1
|
Han IH, Jeong C, Yang J, Park SH, Hwang DS, Bae H. Therapeutic Effect of Melittin–dKLA Targeting Tumor-Associated Macrophages in Melanoma. Int J Mol Sci 2022; 23:ijms23063094. [PMID: 35328518 PMCID: PMC8954064 DOI: 10.3390/ijms23063094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
Melanoma is an immunogenic tumor and a serious type of skin cancer. Tumor-associated macrophages (TAMs) express an M2-like phenotype and are involved in all stages of melanomagenesis; it is hence a promising target for cancer immunotherapy. We herein investigated whether melittin–dKLA inhibits the growth of melanoma by inducing apoptosis of M2-like macrophages. For the in vitro study, a conditioned medium of macrophages was prepared from M0, M1, or M2-differentiated THP-1 cells with and without melittin–dKLA. The affinity of melittin for M2 macrophages was studied with FITC (fluorescein isothiocyanate)-conjugated melittin. For the in vivo study, murine melanoma cells were inoculated subcutaneously in the right flank of mice, melittin–dKLA was intraperitoneally injected at 200 nmol/kg every three days, and flow cytometry analysis of TAMs was performed. Since melittin binds preferentially to M2-like macrophages, melittin–dKLA induced more caspase 3 expression and cell death in M2 macrophages compared with M0 and M1 macrophages and melanoma cells. Melittin–dKLA significantly inhibited the proliferation and migration of M2 macrophages, resulting in a decrease in melanoma tumor growth in vivo. The CD206+ M2-like TAMs were reduced, while the CD86+ M1-like TAMs were not affected. Melittin–dKLA is therapeutically effective against melanoma by inducing the apoptosis of M2-like TAMs.
Collapse
Affiliation(s)
- Ik-Hwan Han
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
| | - Chanmi Jeong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea
| | - Seung-Hyeok Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea;
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea;
- Correspondence: (D.-S.H.); (H.B.); Tel.: +82-2-961-9316 (H.B.); Fax: +82-2-962-9316 (H.B.)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
- Correspondence: (D.-S.H.); (H.B.); Tel.: +82-2-961-9316 (H.B.); Fax: +82-2-962-9316 (H.B.)
| |
Collapse
|
2
|
Moyers JT, Glitza Oliva IC. Immunotherapy for Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:81-111. [PMID: 34972963 DOI: 10.1007/978-3-030-79308-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma is the leading cause of death from skin cancer and is responsible for over 7000 deaths in the USA each year alone. For many decades, limited treatment options were available for patients with metastatic melanoma; however, over the last decade, a new era in treatment dawned for oncologists and their patients. Targeted therapy with BRAF and MEK inhibitors represents an important cornerstone in the treatment of metastatic melanoma; however, this chapter carefully reviews the past and current therapy options available, with a significant focus on immunotherapy-based approaches. In addition, we provide an overview of the results of recent advances in the adjuvant setting for patients with resected stage III and stage IV melanoma, as well as in patients with melanoma brain metastases. Finally, we provide a brief overview of the current research efforts in the field of immuno-oncology for melanoma.
Collapse
Affiliation(s)
- Justin T Moyers
- Department of Investigational Cancer Therapeutics, UT MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | | |
Collapse
|
3
|
Gedon J, Kehl A, Aupperle-Lellbach H, von Bomhard W, Schmidt JM. BRAF mutation status and its prognostic significance in 79 canine urothelial carcinomas: A retrospective study (2006-2019). Vet Comp Oncol 2021; 20:449-457. [PMID: 34878687 DOI: 10.1111/vco.12790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Urothelial carcinoma (UC) is the most common tumour of the canine urinary bladder. Recently, BRAF mutation testing emerged as a diagnostic option, but its prognostic significance is unknown. This study investigates the relationship between BRAF (variant V595E) mutation status and overall survival in UC-bearing dogs. Seventy-nine patients histologically diagnosed with UC of the bladder and/or urethra between 2006 and 2019 were included in this retrospective single-centre-study. Treatment consisted of meloxicam (n = 39, group 1 'Melox'), mitoxantrone and meloxicam (+/- followed by metronomic chlorambucil; n = 23, group 2 'Chemo') or partial cystectomy followed by meloxicam +/- mitoxantrone (n = 17, group 3 'Sx'). Survival was significantly influenced by treatment (p = .0002) and tumour location (p < .001) in both uni- and multivariable analyses. BRAF mutation was identified in 51 tumours (=64.6%) and had no statistically significant influence on overall survival: MST for BRAF-negative patients 359 versus 214 days for BRAF-positive dogs (p = .055). However, in BRAF-positive dogs, survival depended significantly on type of treatment in univariable analysis: MSTs for groups 1-3 were 151, 244 and 853 days, respectively (p = .006); In BRAF-positive group 2 ('Chemo')-patients, adjuvant metronomic chlorambucil after mitoxantrone more than doubled MST compared to patients receiving mitoxantrone alone (588 vs. 216 days; p = .030). In contrast, MSTs were not significantly different in BRAF-negative patients among the three treatment groups (p = .069). Multivariate analysis of these data was not possible due to group size limitations. This study identified tumour location and treatment type, but not BRAF mutation status, as independent prognostic factors for overall survival.
Collapse
Affiliation(s)
- Julia Gedon
- Small Animal Clinic Hofheim, Hofheim am Taunus, Germany
| | | | | | | | | |
Collapse
|
4
|
Schrom S, Hebesberger T, Wallner SA, Anders I, Richtig E, Brandl W, Hirschmugl B, Garofalo M, Bernecker C, Schlenke P, Kashofer K, Wadsack C, Aigelsreiter A, Heitzer E, Riedl S, Zweytick D, Kretschmer N, Richtig G, Rinner B. MUG Mel3 Cell Lines Reflect Heterogeneity in Melanoma and Represent a Robust Model for Melanoma in Pregnancy. Int J Mol Sci 2021; 22:ijms222111318. [PMID: 34768746 PMCID: PMC8583216 DOI: 10.3390/ijms222111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
Melanomas are aggressive tumors with a high metastatic potential and an increasing incidence rate. They are known for their heterogeneity and propensity to easily develop therapy-resistance. Nowadays they are one of the most common cancers diagnosed during pregnancy. Due to the difficulty in balancing maternal needs and foetal safety, melanoma is challenging to treat. The aim of this study was to provide a potential model system for the study of melanoma in pregnancy and to illustrate melanoma heterogeneity. For this purpose, a pigmented and a non-pigmented section of a lymph node metastasis from a pregnant patient were cultured under different conditions and characterized in detail. All four culture conditions exhibited different phenotypic, genotypic as well as tumorigenic properties, and resulted in four newly established melanoma cell lines. To address treatment issues, especially in pregnant patients, the effect of synthetic human lactoferricin-derived peptides was tested successfully. These new BRAF-mutated MUG Mel3 cell lines represent a valuable model in melanoma heterogeneity and melanoma pregnancy research. Furthermore, treatment with anti-tumor peptides offers an alternative to conventionally used therapeutic options—especially during pregnancy.
Collapse
Affiliation(s)
- Silke Schrom
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria; (S.S.); (T.H.); (S.A.W.); (I.A.)
| | - Thomas Hebesberger
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria; (S.S.); (T.H.); (S.A.W.); (I.A.)
| | - Stefanie Angela Wallner
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria; (S.S.); (T.H.); (S.A.W.); (I.A.)
| | - Ines Anders
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria; (S.S.); (T.H.); (S.A.W.); (I.A.)
| | - Erika Richtig
- Department of Dermatology, Medical University of Graz, 8036 Graz, Austria;
| | - Waltraud Brandl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (W.B.); (B.H.); (C.W.)
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (W.B.); (B.H.); (C.W.)
- BioTechMed-Graz, 8010 Graz, Austria; (S.R.); (D.Z.)
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy;
| | - Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (C.B.); (P.S.)
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria; (C.B.); (P.S.)
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; (K.K.); (A.A.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (W.B.); (B.H.); (C.W.)
- BioTechMed-Graz, 8010 Graz, Austria; (S.R.); (D.Z.)
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; (K.K.); (A.A.)
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8036 Graz, Austria;
| | - Sabrina Riedl
- BioTechMed-Graz, 8010 Graz, Austria; (S.R.); (D.Z.)
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, 8010 Graz, Austria
- BioHealth, 8010 Graz, Austria
| | - Dagmar Zweytick
- BioTechMed-Graz, 8010 Graz, Austria; (S.R.); (D.Z.)
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, 8010 Graz, Austria
- BioHealth, 8010 Graz, Austria
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, 8010 Graz, Austria;
| | - Georg Richtig
- Division of Oncology, Medical University of Graz, 8036 Graz, Austria;
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria; (S.S.); (T.H.); (S.A.W.); (I.A.)
- BioTechMed-Graz, 8010 Graz, Austria; (S.R.); (D.Z.)
- Correspondence: ; Tel.: +43-316-3857-3524
| |
Collapse
|
5
|
Parris JL, Barnoud T, Leu JIJ, Leung JC, Ma W, Kirven NA, Poli ANR, Kossenkov AV, Liu Q, Salvino JM, George DL, Weeraratna AT, Chen Q, Murphy ME. HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. CANCER RESEARCH COMMUNICATIONS 2021; 1:17-29. [PMID: 35187538 PMCID: PMC8849551 DOI: 10.1158/2767-9764.crc-21-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NRAS-mutant melanoma is currently a challenge to treat. This is due to an absence of inhibitors directed against mutant NRAS, along with adaptive and acquired resistance of this tumor type to inhibitors in the MAPK pathway. Inhibitors to MEK (mitogen-activated protein kinase kinase) have shown some promise for NRAS-mutant melanoma. In this work we explored the use of MEK inhibitors for NRAS-mutant melanoma. At the same time we investigated the impact of the brain microenvironment, specifically astrocytes, on the response of a melanoma brain metastatic cell line to MEK inhibition. These parallel avenues led to the surprising finding that astrocytes enhance the sensitivity of melanoma tumors to MEK inhibitors (MEKi). We show that MEKi cause an upregulation of the transcription factor ID3, which confers resistance. This upregulation of ID3 is blocked by conditioned media from astrocytes. We show that silencing ID3 enhances the sensitivity of melanoma to MEK inhibitors, thus mimicking the effect of the brain microenvironment. Moreover, we report that ID3 is a client protein of the chaperone HSP70, and that HSP70 inhibition causes ID3 to misfold and accumulate in a detergent-insoluble fraction in cells. We show that HSP70 inhibitors synergize with MEK inhibitors against NRAS-mutant melanoma, and that this combination significantly enhances the survival of mice in two different models of NRAS-mutant melanoma. These studies highlight ID3 as a mediator of adaptive resistance, and support the combined use of MEK and HSP70 inhibitors for the therapy of NRAS-mutant melanoma. SIGNIFICANCE MEK inhibitors are currently used for NRAS-mutant melanoma, but have shown modest efficacy as single agents. This research shows a synergistic effect of combining HSP70 inhibitors with MEK inhibitors for the treatment of NRAS mutant melanoma.
Collapse
Affiliation(s)
- Joshua L.D. Parris
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Graduate Group in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I.-Ju Leu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jessica C. Leung
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Weili Ma
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole A. Kirven
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Naryana Reddy Poli
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joseph M. Salvino
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L. George
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Qing Chen
- Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program(s) in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Corresponding Author: Maureen Murphy, The Wistar Institute, 3601 Spruce Street, Room 356, Philadelphia, PA 19104. Phone: 215-495-6870; E-mail:
| |
Collapse
|
6
|
Long noncoding RNA ZFAS1 promotes tumorigenesis through regulation of miR-150-5p/RAB9A in melanoma. Melanoma Res 2020; 29:569-581. [PMID: 30889053 DOI: 10.1097/cmr.0000000000000595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is the deadliest form of skin cancer and one of the most aggressive cancers. ZFAS1 is a newly identified lncRNA, playing an oncogenic role in several types of cancer. The present study aimed to investigate the function and mechanism of ZFAS1-induced regulation of melanoma. ZFAS1 expression was increased in melanoma tissues and cells compared with normal controls. ZFAS1 expression in metastatic tissues was higher than that in nonmetastatic subjects. Higher expression of ZFAS1 predicted lower survival rates. Knockdown of ZFAS1 decreased proliferation, increased apoptosis, decreased migration and invasion, and reduced epithelial-mesenchymal transition potential in melanoma cells. Moreover, ZFAS1 knockdown inhibited tumor growth in nude mice. There was a direct binding between ZFAS1 and miR-150-5p. ZFAS1 negatively regulated miR-150-5p expression and upregulation of miR-150-5p was involved in ZFAS1 knockdown-induced effect on proliferation, apoptosis, migration, and invasion. Using bioinformatics, we predicted the binding between RAB9A and miR-150-5p, and the direct interaction between RAB9A and miR-150-5p was confirmed by luciferase reporter and RNA immunoprecipitation assays. We also showed that RAB9A expression was regulated negatively by miR-150-5p, but was regulated positively by ZFAS1. Downregulation of RAB9A significantly inhibited the increase in proliferation, decrease in apoptosis, and increase in migration and invasion induced by miR-150-5p inhibitors. Moreover, RAB9A knockdown decreased proliferation, increased apoptosis, and decreased migration and invasion in melanoma cells. In summary, we confirmed the tumor-promoting role of ZFAS1 in melanoma and provide evidence for the role and mechanism of the ZFAS1/miR-150-5p/RAB9A axis. These findings may lead to novel therapeutic strategies for melanoma.
Collapse
|
7
|
Möller M, Wasel J, Schmetzer J, Weiß U, Meissner M, Schiffmann S, Weigert A, Möser CV, Niederberger E. The Specific IKKε/TBK1 Inhibitor Amlexanox Suppresses Human Melanoma by the Inhibition of Autophagy, NF-κB and MAP Kinase Pathways. Int J Mol Sci 2020; 21:E4721. [PMID: 32630674 PMCID: PMC7369692 DOI: 10.3390/ijms21134721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibitor-kappaB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IκB kinases, both described as contributors to tumor growth and metastasis in different cancer types. Several hints indicate that they are also involved in the pathogenesis of melanoma; however, the impact of their inhibition as a potential therapeutic measure in this "difficult-to-treat" cancer type has not been investigated so far. We assessed IKKε and TBK1 expression in human malignant melanoma cells, primary tumors and the metastasis of melanoma patients. Both kinases were expressed in the primary tumor and in metastasis and showed a significant overexpression in tumor cells in comparison to melanocytes. The pharmacological inhibition of IKKε/TBK1 by the approved drug amlexanox reduced cell proliferation, migration and invasion. Amlexanox did not affect the cell cycle progression nor apoptosis induction but significantly suppressed autophagy in melanoma cells. The analysis of potential functional downstream targets revealed that NF-кB and ERK pathways might be involved in kinase-mediated effects. In an in vivo xenograft model in nude mice, amlexanox treatment significantly reduced tumor growth. In conclusion, amlexanox was able to suppress tumor progression potentially by the inhibition of autophagy as well as NF-кB and MAP kinase pathways and might therefore constitute a promising candidate for melanoma therapy.
Collapse
Affiliation(s)
- Moritz Möller
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Wasel
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Schmetzer
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ulrike Weiß
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology TMP, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Christine V. Möser
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| |
Collapse
|
8
|
Abstract
While melanoma is less common than some other skin cancers, it is responsible for nearly 10,000 deaths in the USA each year alone. For many decades, very limited treatment options were available for patients with metastatic melanoma. However, recent breakthroughs have brought new hopes for patients and providers. While targeted therapy with BRAF and MEK inhibitors represents an important cornerstone in the treatment of metastatic melanoma, this chapter carefully reviews the past and current therapy options available, with a significant focus on immunotherapy-based approaches. In addition, we provide an overview of the results of recent advances in the adjuvant setting for patients with resected stage III and stage IV melanoma, as well as in patients with melanoma brain metastases. Finally, we provide a quick overview over the current research efforts in the field of immuno-oncology and melanoma.
Collapse
|
9
|
Mejbel HA, Arudra SKC, Pradhan D, Torres-Cabala CA, Nagarajan P, Tetzlaff MT, Curry JL, Ivan D, Duose DY, Luthra R, Prieto VG, Ballester LY, Aung PP. Immunohistochemical and Molecular Features of Melanomas Exhibiting Intratumor and Intertumor Histomorphologic Heterogeneity. Cancers (Basel) 2019; 11:E1714. [PMID: 31684113 PMCID: PMC6896082 DOI: 10.3390/cancers11111714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a heterogeneous neoplasm at the histomorphologic, immunophenotypic, and molecular levels. Melanoma with extreme histomorphologic heterogeneity can pose a diagnostic challenge in which the diagnosis may predominantly rely on its immunophenotypic profile. However, tumor survival and response to therapy are linked to tumor genetic heterogeneity rather than tumor morphology. Therefore, understating the molecular characteristics of such melanomas become indispensable. In this study, DNA was extracted from 11 morphologically distinct regions in eight formalin-fixed, paraffin-embedded melanomas. In each region, mutations in 50 cancer-related genes were tested using next-generation sequencing (NGS). A tumor was considered genetically heterogeneous if at least one non-overlapping mutation was identified either between the histologically distinct regions of the same tumor (intratumor heterogeneity) or among the histologically distinct regions of the paired primary and metastatic tumors within the same patient (intertumor heterogeneity). Our results revealed that genetic heterogeneity existed in all tumors as non-overlapping mutations were detected in every tested tumor (n = 5, 100%; intratumor: n = 2, 40%; intertumor: n = 3, 60%). Conversely, overlapping mutations were also detected in all the tested regions (n = 11, 100%). Melanomas exhibiting histomorphologic heterogeneity are often associated with genetic heterogeneity, which might contribute to tumor survival and poor response to therapy.
Collapse
Affiliation(s)
- Haider A Mejbel
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Sri Krishna C Arudra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Dinesh Pradhan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jonathan L Curry
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Doina Ivan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Raja Luthra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Victor G Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Tian Y, Guo Y, Zhu P, Zhang D, Liu S, Tang M, Wang Y, Jin Z, Li D, Yan D, Li G, Zhu X. TRIM59 loss in M2 macrophages promotes melanoma migration and invasion by upregulating MMP-9 and Madcam1. Aging (Albany NY) 2019; 11:8623-8641. [PMID: 31600735 PMCID: PMC6814609 DOI: 10.18632/aging.102351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
The culture supernatant from macrophages overexpressing TRIM59 has a cytotoxic effect on melanoma, but the mechanism remains unclear. To investigate whether deletion of TRIM59 in macrophages affects the metastatic potential of melanoma cells, we polarized control and TRIM59-deficient bone marrow-derived macrophages to the M2 phenotype and collected the respective conditioned media (CM). Exposure to CM from TRIM59-/--M2 cultures significantly promoted migration and invasion by B16-F0 and B16-F10 cells. Cytokine profiling indicated a ~15-fold increase in TNF-α production in CM from TRIM59-/--M2 cultures, and neutralizing TNF-α activity abrogated the referred stimulatory effects on cell motility. Transcriptome analysis revealed significant upregulation of MMP-9 and Madcam1 in melanoma cells exposed to TRIM59-/--M2 CM. Inhibitory experiments determined that these changes were also TNF-α-dependent and mediated by activation of ERK signaling. Independent knockdown of MMP9 and Madcam1 in B16-F10 cells impeded epithelial-mesenchymal transition and inhibited subcutaneous tumor growth and formation of metastatic lung nodules in vivo. These data suggest TRIM59 expression attenuates the tumor-promoting effect of tumor-associated macrophages, most of which resemble the M2 phenotype. Moreover, they highlight the relevance of TRIM59 in macrophages as a potential regulator of tumor metastasis and suggest TRIM59 could serve as a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China.,Department of Immunology, Jilin University, Changchun, China
| | - Yantong Guo
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, Jilin University, Changchun, China
| | - Dongxu Zhang
- Department of Immunology, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, Jilin University, Changchun, China
| | - Yuanxin Wang
- Department of Immunology, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
11
|
Zhang W, Shao W, Dong Z, Zhang S, Liu C, Chen S. Cloxiquine, a traditional antituberculosis agent, suppresses the growth and metastasis of melanoma cells through activation of PPARγ. Cell Death Dis 2019; 10:404. [PMID: 31138783 PMCID: PMC6538643 DOI: 10.1038/s41419-019-1644-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Melanoma is one of the most aggressive skin cancers and 5-year survival rate is only 4.6% for metastatic melanoma patients. Current therapies, especially those involving clinical chemotherapy drugs, have achieved remarkable advances. However, their side effects, such as bone marrow suppression, limit the effectiveness of available pharmacological therapies. Therefore, exploring new antimelanoma drugs with less toxicity is critical for the treatment of melanoma. In the present study, we aimed to identify the antimelanoma drugs with ability to repress the proliferation of melanoma cells by using a high-content screening of FDA-approved drug libraries. We found that cloxiquine (CLQ), a traditional antituberculosic drug, exhibited strong inhibitory effects on the growth and metastasis of melanoma cells both in vivo and in vitro. In contrast, CLQ at the tested doses did not show any apparent toxicity in normal melanocytes and in the liver. At the metabolic level, treatment with CLQ decreased glycolysis, thus potentially inhibiting the “Warburg effect” in B16F10 cells. More importantly, combination of CLQ and 2-deoxyglucose (2-DG), a well-known glycolysis inhibitor, did not show a synergistic effect on the tumor growth and metastasis, indicating that inhibition of glycolysis is potentially involved in mediating CLQ’s antimelanoma function. Bioinformatics analyses revealed that peroxisome proliferator-activated receptor-gamma (PPARγ) served as a potential CLQ target. Mechanistically, CLQ stimulated the transcription and nuclear contents of PPARγ. Furthermore, the specific PPARγ inhibitor GW9662 or PPARγ shRNA partially abolished the effects of CLQ. Collectively, our findings demonstrate that CLQ has a great potential in the treatment of melanoma through activation of PPARγ.
Collapse
Affiliation(s)
- Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wei Shao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhewen Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shiyao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China. .,State key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China. .,State key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Palladium based nanoparticles for the treatment of advanced melanoma. Sci Rep 2019; 9:3255. [PMID: 30824801 PMCID: PMC6397149 DOI: 10.1038/s41598-019-40258-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
IGF1R and CD44 are overexpressed in most advanced melanomas so we designed chemotherapeutic nanoparticles to target those receptors. Tris(dibenzylideneacetone)dipalladium (Tris DBA-Pd) is a novel inhibitor of N-myristoyltransferase 1 (NMT-1) and has proven in vivo activity against melanoma. However, poor solubility impairs its effectiveness. To improve its therapeutic efficacy and overcome drug resistance in advanced melanomas, we synthesized Tris DBA-Pd hyaluronic acid nanoparticles (Tris DBA-Pd HANP) and evaluated them against in vivo xenografts of LM36R, an aggressive BRAF mutant human melanoma resistant to BRAF inhibitors. We treated xenografted mice in four arms: empty HANPs, free Tris DBA-Pd, Tris DBA-Pd HANPs, and Tris DBA-Pd HANPs with IGF1R antibody. The Tris DBA-Pd HANP group was the most responsive to treatment and showed the greatest depletion of CD44-positive cells on IHC. Surprisingly, the HANP containing IGF1R antibody was less effective than particles without antibody, possibly due to steric hindrance of IGF1R and CD44 binding. Tris DBA-Pd nanoparticles are an effective therapy for CD44-positive tumors like melanoma, and further development of these nanoparticles should be pursued.
Collapse
|
13
|
Lee YS, Jung YY, Park MH, Yeo IJ, Im HS, Nam KT, Kim HD, Kang SK, Song JK, Kim YR, Choi DY, Park PH, Han SB, Yun JS, Hong JT. Deficiency of parkin suppresses melanoma tumor development and metastasis through inhibition of MFN2 ubiquitination. Cancer Lett 2018; 433:156-164. [DOI: 10.1016/j.canlet.2018.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
|
14
|
Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxid Redox Signal 2018; 28:1238-1261. [PMID: 28990413 DOI: 10.1089/ars.2017.7282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Skin protects the body from dehydration, pathogens, and external mutagens. NADPH oxidases are central components for regulating the cellular redox balance. There is increasing evidence indicating that reactive oxygen species (ROS) generated by members of this enzyme family play important roles in the physiology and pathophysiology of the skin. Recent Advances: NADPH oxidases are active producers of ROS such as superoxide and hydrogen peroxide. Different isoforms are found in virtually all tissues. They play pivotal roles in normal cell homeostasis and in the cellular responses to various stressors. In particular, these enzymes are integral parts of redox-sensitive prosurvival and proapoptotic signaling pathways, in which they act both as effectors and as modulators. However, continuous (re)activation of NADPH oxidases can disturb the redox balance of cells, in the worst-case scenario in a permanent manner. Abnormal NADPH oxidase activity has been associated with a wide spectrum of diseases, as well as with aging and carcinogenesis. CRITICAL ISSUES Sunlight with its beneficial and deleterious effects induces the activation of NADPH oxidases in the skin. Evidence for the important roles of this enzyme family in skin cancer and skin aging, as well as in many chronic skin diseases, is now emerging. FUTURE DIRECTIONS Understanding the precise roles of NADPH oxidases in normal skin homeostasis, in the cellular responses to solar radiation, and during carcinogenesis will pave the way for their validation as therapeutic targets not only for the prevention and treatment of skin cancers but also for many other skin-related disorders. Antioxid. Redox Signal. 28, 1238-1261.
Collapse
Affiliation(s)
- Jana Rudolf
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Houssam Raad
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France
| | - Alain Taieb
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,3 Service de Dermatologie Adulte et Pédiatrique , CHU de Bordeaux, Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- 1 Inserm U 1035, Bordeaux, France .,2 Université de Bordeaux , Bordeaux, France .,4 Centre de Référence des Maladies Rares de la Peau , CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Bonner MY, Karlsson I, Rodolfo M, Arnold RS, Vergani E, Arbiser JL. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo. Oncotarget 2017; 7:12857-68. [PMID: 26871475 PMCID: PMC4914326 DOI: 10.18632/oncotarget.7289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 12/13/2022] Open
Abstract
The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo.
Collapse
Affiliation(s)
- Michael Y Bonner
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, GA, USA
| | - Isabella Karlsson
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, GA, USA
| | - Monica Rodolfo
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori via Venezian, Milan, Italy
| | - Rebecca S Arnold
- Department of Urology, Emory School of Medicine, Atlanta, GA, USA
| | - Elisabetta Vergani
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori via Venezian, Milan, Italy
| | - Jack L Arbiser
- Department of Dermatology, Emory School of Medicine, and Winship Cancer Institute, Atlanta, GA, USA.,Department of Dermatology, Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
16
|
Grzywa TM, Paskal W, Włodarski PK. Intratumor and Intertumor Heterogeneity in Melanoma. Transl Oncol 2017; 10:956-975. [PMID: 29078205 PMCID: PMC5671412 DOI: 10.1016/j.tranon.2017.09.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Paweł K Włodarski
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland.
| |
Collapse
|
17
|
Valachis A, Ullenhag GJ. Discrepancy in BRAF status among patients with metastatic malignant melanoma: A meta-analysis. Eur J Cancer 2017; 81:106-115. [PMID: 28623774 DOI: 10.1016/j.ejca.2017.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022]
Abstract
The incidence of malignant melanoma is growing rapidly. Approximately half of the cases are BRAF mutated, making treatment with kinase inhibitors a (MEK and BRAF inhibitors) preferred choice in the advanced setting. The vast majority of these patients will benefit from the treatment. It is therefore of vital importance that the BRAF analysis is reliable and reflects the true nature of the tumour. Intraindividual tumour BRAF heterogeneity may exist, and changes of BRAF status over time might occur. We reviewed the literature by searching the PubMed database and 630 potentially relevant studies were identified. Thereafter, studies that investigated intralesional heterogeneity only, studies with ≤10 patients and studies that did not include adequate data to calculate discrepancy rates were excluded. Twenty-two studies met our inclusion criteria and were included in the meta-analysis. The pooled discrepancy rate between primary and metastatic lesions was 13.4% (95% confidence interval [CI]: 9.2-18.2%) while it was 7.3% (95% CI: 3.3-12.6) between two metastatic lesions. The number of patients whose tumoural BRAF status was changed from mutation to wild type and from wild type to mutation, respectively, was comparable. We conclude that a clinically meaningful discrepancy rate in BRAF status both between primary-metastatic and metastatic-metastatic melanoma lesions exists. Our results support the polyclonal model of melanomas in which subclones with different BRAF status co-exist in the same melanoma lesion. In addition, the results indicate a need for biopsy of a metastatic lesion for subsequent BRAF analysis when treatment with kinase inhibitors is considered.
Collapse
Affiliation(s)
- Antonis Valachis
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden; Centre for Clinical Research Sörmland, Uppsala University, 63188, Eskilstuna, Sweden.
| | - Gustav J Ullenhag
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden; Department of Oncology, Uppsala University Hospital, 751 85, Uppsala, Sweden
| |
Collapse
|
18
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 1002] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
19
|
Abstract
Cancer is the second leading cause of death in the United States, and is an increasing cause of death in the developing world. While there is great heterogeneity in the anatomic site and mutations involved in human cancer, there are common features, including immortal growth, angiogenesis, apoptosis evasion, and other features, that are common to most if not all cancers. However, new features of human cancers have been found as a result of clinical use of novel “targeted therapies,” angiogenesis inhibitors, and immunotherapies, including checkpoint inhibitors. These findings indicate that cancer is a moving target, which can change signaling and metabolic features based upon the therapies offered. It is well-known that there is significant heterogeneity within a tumor and it is possible that treatment might reduce the heterogeneity as a tumor adapts to therapy and, thus, a tumor might be synchronized, even if there is no major clinical response. Understanding this concept is important, as concurrent and sequential therapies might lead to improved tumor responses and cures. We posit that the repertoire of tumor responses is both predictable and limited, thus giving hope that eventually we can be more effective against solid tumors. Currently, among solid tumors, we observe a response of 1/3 of tumors to immunotherapy, perhaps less to angiogenesis inhibition, a varied response to targeted therapies, with relapse and resistance being the rule, and a large fraction being insensitive to all of these therapies, thus requiring the older therapies of chemotherapy, surgery, and radiation. Tumor phenotypes can be seen as a continuum between binary extremes, which will be discussed further. The biology of cancer is undoubtedly more complex than duality, but thinking of cancer as a duality may help scientists and oncologists discover optimal treatments that can be given either simultaneously or sequentially.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Linda C Gilbert
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
20
|
Adler NR, Haydon A, McLean CA, Kelly JW, Mar VJ. Metastatic pathways in patients with cutaneous melanoma. Pigment Cell Melanoma Res 2016; 30:13-27. [PMID: 27900851 DOI: 10.1111/pcmr.12544] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Metastasis represents the end product of an elaborate biological process, which is determined by a complex interplay between metastatic tumour cells, host factors and homoeostatic mechanisms. Cutaneous melanoma can metastasize haematogenously or lymphogenously. The three predominant models that endeavour to explain the patterns of melanoma progression are the stepwise spread model, the simultaneous spread model and the model of differential spread. The time course to the development of metastases differs between the different metastatic routes. There are several clinical and histopathological risk factors for the different metastatic pathways. In particular, patient sex and the anatomical location of the primary tumour influence patterns of disease progression. There is limited existing evidence regarding the relationship between tumour mutation status, other diagnostic and prognostic biomarkers and the metastatic pathways of primary cutaneous melanoma. This knowledge gap needs to be addressed to better identify patients at high risk of disease recurrence and personalize surveillance strategies.
Collapse
Affiliation(s)
- Nikki R Adler
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia.,School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Vic, Australia
| | - Andrew Haydon
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia.,Department of Medical Oncology, Alfred Hospital, Melbourne, Vic, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Vic, Australia
| | - John W Kelly
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia
| | - Victoria J Mar
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia.,School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Vic, Australia.,Skin and Cancer Foundation, Carlton, Vic, Australia
| |
Collapse
|
21
|
Wang JH, Pei YY, Xu HD, Li LJ, Wang YQ, Liu GL, Qu Y, Zhang N. Effects of bavachin and its regulation of melanin synthesis in A375 cells. Biomed Rep 2016; 5:87-92. [PMID: 27347410 DOI: 10.3892/br.2016.688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/09/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effect of bavachin treatment on A375 cells and the regulation of melanin synthesis. The cultured A375 cells in vitro were treated with bavachin; and the effect of bavachin on cell activity, tyrosinase (TYR) activity and melanin synthesis were respectively tested by the MTT assay, L-dopa oxidation assay and the NaOH lysis assay. The expression levels of TYR and c-Jun N-terminal kinases (JNK) proteins were tested by western blot analysis. The expression levels of TYR, tyrosinase-related protein-1 (TRP-1), TRP-2, extracellular signal-regulated kinase 1 (ERK1), ERK2 and JNK2 mRNA were tested by the reverse transcription-polymerase chain reaction assay. Simultaneously, the effect of estrogen receptor inhibitor (ICI182780) and ERK pathway inhibitor (U0126) was also tested on A375 cells following bavachin. The safe dose of bavachin significantly inhibited melanin synthesis and TYR activity. Bavachin (10 µmol/l) inhibited the expression of TYR and JNK proteins, and the expression of TYR, TRP-1, TRP-2, ERK1, ERK2 and JNK2 mRNA in A375 cells. ICI182780 and U0126 could significantly reverse the bavachin treatment on the protein expression levels and the mRNA expression of TYR, TRP-1, TRP-2, ERK1, ERK2 and JNK2. In conclusion, bavachin inhibited the synthesis of melanin on A375 cells by inhibiting the protein and mRNA expression of TYR, TRP-1, TRP-2, ERK1, ERK2 and JNK2.
Collapse
Affiliation(s)
- Jing-Hua Wang
- College of Pharmacy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yuan-Yuan Pei
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| | - Li-Jing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Ye-Qiu Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| | - Guo-Liang Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yan Qu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| | - Ning Zhang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
22
|
The protein kinase IKKepsilon contributes to tumour growth and tumour pain in a melanoma model. Biochem Pharmacol 2016; 103:64-73. [PMID: 26793999 DOI: 10.1016/j.bcp.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/22/2015] [Indexed: 11/24/2022]
Abstract
Inhibitor-kappaB kinase epsilon (IKKε) constitutes a non-canonical I-κB kinase, which amongst others modulates NF-κB activity. IKKε and NF-κB have both been described for their role in cell proliferation and their dysregulation has been associated with tumourigenesis and metastasis in multiple cancer types. Accordingly, overexpression and constitutive activation of NF-κB have also been shown in melanoma, however, the role of IKKε in this cancer type has not been investigated so far. Thus, we determined IKKε expression in malignant melanoma cells and we were able to show a significant overexpression of IKKε in tumour cells in comparison to melanocytes. Inhibition of IKKε either by shRNA or the pharmacological inhibitor amlexanox resulted in reduced cell proliferation associated with a cell cycle block in the G1-phase. Functional analysis indicated that NF-κB, Akt1 and MAPK pathways might be involved in the IKKε-mediated effects. In vivo, we applied a mouse melanoma skin cancer model to assess tumour growth and melanoma-associated pain in IKKε knockout mice as well as C57BL/6 mice after inoculation with IKKε-negative cells. In IKKε knockout mice, tumour growth was not altered as compared to IKKε wild type mice. However, melanoma associated pain was strongly suppressed accompanied by a reduced mRNA expression of a number of pain-relevant genes. In contrast, after inoculation of IKKε-depleted tumour cells, the development of melanoma was almost completely prevented. In conclusion, our data suggest that IKKε in the tumour plays an essential role in tumour initiation and progression while IKKε expression in tumour surrounding tissues contributes to melanoma-associated pain.
Collapse
|
23
|
Haynes-Gimore N, Banach M, Brown E, Dawes R, Edholm ES, Kim M, Robert J. Semi-solid tumor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration. Dev Biol 2015; 408:205-12. [PMID: 25601449 PMCID: PMC4506265 DOI: 10.1016/j.ydbio.2015.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/29/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022]
Abstract
Tumors have the ability to grow as a self-sustaining entity within the body. This autonomy is in part accomplished by the tumor cells ability to induce the formation of new blood vessels (angiogenesis) and by controlling cell trafficking inside the tumor mass. These abilities greatly reduce the efficacy of many cancer therapies and pose challenges for the development of more effective cancer treatments. Hence, there is a need for animal models suitable for direct microscopy observation of blood vessel formation and cell trafficking, especially during early stages of tumor establishment. Here, we have developed a reliable and cost effective tumor model system in tadpoles of the amphibian Xenopus laevis. Tadpoles are ideally suited for direct microscopy observation because of their small size and transparency. Using the thymic lymphoid tumor line 15/0 derived from, and transplantable into, the X. laevis/gilli isogenic clone LG-15, we have adapted a system that consists in transplanting 15/0 tumor cells embedded into rat collagen under the dorsal skin of LG-15 tadpole recipients. This system recapitulates many facets of mammalian tumorigenesis and permits real time visualization of the active formation of the tumor microenvironment induced by 15/0 tumor cells including neovascularization, collagen rearrangements as well as infiltration of immune cells and melanophores.
Collapse
Affiliation(s)
- Nikesha Haynes-Gimore
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Rochester, USA
| | - Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward Brown
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, USA
| | - Ryan Dawes
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, USA
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Vaccine Biology and Immunology, Rochester, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
24
|
Lamichhane NS, An J, Liu Q, Zhang W. Primary malignant mucosal melanoma of the upper lip: a case report and review of the literature. BMC Res Notes 2015; 8:499. [PMID: 26420268 PMCID: PMC4589098 DOI: 10.1186/s13104-015-1459-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022] Open
Abstract
Background Malignant melanoma of oral cavity is a rare condition, accounting for 0.5 % of all oral malignancies and about 1–2 % of all melanomas. Oral melanomas have extremely poor prognosis with 5 years survival rate of 12.3 %. The poor prognosis compared to cutaneous melanoma may be attributed to delay in reporting by patient and diagnosis, and apt to become ulcerated due to repeated trauma. The ‘chameleonic’ presentation of a mainly asymptomatic condition, the rarity of these lesions, the poor prognosis and the necessity of a highly specialized treatment are factors that should be seriously considered by the involved health provider. Case presentation We present a case of 32 years old male of Han ethnicity with mucosal melanoma of upper lip, comparing his clinical presentation and histological findings at his first visit and following the recurrence. The patient complained of black discoloration on the left side of upper lip since 4 years which gradually increased in size and later involved the skin of the lip. Excision with 5 mm safety margin was performed but the patient presented with the similar lesion after three and half years of the treatment. So, again wide excision with 2 cm safety margin was performed followed by reconstruction of the lip. Conclusion This case provides an example of aggressive behavior of mucosal melanoma and emphasizes on the fact that any pigmented lesion detected in the oral cavity may exhibit potential growth and should be submitted to biopsy to exclude malignancy. It also exemplifies of how the time of diagnosis and the evolution of a disease could be seriously influenced by patient’s behavior.
Collapse
Affiliation(s)
- Narayan Sharma Lamichhane
- Department of Oral and Maxillofacial Surgery, Norman Bethune Hospital of Stomatology, Jilin University, Qinghua Road, Changchun, 130021, Jilin, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, School of Stomatology, Jiamusi University, Xuefu Street, Jiamusi, 15400, Heilongjiang, China.
| | - Jiping An
- Department of Oral and Maxillofacial Surgery, Norman Bethune Hospital of Stomatology, Jilin University, Qinghua Road, Changchun, 130021, Jilin, People's Republic of China.
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Norman Bethune Hospital of Stomatology, Jilin University, Qinghua Road, Changchun, 130021, Jilin, People's Republic of China.
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, Norman Bethune Hospital of Stomatology, Jilin University, Qinghua Road, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
25
|
van den Hurk K, Balint B, Toomey S, O'Leary PC, Unwin L, Sheahan K, McDermott EW, Murphy I, van den Oord JJ, Rafferty M, FitzGerald DM, Moran J, Cummins R, MacEneaney O, Kay EW, O'Brien CP, Finn SP, Heffron CCBB, Murphy M, Yela R, Power DG, Regan PJ, McDermott CM, O'Keeffe A, Orosz Z, Donnellan PP, Crown JP, Hennessy BT, Gallagher WM. High-throughput oncogene mutation profiling shows demographic differences in BRAF mutation rates among melanoma patients. Melanoma Res 2015; 25:189-99. [PMID: 25746038 DOI: 10.1097/cmr.0000000000000149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Because of advances in targeted therapies, the clinical evaluation of cutaneous melanoma is increasingly based on a combination of traditional histopathology and molecular pathology. Therefore, it is necessary to expand our knowledge of the molecular events that accompany the development and progression of melanoma to optimize clinical management. The central objective of this study was to increase our knowledge of the mutational events that complement melanoma progression. High-throughput genotyping was adapted to query 159 known single nucleotide mutations in 33 cancer-related genes across two melanoma cohorts from Ireland (n=94) and Belgium (n=60). Results were correlated with various clinicopathological characteristics. A total of 23 mutations in 12 genes were identified, that is--BRAF, NRAS, MET, PHLPP2, PIK3R1, IDH1, KIT, STK11, CTNNB1, JAK2, ALK, and GNAS. Unexpectedly, we discovered significant differences in BRAF, MET, and PIK3R1 mutations between the cohorts. That is, cases from Ireland showed significantly lower (P<0.001) BRAF(V600E) mutation rates (19%) compared with the mutation frequency observed in Belgian patients (43%). Moreover, MET mutations were detected in 12% of Irish cases, whereas none of the Belgian patients harbored these mutations, and Irish patients significantly more often (P=0.027) had PIK3R1-mutant (33%) melanoma versus 17% of Belgian cases. The low incidence of BRAF(V600E)(-) mutant melanoma among Irish patients was confirmed in five independent Irish cohorts, and in total, only 165 of 689 (24%) Irish cases carried mutant BRAF(V600E). Together, our data show that melanoma-driving mutations vary by demographic area, which has important implications for the clinical management of this disease.
Collapse
Affiliation(s)
- Karin van den Hurk
- aOncoMark Ltd, NovaUCD bDepartment of Medical Oncology, Royal College of Surgeons cUCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Departments of dPathology eSurgery fMedical Oncology, St Vincent's University Hospital gDepartment of Histopathology, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital hDepartment of Histopathology, St James's Hospital iDepartment of Histopathology, Trinity College, Dublin jDepartment of Pathology, Cork University Hospital, Cork Departments of kSurgery lMedical Oncology, University Hospital Galway mDepartment of Medicine, National University of Ireland Galway nDepartment of Histopathology, University Hospital Galway, Galway, Ireland oDepartment of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands pLaboratory of Morphology and Molecular Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiang L, Campagne C, Sundström E, Sousa P, Imran S, Seltenhammer M, Pielberg G, Olsson MJ, Egidy G, Andersson L, Golovko A. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses. BMC Cancer 2014; 14:857. [PMID: 25413220 PMCID: PMC4254013 DOI: 10.1186/1471-2407-14-857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/27/2014] [Indexed: 01/22/2023] Open
Abstract
Background Constitutive activation of the ERK pathway, occurring in the vast majority of melanocytic neoplasms, has a pivotal role in melanoma development. Different mechanisms underlie this activation in different tumour settings. The Grey phenotype in horses, caused by a 4.6 kb duplication in intron 6 of Syntaxin 17 (STX17), is associated with a very high incidence of cutaneous melanoma, but the molecular mechanism behind the melanomagenesis remains unknown. Here, we investigated the involvement of the ERK pathway in melanoma development in Grey horses. Methods Grey horse melanoma tumours, cell lines and normal skin melanocytes were analyzed with help of indirect immunofluorescence and immunoblotting for the expression of phospho-ERK1/2 in comparison to that in non-grey horse and human counterparts. The mutational status of BRAF, RAS, GNAQ, GNA11 and KIT genes in Grey horse melanomas was determined by direct sequencing. The effect of RAS, RAF and PI3K/AKT pathways on the activation of the ERK signaling in Grey horse melanoma cells was investigated with help of specific inhibitors and immunoblotting. Individual roles of RAF and RAS kinases on the ERK activation were examined using si-RNA based approach and immunoblotting. Results We found that the ERK pathway is constitutively activated in Grey horse melanoma tumours and cell lines in the absence of somatic activating mutations in BRAF, RAS, GNAQ, GNA11 and KIT genes or alterations in the expression of the main components of the pathway. The pathway is mitogenic and is mediated by BRAF, CRAF and KRAS kinases. Importantly, we found high activation of the ERK pathway also in epidermal melanocytes, suggesting a general predisposition to melanomagenesis in these horses. Conclusions These findings demonstrate that the presence of the intronic 4.6 kb duplication in STX17 is strongly associated with constitutive activation of the ERK pathway in melanocytic cells in Grey horses in the absence of somatic mutations commonly linked to the activation of this pathway during melanomagenesis. These findings are consistent with the universal importance of the ERK pathway in melanomagenesis and may have valuable implications for human melanoma research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-857) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anna Golovko
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
27
|
Abstract
New drugs targeting the mitogen-activated protein kinase (MAPK) pathway have generated striking clinical response in melanoma therapy. From the discovery of BRAF mutation in melanoma in 2002, to the approval of first BRAF inhibitor vemurafenib for melanoma treatment by the US Food and Drug Administration in 2011, therapies targeting the MAPK pathway have been proven effective in less than a decade. The success of vemurafenib stimulated more intensive investigation of the molecular mechanisms of melanoma pathogenesis and development of new treatment strategies targeting specific molecules in MAPK pathway. Although selective BRAF inhibitors and MEK inhibitors demonstrated improved overall survival of metastatic melanoma patients, limited duration or development of resistance to BRAF inhibitors have been reported. Patients with metastatic melanoma still face very poor prognosis and lack of clarified therapies. Studies and multiple clinical trials on more potent and selective small molecule inhibitory compounds to further improve the clinical effects and overcome drug resistance are underway. In this review, we analyzed the therapeutic potentials of each member of the MAPK signaling pathway, summarized important MAPK-inhibiting drugs, and discussed the promising combination treatment targeting multiple targets in melanoma therapy, which may overcome the drawbacks of current drugs treatment.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
28
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Soma PF, Pettinato A, Agnone AM, Donia C, Improta G, Fraggetta F. Oral malignant melanoma: A report of two cases with BRAF molecular analysis. Oncol Lett 2014; 8:1283-1286. [PMID: 25120707 PMCID: PMC4114621 DOI: 10.3892/ol.2014.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/05/2014] [Indexed: 11/26/2022] Open
Abstract
Primary oral malignant melanoma is a rare condition, accounting for 1.3–1.4% of all melanomas, usually presenting with an aggressive clinical behavior. The present study reports the clinicopathological findings of two cases of oral malignant melanoma and discusses the epidemiology, diagnosis and current therapeutic approaches for this uncommon condition. In the first case the patient presented with a pigmented lesion located on the lower mucosal lip. The patient showed no nodal metastases and therefore, underwent a wedge resection. After seven months, the patient presented with neck lymph nodes and multiple visceral metastases. Molecular analysis of BRAF, using a pyrosequencing approach, revealed the presence of BRAF V600E mutation. The patient developed multiple visceral metastases, but refused treatment and was lost to follow-up. In the second case, no BRAF V600E mutation was found, but the patient exhibited a pigmented patch in the lower gingival mucosa, which was excised by surgical treatment. The patient was followed up by an oncologist, but did not undergo an additional therapy and is currently alive with no evidence of visceral metastases at one year following the diagnosis.
Collapse
Affiliation(s)
| | | | | | - Claudio Donia
- Unit of Plastic Surgery, Vittorio Emanuele II Hospital, Castelvetrano (TP) 91022, Italy
| | - Giuseppina Improta
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-CROB, Rionero in Vulture (PZ) 85028, Italy
| | | |
Collapse
|
30
|
Bertolotto C. Melanoma: from melanocyte to genetic alterations and clinical options. SCIENTIFICA 2013; 2013:635203. [PMID: 24416617 PMCID: PMC3874946 DOI: 10.1155/2013/635203] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 05/04/2023]
Abstract
Metastatic melanoma remained for decades without any effective treatment and was thus considered as a paradigm of cancer resistance. Recent progress with understanding of the molecular mechanisms underlying melanoma initiation and progression revealed that melanomas are genetically and phenotypically heterogeneous tumors. This recent progress has allowed for the development of treatment able to improve for the first time the overall disease-free survival of metastatic melanoma patients. However, clinical responses are still either too transient or limited to restricted patient subsets. The complete cure of metastatic melanoma therefore remains a challenge in the clinic. This review aims to present the recent knowledge and discoveries of the molecular mechanisms involved in melanoma pathogenesis and their exploitation into clinic that have recently facilitated bench to bedside advances.
Collapse
Affiliation(s)
- Corine Bertolotto
- INSERM, U1065 (Équipe 1), C3M, 06204 Nice, France
- University of Nice Sophia-Antipolis, UFR Médecine, 06204 Nice, France
| |
Collapse
|
31
|
BRAF mutations in melanoma and colorectal cancer: a single oncogenic mutation with different tumour phenotypes and clinical implications. Crit Rev Oncol Hematol 2012; 87:55-68. [PMID: 23246082 DOI: 10.1016/j.critrevonc.2012.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/15/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023] Open
Abstract
BRAF is an oncogene encoding a serine-threonine protein kinase involved in the MAPK signalling cascade. BRAF acts as direct effector of RAS and through the activation of MEK, promotes tumour growth and survival. Approximately, 8% of cancers carry a BRAF mutation. However, the prevalence of this mutation varies significantly across different tumour types. There has been increasing interest in the specific role of BRAF mutations in cancer growth and progression over the last few years, especially since the clinical introduction of therapeutic BRAF inhibitors. In this paper we review the published literature on the role of BRAF mutations in melanoma and colorectal cancer, focusing on similarities and differences of BRAF mutations with respect to frequency, demographics, risk factors, mutation-associated clinico-pathologic and molecular features and clinical implications between these two diseases.
Collapse
|
32
|
Volkovova K, Bilanicova D, Bartonova A, Letašiová S, Dusinska M. Associations between environmental factors and incidence of cutaneous melanoma. Review. Environ Health 2012; 11 Suppl 1:S12. [PMID: 22759494 PMCID: PMC3388446 DOI: 10.1186/1476-069x-11-s1-s12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cutaneous melanoma is one of the most serious skin cancers. It is caused by neural crest-derived melanocytes - pigmented cells normally present in the epidermis and, sometimes, in the dermis. METHODS We performed a review of current knowledge on the risk factors of cutaneous melanoma. Relevant studies were identified using the PubMed, Science Direct, Medline, Scopus, Scholar Google and ISI Web of Knowledge databases. RESULTS Melanoma incurs a considerable public health burden owing to the worldwide dramatic rise in incidence since the mid-1960s. Ultraviolet radiation exposure is the predominant environmental risk factor. The role of geographical (latitude) and individual factors such as skin type, life style, vitamin D levels and antioxidant protection, sunburn, and exposure to other environmental factors possibly contributing to melanoma risk (such as cosmetics including sunscreen, photosensitising drugs, and exogenous hormones) are reviewed in this article. Recently, both rare high risk susceptibility genes and common polymorphic genes contributing to melanoma risk have been identified. CONCLUSIONS Cutaneous melanoma is a complex cancer with heterogeneous aetiology that continues to increase in incidence. Introduction of new biomarkers may help to elucidate the mechanism of pathogenesis and individual susceptibility to the disease, and make both prevention and treatment more effective.
Collapse
Affiliation(s)
| | - Dagmar Bilanicova
- Slovak Medical University, Bratislava, Slovakia
- University of Venice, Venice, Italy
| | | | | | - Maria Dusinska
- Slovak Medical University, Bratislava, Slovakia
- NILU - Norwegian Institute for Air Research, Oslo, Norway
| |
Collapse
|
33
|
Bonner MY, Arbiser JL. Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell Mol Life Sci 2012; 69:2435-42. [PMID: 22581366 DOI: 10.1007/s00018-012-1017-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
NADPH oxidases are a family of oxidases that utilize molecular oxygen to generate hydrogen peroxide and superoxide, thus indicating physiological functions of these highly reactive and short-lived species. The regulation of these NADPH oxidases (nox) enzymes is complex, with many members of this family exhibiting complexity in terms of subunit composition, cellular location, and tissue-specific expression. While the complexity of the nox family (Nox1-5, Duox1, 2) is daunting, the complexity also allows for targeting of NADPH oxidases in disease states. In this review, we discuss which inflammatory and malignant disorders can be targeted by nox inhibitors, as well as clinical experience in the use of such inhibitors.
Collapse
Affiliation(s)
- Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
34
|
Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta Rev Cancer 2012; 1826:89-102. [PMID: 22503822 DOI: 10.1016/j.bbcan.2012.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/05/2023]
Abstract
Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM.
Collapse
|
35
|
Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol 2011; 164:776-84. [PMID: 21166657 DOI: 10.1111/j.1365-2133.2010.10185.x] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND There have been conflicting data regarding the prevalence and clinicopathological characteristics of BRAF and NRAS mutations in primary cutaneous melanoma. OBJECTIVES To solve this controversy, this study used a meta-analysis to evaluate the frequencies of BRAF and NRAS mutations, and the relationship between these mutations and clinicopathological parameters of cutaneous melanoma. METHODS Data from studies published between 1989 and 2010 were combined. The BRAF and NRAS mutations were reported in 36 and 31 studies involving 2521 and 1972 patients, respectively. The effect sizes of outcome parameters were calculated by odds ratios (OR). RESULTS BRAF and NRAS mutations were reported in 41% and 18% of cutaneous melanomas, respectively. The mutations were associated with histological subtype and tumour site, but not with age and sex. The BRAF mutation was frequently detected in patients with superficial spreading melanoma (OR=2·021; P<0·001) and in melanomas arising in nonchronic sun-damaged skin (OR=2·043; P=0·001). In contrast, the NRAS mutation was frequently evident in patients with nodular melanoma (OR=1·894; P<0·001) and in melanomas arising in chronic sun-damaged skin (OR=1·887; P=0·018). CONCLUSIONS This pooled analysis shows that the incidences of BRAF and NRAS mutations in cutaneous melanomas differ according to histological type and tumour location based on the degree of sun exposure.
Collapse
Affiliation(s)
- J-H Lee
- Department of Pathology, Korea University Ansan Hospital, 516, Gojan-1 Dong, Danwon-Gu, Ansan-Si, Gyeonggi-Do 425-707, Korea
| | | | | |
Collapse
|
36
|
Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival. PLoS One 2011; 6:e17578. [PMID: 21386910 PMCID: PMC3046256 DOI: 10.1371/journal.pone.0017578] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/09/2011] [Indexed: 12/05/2022] Open
Abstract
Background S-phase kinase protein 2 (Skp2), an F-box protein, targets cell cycle regulators via ubiquitin-mediated degradation. Skp2 is frequently overexpressed in a variety of cancers and associated with patient survival. In melanoma, however, the prognostic significance of subcellular Skp2 expression remains controversial. Methods To investigate the role of Skp2 in melanoma development, we constructed tissue microarrays and examined Skp2 expression in melanocytic lesions at different stages, including 30 normal nevi, 61 dysplastic nevi, 290 primary melanomas and 146 metastatic melanomas. The TMA was assessed for cytoplasmic and nuclear Skp2 expression by immunohistochemistry. The Kaplan-Meier method was used to evaluate the patient survival. The univariate and multivariate Cox regression models were performed to estimate the harzard ratios (HR) at five-year follow-up. Results Cytoplasmic but not nuclear Skp2 expression was gradually increased from normal nevi, dysplastic nevi, primary melanomas to metastatic melanomas. Cytoplasmic Skp2 expression correlated with AJCC stages (I vs II–IV, P<0.001), tumor thickness (≤2.00 vs >2.00 mm, P<0.001) and ulceration (P = 0.005). Increased cytoplasmic Skp2 expression was associated with a poor five-year disease-specific survival of patients with primary melanoma (P = 0.018) but not metastatic melanoma (P>0.05). Conclusion This study demonstrates that cytoplasmic Skp2 plays an important role in melanoma pathogenesis and its expression correlates with patient survival. Our data indicate that cytoplasmic Skp2 may serve as a potential biomarker for melanoma progression and a therapeutic target for this disease.
Collapse
|
37
|
MEK2 is sufficient but not necessary for proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. PLoS One 2011; 6:e17165. [PMID: 21365009 PMCID: PMC3041822 DOI: 10.1371/journal.pone.0017165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/23/2011] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinase kinases (MKK or MEK) 1 and 2 are usually treated as redundant kinases. However, in assessing their relative contribution towards ERK-mediated biologic response investigators have relied on tests of necessity, not sufficiency. In response we developed a novel experimental model using lethal toxin (LeTx), an anthrax toxin-derived pan-MKK protease, and genetically engineered protease resistant MKK mutants (MKKcr) to test the sufficiency of MEK signaling in melanoma SK-MEL-28 cells. Surprisingly, ERK activity persisted in LeTx-treated cells expressing MEK2cr but not MEK1cr. Microarray analysis revealed non-overlapping downstream transcriptional targets of MEK1 and MEK2, and indicated a substantial rescue effect of MEK2cr on proliferation pathways. Furthermore, LeTx efficiently inhibited the cell proliferation and anchorage-independent growth of SK-MEL-28 cells expressing MKK1cr but not MEK2cr. These results indicate in SK-MEL-28 cells MEK1 and MEK2 signaling pathways are not redundant and interchangeable for cell proliferation. We conclude that in the absence of other MKK, MEK2 is sufficient for SK-MEL-28 cell proliferation. MEK1 conditionally compensates for loss of MEK2 only in the presence of other MKK.
Collapse
|
38
|
McKenzie JA, Liu T, Goodson AG, Grossman D. Survivin enhances motility of melanoma cells by supporting Akt activation and {alpha}5 integrin upregulation. Cancer Res 2010; 70:7927-37. [PMID: 20807805 DOI: 10.1158/0008-5472.can-10-0194] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Survivin expression in melanoma is inversely correlated with patient survival. Transgenic mice harboring melanocyte-specific overexpression of survivin exhibit increased susceptibility to UV-induced melanoma and metastatic progression. To understand the mechanistic basis for metastatic progression, we investigated the effects of survivin on the motility of human melanocytes and melanoma cells. We found that survivin overexpression enhanced migration on fibronectin and invasion through Matrigel, whereas survivin knockdown under subapoptotic conditions blocked migration and invasion. In melanocytes, survivin overexpression activated the Akt and mitogen-activated protein kinase pathways. Akt phosphorylation was required for survivin-enhanced migration and invasion, whereas Erk phosphorylation was required only for enhanced invasion. In both melanocytes and melanoma cells, survivin overexpression was associated with upregulation of α5 integrin (fibronectin receptor component), the antibody-mediated blockade or RNA interference-mediated knockdown of which blocked survivin-enhanced migration. Knockdown of α5 integrin did not affect Akt activation, but inhibition of Akt phosphorylation prevented α5 integrin upregulation elicited by survivin overexpression. Together, our results showed that survivin enhanced the migration and invasion of melanocytic cells and suggested that survivin may promote melanoma metastasis by supporting Akt-dependent upregulation of α5 integrin.
Collapse
Affiliation(s)
- Jodi A McKenzie
- Departments of Dermatology and Oncological Sciences, and the Huntsman Cancer Institute; University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
39
|
He S, Yang S, Deng G, Liu M, Zhu H, Zhang W, Yan S, Quan L, Bai J, Xu N. Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell Mol Life Sci 2010; 67:2069-76. [PMID: 20300951 PMCID: PMC11115945 DOI: 10.1007/s00018-010-0340-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/07/2010] [Accepted: 02/11/2010] [Indexed: 01/07/2023]
Abstract
Aurora kinase A (AURKA) is an essential mitotic serine/threonine kinase and its abnormal expression is observed in many malignancies, yet the exact role for AURKA in tumorigenesis still remains elusive. Here, through a transcription factor array, we show that the transcription activity of E2F1 was increased by AURKA overexpression. Meanwhile, the E2F1 protein level was found to be upregulated and a correlation between AURKA and E2F1 expression was observed in cancer specimens. Further analysis revealed that AURKA increased E2F1 protein stability by inhibiting proteasome-dependent degradation of this protein. Additionally, a microRNA cluster, miR-17-92, was found to be upregulated upon AURKA overexpression, and this stimulation was largely repressed by E2F1 knockdown. Chromatin immunoprecipitation further demonstrated that AURKA enhanced E2F1 occupancy to the promoter of the miR-17-92 cluster. These data reveal a novel link between AURKA and microRNAs via the regulation of E2F1, providing new clues for understanding the role of AURKA in tumorigenesis.
Collapse
Affiliation(s)
- Shun He
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Shangbin Yang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Guohua Deng
- Department of Pathology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Wei Zhang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Shuang Yan
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Lanping Quan
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Jinfeng Bai
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, PO Box 2258, Beijing, 100021 People’s Republic of China
| |
Collapse
|
40
|
Coexpression of major histocompatibility complex class II with chemokines and nuclear NFkappaB p50 in melanoma: a rational for their association with poor prognosis. Melanoma Res 2009; 19:226-37. [PMID: 19574933 DOI: 10.1097/cmr.0b013e32832e0bc3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The constitutive expression of major histocompatibility complex class II (MHC II) molecules in melanoma is highly unusual and has been associated with unfavorable clinical outcome and higher metastatic dissemination. This association remains poorly understood and therefore, in this study we looked to whether it is caused by intracellular events that promote tumor progression. We previously reported that MHC II expression in melanoma cells requires active mitogen-activated protein kinase/extracellular signal-related kinase. However, our comparative and molecular analyses of a panel of melanoma cell lines herein provide clear evidence that mitogen-activated protein kinase/extracellular signal-related kinase is not sufficient for HLA-DR expression. We found that the expression of HLA-DR in these tumors rather coincides with the expression of CXCL-1 and CXCL-8 chemokines, both known to be expressed in tumors that invade early and are related to invasive stages of melanoma. The expression of HLA-DR also nicely paralleled that of the nuclear NFkappaB p50 subunit, regulating the expression of these chemokines in melanoma and previously correlated with poor prognosis of melanoma patients, although we provide evidence that NFkappaB is not directly regulating MHC II expression level. The molecular basis for class II transactivator and HLA-DR expression in melanoma therefore remains unsolved, but our findings linking together the expression of HLA-DR, of chemokines involved in invasiveness, and of nuclear NFkappaB p50 strongly support the content that MHC II may be a marker of invasive primary melanoma, and could explain the long-standing association of MHC II expression with overall poor prognosis and unfavorable clinical outcome.
Collapse
|
41
|
Chua R, Setzer S, Govindarajan B, Sexton D, Cohen C, Arbiser JL. Maspin expression, angiogenesis, prognostic parameters, and outcome in malignant melanoma. J Am Acad Dermatol 2009; 60:758-66. [DOI: 10.1016/j.jaad.2009.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 12/26/2022]
|
42
|
Affiliation(s)
- Levi E Fried
- Department of Dermatology, Emory University School of Medicine, WMB 5309, 101 Woodruff Circle Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Domenzain-Reyna C, Hernández D, Miquel-Serra L, Docampo MJ, Badenas C, Fabra A, Bassols A. Structure and regulation of the versican promoter: the versican promoter is regulated by AP-1 and TCF transcription factors in invasive human melanoma cells. J Biol Chem 2009; 284:12306-17. [PMID: 19269971 DOI: 10.1074/jbc.m807108200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Versican is a large chondroitin sulfate proteoglycan of the extracellular matrix that is involved in a variety of cellular processes. We showed previously that versican, which is overexpressed in cutaneous melanomas as well as in premalignant lesions, contributes to melanoma progression, favoring the detachment of cells and the metastatic dissemination. Here, we investigated the transcriptional regulation of the versican promoter in melanoma cell lines with different levels of biological aggressiveness and stages of differentiation. We show that versican promoter up-regulation accounts for the differential expression levels of mRNA and protein detected in the invasive SK-mel-131 human melanoma cells. The activity of the versican promoter increased 5-fold in these cells in comparison with that measured in non-invasive MeWo melanoma cells. Several transcriptional regulatory elements were identified in the proximal promoter, including AP-1, Sp1, AP-2, and two TCF-4 sites. We show that promoter activation is mediated by the ERK/MAPK and JNK signaling pathways acting on the AP-1 site, suggesting that BRAF mutation present in SK-mel-131 cells impinge upon the up-regulation of the versican gene through signaling elicited by the ERK/MAPK pathway. This is the first time the AP-1 transcription factor family has been shown to be related to the regulation of versican expression. Furthermore, deletion of the TCF-4 binding sites caused a 60% decrease in the promoter activity in SK-mel-131 cells. These results showing that AP-1 and TCF-4 binding sites are the main regulatory regions directing versican production provide new insights into versican promoter regulation during melanoma progression.
Collapse
Affiliation(s)
- Clelia Domenzain-Reyna
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Askari N, Beenstock J, Livnah O, Engelberg D. p38α Is Active in Vitro and in Vivo When Monophosphorylated at Threonine 180. Biochemistry 2009; 48:2497-504. [DOI: 10.1021/bi900024v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nadav Askari
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - Jonah Beenstock
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - Oded Livnah
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - David Engelberg
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| |
Collapse
|
45
|
Loftus SK, Antonellis A, Matera I, Renaud G, Baxter LL, Reid D, Wolfsberg TG, Chen Y, Wang C, Prasad MK, Bessling SL, McCallion AS, Green ED, Bennett DC, Pavan WJ. Gpnmb is a melanoblast-expressed, MITF-dependent gene. Pigment Cell Melanoma Res 2008; 22:99-110. [PMID: 18983539 DOI: 10.1111/j.1755-148x.2008.00518.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression profile analysis clusters Gpnmb with known pigment genes, Tyrp1, Dct, and Si. During development, Gpnmb is expressed in a pattern similar to Mitf, Dct and Si with expression vastly reduced in Mitf mutant animals. Unlike Dct and Si, Gpnmb remains expressed in a discrete population of caudal melanoblasts in Sox10-deficient embryos. To understand the transcriptional regulation of Gpnmb we performed a whole genome annotation of 2,460,048 consensus MITF binding sites, and cross-referenced this with evolutionarily conserved genomic sequences at the GPNMB locus. One conserved element, GPNMB-MCS3, contained two MITF consensus sites, significantly increased luciferase activity in melanocytes and was sufficient to drive expression in melanoblasts in vivo. Deletion of the 5'-most MITF consensus site dramatically reduced enhancer activity indicating a significant role for this site in Gpnmb transcriptional regulation. Future analysis of the Gpnmb locus will provide insight into the transcriptional regulation of melanocytes, and Gpnmb expression can be used as a marker for analyzing melanocyte development and disease progression.
Collapse
Affiliation(s)
- Stacie K Loftus
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bhandarkar SS, Bromberg J, Carrillo C, Selvakumar P, Sharma RK, Perry BN, Govindarajan B, Fried L, Sohn A, Reddy K, Arbiser JL. Tris (dibenzylideneacetone) dipalladium, a N-myristoyltransferase-1 inhibitor, is effective against melanoma growth in vitro and in vivo. Clin Cancer Res 2008; 14:5743-8. [PMID: 18794083 DOI: 10.1158/1078-0432.ccr-08-0405] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Melanoma is a solid tumor that is notoriously resistant to chemotherapy, and its incidence is rapidly increasing. Recently, several signaling pathways have been shown to contribute to melanoma tumorigenesis, including constitutive activation of mitogen-activated protein kinase, Akt, and Stat-3. The activation of multiple pathways may account in part for the difficulty in treatment of melanoma. In a recent screen of compounds, we found that an organopalladium compound, Tris (dibenzylideneacetone) dipalladium (Tris DBA), showed significant antiproliferative activity against melanoma cells. Studies were carried out to determine the mechanism of action of Tris DBA. EXPERIMENTAL DESIGN Tris DBA was tested on efficacy on proliferation of human and murine melanoma cells. To find the mechanism of action of Tris DBA, we did Western blot and gene array analyses. The ability of Tris DBA to block tumor growth in vivo was assessed. RESULTS Tris DBA has activity against B16 murine and A375 human melanoma in vivo. Tris DBA inhibits several signaling pathways including activation of mitogen-activated protein kinase, Akt, Stat-3, and S6 kinase activation, suggesting an upstream target. Tris DBA was found to be a potent inhibitor of N-myristoyltransferase-1, which is required for optimal activity of membrane-based signaling molecules. Tris DBA showed potent antitumor activity in vivo against melanoma. CONCLUSION Tris DBA is thus a novel inhibitor of N-myristoyltransferase-1 with significant antitumor activity and is well tolerated in vivo. Further preclinical evaluation of Tris DBA and related complexes is warranted.
Collapse
|
47
|
Birk DM, Barbato J, Mureebe L, Chaer RA. Current insights on the biology and clinical aspects of VEGF regulation. Vasc Endovascular Surg 2008; 42:517-30. [PMID: 18799497 DOI: 10.1177/1538574408322755] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key molecule that orchestrates the formation and function of vascular networks. Impaired regulation of angiogenesis is implicated in a number of pathologic states. For instance, neoplasias exhibit uncontrolled angiogenesis, whereas ischemia and states of vascular insufficiency involve reduced VEGF activity. As the role of VEGF has been elucidated in these disease processes, its therapeutic role has been developed. The Food and Drug Administration has approved several anti-VEGF agents for treating colorectal, lung, and kidney cancer. VEGF-inducing agents have also been used experimentally to induce angiogenesis in patients with critical limb ischemia. As more knowledge is gathered about the biology of VEGF and its receptors, there is greater promise for therapeutic modulation of VEGF expression. The purpose of this review is to describe the various therapeutic and biologic factors that regulate the expression of VEGF.
Collapse
Affiliation(s)
- Daniel M Birk
- College of Physicians and Surgeons, Columbia University, New York, USA
| | | | | | | |
Collapse
|
48
|
Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S. Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res 2008; 21:368-78. [PMID: 18435704 DOI: 10.1111/j.1755-148x.2008.00452.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we reported a transgenic mouse line, TG-3, that develops spontaneous melanoma with 100% penetrance. We demonstrated that ectopic expression of Grm1 in melanocytes was sufficient to induce melanoma in vivo. In this present study, the transforming properties of Grm1 in two cultured immortalized melanocytes were investigated. We showed that, in contrast to parental melanocytes, these Grm1-clones have lost their requirement of TPA supplement for proliferation and have acquired the ability to form colonies in semi-solid medium. Xenografts of these cells formed robust tumors in both immunodeficient nude and syngeneic mice with a short latency (3-5 days). The malignancy of these cells was demonstrated by angiogenesis and invasion to the muscle and the intestine. The requirement of Grm1 expression for the maintenance of transformation was demonstrated by an inducible siRNA system. Induction of expression of siRNA for Grm1 reduced the number of proliferating/viable cells in vitro and suppressed in vivo xenografted tumor growth in comparison with control. Taken together, these results showed that expression of exogeneously introduced Grm1 is sufficient to induce full transformation of immortalized melanocytes.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
In melanoma, at least four major signaling abnormalities have been described. They include beta-catenin deregulation (mutation/mislocalization), p16 loss, MAP kinase activation, and Akt activation. In this review, we discuss the role of the fourth pathway, known as the reactive oxygen driven tumor. The role of reactive oxygen in tumorigenesis is likely to relate to virtually all forms of cancer, and lends itself to specific therapies. These include blockade of reactive oxygen, resulting in decreased activation of NF-kappaB, which should sensitize tumors to chemotherapy and radiation. The phenotype of the reactive oxygen driven tumor can be monitored using available markers already in use in most hospital laboratories.
Collapse
Affiliation(s)
- Levi Fried
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
50
|
Hersey P, Zhang XD, Mhaidat N. Overcoming Resistance to Apoptosis in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:105-26. [DOI: 10.1007/978-1-4020-6554-5_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|