the Toll immune response. In summary, these findings demonstrate that RSV attenuates the Toll immune pathway by degradation of LsPellino to facilitate viral infection in insect vectors. Our research provides new insights into controlling the transmission of vector-borne viruses. IMPORTANCE Plant virus diseases pose a serious threat to global crop production. Nearly half of the known plant viruses are persistently transmitted by insect vectors, and these plant viruses must counteract various innate immune responses to maintain persistent infection. Here, we uncover a novel counter-defense mechanism against Toll antiviral defense. Our research showed that LsPellino exerts antiviral function by interacting with LsTube and participating in the Toll immune pathway. To counteract this immunity, a plant virus, rice stripe virus, attenuates the Toll immune pathway and promotes viral infection by using viral nonstructural protein NS3 to mediate the degradation of LsPellino in its insect vector, Laodelphax striatellus. This study not only contributes to a better understanding of the arms race between viruses and insect vectors but also provides a new perspective for controlling the transmission of plant viruses.
Collapse
Affiliation(s)
- Yu-Xiao Du
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Hua Qi
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan-Hua Lu
- Yongjia County Agriculture and Rural Bureau, Yongjia, Zhejiang, China
| | - Bo-Xue Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Juan He
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Wei Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Gang Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Salauddin M, Bhattacharyya D, Samanta I, Saha S, Xue M, Hossain MG, Zheng C. Role of TLRs as signaling cascades to combat infectious diseases: a review. Cell Mol Life Sci 2025; 82:122. [PMID: 40105962 PMCID: PMC11923325 DOI: 10.1007/s00018-025-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Investigating innate immunity and its signaling transduction is essential to understand inflammation and host defence mechanisms. Toll-like receptors (TLRs), an evolutionarily ancient group of pattern recognition receptors, are crucial for detecting microbial components and initiating immune responses. This review summarizes the mechanisms and outcomes of TLR-mediated signaling, focusing on motifs shared with other immunological pathways, which enhances our understanding of the innate immune system. TLRs recognize molecular patterns in microbial invaders, activate innate immunity and promote antigen-specific adaptive immunity, and each of them triggers unique downstream signaling patterns. Recent advances have highlighted the importance of supramolecular organizing centers (SMOCs) in TLR signaling, ensuring precise cellular responses and pathogen detection. Furthermore, this review illuminates how TLR pathways coordinate metabolism and gene regulation, contributing to adaptive immunity and providing novel insights for next-generation therapeutic strategies. Ongoing studies hold promise for novel treatments against infectious diseases, autoimmune conditions, and cancers.
Collapse
Affiliation(s)
- Md Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9202, Bangladesh
| | - Debaraj Bhattacharyya
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
5
|
Yoon DS, Oh SE, Lee KM, Jung S, Ko EA, Kim TG, Park KH, Lee JW. Age-Related Decrease in Pellino-1 Expression Contributes to Osteoclast-Mediated Bone Loss. Adv Biol (Weinh) 2024; 8:e2400210. [PMID: 38712476 DOI: 10.1002/adbi.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Aging-related bone loss is driven by various biological factors, such as imbalanced bone metabolism from decreased osteoblast and increased osteoclast activities. Various transcriptional and post-transcriptional factors increase osteoclast activity with aging; however, studies regarding the post-translational regulators of osteoclast activity are still limited. The ubiquitin E3 ligase Pellino-1 is a well-known post-translational regulator of inflammation. However, how Pellino-1 expression regulation affects osteoclast differentiation remains unclear. This study determined that Pellino-1 levels are reduced in bone marrow monocytes (BMMs) from 40-week-old mice compared to 4-week-old mice. Interestingly, conditional Knockout (cKO) of Pellino-1 in 6-week-old mice resulted in decreased bone mass, reduced body size, and lower weight than in Pellino-1 floxed mice; however, these differences are not observed in 20-week-old mice. The increased number of tartrate-resistant acid phosphatase (TRAP)-positive cells and serum levels of C-terminal telopeptides of type I collagen, a marker of bone resorption, in 6-week-old Pellino-1 cKO mice implied a connection between Pellino-1 and the osteoclast population. Enhanced TRAP activity and upregulation of osteoclast genes in BMMs from the cKO mice indicate that Pellino-1 deletion affects osteoclast differentiation, leading to decreased bone mass and heightened osteoclast activity. Thus, targeting Pellino-1 could be a potential gene therapy for managing and preventing osteoporosis.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Biomedical Science, Hwasung Medi-Science University, Hwasung, Gyeonggi-Do, 18274, South Korea
- Stem Cell and Aging Laboratory, Institute of HSMU Medi-Science, Hwasung Medi-Science University, Hwaseong, Gyeonggi-Do, 18274, South Korea
| | - Seung Eun Oh
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sujin Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Tae-Gyun Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| |
Collapse
|
6
|
Ding Q, Xiong B, Liu J, Rong X, Tian Z, Chen L, Tao H, Li H, Zeng P. Bioinformatics analysis of PANoptosis regulators in the diagnosis and subtyping of steroid-induced osteonecrosis of the femoral head. Medicine (Baltimore) 2024; 103:e37837. [PMID: 38701259 PMCID: PMC11062652 DOI: 10.1097/md.0000000000037837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 05/05/2024] Open
Abstract
In this study, we aimed to investigate the involvement of PANoptosis, a form of regulated cell death, in the development of steroid-induced osteonecrosis of the femoral head (SONFH). The underlying pathogenesis of PANoptosis in SONFH remains unclear. To address this, we employed bioinformatics approaches to analyze the key genes associated with PANoptosis. Our analysis was based on the GSE123568 dataset, allowing us to investigate both the expression profiles of PANoptosis-related genes (PRGs) and the immune profiles in SONFHallowing us to investigate the expression profiles of PRGs as well as the immune profiles in SONFH. We conducted cluster classification based on PRGs and assessed immune cell infiltration. Additionally, we used the weighted gene co-expression network analysis (WGCNA) algorithm to identify cluster-specific hub genes. Furthermore, we developed an optimal machine learning model to identify the key predictive genes responsible for SONFH progression. We also constructed a nomogram model with high predictive accuracy for assessing risk factors in SONFH patients, and validated the model using external data (area under the curve; AUC = 1.000). Furthermore, we identified potential drug targets for SONFH through the Coremine medical database. Using the optimal machine learning model, we found that 2 PRGs, CASP1 and MLKL, were significantly correlated with the key predictive genes and exhibited higher expression levels in SONFH. Our analysis revealed the existence of 2 distinct PANoptosis molecular subtypes (C1 and C2) within SONFH. Importantly, we observed significant variations in the distribution of immune cells across these subtypes, with C2 displaying higher levels of immune cell infiltration. Gene set variation analysis indicated that C2 was closely associated with multiple immune responses. In conclusion, our study sheds light on the intricate relationship between PANoptosis and SONFH. We successfully developed a risk predictive model for SONFH patients and different SONFH subtypes. These findings enhance our understanding of the pathogenesis of SONFH and offer potential insights into therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Ding
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Bo Xiong
- Yulin Orthopedic Hospital of Integrated Traditional Chinese and Western Medicine, Yulin, China
| | - Jinfu Liu
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiangbin Rong
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zhao Tian
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Limin Chen
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongcheng Tao
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Hao Li
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Ping Zeng
- Guangxi Traditional Chinese Medical University Affiliated First Hospital, Nanning, China
| |
Collapse
|
7
|
Joseph J, Mathew J, Alexander J. Scaffold Proteins in Autoimmune Disorders. Curr Rheumatol Rev 2024; 20:14-26. [PMID: 37670692 DOI: 10.2174/1573397119666230904151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Cells transmit information to the external environment and within themselves through signaling molecules that modulate cellular activities. Aberrant cell signaling disturbs cellular homeostasis causing a number of different diseases, including autoimmunity. Scaffold proteins, as the name suggests, serve as the anchor for binding and stabilizing signaling proteins at a particular locale, allowing both intra and intercellular signal amplification and effective signal transmission. Scaffold proteins play a critical role in the functioning of tight junctions present at the intersection of two cells. In addition, they also participate in cleavage formation during cytokinesis, and in the organization of neural synapses, and modulate receptor management outcomes. In autoimmune settings such as lupus, scaffold proteins can lower the cell activation threshold resulting in uncontrolled signaling and hyperactivity. Scaffold proteins, through their binding domains, mediate protein- protein interaction and play numerous roles in cellular communication and homeostasis. This review presents an overview of scaffold proteins, their influence on the different signaling pathways, and their role in the pathogenesis of autoimmune and auto inflammatory diseases. Since these proteins participate in many roles and interact with several other signaling pathways, it is necessary to gain a thorough understanding of these proteins and their nuances to facilitate effective target identification and therapeutic design for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Josna Joseph
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - John Mathew
- Department of Clinical Immunology & Rheumatology, CMC Vellore, Tamil Nadu, India
| | - Jessy Alexander
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, New York, USA
| |
Collapse
|
8
|
Pradeep SR, Thirunavukkarasu M, Accorsi D, Swaminathan S, Lim ST, Cernuda B, Kemerley A, Hubbard J, Campbell J, Wilson RL, Coca-Soliz V, Tapias L, Selvaraju V, Jellison ER, Yee SP, Palesty JA, Maulik N. Novel approaches to determine the functional role of cardiomyocyte specific E3 ligase, Pellino-1 following myocardial infarction. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166899. [PMID: 37778482 DOI: 10.1016/j.bbadis.2023.166899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Ubiquitination plays a vital role in controlling vascular inflammation, cellular protein quality control, and minimizing misfolded protein toxicity. Pellino-1 (Peli1), a type of E3 ubiquitin ligase, has emerged as a critical regulator of the innate immune response; however, its role in the repair and regeneration of ischemic myocardium remains to be elucidated. METHODS Mice (8-12 weeks old, male and females) were divided into (i) Wild type (ii) cardiomyocyte-specific Peli1 overexpressed (AMPEL1Tg/+), (iii) cardiomyocyte-specific Peli1 knockout (CP1KO) and were subjected to sham and left anterior descending artery ligation. The tissues were collected at various time points after surgery for Western blot, and immunohistochemical analyses. Echocardiography is performed 30 days after myocardial infarction. Cardiomyocytes isolated from wild-type, Peli1 overexpressed and knockout mice were used to study the interaction between cardiomyocytes and endothelial cells in vitro under oxidative stress and cells were used for Western blot, flow cytometric analysis, and scratch assay. RESULTS We observed faster wound closure and increased expression of angiogenic factors with MCECs treated with conditioned media obtained from the AMPEL1Tg/+ cardiomyocytes compared to CPIKO and WT cardiomyocytes. Again, AMPEL1Tg/+MI mice showed preserved systolic function and reduced fibrosis compared to the CPIKOMI and WTMI groups. Capillary and arteriolar density were found to be increased in AMPEL1Tg/+MI compared to CP1KOMI. Increased survival and angiogenic factors such as p-Akt, p-MK2, p-IkBα, VEGF, cIAP2, and Bcl2 were observed in AMPEL1Tg/+ compared to CP1KO and WT mice subjected to MI. CONCLUSION The present study uncovers the crucial role of cardiac Peli1 as a regulator of the repair and regeneration of ischemic myocardium by using multiple genetically engineered mouse models.
Collapse
Affiliation(s)
- Seetur R Pradeep
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Diego Accorsi
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Santosh Swaminathan
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Sue Ting Lim
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Bryan Cernuda
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Andrew Kemerley
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Jennifer Hubbard
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Jacob Campbell
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Rickesha L Wilson
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Vladimir Coca-Soliz
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Leonidas Tapias
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Vaithinathan Selvaraju
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - J Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA.
| |
Collapse
|
9
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Thirunavukkarasu M, Swaminathan S, Kemerley A, Pradeep SR, Lim ST, Accorsi D, Wilson R, Campbell J, Saad I, Yee SP, Palesty JA, McFadden DW, Maulik N. Role of Pellino-1 in Inflammation and Cardioprotection following Severe Sepsis: A Novel Mechanism in a Murine Severe Sepsis Model †. Cells 2023; 12:1527. [PMID: 37296648 PMCID: PMC10252528 DOI: 10.3390/cells12111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES Intra-abdominal sepsis is commonly diagnosed in the surgical population and remains the second most common cause of sepsis overall. Sepsis-related mortality remains a significant burden in the intensive care unit despite advances in critical care. Nearly a quarter of the deaths in people with heart failure are caused by sepsis. We have observed that overexpression of mammalian Pellino-1 (Peli1), an E3 ubiquitin ligase, causes inhibition of apoptosis, oxidative stress, and preservation of cardiac function in a myocardial infarction model. Given these manifold applications, we investigated the role of Peli1 in sepsis using transgenic and knockout mouse models specific to this protein. Therefore, we aimed to explore further the myocardial dysfunction seen in sepsis through its relation to the Peli 1 protein by using the loss of function and gain-of-function strategy. METHODS A series of genetic animals were created to understand the role of Peli1 in sepsis and the preservation of heart function. Wild-type, global Peli1 knock out (Peli1-/-), cardiomyocyte-specific Peli1 deletion (CP1KO), and cardiomyocyte-specific Peli1 overexpressing (alpha MHC (αMHC) Peli1; AMPEL1Tg/+) animals were divided into sham and cecal ligation and puncture (CLP) surgical procedure groups. Cardiac function was determined by two-dimensional echocardiography pre-surgery and at 6- and 24-h post-surgery. Serum IL-6 and TNF-alpha levels (ELISA) (6 h), cardiac apoptosis (TUNEL assay), and Bax expression (24 h) post-surgery were measured. Results are expressed as mean ± S.E.M. RESULTS AMPEL1Tg/+ prevents sepsis-induced cardiac dysfunction assessed by echocardiographic analysis, whereas global and cardiomyocyte-specific deletion of Peli1 shows significant deterioration of cardiac functions. Cardiac function was similar across the sham groups in all three genetically modified mice. ELISA assay displayed how Peli 1 overexpression decreased cardo-suppressive circulating inflammatory cytokines (TNF-alpha, IL-6) compared to both the knockout groups. The proportion of TUNEL-positive cells varied according to Peli1 expression, with overexpression (AMPEL1Tg/+) leading to a significant reduction and Peli1 gene knockout (Peli1-/- and CP1KO) leading to a significant increase in their presence. A similar trend was also observed with Bax protein expression. The improved cellular survival associated with Peli1 overexpression was again shown with the reduction of oxidative stress marker 4-Hydroxy-2-Nonenal (4-HNE). CONCLUSION Our results indicate that overexpression of Peli1 is a novel approach that not only preserved cardiac function but reduced inflammatory markers and apoptosis following severe sepsis in a murine genetic model.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Santosh Swaminathan
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Andrew Kemerley
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Seetur R. Pradeep
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Sue Ting Lim
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Diego Accorsi
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Rickesha Wilson
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Jacob Campbell
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ibnalwalid Saad
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, University of Connecticut Health School of Medicine, Farmington, CT 06032, USA
| | - J. Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary’s Hospital, Waterbury, CT 06706, USA
| | - David W. McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Nilanjana Maulik
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| |
Collapse
|
11
|
Campbell GR, Rawat P, Teodorof-Diedrich C, Spector SA. IRAK1 inhibition blocks the HIV-1 RNA mediated pro-inflammatory cytokine response from microglia. J Gen Virol 2023; 104:001858. [PMID: 37256770 PMCID: PMC10336426 DOI: 10.1099/jgv.0.001858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are a common source of morbidity in people living with HIV (PLWH). Although antiretroviral therapy (ART) has lessened the severity of neurocognitive disorders, cognitive impairment still occurs in PLWH receiving ART. The pathogenesis of HAND is likely multifaceted, but common factors include the persistence of HIV transcription within the central nervous system, higher levels of pro-inflammatory cytokines in the cerebrospinal fluid, and the presence of activated microglia. Toll-like receptor (TLR) 7 and TLR8 are innate pathogen recognition receptors located in microglia and other immune and non-immune cells that can recognise HIV RNA and trigger pro-inflammatory responses. IL-1 receptor-associated kinase (IRAK) 1 is key to these signalling pathways. Here, we show that IRAK1 inhibition inhibits the TLR7 and TLR8-dependent pro-inflammatory response to HIV RNA. Using genetic and pharmacological inhibition, we demonstrate that inhibition of IRAK1 prevents IRAK1 phosphorylation and ubiquitination, and the subsequent recruitment of TRAF6 and the TAK1 complex to IRAK1, resulting in the inhibition of downstream signalling and the suppression of pro-inflammatory cytokine and chemokine release.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Present address: Microbiologics Inc, San Diego, CA, USA
| | - Carmen Teodorof-Diedrich
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| |
Collapse
|
12
|
Cai KQ, Shellhamer C, Akiyama T, Jensen LE. Pellino1 Restricts Herpes Simplex Virus Infections in the Epidermis and Dissemination to Sebaceous Glands. J Invest Dermatol 2023; 143:639-647.e2. [PMID: 36216205 PMCID: PMC10038864 DOI: 10.1016/j.jid.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Nearly all adults are infected with one or more herpes viruses. The most common are herpes simplex virus (HSV)-1 and HSV-2, which upon reactivation can cause painful skin and mucosal erosions. Patients who are immune compromised often experience frequent, atypical, or chronic lesions and thus a greatly diminished QOL. Pellino1 is a ubiquitin ligase involved in IL-1 and toll-like receptor signaling; however, the role of Pellino1 in skin immunity against HSV is unknown. In this study, using the mouse-flank HSV-1 skin infection model, we show that Pellino1 has several critical functions during active viral replication. Peli1‒/‒ mice succumb more than wild-type mice to systemic disease and develop larger zosteriform skin lesions along affected dermatomes. In Pellino1-deficient mice, the virus spread extensively through the epidermis and follicular infundibulum into sebaceous glands where sebocytes were found positive for the virus. The latter did not appear to involve a shift in how the virus migrated through the nervous system. Immunohistochemistry revealed delayed recruitment of myeloid and T cells to the infected epidermis in Peli1‒/‒ mice. This was associated with decreased expression of the cytokine mRNAs Il1a, Il36b and 2610528A11Rik; the latter also known as Gpr15l. In conclusion, Pellino1 plays important roles in restricting viral dissemination, and the involved pathways may represent novel therapeutic targets in patients with frequent or chronic HSV infections.
Collapse
Affiliation(s)
- Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA
| | - Caitlin Shellhamer
- Department of Microbiology, Immunology & Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Tasuku Akiyama
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, USA
| | - Liselotte E Jensen
- Department of Microbiology, Immunology & Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
Pereira M, Gazzinelli RT. Regulation of innate immune signaling by IRAK proteins. Front Immunol 2023; 14:1133354. [PMID: 36865541 PMCID: PMC9972678 DOI: 10.3389/fimmu.2023.1133354] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of paramount importance in coordinating the early immune response to pathogens. Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid differentiation primary-response protein 88 (MyD88). This signaling adaptor forms the scaffold of the myddosome, a molecular platform that employs IL-1R-associated kinase (IRAK) proteins as main players for transducing signals. These kinases are essential in controlling gene transcription by regulating myddosome assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in other biologically relevant responses such as inflammasome formation and immunometabolism. Here, we summarize some of the key aspects of IRAK biology in innate immunity.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| |
Collapse
|
14
|
Kim SH, Oh J, Roh WS, Park J, Chung KB, Lee GH, Lee YS, Kim JH, Lee HK, Lee H, Park CO, Kim DY, Lee MG, Kim TG. Pellino-1 promotes intrinsic activation of skin-resident IL-17A-producing T cells in psoriasis. J Allergy Clin Immunol 2023; 151:1317-1328. [PMID: 36646143 DOI: 10.1016/j.jaci.2022.12.823] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Psoriasis is a chronically relapsing inflammatory skin disease primarily perpetuated by skin-resident IL-17-producing T (T17) cells. Pellino-1 (Peli1) belongs to a member of E3 ubiquitin ligase mediating immune receptor signaling cascades, including nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. OBJECTIVE We explored the potential role of Peli1 in psoriatic inflammation in the context of skin-resident T17 cells. METHODS We performed single-cell RNA sequencing of relapsing and resolved psoriatic lesions with analysis for validation data set of psoriasis. Mice with systemic and conditional depletion of Peli1 were generated to evaluate the role of Peli1 in imiquimod-induced psoriasiform dermatitis. Pharmacologic inhibition of Peli1 in human CD4+ T cells and ex vivo human skin cultures was also examined to evaluate its potential therapeutic implications. RESULTS Single-cell RNA sequencing analysis revealed distinct T-cell subsets in relapsing psoriasis exhibiting highly enriched gene signatures for (1) tissue-resident T cells, (2) T17 cells, and (3) NF-κB signaling pathway including PELI1. Peli1-deficient mice were profoundly protected from psoriasiform dermatitis, with reduced IL-17A production and NF-κB activation in γδ T17 cells. Mice with conditional depletion of Peli1 treated with FTY720 revealed that Peli1 was intrinsically required for the skin-resident T17 cell immune responses. Notably, pharmacologic inhibition of Peli1 significantly ameliorated murine psoriasiform dermatitis and IL-17A production from the stimulated human CD4+ T cells and ex vivo skin explants modeling psoriasis. CONCLUSION Targeting Peli1 would be a promising therapeutic strategy for psoriasis by limiting skin-resident T17 cell immune responses.
Collapse
Affiliation(s)
- Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jongwook Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Roh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Bae Chung
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | - Jong Hoon Kim
- Deparment of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi, Korea
| | - Chang-Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Ma JH, Zhang YT, Wang LP, Sun QY, Zhang H, Li JJ, Han NN, Zhu YY, Xie XY, Li X. K63 Ubiquitination of P21 Can Facilitate Pellino-1 in the Context of Chronic Obstructive Pulmonary Disease and Lung Cellular Senescence. Cells 2022; 11:cells11193115. [PMID: 36231077 PMCID: PMC9563803 DOI: 10.3390/cells11193115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD) is a kind of age-related, airflow-obstruction disease mostly caused by cigarette smoke. However, the relationship between COPD and lung cellular senescence is still not fully understood. Here, we found silencing Pellino-1 could inhibit the protein level of P21. Then, through constructing cell lines expressed ubiquitin-HA, we found that the E3 ubiquitin ligase Pellino-1 could bind to senescence marker p21 and modify p21 by K63-site ubiquitination by co-IP assays. Furthermore, we found that p21-mediated lung cellular senescence could be inhibited by silencing Pellino-1 in a D-galactose senescence mice model. Moreover, by constructing a COPD mouse model with shPellino-1 adenovirus, we found that silencing Pellino-1 could inhibit COPD and inflammation via reduction of SASPs regulated by p21. Taken together, our study findings elucidated that silencing E3 ligase Pellino-1 exhibits therapeutic potential for treatment to attenuate the progression of lung cellular senescence and COPD.
Collapse
Affiliation(s)
- Jia-Hui Ma
- Marine College, Shandong University, Weihai 264200, China
| | - Yi-Ting Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Ping Wang
- College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou 310000, China
| | - Qing-Yu Sun
- Marine College, Shandong University, Weihai 264200, China
| | - Hao Zhang
- Marine College, Shandong University, Weihai 264200, China
| | - Jian-Jiang Li
- Marine College, Shandong University, Weihai 264200, China
| | - Ning-Ning Han
- Marine College, Shandong University, Weihai 264200, China
| | - Yao-Yao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xiao-Yu Xie
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-531-88382612
| |
Collapse
|
16
|
Wu J, Li T, Mao G, Cha X, Fei S, Miao B. The involvement of Pellino-1 downregulation in the modulation of visceral hypersensitivity via the TLR4/NF-κB pathway in the rat fastigial nucleus. Neurosci Lett 2022; 787:136815. [PMID: 35901910 DOI: 10.1016/j.neulet.2022.136815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Irritable bowel syndrome (IBS) is a common functional bowel disorder whose key characteristics include chronic visceral hypersensitivity (CVH) and abnormal brain-gut interactions. Pellino-1 is an E3 ubiquitin ligase, mediating the degradation or modification of targeted proteins. Some brain regions, such as the fastigial nucleus (FN), may play important roles in CVH; however, the molecular mechanism underlying this phenomenon is not clear. In this study, we assessed the roles of Pellino-1 within the FN in modulating VH by generating a colorectal distention (CRD) model in male Sprague-Dawley rats. Our results showed that the downregulation of Pellino-1 in the fastigial nucleus (FN) was involved in the modulation of visceral hypersensitivity. The expression of Pellino-1 was downregulated in the FN of adult CRD rats compared with control rats, whereas TLR4 and NF-κB were upregulated in the CRD model. To overexpress Pellino-1, a lentivirus specifically expressing Pellino-1 and green fluorescent protein was administered into the FN. The overexpression of Pellino-1 increased the visceral sensitivity of CRD rats, and the expression of TLR4 and NF-κB increased further. After administration of TAK-242 (a specific TLR4 inhibitor), the visceral response to overexpression of Pellino-1 was reversed. Overall, the findings indicated the involvement of the FN in the development of CVH; the downregulation of Pellino-1 in the FN acted through the TLR4/NF-κB pathway to protect against CVH in a CRD rat model.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Tao Li
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Xiuli Cha
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Sujuan Fei
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Bei Miao
- Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
17
|
Campbell GR, Rawat P, Spector SA. Pacritinib Inhibition of IRAK1 Blocks Aberrant TLR8 Signalling by SARS-CoV-2 and HIV-1-Derived RNA. J Innate Immun 2022; 15:96-106. [PMID: 35785771 PMCID: PMC10643889 DOI: 10.1159/000525292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophages promote an early host response to infection by releasing pro-inflammatory cytokines such as interleukin (IL) 1β (IL-1β), tumour necrosis factor (TNF), and IL-6. One of the mechanisms through which cells sense pathogenic microorganisms is through Toll-like receptors (TLRs). IL-1 receptor-associated kinase (IRAK) 1, IRAK2, IRAK3, and IRAK4 are integral to TLR and IL-1 receptor signalling pathways. Recent studies suggest a role for aberrant TLR8 and NLRP3 inflammasome activation during both COVID-19 and HIV-1 infection. Here, we show that pacritinib inhibits the TLR8-dependent pro-inflammatory cytokine response elicited by GU-rich single-stranded RNA derived from SARS-CoV-2 and HIV-1. Using genetic and pharmacologic inhibition, we demonstrate that pacritinib inhibits IRAK1 phosphorylation and ubiquitination which then inhibits the recruitment of the TAK1 complex to IRAK1, thus inhibiting the activation of downstream signalling and the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
18
|
Ugur D, Gungul TB, Yucel S, Ozcivici E, Yalcin-Ozuysal O, Mese G. Connexin 32 overexpression increases proliferation, reduces gap junctional intercellular communication, motility and epithelial-to-mesenchymal transition in Hs578T breast cancer cells. J Cell Commun Signal 2022; 16:361-376. [PMID: 35781670 DOI: 10.1007/s12079-021-00665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Connexins (Cx) are primary components of gap junctions that selectively allow molecules to be exchanged between adjacent cells, regulating multiple cellular functions. Along with their channel forming functions, connexins play a variety of roles in different stages of tumorigenesis and their roles in tumor initiation and progression is isoform- and tissue-specific. While Cx26 and Cx43 were downregulated during breast tumorigenesis, Cx32 was accumulated in the cytoplasm of the cells in lymph node metastasis of breast cancers and Cx32 was further upregulated in metastasis. Cx32's effect on cell proliferation, gap junctional communication, hemichannel activity, cellular motility and epithelial-to-mesenchymal transition (EMT) were investigated by overexpressing Cx32 in Hs578T and MCF7 breast cancer cells. Additionally, the expression and localization of Cx26 and Cx43 upon Cx32 overexpression were examined by Western blot and immunostaining experiments, respectively. We observed that MCF7 cells had endogenous Cx32 while Hs578T cells did not and when Cx32 was overexpressed in these cells, it caused a significant increase in the percentages of Hs578T cells at the S phase in addition to increasing their proliferation. Further, while Cx32 overexpression did not induce hemichannel activity in either cell, it decreased gap junctional communication between Hs578T cells. Additionally, Cx32 was mainly observed in the cytoplasm in both cells, where it did not form gap junction plaques but Cx32 overexpression reduced Cx43 levels without affecting Cx26. Moreover, migration and invasion potentials of Hs578T and migration in MCF7 were reduced upon Cx32 overexpression. Finally, the protein level of mesenchymal marker N-cadherin decreased while epithelial marker ZO-1 and E-cadherin increased in Hs578T cells. We observed that Cx32 overexpression altered cell proliferation, communication, migration and EMT in Hs578T, suggesting a tumor suppressor role in these cells while it had minor effects on MCF7 cells.
Collapse
Affiliation(s)
- Deniz Ugur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey.,Department of Molecular Biology and Genetics, Avrasya University, Trabzon, Turkey
| | - Taha Bugra Gungul
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Simge Yucel
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey.
| |
Collapse
|
19
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
20
|
Cristea I, Bruland O, Rødahl E, Bredrup C. K + regulates relocation of Pellino-2 to the site of NLRP3 inflammasome activation in macrophages. FEBS Lett 2021; 595:2437-2446. [PMID: 34387857 DOI: 10.1002/1873-3468.14176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022]
Abstract
Pellino proteins are E3 ubiquitin ligases involved in the innate immune system. Recently, Pellino-2 was reported to modulate the activation of the mouse Nlrp3 inflammasome. We examined the intracellular localization of human Pellino-2 in THP1-derived macrophages during activation with LPS and ATP. We observed that Pellino-2 changed intracellular localization and colocalized with the inflammasome proteins NLRP3 and ASC late in the assembly of the inflammasome. Colocalization with NLRP3 and ASC was also seen in cells maintained in potassium-free medium. The colocalization and inflammasome activation were abrogated by several potassium channel inhibitors, supporting a role for potassium efflux in modulating intracellular localization of Pellino-2. The data suggest that Pellino-2 is essential for mediating the effect of potassium efflux on inflammasome activation.
Collapse
Affiliation(s)
- Ileana Cristea
- Department of Clinical Medicine, University of Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Yang C, Zhao K, Chen X, Jiang L, Li P, Huang P. Pellino1 deficiency reprograms cardiomyocytes energy metabolism in lipopolysaccharide-induced myocardial dysfunction. Amino Acids 2021; 53:713-737. [PMID: 33885999 PMCID: PMC8128834 DOI: 10.1007/s00726-021-02978-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
Pellino1 has been shown to regulate proinflammatory genes by activating the nuclear factor kappa B (NF-κB) and Toll-like receptor (TLR) signaling pathways, which are important in the pathological development of lipopolysaccharide (LPS)-induced myocarditis. However, it is still unknown whether silencing Pellino1 (si-Pellino1) has a therapeutic effect on this disease. Here, we showed that silencing Pellino1 can be a potential protective strategy for abnormal myocardial energy metabolism in LPS-induced myocarditis. We used liquid chromatography electrospray–ionization tandem mass spectrometry (LC–MS/MS) to analyze samples from si-Pellino1 neonatal rat cardiac myocytes (NRCMs) treated with LPS or left untreated. After normalization of the data, metabolite interaction analysis of matched KEGG pathway associations following si-Pellino1 treatment was applied, accompanied by interaction analysis of gene and metabolite associations after this treatment. Moreover, we used western blot (WB) and polymerase chain reaction (PCR) analyses to determine the expression of genes involved in regulating cardiac energy and energy metabolism in different groups. LC–MS-based metabolic profiling analysis demonstrated that si-Pellino1 treatment could alleviate or even reverse LPS-induced cellular damage by altering cardiomyocytes energy metabolism accompanied by changes in key genes (Cs, Cpt2, and Acadm) and metabolites (3-oxoocotanoyl-CoA, hydroxypyruvic acid, lauroyl-CoA, and NADPH) in NRCMs. Overall, our study unveiled the promising cardioprotective effect of silencing Pellino1 in LPS-induced myocarditis through fuel and energy metabolic regulation, which can also serve as biomarkers for this disease.
Collapse
Affiliation(s)
- Chuanxi Yang
- Department of Cardiology, Medical School of Southeast University, Nanjing, China.,Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xufeng Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Peipei Huang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
22
|
Abstract
Bone homeostasis is maintained by a balance in the levels of osteoclast and osteoblast activity. Osteoclasts are bone-resorbing cells and have been shown to act as key players in various osteolytic diseases. Osteoclasts differentiate from monocyte/macrophage lineage cells in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Osteoblasts support osteoclastogenesis by producing several osteoclast differentiation factors. Toll-like receptors (TLRs) are members of the pattern recognition receptor family that are involved in recognizing pathogen-associated molecular patterns and damage-associated molecular patterns in response to pathogen infection. TLRs regulate osteoclastogenesis and bone resorption through either the myeloid differentiation primary response 88 or the Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling pathways. Since osteoclasts play a central role in the progression of osteolytic diseases, extensive research focusing on TLR downstream signaling in these cells should be conducted to advance the development of effective TLR modulators. In this review, we summarize the currently available information on the role of TLRs in osteoclast differentiation and osteolytic diseases.
Collapse
Affiliation(s)
- Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
23
|
Yang T, Zang S, Wang Y, Zhu Y, Jiang L, Chen X, Zhang X, Cheng J, Gao R, Xiao H, Wang J. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol Lett 2020; 333:150-158. [DOI: 10.1016/j.toxlet.2020.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
|
24
|
Wang L, Yin C, Xu X, Liu T, Wang B, Abdul M, Zhou Y, Cao J, Lu C. Pellino1 Contributes to Morphine Tolerance by Microglia Activation via MAPK Signaling in the Spinal Cord of Mice. Cell Mol Neurobiol 2020; 40:1117-1131. [PMID: 31989355 PMCID: PMC11448779 DOI: 10.1007/s10571-020-00797-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
Chronic morphine-induced antinociceptive tolerance is a major unresolved issue in clinical practices, which is associated with microglia activation in the spinal cord. E3 ubiquitin ligase Pellino1 (Peli1) is known to be an important microglia-specific regulator. However, it is unclear whether Peli1 is involved in morphine tolerance. Here, we found that Peli1 levels in the spinal cord were significantly elevated in morphine tolerance mouse model. Notably, Peli1 was expressed in a great majority of microglia in the spinal dorsal horn, while downregulation of spinal Peli1 attenuated the development of morphine tolerance and associated hyperalgesia. Our biochemical data revealed that morphine tolerance-induced increase in Peli1 was accompanied by spinal microglia activation, activation of mitogen-activated protein kinase (MAPK) signaling, and production of proinflammatory cytokines. Peli1 additionally was found to promote K63-linked ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) in the spinal cord after repeated morphine treatment. Furthermore, knocking down Peli1 in cultured BV2 microglial cells significantly attenuated inflammatory reactions in response to morphine challenge. Therefore, we conclude that the upregulation of Peli1 in the spinal cord plays a curial role in the development of morphine tolerance via Peli1-dependent mobilization of spinal microglia, activation of MAPK signaling, and production of proinflammatory cytokines. Modulation of Peli1 may be a potential strategy for the prevention of morphine tolerance.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiangying Xu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Tianya Liu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Bin Wang
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Mannan Abdul
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Junli Cao
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
25
|
Rastogi M, Singh SK. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194639. [PMID: 32987149 DOI: 10.1016/j.bbagrm.2020.194639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a single positive strand RNA virus, belongs to the Flaviviridae family. JEV is neurotropic in nature which accounts for 30-50% neurological, psychiatric sequelae and movement disorder, with 20-30% case fatality rate among children or elder population. JEV causes neuronal loss and microglial activation which leads to neuroinflammation. The microRNAs are the molecular switches, which regulate the gene expression post-transcriptionally. The microRNA-155 has been reported to be associated with CNS-related pathologies like, experimental autoimmune encephalitis, multiple sclerosis and amyotrophic lateral sclerosis. In the present study, we infected microglial cells with JEV, which resulted in the up-regulation of microRNA-155; quantified by real-time polymerase chain reaction. The gene target prediction databases revealed pellino 1 as a putative gene target for microRNA-155. The over-expression based studies of microRNA-155 mimics, scrambles, inhibitors, and cy3 negative control demonstrated the role of PELI1 in the regulation of the non-canonical NF-κB pathway via TRAF3. The luciferase assay showed the regulation of NF-κB promoter via microRNA-155 in JEV infected microglial cells. The suppression of NF-κB in JEV infected microglial cells led to the reduced expression of IL-6 and TNF-α. JEV exploits cellular microRNA-155 to suppress the expression of PELI1 in human microglial cells as a part of their immune evasion strategy.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India.
| |
Collapse
|
26
|
Marsh EK, Prestwich EC, Williams L, Hart AR, Muir CF, Parker LC, Jonker MR, Heijink IH, Timens W, Fife M, Hussell T, Hershenson MB, Bentley JK, Sun SC, Barksby BS, Borthwick LA, Stewart JP, Sabroe I, Dockrell DH, Marriott HM. Pellino-1 Regulates the Responses of the Airway to Viral Infection. Front Cell Infect Microbiol 2020; 10:456. [PMID: 32984077 PMCID: PMC7488214 DOI: 10.3389/fcimb.2020.00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/24/2020] [Indexed: 01/02/2023] Open
Abstract
Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFα upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.
Collapse
Affiliation(s)
- Elizabeth K. Marsh
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom,Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, United Kingdom
| | - Elizabeth C. Prestwich
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Lynne Williams
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Amber R. Hart
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Clare F. Muir
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Lisa C. Parker
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Marnix R. Jonker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Mark Fife
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J. Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ben S. Barksby
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lee A. Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James P. Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom,MRC/UoE Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Marriott
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom,*Correspondence: Helen M. Marriott
| |
Collapse
|
27
|
Selvaraju V, Thirunavukkarasu M, Joshi M, Oriowo B, Shaikh IA, Rishi MT, Tapias L, Coca-Soliz V, Saad I, Campbell J, Pradeep SR, Swaminathan S, Yee SP, McFadden DW, Alexander Palesty J, Maulik N. Deletion of newly described pro-survival molecule Pellino-1 increases oxidative stress, downregulates cIAP2/NF-κB cell survival pathway, reduces angiogenic response, and thereby aggravates tissue function in mouse ischemic models. Basic Res Cardiol 2020; 115:45. [DOI: 10.1007/s00395-020-0804-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
28
|
Wang L, Yin C, Liu T, Abdul M, Zhou Y, Cao JL, Lu C. Pellino1 regulates neuropathic pain as well as microglial activation through the regulation of MAPK/NF-κB signaling in the spinal cord. J Neuroinflammation 2020; 17:83. [PMID: 32171293 PMCID: PMC7071701 DOI: 10.1186/s12974-020-01754-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal cord microglia plays a crucial role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely determined. Here, we investigated the role of Pellino1 (Peli1) and its interplay with spinal microglial activation in neuropathic pain. METHODS In this study, we examined the effects of Peli1 on pain hypersensitivity and spinal microglial activation after chronic constriction injury (CCI) of the sciatic nerve in mice. The molecular mechanisms involved in Peli1-mediated hyperalgesia were determined by western blot, immunofluorescence, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). We utilized immunoprecipitation to examine the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) following CCI. In addition, we explored the effect of Peli1 on BV2 microglial cells in response to lipopolysaccharide (LPS) challenge. RESULTS We found that CCI induced a significant increase in the levels of Peli1, which was present in the great majority of microglia in the spinal dorsal horn. Our results showed that spinal Peli1 contributed to the induction and maintenance of CCI-induced neuropathic pain. The biochemical data revealed that CCI-induced Peli1 in the spinal cord significantly increased mitogen-activated protein kinase (MAPK) phosphorylation, activated nuclear factor kappa B (NF-κB), and enhanced the production of proinflammatory cytokines, accompanied by spinal microglial activation. Peli1 additionally was able to promote K63-linked ubiquitination of TRAF6 in the ipsilateral spinal cord following CCI. Furthermore, we demonstrated that Peli1 in microglial cells significantly enhanced inflammatory reactions after LPS treatment. CONCLUSION These results suggest that the upregulation of spinal Peli1 is essential for the pathogenesis of neuropathic pain via Peli1-dependent mobilization of spinal cord microglia, activation of MAPK/NF-κB signaling, and production of proinflammatory cytokines. Modulation of Peli1 may serve as a potential approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Tianya Liu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Mannan Abdul
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun-Li Cao
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
29
|
Zhang H, Cheng W, Zheng J, Wang P, Liu Q, Li Z, Shi T, Zhou Y, Mao Y, Yu X. Identification and Molecular Characterization of a Pellino Protein in Kuruma Prawn ( Marsupenaeus Japonicus) in Response to White Spot Syndrome Virus and Vibrio Parahaemolyticus Infection. Int J Mol Sci 2020; 21:ijms21041243. [PMID: 32069894 PMCID: PMC7072872 DOI: 10.3390/ijms21041243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Kuruma prawn, Marsupenaeus japonicus, has the third largest annual yield among shrimp species with vital economic significance in China. White spot syndrome virus (WSSV) is a great threat to the global shrimp farming industry and results in high mortality. Pellino, a highly conserved E3 ubiquitin ligase, has been found to be an important modulator of the Toll-like receptor (TLR) signaling pathways that participate in the innate immune response and ubiquitination. In the present study, the Pellino gene from Marsupenaeus japonicus was identified. A qRT-PCR assay showed the presence of MjPellino in all the tested tissues and revealed that the transcript level of this gene was significantly upregulated in both the gills and hemocytes after challenge with WSSV and Vibrio parahaemolyticus. The function of MjPellino was further verified at the protein level. The results of the three-dimensional modeling and protein-protein docking analyses and a GST pull-down assay revealed that the MjPellino protein was able to bind to the WSSV envelope protein VP26. In addition, the knockdown of MjPellino in vivo significantly decreased the expression of MjAMPs. These results suggest that MjPellino might play an important role in the immune response of kuruma prawn.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Jinbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Tianyi Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yijian Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.M.); (X.Y.)
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
- Correspondence: (Y.M.); (X.Y.)
| |
Collapse
|
30
|
Lin Y, Mao F, Zhang X, Xu D, He Z, Li J, Xiang Z, Zhang Y, Yu Z. TRAF6 suppresses the apoptosis of hemocytes by activating pellino in Crassostrea hongkongensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103501. [PMID: 31634519 DOI: 10.1016/j.dci.2019.103501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, participates in both innate and adaptive immunity and regulates the apoptotic process. In this study, we observed that an ortholog of TRAF6 could inhibit the activity of p53 and suppress the apoptotic process in the Hong Kong oyster, Crassostrea hongkongensis. To investigate the possible molecular mechanism of the ChTRAF6-induced antiapoptotic effect, a GST pull-down screening assay was conducted, and ChPellino was found to physically interact with ChTRAF6. In addition, the interaction between them was confirmed by Co-immunoprecipitation. Furthermore, western blotting revealed that the phosphorylation level of ChPellino was decreased after the RNAi of ChTRAF6, demonstrating that ChTRAF6 may be an upstream regulator of Pellino activation. Furthermore, the apoptosis level of hemocytes increased after ChPellino knockdown, and ChPellino overexpression suppressed ChTRAF6-dependent p53 activation. Taken together, these results indicate that ChPellino plays a critical role in suppressing ChTRAF6-dependent anti-apoptosis in the hemocytes of Crassostrea hongkongensis.
Collapse
Affiliation(s)
- Yue Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Xiangyu Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Duo Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiying He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China.
| |
Collapse
|
31
|
Thirunavukkarasu M, Selvaraju V, Joshi M, Coca-Soliz V, Tapias L, Saad I, Fournier C, Husain A, Campbell J, Yee SP, Sanchez JA, Palesty JA, McFadden DW, Maulik N. Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1. J Am Heart Assoc 2019; 7:e007601. [PMID: 30371196 PMCID: PMC6222946 DOI: 10.1161/jaha.117.007601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The present study demonstrates that the ubiquitin E3 ligase, Pellino‐1 (Peli1), is an important angiogenic molecule under the control of vascular endothelial growth factor (VEGF) receptor 2/Flk‐1. We have previously reported increased survivability of ischemic skin flap tissue by adenovirus carrying Peli1 (Ad‐Peli1) gene therapy in Flk‐1+/− mice. Methods and Results Two separate experimental groups of mice were subjected to myocardial infarction (MI) followed by the immediate intramyocardial injection of adenovirus carrying LacZ (Ad‐LacZ) (1×109 pfu) or Ad‐Peli1 (1×109 pfu). Heart tissues were collected for analyses. Compared with wild‐type (WTMI) mice, analysis revealed decreased expressions of Peli1, phosphorylated (p‐)Flk‐1, p‐Akt, p‐eNOS, p‐MK2, p‐IκBα, and NF‐κB and decreased vessel densities in Flk‐1+/− mice subjected to MI (Flk‐1+/−MI). Mice (CD1) treated with Ad‐Peli1 after the induction of MI showed increased β‐catenin translocation to the nucleus, connexin 43 expression, and phosphorylation of Akt, eNOS, MK2, and IκBα, that was followed by increased vessel densities compared with the Ad‐LacZ–treated group. Echocardiography conducted 30 days after surgery showed decreased function in the Flk1+/−MI group compared with WTMI, which was restored by Ad‐Peli1 gene therapy. In addition, therapy with Ad‐Peli1 stimulated angiogenic and arteriogenic responses in both CD1 and Flk‐1+/− mice following MI. Ad‐Peli1 treatment attenuated cardiac fibrosis in Flk‐1+/−MI mice. Similar positive results were observed in CD1 mice subjected to MI after Ad‐Peli1 therapy. Conclusion Our results show for the first time that Peli1 plays a unique role in salvaging impaired collateral blood vessel formation, diminishes fibrosis, and improves myocardial function, thereby offering clinical potential for therapies in humans to mend a damaged heart following MI.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Vaithinathan Selvaraju
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Mandip Joshi
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Vladimir Coca-Soliz
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Leonidas Tapias
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - IbnalWalid Saad
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Craig Fournier
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Aaftab Husain
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Jacob Campbell
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Siu-Pok Yee
- 4 Center for Mouse Genome Modification University of Connecticut Health Farmington CT
| | - Juan A Sanchez
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - J Alexander Palesty
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - David W McFadden
- 2 Department of Surgery University of Connecticut Health Farmington CT
| | - Nilanjana Maulik
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| |
Collapse
|
32
|
Wietzorrek G, Drexel M, Trieb M, Santos-Sierra S. Anti-inflammatory activity of small-molecule antagonists of Toll-like receptor 2 (TLR2) in mice. Immunobiology 2019; 224:1-9. [PMID: 30509503 DOI: 10.1016/j.imbio.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 2 (TLR2) is currently investigated as a potential therapeutic target in diseases with underlying inflammation like sepsis and arthritis. We reported the discovery, by virtual screening and biological testing, of eight TLR2 antagonists (AT1-AT8) which showed TLR2-inhibitory activity in human cells (Murgueitio et al., 2014). In this study, we have deepened in the mechanism of action and selectivity (TLR2/1 or TLR2/6) of those compounds in mouse primary cells and in vivo. The antagonists reduced, in a dose-dependent way the TNFα production (e.g. AT5 IC50 7.4 μM) and also reduced the nitric oxide (NO) formation in mouse bone marrow-derived macrophages (BMDM). Treatment of BMDM with the antagonists showed that downstream of TLR2, MAPKs phosphorylation and IkBα degradation was reduced. Notably, in a mouse model of tri-acylated lipopeptide (Pam3CSK4)-induced inflammation, AT5 attenuated the TNFα and IL-6 inflammatory response. Further, the effect of AT5 in the stimulation of BMDM by the endogenous alarmin HMGB1 was investigated. Our results indicate that AT4-AT7 and, particularly AT5 appear as good starting points for the development of inhibitors targeting TLR2 in inflammatory disorders.
Collapse
Affiliation(s)
- G Wietzorrek
- Section of Molecular and Cellular Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - M Drexel
- Department of Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - M Trieb
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - S Santos-Sierra
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
33
|
Abstract
This review by Shan et al. discusses necroptosis, a form of regulated necrotic cell death mediated by RIPK1 kinase activity, RIPK3, and MLKL, which can be activated under apoptosis-deficient conditions. Both necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of defective embryos and during human inflammatory and neurodegenerative pathologies. Necroptosis, a form of regulated necrotic cell death mediated by RIPK1 (receptor-interacting protein kinase 1) kinase activity, RIPK3, and MLKL (mixed-lineage kinase domain-like pseudokinase), can be activated under apoptosis-deficient conditions. Modulating the activation of RIPK1 by ubiquitination and phosphorylation is critical to control both necroptosis and apoptosis. Mutant mice with kinase-dead RIPK1 or RIPK3 and MLKL deficiency show no detrimental phenotype in regard to development and adult homeostasis. However, necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of the defective embryos and human inflammatory and neurodegenerative pathologies. RIPK1 inhibition represents a key therapeutic strategy for treatment of diseases where blocking both necroptosis and apoptosis can be beneficial.
Collapse
Affiliation(s)
- Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Pellino-1 Protects Periodontal Ligament Stem Cells Against H2O2-Induced Apoptosis via Activation of NF-κB Signaling. Mol Biotechnol 2018; 60:533-538. [DOI: 10.1007/s12033-018-0067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Li D, Tavana O, Sun SC, Gu W. Peli1 Modulates the Subcellular Localization and Activity of Mdmx. Cancer Res 2018; 78:2897-2910. [PMID: 29523541 PMCID: PMC5984691 DOI: 10.1158/0008-5472.can-17-3531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Mdm2 and Mdmx, both major repressors of p53 in human cancers, are predominantly localized to the nucleus and cytoplasm, respectively. The mechanism by which subcellular localization of Mdmx is regulated remains unclear. In this study, we identify the E3 ligase Peli1 as a major binding partner and regulator of Mdmx in human cells. Peli1 bound Mdmx in vitro and in vivo and promoted high levels of ubiquitination of Mdmx. Peli1-mediated ubiquitination was degradation-independent, promoting cytoplasmic localization of Mdmx, which in turn resulted in p53 activation. Consistent with this, knockdown or knockout Peli1 in human cancer cells induced nuclear localization of Mdmx and suppressed p53 activity. Myc-induced tumorigenesis was accelerated in Peli1-null mice and associated with downregulation of p53 function. Clinical samples of human cutaneous melanoma had decreased Peli1 expression, which was associated with poor overall survival. Together, these results demonstrate that Peli1 acts as a critical factor for the Mdmx-p53 axis by modulating the subcellular localization and activity of Mdmx, thus revealing a novel mechanism of Mdmx deregulation in human cancers.Significance: Peli1-mediated regulation of Mdmx, a major inhibitor of p53, provides critical insight into activation of p53 function in human cancers. Cancer Res; 78(11); 2897-910. ©2018 AACR.
Collapse
Affiliation(s)
- Dawei Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Omid Tavana
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York.
| |
Collapse
|
36
|
Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation. J Neuroinflammation 2018; 15:130. [PMID: 29720226 PMCID: PMC5930864 DOI: 10.1186/s12974-018-1143-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/02/2018] [Indexed: 01/26/2023] Open
Abstract
Background Chronic pro-inflammatory signaling propagates damage to neural tissue and affects the rate of disease progression. Increased activation of Toll-like receptors (TLRs), master regulators of the innate immune response, is implicated in the etiology of several neuropathologies including amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. Previously, we identified that the Bcl-2 family protein BH3-interacting domain death agonist (Bid) potentiates the TLR4-NF-κB pro-inflammatory response in glia, and specifically characterized an interaction between Bid and TNF receptor associated factor 6 (TRAF6) in microglia in response to TLR4 activation. Methods We assessed the activation of mitogen-activated protein kinase (MAPK) and interferon regulatory factor 3 (IRF3) inflammatory pathways in response to TLR3 and TLR4 agonists in wild-type (wt) and bid-deficient microglia and macrophages, using Western blot and qPCR, focusing on the response of the E3 ubiquitin ligases Pellino 1 (Peli1) and TRAF3 in the absence of microglial and astrocytic Bid. Additionally, by Western blot, we investigated the Bid-dependent turnover of Peli1 and TRAF3 in wt and bid−/− microglia using the proteasome inhibitor Bortezomib. Interactions between the de-ubiquitinating Smad6-A20 and the E3 ubiquitin ligases, TRAF3 and TRAF6, were determined by FLAG pull-down in TRAF6-FLAG or Smad6-FLAG overexpressing wt and bid-deficient mixed glia. Results We elucidated a positive role of Bid in both TIR-domain-containing adapter-inducing interferon-β (TRIF)- and myeloid differentiation primary response 88 (MyD88)-dependent pathways downstream of TLR4, concurrently implicating TLR3-induced inflammation. We identified that Peli1 mRNA levels were significantly reduced in PolyI:C- and lipopolysaccharide (LPS)-stimulated bid-deficient microglia, suggesting disturbed IRF3 activation. Differential regulation of TRAF3 and Peli1, both essential E3 ubiquitin ligases facilitating TRIF-dependent signaling, was observed between wt and bid−/− microglia and astrocytes. bid deficiency resulted in increased A20-E3 ubiquitin ligase protein interactions in glia, specifically A20-TRAF6 and A20-TRAF3, implicating enhanced de-ubiquitination as the mechanism of action by which E3 ligase activity is perturbed. Furthermore, Smad6-facilitated recruitment of the de-ubiquitinase A20 to E3-ligases occurred in a bid-dependent manner. Conclusions This study demonstrates that Bid promotes E3 ubiquitin ligase-mediated signaling downstream of TLR3 and TLR4 and provides further evidence for the potential of Bid inhibition as a therapeutic for the attenuation of the robust pro-inflammatory response culminating in TLR activation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1143-3) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Lim R, Barker G, Lappas M. Pellino 1 is a novel regulator of TNF and TLR signalling in human myometrial and amnion cells. J Reprod Immunol 2018; 127:24-35. [PMID: 29751216 DOI: 10.1016/j.jri.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Preterm birth is the primary cause of neonatal deaths and morbidities. Pathological processes causally linked to preterm birth are inflammation and infection. Pellino-1 (Peli1) has previously been found to regulate the inflammatory response in non-gestational tissues in response to toll-like receptor (TLR) ligands and pro-inflammatory cytokines. The aims of this study were to determine the effect of labor on Peli1 expression in myometrium and fetal membranes, and the effect of Peli1 silencing by siRNA (siPELI1) on the production of pro-inflammatory and pro-labor mediators. The expression of Peli1 was found to be higher in myometrium and fetal membranes with term labor, compared to non-laboring samples. Peli1 mRNA and protein expression was also higher in amnion from women with preterm histological chorioamnionitis. In human primary myometrial cells, siPELI1 transfected cells showed a decrease in pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2) and adhesion molecule ICAM1 when in the presence of pro-inflammatory cytokine TNF, TLR2/6 ligand fsl-1, TLR5 ligand flagellin, and TLR3 ligand poly(I:C). Similarly in primary amnion cells, siPELI1 transfected cells decreased IL1B-induced expression and secretion of IL6 and CXCL8. In siPELI1 transfected myometrial cells, there was a decrease in prostaglandin PGF2α and its receptor, PTGFR mRNA expression when treated with TNF. There was a decrease in NF-κB RELA transcriptional activity in siPELI1 transfected cells in the presence of TNF, fsl-1 and flagellin, but not poly(I:C). Our study suggests a novel role for Peli1 in regulating pro-inflammatory and pro-labor mediators through TNF and TLR signalling.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
38
|
Jeon YK, Kim CK, Koh J, Chung DH, Ha GH. Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination. Oncotarget 2018; 7:41811-41824. [PMID: 27248820 PMCID: PMC5173098 DOI: 10.18632/oncotarget.9619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/11/2016] [Indexed: 12/20/2022] Open
Abstract
Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines. Pellino-1 overexpression in human lung cancer cells, A549 and H1299 cells, increased the survival and colony forming ability. Pellino-1 overexpression in these cells also conferred resistance to cisplatin- or paclitaxel-induced apoptosis. In contrast, depletion of Pellino-1 decreased the survival of A549 and H1299 cells and sensitized these cells to cisplatin- and paclitaxel-induced apoptosis. Pellino-1 overexpression in A549 and H1299 cells upregulated the expression of inhibitor of apoptosis (IAP) proteins, including cIAP1 and cIAP2, while Pellino-1 depletion downregulated these molecules. Notably, Pellino-1 directly interacted with cIAP2 and stabilized cIAP2 through lysine63-mediated polyubiquitination via its E3 ligase activity. Pellino-1-mediated chemoresistance in lung cancer cells was dependent on the induction of cIAP2. Moreover, a strong positive correlation between Pellino-1 and the cIAP2 expression was observed in human lung adenocarcinoma tissues. Taken together, these results demonstrate that Pellino-1 contributes to lung oncogenesis through the overexpression of cIAP2 and promotion of cell survival and chemoresistance. Pellino-1 might be a novel oncogene and potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chung Kwon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
39
|
Wang H, Meng H, Li X, Zhu K, Dong K, Mookhtiar AK, Wei H, Li Y, Sun SC, Yuan J. PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci U S A 2017; 114:11944-11949. [PMID: 29078411 PMCID: PMC5692605 DOI: 10.1073/pnas.1715742114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apoptosis and necroptosis are two distinct cell death mechanisms that may be activated in cells on stimulation by TNFα. It is still unclear, however, how apoptosis and necroptosis may be differentially regulated. Here we screened for E3 ubiquitin ligases that could mediate necroptosis. We found that deficiency of Pellino 1 (PELI1), an E3 ubiquitin ligase, blocked necroptosis. We show that PELI1 mediates K63 ubiquitination on K115 of RIPK1 in a kinase-dependent manner during necroptosis. Ubiquitination of RIPK1 by PELI1 promotes the formation of necrosome and execution of necroptosis. Although PELI1 is not directly involved in mediating the activation of RIPK1, it is indispensable for promoting the binding of activated RIPK1 with its downstream mediator RIPK3 to promote the activation of RIPK3 and MLKL. Inhibition of RIPK1 kinase activity blocks PELI1-mediated ubiquitination of RIPK1 in necroptosis. However, we show that PELI1 deficiency sensitizes cells to both RIPK1-dependent and RIPK1-independent apoptosis as a result of down-regulated expression of c-FLIP, an inhibitor of caspase-8. Finally, we show that Peli1-/- mice are sensitized to TNFα-induced apoptosis. Thus, PELI1 is a key modulator of RIPK1 that differentially controls the activation of necroptosis and apoptosis.
Collapse
Affiliation(s)
- Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| | - Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| | - Xingyan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| | - Kezhou Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| | - Kangyun Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| | - Adnan K Mookhtiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Huiting Wei
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115;
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai, 201203, China
| |
Collapse
|
40
|
Mitchell CL, Latuszek CE, Vogel KR, Greenlund IM, Hobmeier RE, Ingram OK, Dufek SR, Pecore JL, Nip FR, Johnson ZJ, Ji X, Wei H, Gailing O, Werner T. α-amanitin resistance in Drosophila melanogaster: A genome-wide association approach. PLoS One 2017; 12:e0173162. [PMID: 28241077 PMCID: PMC5328632 DOI: 10.1371/journal.pone.0173162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 11/17/2022] Open
Abstract
We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant to α-amanitin—a toxin found solely in mushrooms. This resistance may represent a pre-adaptation, which might enable this species to invade the mushroom niche in the future. Although our previous microarray study had strongly suggested that pesticide-metabolizing detoxification genes confer α-amanitin resistance in a Taiwanese D. melanogaster line Ama-KTT, none of the traditional detoxification genes were among the top candidate genes resulting from the GWAS in the current study. Instead, we identified Megalin, Tequila, and widerborst as candidate genes underlying the α-amanitin resistance phenotype in the North American DGRP lines, all three of which are connected to the Target of Rapamycin (TOR) pathway. Both widerborst and Tequila are upstream regulators of TOR, and TOR is a key regulator of autophagy and Megalin-mediated endocytosis. We suggest that endocytosis and autophagy of α-amanitin, followed by lysosomal degradation of the toxin, is one of the mechanisms that confer α-amanitin resistance in the DGRP lines.
Collapse
Affiliation(s)
- Chelsea L Mitchell
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Catrina E Latuszek
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Kara R Vogel
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 1300 University Ave., Madison, WI, United States of America
| | - Ian M Greenlund
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Rebecca E Hobmeier
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Olivia K Ingram
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Shannon R Dufek
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Jared L Pecore
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Felicia R Nip
- College of Human Medicine, Michigan State University, Clinical Center, East Lansing, MI, United States of America
| | - Zachary J Johnson
- U.S. Forest Service, Salt Lake Ranger District 6944 S, 3000 E, Salt Lake City, UT, United States of America
| | - Xiaohui Ji
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Oliver Gailing
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| |
Collapse
|
41
|
Smith SM, Freeley M, Moynagh PN, Kelleher DP. Differential modulation of Helicobacter pylori lipopolysaccharide-mediated TLR2 signaling by individual Pellino proteins. Helicobacter 2017; 22. [PMID: 27302665 DOI: 10.1111/hel.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eradication rates for current H. pylori therapies have fallen in recent years, in line with the emergence of antibiotic resistant infections. The development of therapeutic alternatives to antibiotics, such as immunomodulatory therapy and vaccines, requires a more lucid understanding of host-pathogen interactions, including the relationships between the organism and the innate immune response. Pellino proteins are emerging as key regulators of immune signaling, including the Toll-like receptor pathways known to be regulated by H. pylori. The aim of this study was to characterize the role of Pellino proteins in the innate immune response to H. pylori lipopolysaccharide. MATERIALS AND METHODS Gain-of-function and loss-of-function approaches were utilized to elucidate the role of individual Pellino proteins in the Toll-like receptor 2-mediated response to H. pylori LPS by monitoring NF-ĸB activation and the induction of proinflammatory chemokines. Expression of Pellino family members was investigated in gastric epithelial cells and gastric tissue biopsy material. RESULTS Pellino1 and Pellino2 positively regulated Toll-like receptor 2-driven responses to H. pylori LPS, whereas Pellino3 exerted a negative modulatory role. Expression of Pellino1 was significantly higher than Pellino3 in gastric epithelial cells and gastric tissue. Furthermore, Pellino1 expression was further augmented in gastric epithelial cells in response to infection with H. pylori or stimulation with H. pylori LPS. CONCLUSIONS The combination of low Pellino3 levels together with high and inducible Pellino1 expression may be an important determinant of the degree of inflammation triggered upon Toll-like receptor 2 engagement by H. pylori and/or its components, contributing to H. pylori-associated pathogenesis by directing the incoming signal toward an NF-kB-mediated proinflammatory response.
Collapse
Affiliation(s)
- Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Paul N Moynagh
- Institute of Immunology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Dermot P Kelleher
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Pellino-1 promotes lung carcinogenesis via the stabilization of Slug and Snail through K63-mediated polyubiquitination. Cell Death Differ 2016; 24:469-480. [PMID: 28009353 PMCID: PMC5457685 DOI: 10.1038/cdd.2016.143] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
Pellino-1 is an E3 ubiquitin ligase acting as a critical mediator for a variety of immune receptor signaling pathways, including Toll-like receptors, interleukin-1 receptor and T-cell receptors. We recently showed that the Pellino-1-transgenic (Tg) mice developed multiple tumors with different subtypes in hematolymphoid and solid organs. However, the molecular mechanism underlying the oncogenic role of Pellino-1 in solid tumors remains unknown. Pellino-1-Tg mice developed adenocarcinoma in the lungs, and Pellino-1 expression was higher in human lung adenocarcinoma cell lines compared with non-neoplastic bronchial epithelial cell lines. Pellino-1 overexpression increased the cell proliferation, survival, colony formation, invasion and migration of lung adenocarcinoma cells, whereas Pellino-1 knock-down showed the opposite effect. Pellino-1 overexpression activated PI3K/Akt and ERK signaling pathways and elicited an epithelial–mesenchymal transition (EMT) phenotype of lung adenocarcinoma cells. Pellino-1-mediated EMT was demonstrated through morphology, the upregulation of Vimentin, Slug and Snail expression and the downregulation of E-cadherin and β-catenin expression. Notably, Pellino-1 had a direct effect on the overexpression of Snail and Slug through Lys63-mediated polyubiquitination and the subsequent stabilization of these proteins. Pellino-1 expression level was significantly correlated with Snail and Slug expression in human lung adenocarcinoma tissues, and lung tumors from Pellino-1-Tg mice showed Snail and Slug overexpression. The Pellino-1-mediated increase in the migration of lung adenocarcinoma cells was mediated by Snail and Slug expression. Taken together, these results show that Pellino-1 contributes to lung tumorigenesis by inducing overexpression of Snail and Slug and promoting EMT. Pellino-1 might be a potential therapeutic target for lung cancer.
Collapse
|
43
|
Medvedev AE, Sabroe I, Hasday JD, Vogel SN. Invited review: Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many host cell types, including endothelial and epithelial cells, neutrophils, monocytes, natural killer cells, dendritic cells and macrophages, initiate the first line of defense against infection by sensing conserved microbial structures through Toll-like receptors (TLRs). Recognition of microbial ligands by TLRs induces their oligomerization and triggers intracellular signaling pathways, leading to production of pro- and anti-inflammatory cytokines. Dysregulation of the fine molecular mechanisms that tightly control TLR signaling may lead to hyperactivation of host cells by microbial products and septic shock. A prior exposure to bacterial products such as lipopolysaccharide (LPS) may result in a transient state of refractoriness to subsequent challenge that has been referred to as `tolerance'. Tolerance has been postulated as a protective mechanism limiting excessive inflammation and preventing septic shock. However, tolerance may compromise the host's ability to counteract subsequent bacterial challenge since many septic patients exhibit an increased incidence of recurrent bacterial infection and suppressed monocyte responsiveness to LPS, closely resembling the tolerant phenotype. Thus, by studying mechanisms of microbial tolerance, we may gain insights into how normal regulatory mechanisms are dysregulated, leading ultimately to microbial hyporesponsivess and life-threatening disease. In this review, we present current theories of the molecular mechanisms that underlie induction and maintenance of `microbial tolerance', and discuss the possible relevance of tolerance to several infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Andrei E. Medvedev
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, Maryland, USA,
| | - Ian Sabroe
- Academic Unit of Respiratory Medicine, Division of Genomic Medicine, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Jeffrey D. Hasday
- Department of Medicine, University of Maryland, Baltimore (UMB), Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, Maryland, USA
| |
Collapse
|
44
|
Medvedev AE, Murphy M, Zhou H, Li X. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses. Immunol Rev 2016; 266:109-22. [PMID: 26085210 DOI: 10.1111/imr.12298] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.
Collapse
Affiliation(s)
- Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
45
|
Zhu Z, Wang L, Hao R, Zhao B, Sun L, Ye RD. Cutting Edge: A Cullin-5-TRAF6 Interaction Promotes TRAF6 Polyubiquitination and Lipopolysaccharide Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:21-6. [PMID: 27233966 DOI: 10.4049/jimmunol.1600447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
TNFR-associated factor (TRAF)6 integrates signals from multiple cell surface receptors for the activation of NF-κB. However, the mechanism underlying LPS-induced TRAF6 signaling remains unclear. We report that cullin-5 (Cul-5), a cullin family scaffold protein, binds to TRAF6 and promotes TRAF6 polyubiquitination at Lys(63) in response to LPS stimulation. A direct interaction between the C-terminal domain of Cul-5 and the TRAF-C domain of TRAF6 facilitates polyubiquitination of TRAF6. Hemizygous Cul-5 knockout is associated with improved survival of mice following LPS challenge and significant delays in the phosphorylation of p65/RelA, ERK, JNK, and p38 MAPKs in LPS-stimulated macrophages, along with a marked decrease in NF-κB activation. These findings identify Cul-5 as a signaling component that connects an LPS-activated TLR4-MyD88 complex to TRAF6 for efficient activation of NF-κB.
Collapse
Affiliation(s)
- Ziyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Lili Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Rui Hao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Bo Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
46
|
Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia. eNeuro 2016; 3:eN-NWR-0099-15. [PMID: 27257617 PMCID: PMC4870272 DOI: 10.1523/eneuro.0099-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1G93A expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.
Collapse
|
47
|
Ni J, Liu J, Leng RX, Pan HF, Ye DQ. Genetic Polymorphism (rs329498) in the Pellino-1 Gene as Possible Predisposal Factor for Systemic Lupus Erythematosus in a Chinese Population. Immunol Invest 2016; 45:181-90. [DOI: 10.3109/08820139.2015.1099662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Ghosh S, Dass JFP. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene 2016; 584:97-109. [PMID: 26968890 DOI: 10.1016/j.gene.2016.03.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/05/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022]
Abstract
NFκB has been known to be a necessary transcription factor for the functioning of nearly all cells in a living organism. For its proper functioning, it talks to several other molecular cofactors and interacts with their functionalities resulting in a convoluted cross talking mesh of signalling networks. To completely understand the working of nuclear factor-kappa B protein, one needs to understand the interactions that occur during its lifecycle, with cofactors from various biological processes. This study attempts to elaborate and bridge the gaps on the cross-talk interactions that NFkB is a part of, during its activation pathway. For this Cytoscape and its various plugins (Cytocopter, Allegro, AgilentLitSearch and Styles) are employed. Other related pathways were also collated and analysed for cross-talk between NfκB and interacting molecules. NFκB was found to mainly interact with E3 ubiquitin ligase, NIK, RIP, TCR, IRAK-1, TLR, TRAF-6, NLR and IL-1, details of which are discussed as a part of this study.
Collapse
Affiliation(s)
- Sayantan Ghosh
- Bioinformatics Division, School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - J Febin Prabhu Dass
- Bioinformatics Division, School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
49
|
Lee YS, Park JS, Jung SM, Kim SD, Kim JH, Lee JY, Jung KC, Mamura M, Lee S, Kim SJ, Bae YS, Park SH. Inhibition of lethal inflammatory responses through the targeting of membrane-associated Toll-like receptor 4 signaling complexes with a Smad6-derived peptide. EMBO Mol Med 2016; 7:577-92. [PMID: 25766838 PMCID: PMC4492818 DOI: 10.15252/emmm.201404653] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously reported that Smad6, one of the inhibitory Smads of transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling, inhibits Toll-like receptor (TLR) 4 signaling by disrupting the Pellino-1-mediated TLR4 signaling complex. Here, we developed Smaducin-6, a novel membrane-tethered palmitic acid-conjugated Smad6-derived peptide composed of amino acids 422–441 of Smad6. Smaducin-6 interacted with Pellino-1, located in the inner membrane, thereby disrupting the formation of IRAK1-, RIP1-, IKKε-mediated TLR4 signaling complexes. Systemic administration of Smaducin-6 showed a significant therapeutic effect on mouse TLR4-mediated inflammatory disease models, cecal-ligation–puncture (CLP)-induced sepsis, and lipopolysaccharide-induced endotoxemia, by inhibiting pro-inflammatory cytokine production and apoptosis while enhancing neutrophil migration and bacterial clearance. Our findings provide clues to develop new peptide-based drugs to target Pellino-1 protein in TLR4 signaling pathway for the treatment of sepsis.
Collapse
Affiliation(s)
- Youn Sook Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Sang-Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jun Hwan Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Korea
| | - Mizuko Mamura
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | | | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
50
|
Murphy MB, Xiong Y, Pattabiraman G, Manavalan TT, Qiu F, Medvedev AE. Pellino-3 promotes endotoxin tolerance and acts as a negative regulator of TLR2 and TLR4 signaling. J Leukoc Biol 2015; 98:963-74. [PMID: 26310831 DOI: 10.1189/jlb.2vma0515-229rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022] Open
Abstract
Development of endotoxin tolerance in macrophages during sepsis reprograms Toll-like receptor 4 signaling to inhibit proinflammatory cytokines without suppressing anti-inflammatory and antimicrobial mediators and protects the host from excessive inflammation and tissue damage. However, endotoxin tolerance renders septic patients immunocompromised and unable to control secondary infections. Although previous studies have revealed the importance of several negative regulators of Toll-like receptor signaling in endotoxin tolerance, the role of Pellino proteins has not been addressed. The present report shows that the induction of endotoxin tolerance in vivo in mice and in vitro in human monocytes and THP-1 and MonoMac-6 macrophages increases the expression of Pellino-3. Overexpression of Pellino-3 in human embryonic kidney 293/Toll-like receptor 2 or 293/Toll-like receptor 4/myeloid differentiation factor-2 cells inhibited Toll-like receptor 2/4-mediated activation of nuclear factor-κB and induction of CXCL-8 mRNA, and Pellino-3 ablation increased these responses. Pellino-3-deficient THP-1 cells had elevated Toll-like receptor 2/4-driven tumor necrosis factor-α, interleukin-6 mRNA, and Toll-like receptor 4-driven CCL5 gene expression in response to Toll-like receptor agonists and heat-killed Escherichia coli and Staphylococcus aureus, cytokines controlled by the MyD88 and Toll-interleukin-1R domain-containing protein inducing interferon-β-mediated pathways, respectively. In addition, deficiency in Pellino-3 slightly increased phagocytosis of heat-killed bacteria. Transfected Pellino-3 inhibited nuclear factor-κB activation driven by overexpression of MyD88, TIR domain-containing adapter inducing interferon-β, interleukin-1R-associated kinase-1, and tumor necrosis factor receptor activator of nuclear factor-κB-binding kinase-1, TGF-β-activated kinase 1, and tumor necrosis factor receptor-associated factor-6, and inhibited interleukin-1R-associated kinase 1 modifications and tumor necrosis factor receptor activator of nuclear factor-κB-binding kinase 1 phosphorylation. Finally, Pellino-3 ablation in THP-1 decreased the extent of endotoxin tolerization. Thus, Pellino-3 is involved in endotoxin tolerance and functions as a negative regulator of Toll-like receptor 2/4 signaling.
Collapse
Affiliation(s)
- Michael B Murphy
- *Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanbao Xiong
- *Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Goutham Pattabiraman
- *Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tissa T Manavalan
- *Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fu Qiu
- *Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrei E Medvedev
- *Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|