1
|
Soutto M, Zhang X, El-Rifai W. Reply. Gastroenterology 2023; 164:499-500. [PMID: 36397305 DOI: 10.1053/j.gastro.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Xing Zhang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
2
|
Asa SL, Mete O, Ezzat S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:3-16. [PMID: 33433883 DOI: 10.1007/s12022-021-09663-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shereen Ezzat
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Asa SL, Ezzat S. Gonadotrope Tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:187-210. [PMID: 27697203 DOI: 10.1016/bs.pmbts.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gonadotrope tumors arise from the gonadotropes of the adenohypophysis. These cells rarely give rise to hyperplasia, usually only in the setting of long-standing premature gonadal failure. In contrast, gonadotrope tumors represent one of the most frequent types of pituitary tumors. Despite their relatively common occurrence, the pathogenesis of gonadotrope tumors remains unknown. Effective nonsurgical therapies remain out of reach. We review the pituitary gonadotrope from the morphologic and functional perspectives to better understand its involvement as the cell of origin of a frequent type of pituitary tumor.
Collapse
Affiliation(s)
- S L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - S Ezzat
- Department of Medicine, University of Toronto, Endocrine Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Qiu GH, Xie X, Deng L, Hooi SC. Tumor Suppressor DLEC1 can Stimulate the Proliferation of Cancer Cells When AP-2ɑ2 is Down-Regulated in HCT116. HEPATITIS MONTHLY 2015; 15:e29829. [PMID: 26834787 PMCID: PMC4723729 DOI: 10.5812/hepatmon.29829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular mechanisms of tumor suppressor gene DLEC1 are largely unknown. OBJECTIVES In this study, we established DLEC1 over-expression stable clones to study the cellular function of DLEC1 in the colorectal cancer cell line, HCT116. MATERIALS AND METHODS Stable clones with DLEC1 over-expression were first established by the transfection of DLEC1 expression construct pcDNA31DLEC1 in HCT116. On G418 selection, positive stable clones were screened for DLEC1 expression level by conventional reverse transcription-polymerase chain reaction (RT-PCR), and verified by real-time RT-PCR and Western blotting. Subsequently, these stable clones were subjected to colony formation and cell cycle analyses and identification of factors involved in G1 arrest. Lastly, three stable clones, DLEC1-7 (highest DLEC1 expression), DLEC1-3 (lowest expression) and pcDNA31 vector control, were employed to analyze cell proliferation and cell cycle after AP-2α2 knockdown by siRNAs. RESULTS The DLEC1 over-expression was found to reduce the number of colonies in colony formation and to induce G1 arrest in seven clones, and apoptosis in one clone in the cell cycle analysis. Furthermore, regardless of the different cell cycle defects in all eight stable clones, the expression level of transcriptional factor AP-2α2 was found to be elevated. More interestingly, we found that when AP-2α2 was knocked down, DLEC1 over-expression neither suppressed cancer cell growth nor induced G1 arrest, yet, instead promoted cell growth and decreased cells in the G1 fraction. This promotion of cell proliferation and release of G1 cells also seemed to be proportional to DLEC1 expression levels in DLEC1 stable clones. CONCLUSIONS DLEC1 suppresses tumor cell growth the presence of AP-2α2 and stimulates cell proliferation in the down-regulation of AP-2α2 in DLEC1 over-expression stable clones of HTC116.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, PR China
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Corresponding Authors: Guo-Hua Qiu, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, PR China. Tel/Fax: +86-59786330103, E-mail: ; Shing Chuan Hooi, Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore. Tel: +65-65163222, Fax: +65-67788161, E-mail:
| | - Xiaojin Xie
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, PR China
| | - Shing Chuan Hooi
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Corresponding Authors: Guo-Hua Qiu, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, PR China. Tel/Fax: +86-59786330103, E-mail: ; Shing Chuan Hooi, Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore. Tel: +65-65163222, Fax: +65-67788161, E-mail:
| |
Collapse
|
5
|
Heinzle C, Erdem Z, Paur J, Grasl-Kraupp B, Holzmann K, Grusch M, Berger W, Marian B. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr Pharm Des 2015; 20:2881-98. [PMID: 23944363 DOI: 10.2174/13816128113199990594] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine 1, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
6
|
FUKUOKA H, TAKAHASHI Y. The role of genetic and epigenetic changes in pituitary tumorigenesis. Neurol Med Chir (Tokyo) 2014; 54:943-57. [PMID: 25446387 PMCID: PMC4533359 DOI: 10.2176/nmc.ra.2014-0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenomas are one of the most common intracranial tumors. Despite their benign nature, dysregulation of hormone secretion causes systemic metabolic deterioration, resulting in high mortality and an impaired quality of life. Tumorigenic pathogenesis of pituitary adenomas is mainly investigated by performing genetic analyses of somatic mutations in the tumor or germline mutations in patients. Genetically modified mouse models, which develop pituitary adenomas, are also used. Genetic analysis in rare familial pituitary adenomas, including multiple endocrine neoplasia type 1 and type 4, Carney complex, familial isolated pituitary adenomas, and succinate dehydrogenases (SDHs)-mediated paraganglioma syndrome, revealed several causal germline mutations and sporadic somatic mutations in these genes. The analysis of genetically modified mouse models exhibiting pituitary adenomas has revealed the underlying mechanisms, where cell cycle regulatory molecules, tumor suppressors, and growth factor signaling are involved in pituitary tumorigenesis. Furthermore, accumulating evidence suggests that epigenetic changes, including deoxyribonucleic acid (DNA) methylation, histone modification, micro ribonucleic acids (RNAs), and long noncoding RNAs play a pivotal role. The elucidation of precise mechanisms of pituitary tumorigenesis can contribute to the development of novel targeted therapy for pituitary adenomas.
Collapse
Affiliation(s)
- Hidenori FUKUOKA
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Hyogo
| | - Yutaka TAKAHASHI
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Hyogo
| |
Collapse
|
7
|
Abstract
The genetic mutations underlying familial syndromes that include pituitary tumors are rarely noted in the majority of sporadic adenohypophyseal adenomas. In contrast, epigenetic dysregulation is common, resulting in differential expression of cell cycle and apoptosis regulators, adhesion molecules, growth factors, and metabolic determinants of cell function. Here, we discuss the diagnostic and therapeutic implications of these findings as the landscape of pituitary tumor defects unfolds.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, Ontario, Canada, M5G 2C4,
| | | |
Collapse
|
8
|
Nakano-Tateno T, Tateno T, Hlaing MM, Zheng L, Yoshimoto K, Yamada S, Asa SL, Ezzat S. FGFR4 polymorphic variants modulate phenotypic features of Cushing disease. Mol Endocrinol 2014; 28:525-33. [PMID: 24625004 DOI: 10.1210/me.2013-1412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cushing disease is a potentially lethal condition resulting from hormone excess, usually due to a small pituitary tumor that fails to respond to negative feedback inhibition. A minority of patients develop larger, more aggressive tumors of the same lineage but with modest hormone excess. Here we show that a common polymorphism in the fibroblast growth factor receptor 4 (FGFR4) transmembrane domain yields receptor isoforms with distinct properties that mediate these biological differences. Forced expression of the major FGFR4-G388 variant allele supports pY-signal transducer and activator of transcription (STAT3) responses. In contrast, expression of the minor FGFR4-R388 allele enhances STAT3 serine phosphorylation, driving cellular growth. In addition, FGFR4-R388 enhances glucocorticoid receptor phosphorylation and nuclear translocation. Consistent with these findings, glucocorticoid administration resulted in enhanced hormone negative feedback in mice with knock-in of the FGFR4 variant allele. Moreover, clinical data from patients with pituitary tumors revealed that those homozygous for the R388 allele have a higher frequency of silent corticotroph macroadenomas than FGFR4-G388 carriers, who were more likely to have small but hormonally active microadenomas. These findings demonstrate that the FGFR4 transmembrane polymorphic variants can modulate cellular growth and sensitivity to glucocorticoid hormone negative feedback through distinct STAT3 modifications of relevance to the human forms of Cushing disease.
Collapse
Affiliation(s)
- Tae Nakano-Tateno
- Departments of Medicine (T.N.-T., T.T., M.M.H., L.Z., S.E.) and Laboratory Medicine and Pathobiology (T.N.-T., T.T., S.L.A.), University of Toronto, Toronto, Ontario, Canada M5S 2J7; The Endocrine Oncology Site Group (T.N.-T., T.T., S.L.A., S.E.), Princess Margaret Hospital, Toronto, Ontario, Canada M5T 2M9; Ontario Cancer Institute (T.N.-T., T.T., S.L.A., S.E.), University Health Network, Toronto, Ontario, Canada M5G-1X5; Department of Medical Pharmacology (K.Y.), Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, 770-0855, Japan; and Hypothalamic and Pituitary Surgery (S.Y.), Toranomon Hospital, Tokyo 105-0001, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mechanisms of pituitary tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Planchart A. Analysis of an intronic promoter within Synj2. Biochem Biophys Res Commun 2013; 440:640-5. [PMID: 24103750 DOI: 10.1016/j.bbrc.2013.09.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 11/26/2022]
Abstract
Synj2 (synaptojanin 2) encodes an inositol polyphosphate phosphatase that functions in recycling neurotransmitter vesicles and is implicated in spermatogenesis. Transcription of Synj2 is thought to occur from one of two promoters based on analysis of a variable 5' untranslated region. Clustering all known mouse Synj2 transcripts led us to uncover a novel subset of transcripts that appears to derive from a region located within intron 7. We identified two alternate splice variants emanating from use of this promoter. These alternate splice variants manifest developmental stage specificity and somatic versus gametic differences in expression.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC 27695, USA.
| |
Collapse
|
11
|
Abstract
Pituitary adenomas exhibit a wide range of behaviors. The prediction of aggressive or malignant behavior in pituitary adenomas remains challenging; however, the utility of biomarkers is rapidly evolving. In this review, we discuss potential biomarkers as they relate to aggressive behavior in pituitary adenomas. While detailed histological subtyping remains the best independent predictor of aggressive behavior in the majority of cases, evidence suggests that the additional analyses of FGFR4, MMP, PTTG, Ki-67, p53, and deletions in chromosome 11 may contribute to decisions concerning management of aggressive pituitary adenomas.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th Floor, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
12
|
Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A, Ezzat S. The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet 2011; 7:e1002400. [PMID: 22174695 PMCID: PMC3234213 DOI: 10.1371/journal.pgen.1002400] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022] Open
Abstract
Pituitary tumors are common intracranial neoplasms, yet few germline abnormalities have been implicated in their pathogenesis. Here we show that a single nucleotide germline polymorphism (SNP) substituting an arginine (R) for glycine (G) in the FGFR4 transmembrane domain can alter pituitary cell growth and hormone production. Compared with FGFR4-G388 mammosomatotroph cells that support prolactin (PRL) production, FGFR4-R388 cells express predominantly growth hormone (GH). Growth promoting effects of FGFR4-R388 as evidenced by enhanced colony formation was ascribed to Src activation and mitochondrial serine phosphorylation of STAT3 (pS-STAT3). In contrast, diminished pY-STAT3 mediated by FGFR4-R388 relieved GH inhibition leading to hormone excess. Using a knock-in mouse model, we demonstrate the ability of FGFR4-R385 to promote GH pituitary tumorigenesis. In patients with acromegaly, pituitary tumor size correlated with hormone excess in the presence of the FGFR4-R388 but not the FGFR4-G388 allele. Our findings establish a new role for the FGFR4-G388R polymorphism in pituitary oncogenesis, providing a rationale for targeting Src and STAT3 in the personalized treatment of associated disorders. Several human cancers have been associated with increased growth hormone levels. Here we show that a frequent single nucleotide polymorphism (SNP) associated with increased cancer risk and progression also deregulates pituitary function. Through recruitment of a distinct STAT3 signaling cascade, this polymorphic receptor variant drives pituitary growth hormone cell survival and hormonal output. These findings provide an example of a potentially common genetic program shared between cancer and a hormone that promotes its progression.
Collapse
Affiliation(s)
- Toru Tateno
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- The Endocrine Oncology Site Group, Princess Margaret Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Sylvia L. Asa
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- The Endocrine Oncology Site Group, Princess Margaret Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lei Zheng
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- The Endocrine Oncology Site Group, Princess Margaret Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Thomas Mayr
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Shereen Ezzat
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- The Endocrine Oncology Site Group, Princess Margaret Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
13
|
Asa SL, Ezzat S. The pathogenesis of pituitary tumors. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:97-126. [PMID: 19400692 DOI: 10.1146/annurev.pathol.4.110807.092259] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently there has been significant progress in our understanding of pituitary development, physiology, and pathology. New information has helped to clarify the classification of pituitary tumors. Epidemiologic analyses have identified a much higher incidence of pituitary tumors than previously thought. We review the pathogenetic factors that have been implicated in pituitary tumorigenesis and the application of novel targeted therapies that underscore the increasingly important role of the pathologist in determining accurate diagnoses and facilitating appropriate treatment of patients with these disorders.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network and Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
14
|
Abstract
Epigenetically-mediated gene dysregulation is a common feature associated with human pituitary tumorigenesis. The mechanisms leading to these changes, however, remain largely unknown. In this review, we examine changes responsible for DNA and histone modifications as independent, butpotentially interrlated modes of communication effecting chromatin remodeling. The dynamic properties of the enzymes involved in these reactions is highlighted. We use the fibroblast growth factor receptor 2 (FGFR2) as a model through which the p53-regulating melanoma-associated antigen (MAGE) system is governing in pituitary cells. The pathogenetic and potential therapeutic implications are discussed.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Zhu X, Asa SL, Ezzat S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008; 14:1984-96. [PMID: 18381936 DOI: 10.1158/1078-0432.ccr-07-2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Four members of the fibroblast growth factor receptor (FGFR) family transduce signals of a diverse group of FGF ligands. The FGFR2-IIIb isoform is abundantly present in the normal pituitary gland with contrasting down-regulation in neoplastic pituitary cells. cDNA profiling identified the cancer-testis antigen melanoma-associated antigen A3 (MAGE-A3) as a putative target negatively regulated by FGFR2. EXPERIMENTAL DESIGN Comparisons were made between normal and neoplastic human and mouse pituitary cells. Gene expression was examined by reverse transcription-PCR, DNA methylation was determined by methylation-specific PCR and combined bisulfite restriction analysis, and histone modification marks were identified by chromatin immunoprecipitation. RESULTS Normal human pituitary tissue that expresses FGFR2-IIIb does not express MAGE-A3; in contrast, pituitary tumors that are FGFR2 negative show abundant MAGE-A3 mRNA expression. MAGE-A3 expression correlates with the presence and extent of DNA promoter methylation; more frequent and higher-degree methylation is present in the normal gland compared with pituitary tumors. Conversely, pituitary tumors are hypomethylated, particularly in females where MAGE-A3 expression is nearly thrice higher than in males. Estradiol treatment induces MAGE-A3 through enhanced histone 3 acetylation and diminished methylation. The effects of estradiol are directly opposed by FGF7/FGFR2-IIIb. Down-regulation of MAGE-A3 results in p53 transcriptional induction, also through reciprocal histone acetylation and methylation modifications. CONCLUSIONS These findings highlight MAGE-A3 as a target of FGFR2-IIIb and estrogen action and provide evidence for a common histone-modifying network in the control of the balance between opposing signals.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
16
|
Kwiatkowski BA, Kirillova I, Richard RE, Israeli D, Yablonka-Reuveni Z. FGFR4 and its novel splice form in myogenic cells: Interplay of glycosylation and tyrosine phosphorylation. J Cell Physiol 2008; 215:803-17. [PMID: 18186042 PMCID: PMC3276070 DOI: 10.1002/jcp.21365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here, we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(-16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(-16) coincided with that of wild-type FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T(1/2)-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Blotting, Western
- Cell Differentiation
- Cell Line
- Cells, Cultured
- DNA, Complementary/genetics
- Glycosylation
- Humans
- Mice
- Mice, Inbred C57BL
- Muscle Cells/cytology
- Muscle Cells/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
Collapse
Affiliation(s)
- Boguslaw A. Kwiatkowski
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Irina Kirillova
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Robert E. Richard
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Boikos SA, Stratakis CA. Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Hum Mol Genet 2007; 16 Spec No 1:R80-7. [PMID: 17613552 DOI: 10.1093/hmg/ddm019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pituitary tumors are among the most common human neoplasms. Although these common lesions rarely become clinically manifest and they are almost never malignant, they are the cause of significant morbidity in affected patients. The genetic causes of common pituitary tumors remain for the most part unknown; progress has been limited to the elucidation of the molecular etiology of four genetic syndromes predisposing to pituitary neoplasias: McCune-Albright syndrome, multiple endocrine neoplasia type 1, Carney complex and, most recently, familial acromegaly and prolactinomas and other tumors caused by mutations in the GNAS, menin, PRKAR1A, AIP, and p27 (CDKN1B) genes, respectively. Intense molecular studies of sporadic pituitary tumors from patients with negative family histories and no other neoplasms have yielded interesting findings with abnormalities in growth factor expression and cell cycle control dysregulation. To add to the difficulties in understanding pituitary tumorigenesis in man, good murine models of these neoplasms simply do not exist: pituitary tumors are common in rodents, but their histologic origin (mostly from the intermediate lobe), age of presentation (late in murine life) and clinical course make them hardly models of their human counterparts. The present report reviews the clinical and molecular genetics of the cAMP-dependent protein kinase pathway in human pituitary tumors; it also reviews briefly other pathways that have been involved in sporadic pituitary neoplasms. At the end, we attempt a unifying hypothesis for pituitary tumorigenesis, taking into account data that are also discussed elsewhere in this issue.
Collapse
Affiliation(s)
- Sosipatros A Boikos
- Section on Endocrinology and Genetics (SEGEN), Developmental Endocrinology Branch (DEB), National Institute of Child Health and Human Development (NICHD), National Institues of Health, Bethesda, MD 20892-1103, USA
| | | |
Collapse
|
18
|
Zhu X, Lee K, Asa SL, Ezzat S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1618-28. [PMID: 17456767 PMCID: PMC1854956 DOI: 10.2353/ajpath.2007.061111] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2007] [Indexed: 01/07/2023]
Abstract
Four members of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases transduce signals of a diverse group of more than 23 fibroblast growth factor (FGF) ligands. Each prototypic receptor is composed of three immunoglobulin-like extracellular domains, two of which are involved in ligand binding. Alternative RNA splicing of one of two exons results in two different forms of the second half of the third immunoglobulin-like domain, the IIIb or IIIc isoforms. The contribution of each receptor and their isoforms in tumorigenesis remains unknown. In the pituitary, FGFR2 is expressed primarily as the IIIb isoform in normal adenohypophysial cells. In contrast, FGFR2 is significantly down-regulated in mouse corticotroph AtT20 tumor cells where the 5' promoter is methylated. Treatment of AtT20 cells with 5'-azacytidine resulted in FGFR2 re-expression, mainly as the FGFR2-IIIb isoform. Chromatin immunoprecipitation revealed evidence of histone methylation, but not of deacetylation, in the silencing of FGFR2 in AtT20 cells. Exposure of these cells to the cognate FGFR2-IIIb ligand FGF-7 resulted in diminished Rb phosphorylation and accumulation of p21 and p27, indicating diminished cell cycle progression. Examination of primary human pituitary adenomas revealed FGFR2 down-regulation in 52% (11 of 21) of samples and FGFR2 promoter DNA methylation in 45% (10 of 22) of samples. These data highlight the contribution from DNA and histone methylation as epigenetic mechanisms responsible for FGFR2 silencing in pituitary neoplasia.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Canada
| | | | | | | |
Collapse
|
19
|
Baudet ML, Martin B, Hassanali Z, Parker E, Sanders EJ, Harvey S. Expression, translation, and localization of a novel, small growth hormone variant. Endocrinology 2007; 148:103-15. [PMID: 17008400 DOI: 10.1210/en.2006-1070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel transcript of the GH gene has been identified in ocular tissues of chick embryos. It is, however, unknown whether this transcript (small chicken GH, scGH) is translated. This possibility was therefore assessed. The expression of scGH mRNA was confirmed by RT-PCR, using primers that amplified a 426-bp cDNA of its coding sequence. This cDNA was inserted into an expression plasmid to transfect HEK 293 cells, and its translation was shown by specific scGH immunoreactivity in extracts of these cells. This immunoreactivity was directed against the unique N terminus of scGH and was associated with a protein of 16 kDa, comparable with its predicted size. Most of the immunoreactivity detected was, however, associated with a 31-kDa moiety, suggesting scGH is normally dimerized. Neither protein was, however, present in media of the transfected HEK cells, consistent with scGH's lack of a signal sequence. Similar moieties of 16 and 31 kDa were also found in proteins extracted from ocular tissues (neural retina, pigmented epithelium, lens, cornea, choroid) of embryos, although they were not consistently present in vitreous humor. Specific scGH immunoreactivity was also detected in these tissues by immunocytochemistry but not in axons in the optic fiber layer or the optic nerve head, which were immunoreactive for full-length GH. In summary, we have established that scGH expression and translation occurs in ocular tissues of chick embryos, in which its localization in the neural retina and the optic nerve head is distinct from that of the full-length protein.
Collapse
Affiliation(s)
- M-L Baudet
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
20
|
Ezzat S, Asa SL. Mechanisms of disease: The pathogenesis of pituitary tumors. ACTA ACUST UNITED AC 2006; 2:220-30. [PMID: 16932287 DOI: 10.1038/ncpendmet0159] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 12/29/2005] [Indexed: 11/08/2022]
Abstract
Pituitary tumors exhibit a spectrum of biology, with variable growth and hormonal behaviors. They therefore provide an opportunity to examine pathogenetic mechanisms that underlie the neoplastic process. These include alterations in hormone regulation, growth-factor stimulation, cell-cycle control and cell-stromal interactions that result from genetic mutations or epigenetic disruption of gene expression. Mouse models have validated the roles of these alterations, which can be targets for the development of therapies that can manage these lesions. These therapies are increasingly recognized as critical for quality of life.
Collapse
Affiliation(s)
- Shereen Ezzat
- The Freeman Centre for Endocrine Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Abstract
Prolactinomas account for approximately 40% of all pituitary adenomas and are an important cause of hypogonadism and infertility. The ultimate goal of therapy for prolactinomas is restoration or achievement of eugonadism through the normalization of hyperprolactinemia and control of tumor mass. Medical therapy with dopamine agonists is highly effective in the majority of cases and represents the mainstay of therapy. Recent data indicating successful withdrawal of these agents in a subset of patients challenge the previously held concept that medical therapy is a lifelong requirement. Complicated situations, such as those encountered in resistance to dopamine agonists, pregnancy, and giant or malignant prolactinomas, may require multimodal therapy involving surgery, radiotherapy, or both. Progress in elucidating the mechanisms underlying the pathogenesis of prolactinomas may enable future development of novel molecular therapies for treatment-resistant cases. This review provides a critical analysis of the efficacy and safety of the various modes of therapy available for the treatment of patients with prolactinomas with an emphasis on challenging situations, a discussion of the data regarding withdrawal of medical therapy, and a foreshadowing of novel approaches to therapy that may become available in the future.
Collapse
Affiliation(s)
- Mary P Gillam
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
22
|
Ezzat S, Zheng L, Winer D, Asa SL. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 2006; 20:2965-75. [PMID: 16857743 DOI: 10.1210/me.2006-0223] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several molecular aberrations have been implicated in the pathogenesis of pituitary tumors, but few have proven thus far to be of therapeutic value. Pituitary tumor-derived fibroblast growth factor receptor-4 (ptd-FGFR4) is an alternatively transcribed cytoplasmic isoform lacking most of the extracellular domain. This oncogene recapitulates the morphological features of human pituitary tumors in transgenic mice. To investigate the therapeutic potential of targeting ptd-FGFR4, we examined the impact of FGFR4 tyrosine kinase inhibition in xenografted mice. GH4 pituitary cells expressing ptd-FGFR4 develop into invasive tumors. Systemic treatment of mice bearing ptd-FGFR4 tumors with the FGFR-selective inhibitor PD173074 resulted in recovery of membranous N-cadherin staining and a significant reduction in tumor volume with less invasive growth behavior. Mutation of tyrosine Y754F in ptd-FGFR4 abrogated the effect of PD173074-mediated inhibition. The pivotal role of N-cadherin as a mediator of this pituitary cell growth was demonstrated by small interfering RNA mediated down-regulation, which promoted invasive growth in xenografted mice. To validate this model in primary human pituitary tumors, we examined the expression of ptd-FGFR4, N-cadherin, and clinical behavior. Loss of membranous N-cadherin correlated with cytoplasmic FGFR4 expression and with tumor invasiveness in surgically resected human pituitary tumors. Primary human pituitary tumor cells treated with PD173074 showed restoration of N-cadherin to the membrane with dephosphorylation of retinoblastoma protein. These data highlight the pathogenetic significance of N-cadherin misexpression and emphasize the importance of FGFR partnership in mediating its functions.
Collapse
MESH Headings
- Adenoma/drug therapy
- Adenoma/etiology
- Adenoma/metabolism
- Animals
- Antineoplastic Agents/therapeutic use
- Brain Neoplasms/metabolism
- Cadherins/metabolism
- Cadherins/physiology
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, SCID
- Models, Biological
- Neoplasm Invasiveness
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Pituitary Neoplasms/drug therapy
- Pituitary Neoplasms/etiology
- Pituitary Neoplasms/metabolism
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/physiology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Somatotrophs
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
23
|
Ezzat S, Mader R, Fischer S, Yu S, Ackerley C, Asa SL. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic-pituitary-mediated somatic growth. Proc Natl Acad Sci U S A 2006; 103:2214-9. [PMID: 16467156 PMCID: PMC1413703 DOI: 10.1073/pnas.0508565103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ikaros transcription factors play critical functions in the control of lymphohematopoiesis and immune regulation. Family members contain multiple zinc fingers that mediate DNA binding and homooligomerization or heterooligomerization. Ikaros is abundantly expressed in pituitary mammosomatotrophs, where it deacetylates histone 3 sites on the proximal growth hormone (GH) promoter to silence gene expression. Ikaros-null mice display stunted growth with reduced circulating levels of the GH target factor insulin-like growth factor I (IGF-I). Ikaros-deficient mice have small anterior pituitary glands with a disproportionately reduced somatotroph population. Systemic administration of GH results in increased IGF-I levels and enhanced somatic growth. In contrast, reconstitution with WT lymphocytes was not sufficient to rescue the stunted growth phenotype of Ikaros-deficient mice. Ikaros was identified in mouse hypothalamic arcuate nuclei, where it colocalized with GH-releasing hormone (GHRH); in contrast, Ikaros-null mice lack GHRH immunoreactivity in the hypothalamus. Overexpression of Ikaros enhanced GHRH promoter activity and induced endogenous GHRH gene expression. These findings unmask a wider role for Ikaros in the neuroendocrine system, highlighting a critical contribution to the development of the hypothalamic-pituitary somatotrophic axis.
Collapse
Affiliation(s)
- Shereen Ezzat
- *Department of Medicine, Mount Sinai Hospital
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
- To whom correspondence should be addressed at:
Ontario Cancer Institute, University of Toronto, 610 University Avenue, 8-327, Toronto, ON, Canada, M5G-2M9. E-mail:
or
| | - Rene Mader
- Department of Pathology, University Health Network
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Sandra Fischer
- Department of Pathology, University Health Network
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - ShunJiang Yu
- *Department of Medicine, Mount Sinai Hospital
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | | | - Sylvia L. Asa
- Department of Pathology, University Health Network
- The Freeman Centre for Endocrine Oncology and Ontario Cancer Institute, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9
- To whom correspondence should be addressed at:
Ontario Cancer Institute, University of Toronto, 610 University Avenue, 8-327, Toronto, ON, Canada, M5G-2M9. E-mail:
or
| |
Collapse
|
24
|
Abstract
It is becoming increasingly evident that cell adhesion is an important determinant of organised growth and the maintenance of architectural integrity. Indeed, reduced adhesiveness between cells and with the extracellular matrix is a hallmark of neoplastic growth. In neuroendocrine tissues, neural cell adhesion molecule is implicated in modulating cell growth, migration, and differentiation. This review will focus on the molecular pathways involving key growth factor receptors that govern normal adhesive forces. The extent to which disruption of these adhesive forces contributes to the tumorigenic process in neuroendocrine tissues will be highlighted. Validation of the functional relevance of these adhesive pathways will be discussed in light of targeted pharmacotherapeutic studies that are unmasking novel approaches to the treatment of neuroendocrine tumours.
Collapse
Affiliation(s)
- S Ezzat
- Department of Medicine, University of Toronto, Endocrine Oncology Site Group, Mount Sinai and Princess Margaret Hospitals, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G-1X5.
| | | |
Collapse
|
25
|
Abstract
Genetics and proteomics determine structure and function of normal tissues, and the molecular alterations that underlie tumorigenesis result in changes in these aspects of tissue biology in neoplasms. We review the known genetic alterations in pituitary tumors. These include the oncogenic Gsalpha protein (GSP)-activating mutations, and pituitary tumor-derived fibroblast growth factor receptor-4 (ptd-FGFR4), as well as tumor suppressor gene mutations associated with multiple endocrine neoplasia type 1 (MEN1). Other candidates identified from expression profiling include pituitary tumor-transforming gene (PTTG), GADD45, and bone morphogenic protein (BMP)4. Proteomic changes in pituitary tumors include classical alterations identified by immunohistochemistry as well as epigenetic reductions in p27. The underlying mechanisms for dysregulated cell adhesive molecules including cadherins and FGFRs are reviewed. The combined use of genetic and proteomic approaches will enhance novel drug therapeutic development.
Collapse
Affiliation(s)
- Sylvia L Asa
- Endocrine Oncology Site Group, Mount Sinai and Princess Margaret Hospitals, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
26
|
Ezzat S, Mader R, Yu S, Ning T, Poussier P, Asa SL. Ikaros integrates endocrine and immune system development. J Clin Invest 2005; 115:1021-9. [PMID: 15841184 PMCID: PMC1070405 DOI: 10.1172/jci22486] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 01/11/2005] [Indexed: 11/17/2022] Open
Abstract
Ikaros transcription factors are essential regulators of lymphopoiesis and the development of the immune system. We now show that Ikaros is expressed in hormone-producing pituitary corticomelanotroph cells, where it binds the proopiomelanocortin promoter and regulates endogenous gene expression. Loss of Ikaros in vivo results in contraction of the pituitary corticomelanotroph population, reduced circulating adrenocorticotrophic hormone levels, and adrenal glucocorticoid insufficiency. While hemopoietic reconstitution failed to correct this hormonal deficit, the phenotype of reduced body weight and diminished survival was rescued by systemic glucocorticoid-hormone administration. Given the established immunomodulatory properties of glucocorticoid hormones, these findings reveal a novel role for Ikaros in orchestrating immune-endocrine development and function.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Ezzat S, Mader R, Yu S, Ning T, Poussier P, Asa SL. Ikaros integrates endocrine and immune system development. J Clin Invest 2005. [DOI: 10.1172/jci200522486] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Yu SJ, Zheng L, Ladanyi M, Asa SL, Ezzat S. Sp1-mediated transcriptional control of fibroblast growth factor receptor 4 in sarcomas of skeletal muscle lineage. Clin Cancer Res 2005; 10:6750-8. [PMID: 15475466 DOI: 10.1158/1078-0432.ccr-04-0223] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) have been implicated in a multitude of differentiating and proliferative actions. FGFR4 is expressed mainly in lung, kidney, pancreas, spleen, and developing muscle. FGFR4 was found to be overexpressed in some human malignancies, where it has been implicated in their pathogenesis. Recently, FGFR4 was found to be overexpressed in pediatric rhabdomyosarcomas, based on cDNA microarray analysis. Using Northern blotting, reverse transcription-polymerase chain reaction, and Western blotting, we classified four human rhabdomyosarcoma-derived cell lines based on their relative expression of FGFR4. We defined a 214 bp (-115/+99) promoter that functioned as a minimal promoter and examined cis-DNA elements implicated in the control of expression of the FGFR4 gene in these cells. Overlapping 40- to 50-bp fragments of the minimal promoter were examined by electrophoretic mobility shift assay using nuclear extracts from cell lines with high (HS729-1015) or low (HS729-1016) FGFR4 expression. Fragment C (-65/-26) formed specific complexes with nuclear extracts from both cell lines. Fragment B (-95/-56), however, formed distinct complexes mainly with the high FGFR4-expressing HS729-1015 cells. Both fragments yielded complexes that were competed by an Sp oligonucleotide and supershifted by Sp1 and by Sp3 antibodies. Transfection of Sp1 but not Sp3 efficiently activated FGFR4 promoter activity, an effect that was significantly more pronounced in the HS729-1015 cell line than in the low FGFR4-expressing HS729-1016 cell line. Deletion of each of the two Sp-binding sites in fragments B and C resulted in loss of promoter activity. In particular, deletion of the 5' Sp-binding site in fragment B was associated with the greatest loss of activity. Sp1 protein expression correlated with FGFR4 expression in cell lines and primary human rhabdomyosarcomas. Furthermore, transfection of Sp1 and methylation inhibition was effective in inducing the endogenous FGFR4 gene in HS729-1015 cells. Our findings point to Sp1 as an important contributor to FGFR4 transcriptional control and elucidate a potential mechanism for the heterogeneous expression of FGFR4 in neoplasms derived from the same cell lineage.
Collapse
Affiliation(s)
- Shun Jiang Yu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, The Freeman Centre for Endocrine Oncology and The Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
Ezzat S, Yu S, Asa SL. The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol Endocrinol 2004; 19:1004-11. [PMID: 15618287 DOI: 10.1210/me.2004-0432] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Ikaros transcription factors perform critical functions in the control of lymphohematopoiesis and immune regulation. Family members contain multiple zinc fingers that mediate DNA binding but have also been implicated as part of a complex chromatin-remodeling network. We show here that Ikaros is expressed in pituitary mammosomatotrophs where it regulates the GH and prolactin (PRL) genes. Ikaros was detected by Northern and Western blotting in GH4 pituitary mammosomatotroph cells. Wild-type Ikaros (Ik1) inhibits GH mRNA and protein expression but stimulates PRL mRNA and protein levels. Ikaros does not bind directly to the proximal GH promoter but abrogates the effect of the histone deacetylation inhibitor trichostatin A on this region. Ikaros selectively deacetylates histone 3 residues on the proximal transfected or endogenous GH promoter and limits access of the Pit1 activator. In contrast, Ikaros acetylates histone 3 on the proximal PRL promoter and facilitates Pit1 binding to this region in the same cells. These data provide evidence for Ikaros-mediated histone acetylation and chromatin remodeling in the selective regulation of pituitary GH and PRL hormone gene expression.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
30
|
Yu S, Zheng L, Trinh DK, Asa SL, Ezzat S. Distinct transcriptional control and action of fibroblast growth factor receptor 4 in differentiating skeletal muscle cells. J Transl Med 2004; 84:1571-80. [PMID: 15467729 DOI: 10.1038/labinvest.3700187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although FGF signaling promotes myoblast proliferation and represses myogenic differentiation, one of the FGF receptors (FGFR), FGFR4, is expressed mainly in mature skeletal muscle. Disruption of FGFR4 signaling interrupts chick limb muscle formation. To determine the developmental regulation of FGFR4 expression, we compared the transcriptional control and action of FGFR4 in myoblasts and myotubes. We identified higher FGFR4 expression in differentiated myotubes than precursor myoblasts. FGFR4 promoter activity was localized within a region 115 bp upstream of the transcription start site. Overlapping fragments of this promoter displayed a distinct difference when compared by electromobility shift assay (EMSA) using nuclear extracts from myoblasts and myotubes. While fragments B (-95/-56) and C (-65/-26) formed specific complexes in both cell types, these complexes were consistently more intense in myotubes than myoblasts. These complexes were efficiently competed by an Sp-type oligonucleotide and were supershifted by Sp1 and by Sp3 antibodies. Deletions of the Sp-binding sites in fragment B (-95/-56) confirmed their critical contribution to promoter activity. Moreover, Sp1 expression correlated with FGFR4-expression in myotubes. To determine whether FGFR4 expression regulates myoblast differentiation, we infected a soluble dominant-negative FGFR4-containing adenovirus into these cells. This significantly impeded Erk1/2 phosphorylation and differentiation of myoblasts into MHC-expressing myotubes. Our findings point to distinct transcriptional regulation and action for FGFR4 in differentiating skeletal muscle cells.
Collapse
Affiliation(s)
- Shunjiang Yu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, The Freeman Centre for Endocrine Oncology and The Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Qian ZR, Sano T, Asa SL, Yamada S, Horiguchi H, Tashiro T, Li CC, Hirokawa M, Kovacs K, Ezzat S. Cytoplasmic expression of fibroblast growth factor receptor-4 in human pituitary adenomas: relation to tumor type, size, proliferation, and invasiveness. J Clin Endocrinol Metab 2004; 89:1904-11. [PMID: 15070963 DOI: 10.1210/jc.2003-031489] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pathogenesis of pituitary adenomas remains unknown. A pituitary tumor-derived (ptd) isoform of fibroblast growth factor receptor-4 (ptd-FGFR4) has been implicated in the neoplastic process. To further understand the expression of FGFR4 in sporadic human pituitary adenomas, we studied 137 pituitary adenomas of various types (102 adenomas from Japanese patients and 35 adenomas from Canadian patients) and 10 nontumorous pituitaries using a polyclonal antiserum that recognizes the C terminus of FGFR4 and analyzed possible relationships among expression of FGFR4, patient nationality, tumor type, size, invasion, and the labeling index of the proliferation marker Ki-67 using the MIB-1 antibody. Cytoplasmic expression of FGFR4 protein was observed in 57.8% of Japanese cases and 62.8% of Canadian cases. FGFR4 reactivity was absent in all 10 normal adenohypophysial tissues examined. FGFR4 expression in pituitary adenomas was restricted mainly to the cytoplasm, a pattern similar to that seen in rat pituitary cells transfected with human ptd-FGFR4 but different from that of cells transfected with wild-type FGFR4, which displayed membrane localization of staining. Protein from primary human adenomas migrated as a 65-kDa species consistent with the predicted size of ptd-FGFR4. FGFR4 protein expression was frequently found in adenomas containing GH, ACTH, or FSH/LH and was also found in null cell adenomas, but reactivity was relatively rare in prolactin-containing adenomas in both Japanese and Canadian groups. The expression of FGFR4 protein was stronger in macroadenomas than in microadenomas (P = 0.02) and high levels of FGFR4 expression (moderate or greater density staining) were more frequently observed in macroadenomas than in microadenomas (P < 0.05). High levels of FGFR4 expression also correlated significantly with the proliferation marker Ki-67 (P = 0.002) and tended (but not significantly) to be found in invasive tumors. These data are consistent with a role for ptd-FGFR4 in pituitary tumorigenesis in a majority of human pituitary adenomas. Moreover, detection of FGFR4 cytoplasmic staining may provide an ancillary diagnostic tool in the diagnosis of pituitary adenoma, particularly in equivocal cases.
Collapse
Affiliation(s)
- Zhi Rong Qian
- Department of Pathology, University of Tokushima School of Medicine, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ezzat S, Yu S, Asa SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5' fibroblast growth factor receptor-4 promoter. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1177-84. [PMID: 12937159 PMCID: PMC1868268 DOI: 10.1016/s0002-9440(10)63477-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted expression of a human pituitary tumor derived-fibroblast growth factor receptor-4 (FGFR4) recapitulates pituitary tumorigenesis. We have shown that FGFR4 is a target for Ikaros, a zinc finger-containing transcription factor that localizes to heterochromatin regions and participates in higher order chromatin complexes and control of gene expression. We report here the expression of Ikaros and functional differences between its alternatively spliced variants in human pituitary tumors. Ik1 expression was detected in human pituitary tumors and we also identified a truncated isoform consistent with the non-DNA-binding Ik6 isoform in a subset of adenomas by reverse transcriptase-polymerase chain reaction, sequencing, and Western immunoblotting. Transfection of Ik6 in GH4 pituitary cells resulted in predominantly cytoplasmic expression as compared to Ik1, which resulted in exclusively nuclear expression as determined by immunofluorescence and immunoblotting of fractionated protein. Immunohistochemistry of primary human pituitary adenomas localized Ikaros expression to the nuclear compartment but also in the cytoplasm, the latter consistent with Ik6. Expression of Ikaros and truncated non-DNA-binding isoforms was also suggested by electromobility shift assays using nuclear proteins from primary human pituitary adenomas. Ik6 resulted in reversal of the effects of Ik1 on wild-type 5' FGFR4 promoter activity, histone acetylation, and regulation of the endogenous gene. We conclude that dominant-negative Ik6 isoforms with their distinct localization and effects on Ik1 action may contribute to the altered expression of FGFR4 and possibly other target genes in human pituitary tumors.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, Mount Sinai Hospital, University Health Network, University of Toronto, 610 University Avenue, 4-302, Toronto, Ontario, Canada M5G 2M9.
| | - Shunjiang Yu
- From the Department of Medicine,*Mount Sinai Hospital, and the Department of Pathology,†University Health Network, University of Toronto, The Freeman Centre for Endocrine Oncology, and The Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Sylvia L. Asa
- From the Department of Medicine,*Mount Sinai Hospital, and the Department of Pathology,†University Health Network, University of Toronto, The Freeman Centre for Endocrine Oncology, and The Ontario Cancer Institute, Toronto, Ontario, Canada
| |
Collapse
|