1
|
Liu J, Su G, Chen X, Chen Q, Duan C, Xiao S, Zhou Y, Fang L. PRRSV infection facilitates the shedding of soluble CD163 to induce inflammatory responses. Vet Microbiol 2024; 296:110189. [PMID: 39047452 DOI: 10.1016/j.vetmic.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which poses substantial threats to the global pig industry, is primarily characterized by interstitial pneumonia. Cluster of differentiation 163 (CD163) is the essential receptor for PRRSV infection. Metalloproteinase-mediated cleavage of CD163 leads to the shedding of soluble CD163 (sCD163), thereby inhibiting PRRSV proliferation. However, the exact cleavage site in CD163 and the potential role of sCD163 in inflammatory responses during PRRSV infection remain unclear. Herein, we found that PRRSV infection increased sCD163 levels, as demonstrated in primary alveolar macrophages (PAMs), immortalized PAM (IPAM) cell lines, and sera from PRRSV-infected piglets. With LC-MS/MS, Arg-1041/Ser-1042 was identified as the cleavage site in porcine CD163, and an IPAM cell line with precise mutation at the cleavage site was constructed. Using the precisely mutated IPAM cells, we found that exogenous addition of sCD163 protein promoted inflammatory responses, while mutation at the CD163 cleavage site suppressed inflammatory responses. Consistently, inhibition of sCD163 using its neutralizing antibodies reduced PRRSV infection-triggered inflammatory responses. Importantly, sCD163 promoted cell polarization from M2 to M1 phenotype, which in turn facilitated inflammatory responses. Taken together, our findings identify sCD163 as a novel proinflammatory mediator and provide valuable insights into the mechanisms underlying the induction of inflammatory responses by PRRSV infection.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Porcine respiratory and reproductive syndrome virus/immunology
- Swine
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/virology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Inflammation/virology
- Cell Line
Collapse
Affiliation(s)
- Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaolei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou 221000, China; School of Life Sciences, Xuzhou Medical University, Xuzhou 221000, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
2
|
Fisher ML, Prantzalos ER, O'Donovan B, Anderson TL, Sahoo PK, Twiss JL, Ortinski PI, Turner JR. Dynamic effects of ventral hippocampal NRG3/ERBB4 signaling on nicotine withdrawal-induced responses. Neuropharmacology 2024; 247:109846. [PMID: 38211698 PMCID: PMC10923109 DOI: 10.1016/j.neuropharm.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Tobacco smoking remains a leading cause of preventable death in the United States, with approximately a 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH) of male and female mice. We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Bernadette O'Donovan
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, SC, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| |
Collapse
|
3
|
Kwon Y, Kang M, Jeon YM, Lee S, Lee HW, Park JS, Kim HJ. Identification and characterization of novel ERBB4 variant associated with sporadic amyotrophic lateral sclerosis (ALS). J Neurol Sci 2024; 457:122885. [PMID: 38278691 DOI: 10.1016/j.jns.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common type of motor neuron disease characterized by progressive motor neuron degeneration in brain and spinal cord. Most cases are sporadic in ALS and 5-10% of cases are familiar. >50 genes are known to be associated with ALS and one of them is ERBB4. In this paper, we report the case of a 53-year-old ALS patient with progressive muscle weakness and fasciculation, but he had no cognitive decline. We performed the next generation sequencing (NGS) and in silico analysis, it predicted a highly pathogenic variant, c.2116 A > G, p.Asn706Asp (N706D) in the ERBB4 gene. The amino acid residue is highly conserved among species. ERBB4 is a member of the ERBB family of receptor tyrosine kinases. ERBB4 has multiple tyrosine phosphorylation sites, including an autophosphorylation site at tyrosine 1284 residue. Autophosphorylation of ERBB4 promotes biological activity and it associated with NRG-1/ERBB4 pathway. It is already known that tyrosine 128 phosphorylation of ERBB4 is decreased in patients who have ALS-associated ERBB4 mutations. We generated ERBB4 N706D construct using site-directed mutagenesis and checked the phosphorylation level of ERBB4 N706D in NSC-34 cells. We found that the phosphorylation of ERBB4 N706D was decreased compared to ERBB4 wild-type, indicating a loss of function mutation in ERBB4. We report a novel variant in ERBB4 gene leading to ALS through dysfunction of ERBB4.
Collapse
Affiliation(s)
- Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Minsung Kang
- Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea; Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea; Department of Brain Sciences, DGIST, Daegu, South Korea.
| |
Collapse
|
4
|
Deng A, Wang S, Qin J, Yang P, Shen S, Zhou H, Chen X. ErbB4 processing is involved in OGD/R induced neuron injury. J Stroke Cerebrovasc Dis 2023; 32:107373. [PMID: 37734179 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Our previous study found that ErbB4 gene expression was changed after oxygen-glucose deprivation/reperfusion (OGD/R). However, the exact role and mechanism of ErbB4 in brain ischemia are largely unknown. In this study, we explored the protective effects of ErbB4 and its possible mechanism after OGD/R. METHODS Cerebral ischemia/reperfusion (I/R) injury model was established in vitro and in vivo. Cell viability, apoptosis, and ROS production were measured by MTT, TUNEL, and fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). Infarct size was evaluated by TTC. We performed bioinformatics analyses to screen for novel key genes involved in ErbB4 changes. RNA-Seq was used to transcriptome analysis. RNA and protein expression were detected by quantitative RT‒PCR and western bloting. RESULTS The expression of 80-kDa ErbB4 decreased after cerebral I/R injury in vitro and in vivo. Co-expression network analysis revealed that ErbB4 expression was correlated with the changes in Adrb1, Adrb2, Ldlr, and Dab2. Quantitative RT‒PCR revealed that the mRNA expression levels of Adrb1, Adrb2, and Dab2 were upregulated, and that of Ldlr was decreased after OGD/R. Activation of ErbB4 expression by neuregulin 1 (NRG1) significantly promoted cell survival, attenuated hippocampal apoptosis, and decreased ROS production after OGD/R. Furthermore, the elimination of ErbB4 using a specific siRNA reversed these beneficial effects. CONCLUSION Our data revealed the neuroprotective effects of ErbB4 against OGD/R injury, and the action could be related to changes in the ErbB4 membrane-associated fragment and the expression of Adrb1, Adrb2, Ldlr, and Dab2.
Collapse
Affiliation(s)
- Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shouyan Wang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Panpan Yang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shaoze Shen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hongzhi Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
5
|
Fisher ML, Prantzalos ER, O'Donovan B, Anderson T, Sahoo PK, Twiss JL, Ortinski PI, Turner JR. Dynamic Effects of Ventral Hippocampal NRG3/ERBB4 Signaling on Nicotine Withdrawal-Induced Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524432. [PMID: 36711798 PMCID: PMC9882308 DOI: 10.1101/2023.01.17.524432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH). We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Bernadette O'Donovan
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tanner Anderson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
7
|
Yousuf M, Rafi S, Ishrat U, Shafiga A, Dashdamirova G, Leyla V, Iqbal H. Potential Biological Targets Prediction, ADME Profiling, & Molecular Docking studies of Novel Steroidal Products from Cunninghamella Blakesleana. Med Chem 2021; 18:288-305. [PMID: 34102986 DOI: 10.2174/1573406417666210608143128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND New potential biological targets prediction through inverse molecular docking technique is an another smart strategy to forecast the possibility of compounds being biologically active against various target receptors. OBJECTIVES In this case of designed study, we screened our recently obtained novel acetylinic steroidal biotransformed products [(1) 8-β-methyl-14-α-hydroxy∆4tibolone (2) 9-α-Hydroxy∆4 tibolone (3) 8-β-methyl-11-β-hydroxy∆4tibolone (4) 6-β-hydroxy∆4tibolone, (5) 6-β-9-α-dihydroxy∆4tibolone (6) 7-β-hydroxy∆4tibolone) ] from fungi Cunninghemella Blakesleana to predict their possible biological targets and profiling of ADME properties. METHOD The prediction of pharmacokinetics properties membrane permeability as well as bioavailability radar properties were carried out by using Swiss target prediction, and Swiss ADME tools, respectively these metabolites were also subjected to predict the possible mechanism of action along with associated biological network pathways by using Reactome data-base. RESULTS All the six screened compounds possess excellent drug ability criteria, and exhibited exceptionally excellent non inhibitory potential against all five isozymes of CYP450 enzyme complex, including (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4) respectively. All the screened compounds are lying within the acceptable pink zone of bioavailability radar and showing excellent descriptive properties. Compounds [1-4 & 6] are showing high BBB (Blood Brain Barrier) permeation, while compound 5 is exhibiting high HIA (Human Intestinal Absorption) property of (Egan Egg). CONCLUSION In conclusion, the results of this study smartly reveals that in-silico based studies are considered to provide robustness towards a rational drug designing and development approach, therefore in this way it helps to avoid the possibility of failure of drug candidates in the later experimental stages of drug development phases.
Collapse
Affiliation(s)
- Maria Yousuf
- Dow College of Biotechnology, Department of Bioinformatics, Dow University of Health Sciences Karachi, Pakistan
| | - Sidra Rafi
- International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Urooj Ishrat
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | - Heydarov Iqbal
- Botany Institute of, Azerbaijan National Academy of Sciences, Azerbaijan
| |
Collapse
|
8
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Shi JY, Bi YY, Yu BF, Wang QF, Teng D, Wu DN. Alternative Splicing Events in Tumor Immune Infiltration in Colorectal Cancer. Front Oncol 2021; 11:583547. [PMID: 33996533 PMCID: PMC8117221 DOI: 10.3389/fonc.2021.583547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/05/2023] Open
Abstract
Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.
Collapse
Affiliation(s)
- Jian-Yu Shi
- Department of Proctology, Ping Yi People's Hospital, Linyi, China
| | - Yan-Yan Bi
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Bian-Fang Yu
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Qing-Feng Wang
- Department of Basic Pharmacology, College of Integration of Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan Teng
- Artificial Intelligence and Big Data College, HE University, Shenyang, China
| | - Dong-Ning Wu
- Clinical Evaluation Center, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Iwagishi R, Tanaka R, Seto M, Takagi T, Norioka N, Ueyama T, Kawamura T, Takagi J, Ogawa Y, Shirakabe K. Negatively charged amino acids in the stalk region of membrane proteins reduce ectodomain shedding. J Biol Chem 2020; 295:12343-12352. [PMID: 32580944 DOI: 10.1074/jbc.ra120.013758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Indexed: 01/12/2023] Open
Abstract
Ectodomain shedding is a post-translational modification mechanism by which the entire extracellular domain of membrane proteins is liberated through juxtamembrane processing. Because shedding rapidly and irreversibly alters the characteristics of cells, this process is properly regulated. However, the molecular mechanisms governing the propensity of membrane proteins to shedding are largely unknown. Here, we present evidence that negatively charged amino acids within the stalk region, an unstructured juxtamembrane region at which shedding occurs, contribute to shedding susceptibility. We show that two activated leukocyte cell adhesion molecule (ALCAM) protein variants produced by alternative splicing have different susceptibilities to ADAM metallopeptidase domain 17 (ADAM17)-mediated shedding. Of note, the inclusion of a stalk region encoded by a 39-bp-long alternative exon conferred shedding resistance. We found that this alternative exon encodes a large proportion of negatively charged amino acids, which we demonstrate are indispensable for conferring the shedding resistance. We also show that the introduction of negatively charged amino acids into the stalk region of shedding-susceptible ALCAM variant protein attenuates its shedding. Furthermore, we observed that negatively charged amino acids residing in the stalk region of Erb-B2 receptor tyrosine kinase 4 (ERBB4) are indispensable for its shedding resistance. Collectively, our results indicate that negatively charged amino acids within the stalk region interfere with the shedding of multiple membrane proteins. We conclude that the composition of the stalk region determines the shedding susceptibility of membrane proteins.
Collapse
Affiliation(s)
- Ryo Iwagishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Rika Tanaka
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Munenosuke Seto
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tomoyo Takagi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Naoko Norioka
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tomoe Ueyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Kyoko Shirakabe
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan .,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Badenes M, Amin A, González-García I, Félix I, Burbridge E, Cavadas M, Ortega FJ, de Carvalho É, Faísca P, Carobbio S, Seixas E, Pedroso D, Neves-Costa A, Moita LF, Fernández-Real JM, Vidal-Puig A, Domingos A, López M, Adrain C. Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Mol Metab 2019; 31:67-84. [PMID: 31918923 PMCID: PMC6909339 DOI: 10.1016/j.molmet.2019.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. Methods We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. Results Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. Conclusion Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease. Deletion of iRhom2 protects mice from metabolic syndrome. In obesity, iRhom2 deletion increases energy expenditure, thermogenesis and white adipose tissue beiging. iRhom2 deletion enhances thermogenesis in naïve brown adipocytes.
Collapse
Affiliation(s)
| | - Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Inês Félix
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland; Turku Bioscience Centre, University of Turku, Åbo Akademi University, FI-20520 Turku, Finland
| | | | | | | | | | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | | | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - António Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Ana Domingos
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Obesity Lab, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.
| |
Collapse
|
12
|
Lopez-Font I, Sogorb-Esteve A, Javier-Torrent M, Brinkmalm G, Herrando-Grabulosa M, García-Lareu B, Turon-Sans J, Rojas-García R, Lleó A, Saura CA, Zetterberg H, Blennow K, Bosch A, Navarro X, Sáez-Valero J. Decreased circulating ErbB4 ectodomain fragments as a read-out of impaired signaling function in amyotrophic lateral sclerosis. Neurobiol Dis 2019; 124:428-438. [DOI: 10.1016/j.nbd.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
|
13
|
Mechanistic insights into ectodomain shedding: susceptibility of CADM1 adhesion molecule is determined by alternative splicing and O-glycosylation. Sci Rep 2017; 7:46174. [PMID: 28393893 PMCID: PMC5385562 DOI: 10.1038/srep46174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022] Open
Abstract
Ectodomain shedding (shedding) is a post-translational modification, which liberates the extracellular domain of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Because shedding alters characteristics of cells in a rapid and irreversible manner, it should be strictly regulated. However, the molecular mechanisms determining membrane protein susceptibility to shedding (shedding susceptibility) are largely unknown. Here we report that alternative splicing can give rise to both shedding-susceptible and shedding-resistant CADM1 (cell adhesion molecule 1) variant proteins. We further show that O-glycans adjacent to the shedding cleavage site interfere with CADM1 shedding, and the only 33-bp alternative exon confers shedding susceptibility to CADM1 by inserting five non-glycosylatable amino acids between interfering O-glycans and the shedding cleavage site. These results demonstrate that shedding susceptibility of membrane protein can be determined at two different levels of its biosynthesis pathway, alternative splicing and O-glycosylation.
Collapse
|
14
|
Shen H, Li L, Zhou S, Yu D, Yang S, Chen X, Wang D, Zhong S, Zhao J, Tang J. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumour Biol 2016; 37:15359–15370. [PMID: 27658778 DOI: 10.1007/s13277-016-5418-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family members are known to process the target membrane-bound molecules through the quick induction of their protease activities under interaction with other molecules, which have diverse roles in tissue morphogenesis and pathophysiological remodeling. Among these, ADAM17 is a membrane-bound protease that sheds the extracellular domain of various receptors or its ligands from the cell membrane and subsequently activates downstream signaling transduction pathways. Importantly, breast cancer remains a mainspring of cancer-induced death in women, and numerous regulatory pathways have been implicated in the formation of breast cancer. Substantial evidence has demonstrated that an obvious increased in ADAM17 cell surface expression has been discovered in breast cancer and was shown to be associated with mammary tumorigenesis, invasiveness, and drug resistance. Over the last decades, it has received more than its share of attention that ADAM17 plays a potential role in breast cancer, including cell proliferation, invasion, angiogenesis, apoptosis, and trastuzumab resistance. In our review, we discuss the mechanisms through which ADAM17 acts on breast cancer tumorigenesis and progression. Thus, this will provide further impetus for exploiting ADAM17 as a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Hongyu Shen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, 210006, China
| | - Siying Zhou
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Nanjing University of Traditional Chinese Medicine, Xianlin Road 138, Nanjing, Jiangsu, 210023, China
| | - Dandan Yu
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Sujin Yang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Dandan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| | - Jinhai Tang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
15
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
16
|
Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015; 84:739-64. [PMID: 25621509 DOI: 10.1146/annurev-biochem-060614-034402] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.
Collapse
|
17
|
Nielsen TO, Friis-Hansen L, Poulsen SS, Federspiel B, Sorensen BS. Expression of the EGF family in gastric cancer: downregulation of HER4 and its activating ligand NRG4. PLoS One 2014; 9:e94606. [PMID: 24728052 PMCID: PMC3984243 DOI: 10.1371/journal.pone.0094606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 03/19/2014] [Indexed: 01/27/2023] Open
Abstract
Gastric cancer is a major cause of cancer-related deaths in both men and women. The epidermal growth factor receptors are EGFR, HER2, HER3 and HER4. Of the four epidermal growth factor receptors, EGFR and HER2 are well-known oncogenes involved in gastric cancer. Little, however, is known about the role played by HER3 and HER4 in this disease. We obtained paired samples from the tumor and the adjacent normal tissue from the same patient undergoing surgery for gastric cancer. Using RT-qPCR, we quantified the mRNA expression of the four receptors including the HER4 splicing isoforms and all the ligands activating these receptors. Using immunohistochemistry, the protein expression of HER4 was also quantified. We found that HER2 mRNA expression was upregulated in the tumor tissue compared to the matched normal tissue (p = 0.0520). All ligands with affinity for EGFR were upregulated, whereas the expression of EGFR was unchanged. Interestingly, we found the mRNA expression of HER4 (p = 0.0002) and its ligand NRG4 (p = 0.0009) to be downregulated in the tumor tissue compared to the matched normal tissue. HER4 downregulation was demonstrated for all the alternatively spliced isoforms of this receptor. These results support the involvement of EGFR and HER2 in gastric cancer and suggest an interesting association of reduced HER4 expression with development of gastric cancer.
Collapse
Affiliation(s)
| | - Lennart Friis-Hansen
- Department of Biomedical Sciences, and The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Seier Poulsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Federspiel
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
18
|
Abstract
The endosomal system provides a route whereby nutrients, viruses, and receptors are internalized. During the course of endocytosis, activated receptors can accumulate within endosomal structures and certain signal-transducing molecules can be recruited to endosomal membranes. In the context of signaling and cancer, they provide platforms within the cell from which signals can be potentiated or attenuated. Regulation of the duration of receptor signaling is a pivotal means of refining growth responses in cells. In cancers, this is often considered in terms of mutations that affect receptor tyrosine kinases and maintain them in hyperactivated states of dimerization and/or phosphorylation. However, disruption to the regulatory control exerted by the assembly of protein complexes within the endosomal network can also contribute to disease among which oncogenesis is characterized in part by dysregulated growth, enhanced cell survival, and changes in the expression of markers of differentiation. In this chapter, we will discuss the role of proteins that regulate in endocytosis as tumor suppressors or oncogenes and how changing the fate of internalized receptors and concomitant endosomal signaling can contribute to cancer.
Collapse
Affiliation(s)
- Nikolai Engedal
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Cancer Prevention, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Urology, Oslo University Hospital, Oslo, Norway; Uro-Oncology Research Group, Cambridge Research Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
19
|
Abstract
To date, 18 distinct receptor tyrosine kinases (RTKs) are reported to be trafficked from the cell surface to the nucleus in response to ligand binding or heterologous agonist exposure. In most cases, an intracellular domain (ICD) fragment of the receptor is generated at the cell surface and translocated to the nucleus, whereas for a few others the intact receptor is translocated to the nucleus. ICD fragments are generated by several mechanisms, including proteolysis, internal translation initiation, and messenger RNA (mRNA) splicing. The most prevalent mechanism is intramembrane cleavage by γ-secretase. In some cases, more than one mechanism has been reported for the nuclear localization of a specific RTK. The generation and use of RTK ICD fragments to directly communicate with the nucleus and influence gene expression parallels the production of ICD fragments by a number of non-RTK cell-surface molecules that also influence cell proliferation. This review will be focused on the individual RTKs and to a lesser extent on other growth-related cell-surface transmembrane proteins.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | | |
Collapse
|
20
|
Directing HER4 mRNA expression towards the CYT2 isoform by antisense oligonucleotide decreases growth of breast cancer cells in vitro and in vivo. Br J Cancer 2013; 108:2291-8. [PMID: 23695025 PMCID: PMC3681029 DOI: 10.1038/bjc.2013.247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The tyrosine kinase receptor HER4 is a member of the epidermal growth factor receptor (EGFR) family. It plays diverse roles in cancer development and cancer progression and can both exert oncogenic and tumour-suppressive activities. Alternatively spliced isoforms of HER4 are critical to the different signalling possibilities of HER4. Methods: We use a splice-switching oligonucleotide (SSO) to direct the alternative splicing of HER4 from the CYT1 to the CYT2 isoform in HER4-expressing breast cancer cells. Results: Treatment with a target-specific SSO was accompanied by a decreased growth of the cells (P<0.0001). In addition, the SSO treatment induced a decreased activity of Akt. We confirmed the SSO-dependent switching of the HER4 isoform CYT1 to CYT2 expression in a xenografted mouse tumour model driven by subcutaneously injected MCF7 cells. We hence demonstrated the feasibility of SSO-directed splice-switching activity in vivo. Furthermore, the SSO treatment efficiently decreased the growth of the xenografted tumour (P=0.0014). Conclusion: An SSO directing the splicing of HER4 towards the CYT2 isoform has an inhibitory effect of cancer cell growth in vitro and in vivo. These results may pave the way for the development of new anticancer drugs in HER4-deregulated cancers in humans.
Collapse
|
21
|
Wu SL, Taylor AD, Lu Q, Hanash SM, Im H, Snyder M, Hancock WS. Identification of potential glycan cancer markers with sialic acid attached to sialic acid and up-regulated fucosylated galactose structures in epidermal growth factor receptor secreted from A431 cell line. Mol Cell Proteomics 2013; 12:1239-49. [PMID: 23371026 DOI: 10.1074/mcp.m112.024554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used powerful HPLC-mass spectrometric approaches to characterize the secreted form of epidermal growth factor receptor (sEGFR). We demonstrated that the amino acid sequence lacked the cytoplasmic domain and was consistent with the primary sequence reported for EGFR purified from a human plasma pool. One of the sEGFR forms, attributed to the alternative RNA splicing, was also confirmed by transcriptional analysis (RNA sequencing). Two unusual types of glycan structures were observed in sEGFR as compared with membrane-bound EGFR from the A431 cell line. The unusual glycan structures were di-sialylated glycans (sialic acid attached to sialic acid) at Asn-151 and N-acetylhexosamine attached to a branched fucosylated galactose with N-acetylglucosamine moieties (HexNAc-(Fuc)Gal-GlcNAc) at Asn-420. These unusual glycans at specific sites were either present at a much lower level or were not observable in membrane-bound EGFR present in the A431 cell lysate. The observation of these di-sialylated glycan structures was consistent with the observed expression of the corresponding α-N-acetylneuraminide α-2,8-sialyltransferase 2 (ST8SiA2) and α-N-acetylneuraminide α-2,8-sialyltransferase 4 (ST8SiA4), by quantitative real time RT-PCR. The connectivity present at the branched fucosylated galactose was also confirmed by methylation of the glycans followed by analysis with sequential fragmentation in mass spectrometry. We hypothesize that the presence of such glycan structures could promote secretion via anionic or steric repulsion mechanisms and thus facilitate the observation of these glycan forms in the secreted fractions. We plan to use this model system to facilitate the search for novel glycan structures present at specific sites in sEGFR as well as other secreted oncoproteins such as Erbb2 as markers of disease progression in blood samples from cancer patients.
Collapse
Affiliation(s)
- Shiaw-Lin Wu
- Barnett Institute, Northeastern University, Boston, Massachusetts 01225, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
ErbB4 is a receptor tyrosine kinase that can signal by a mechanism involving proteolytic release of intracellular and extracellular receptor fragments. Proteolysis-dependent signaling of ErbB4 has been proposed to be enhanced in breast cancer, mainly based on immunohistochemical localization of intracellular epitopes in the nuclei. To more directly address the processing of ErbB4 in vivo, an ELISA was developed to quantify cleaved ErbB4 ectodomain from serum samples. Analysis of 238 breast cancer patients demonstrated elevated quantities of ErbB4 ectodomain in the serum (≥40 ng/mL) in 21% of the patients, as compared to 0% of 30 healthy controls (P = 0.002). Significantly, the elevated serum ectodomain concentration did not correlate with the presence of nuclear ErbB4 immunoreactivity in matched breast cancer tissue samples. However, elevated serum ectodomain concentration was associated with the premenopausal status at diagnosis (P = 0.04), and estradiol enhanced ErbB4 cleavage in vitro. A 3.4 Å X-ray crystal structure of a complex of ErbB4 ectodomain and the Fab fragment of anti-ErbB4 mAb 1479 localized the binding site of mAb 1479 on ErbB4 to a region on subdomain IV encompassing the residues necessary for ErbB4 cleavage. mAb 1479 also significantly blocked ErbB4 cleavage in breast cancer cell xenografts in vivo, and the inhibition of cleavage was associated with suppression of xenograft growth. These data indicate that ErbB4 processing is enhanced in breast cancer tissue in vivo, and that ErbB4 cleavage can be stimulated by estradiol and targeted with mAb 1479.
Collapse
|
23
|
Liao HJ, Carpenter G. Regulated intramembrane cleavage of the EGF receptor. Traffic 2012; 13:1106-12. [PMID: 22531034 DOI: 10.1111/j.1600-0854.2012.01371.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 11/28/2022]
Abstract
Following the addition of EGF or ionomycin to A431 cells, protease activity mediates cleavage of the EGF receptor producing a 60 kDa fragment that includes the intracellular domain (ICD). This fragment is located in both membrane and nuclear fractions. On the basis of sensitivity to chemical inhibitors and overexpression of cDNAs, the rhomboid intramembrane proteases, not γ-secretase proteases, are identified as responsible for the cleavage event. Agonist-initiated cleavage occurs slowly over 3-24 h. Inhibition of calpain protease activity significantly increased the detectable level of ICD fragment.
Collapse
Affiliation(s)
- Hong-Jun Liao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
24
|
Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, Séité P. ErbB380kDa, a nuclear variant of the ErbB3 receptor, binds to the Cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal 2012; 24:1074-85. [DOI: 10.1016/j.cellsig.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 01/11/2023]
|
25
|
Nuclear translocation and functions of growth factor receptors. Semin Cell Dev Biol 2012; 23:165-71. [DOI: 10.1016/j.semcdb.2011.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/08/2011] [Indexed: 01/24/2023]
|
26
|
Wong TW, Lee FY, Emanuel S, Fairchild C, Fargnoli J, Fink B, Gavai A, Hammell A, Henley B, Hilt C, Hunt JT, Krishnan B, Kukral D, Lewin A, Malone H, Norris D, Oppenheimer S, Vite G, Yu C. Antitumor and Antiangiogenic Activities of BMS-690514, an Inhibitor of Human EGF and VEGF Receptor Kinase Families. Clin Cancer Res 2011; 17:4031-41. [DOI: 10.1158/1078-0432.ccr-10-3417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Fregnan F, Petrov V, Garzotto D, De Marchis S, Offenhäuser N, Grosso E, Chiorino G, Perroteau I, Gambarotta G. Eps8 involvement in neuregulin1-ErbB4 mediated migration in the neuronal progenitor cell line ST14A. Exp Cell Res 2011; 317:757-69. [DOI: 10.1016/j.yexcr.2011.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/23/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
28
|
Zhang H, Shen W, Rempel D, Monsey J, Vidavsky I, Gross ML, Bose R. Carboxyl-group footprinting maps the dimerization interface and phosphorylation-induced conformational changes of a membrane-associated tyrosine kinase. Mol Cell Proteomics 2011; 10:M110.005678. [PMID: 21422241 DOI: 10.1074/mcp.m110.005678] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Her4 is a transmembrane receptor tyrosine kinase belonging to the ErbB-EGFR family. It plays a vital role in the cardiovascular and nervous systems, and mutations in Her4 have been found in melanoma and lung cancer. The kinase domain of Her4 forms a dimer complex, called the asymmetric dimer, which results in kinase activation. Although a crystal structure of the Her4 asymmetric dimer is known, the dimer affinity and the effect of the subsequent phosphorylation steps on kinase domain conformation are unknown. We report here the use of carboxyl-group footprinting MS on a recombinant expressed, Her4 kinase-domain construct to address these questions. Carboxyl-group footprinting uses a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, in the presence of glycine ethyl ester, to modify accessible carboxyl groups on glutamate and aspartate residues. Comparisons of Her4 kinase-domain monomers versus dimers and of unphosphorylated versus phosphorylated dimers were made to map the dimerization interface and to determine phosphorylation induced-conformational changes. We detected 37 glutamate and aspartate residues that were modified, and we quantified their extents of modification by liquid chromatography MS. Five residues showed changes in carboxyl-group modification. Three of these residues are at the predicted dimer interface, as shown by the crystal structure, and the remaining two residues are on loops that likely have altered conformation in the kinase dimer. Incubating the Her4 kinase dimers with ATP resulted in dramatic increase in Tyr-850 phosphorylation, located on the activation loop, and this resulted in a conformational change in this loop, as evidenced by reduction in carboxyl-group modification. The kinase monomer-dimer equilibrium was measured using a titration format in which the extent of carboxyl-group footprinting was mathematically modeled to give the dimer association constant (1.5-6.8 × 10(12) dm(2)/mol). This suggests that the kinase-domain makes a significant contribution to the overall dimerization affinity of the full-length Her4 protein.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Hoeing K, Zscheppang K, Mujahid S, Murray S, Volpe MV, Dammann CEL, Nielsen HC. Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:480-91. [PMID: 21195117 PMCID: PMC3046222 DOI: 10.1016/j.bbamcr.2010.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/29/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
Maturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the γ-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80kDa intracellular domain (4ICD), which associates with chaperone proteins such as YAP (Yes-associated protein) and translocates to the nucleus to regulate gene expression. We hypothesized that PSEN-1 and YAP have a development-specific expression in fetal type II cells and are important for ErbB4 signaling in surfactant production. In primary fetal mouse E16, E17, and E18 type II cells, PSEN-1 and YAP expression increased at E17 and E18 over E16. Subcellular fractionation showed a strong cytosolic and a weaker membrane location of both PSEN-1 and YAP. This was enhanced by NRG stimulation. Co-immunoprecipitations showed ErbB4 associated separately with PSEN-1 and with YAP. Their association, phosphorylation, and co-localization were induced by NRG. Confocal immunofluorescence and nuclear fractionation confirmed these associations in a time-dependent manner after NRG stimulation. Primary ErbB4-deleted E17 type II cells were transfected with a mutant ErbB4 lacking the γ-secretase binding site. When compared to transfection with wild-type ErbB4, the stimulatory effect of NRG on surfactant protein mRNA expression was lost. We conclude that PSEN-1 and YAP have crucial roles in ErbB4 signal transduction during type II cell maturation.
Collapse
Affiliation(s)
- Kristina Hoeing
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Katja Zscheppang
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Sana Mujahid
- Department of Anatomy and Cell Biology, Tufts University Sackler School of Biomedical Sciences, Harrison Ave, Boston MA, USA 02111
| | - Sandy Murray
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
| | - MaryAnn V. Volpe
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
| | - Christiane E. L. Dammann
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Heber C. Nielsen
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
- Department of Anatomy and Cell Biology, Tufts University Sackler School of Biomedical Sciences, Harrison Ave, Boston MA, USA 02111
| |
Collapse
|
30
|
Sundvall M, Veikkolainen V, Kurppa K, Salah Z, Tvorogov D, van Zoelen EJ, Aqeilan R, Elenius K. Cell death or survival promoted by alternative isoforms of ErbB4. Mol Biol Cell 2010; 21:4275-86. [PMID: 20943952 PMCID: PMC2993754 DOI: 10.1091/mbc.e10-04-0332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The report demonstrates that two distinct isoforms of the ErbB4 receptor tyrosine kinase stimulate either proliferation or apoptosis by mechanisms involving differential transcriptional regulation of the PDGFRA gene. These data have implications for developing approaches to target ErbB4 signaling in cancer. The significance of ErbB4 in tumor biology is poorly understood. The ERBB4 gene is alternatively spliced producing juxtamembrane (JM-a and JM-b) and cytoplasmic (CYT-1 and CYT-2) isoforms. Here, signaling via the two alternative ErbB4 JM isoforms (JM-a CYT-2 and JM-b CYT-2) was compared. Fibroblasts expressing ErbB4 JM-a demonstrated enhanced ErbB4 autophosphorylation, growth, and survival. In contrast, cells overexpressing ErbB4 JM-b underwent starvation-induced death. Both pro- and antisurvival responses to the two ErbB4 isoforms were sensitive to an ErbB kinase inhibitor. Platelet-derived growth factor receptor-alpha (PDGFRA) was identified as an ErbB4 target gene that was differentially regulated by the two ErbB4 isoforms. The soluble intracellular domain of ErbB4, released from the JM-a but not from the JM-b isoform, associated with the transcription factor AP-2 and promoted its potential to enhance PDGFRA transcription. Survival of cells expressing JM-a was suppressed by targeting either PDGFR-α or AP-2, whereas cells expressing JM-b were rescued from cell death by the PDGFR-α agonist, PDGF-BB. These findings indicate that two alternative ErbB4 isoforms may promote antagonistic cellular responses and suggest that pharmacological inhibition of ErbB4 kinase activity may lead to either suppression or promotion of cellular growth.
Collapse
Affiliation(s)
- Maria Sundvall
- Department of Medical Biochemistry and Genetics, and Medicity Research Laboratory, University of Turku, Turku, Finland; Department of Oncology, Turku University Hospital, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Antibodies targeting the extracellular domains of ErbB receptors have been extensively studied for cancer drug development. This work has led to clinical approval of monoclonal antibodies against the well-known oncogenes EGFR and ErbB2. Here we discuss the biological activities of ErbB4, a less-studied member of the EGFR/ErbB growth factor receptor family and speculate on the potential clinical relevance of antibodies targeting ErbB4. In addition to their significance as therapeutics, the role of ErbB4 antibodies in prognostic and predictive applications is surveyed.
Collapse
Affiliation(s)
- Maija Hollmén
- Department of Medical Biochemistry and Genetics, and Medicity Research Laboratory, University of Turku, and Turku Graduate School of Biomedical Sciences, Turku, Finland
| | | |
Collapse
|
32
|
Pugia MJ, Franke DDH, Barnes SL, Zercher A, Brock D, Foltz M, Valdes R, Jortani SA. Adiponectin Receptor-1 C-Terminal Fragment (CTF) in Plasma: Putative Biomarker for Diabetes. Clin Proteomics 2009. [DOI: 10.1007/s12014-009-9036-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Introduction
Polypeptide fragments from cell surface receptors when found in plasma may be indicators of receptor regulation in disease conditions. It is known that subjects with diabetes have significantly lower plasma concentrations of adiponectin, a hormone released by adipose tissue, compared with nondiabetic controls. This hormone interacts with cell surface receptors in muscle (AdipoR1) and liver (AdipoR2).
Methods
We analyzed the relative distribution of specific fragments of AdipoR1 in healthy and diabetic individuals using an immunoaffinity mass spectrometry approach. We used antibodies raised against AdipoR1 immobilized on pre-activated protein chip surfaces to determine the molecular weights of bound polypeptide fragments using immunomass spectrometry (immuno-MS).
Results
Initially, immuno-MS analyses using a polyclonal antibody revealed two peaks (m/z 3,902 and 7,812) in plasma from normal, healthy individuals (n = 5) that were not present in the plasma of diabetics (n = 5). To confirm the detection of these fragments, a monoclonal antibody was developed against the last 25 amino acids of the AdipoR1 C-terminal fragment (CTF). Using the immuno-MS method, the monoclonal antibody detected the AdipoR1 CTF (m/z 3475) in all healthy controls (n = 10), but did not detect these fragments in the diabetic patients (n = 10).
Discussion
These preliminary observations suggest that the plasma levels of this receptor fragment may serve as an indicator of diabetic condition.
Collapse
|
33
|
|
34
|
Zheng Y, Watakabe A, Takada M, Kakita A, Namba H, Takahashi H, Yamamori T, Nawa H. Expression of ErbB4 in substantia nigra dopamine neurons of monkeys and humans. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:701-6. [PMID: 19336245 DOI: 10.1016/j.pnpbp.2009.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/19/2022]
Abstract
Abnormal neuregulin-1 signaling through its receptor (ErbB4) might be associated with schizophrenia, although their neuropathological contribution remains controversial. To assess the role of neuregulin-1 in the dopamine hypothesis of schizophrenia, we used in situ hybridization and immunoblotting to investigate the cellular distribution of ErbB4 mRNA in the substantia nigra of Japanese monkeys (Macaca fuscata) and human postmortem brains. In both monkeys and humans, significant signal for ErbB4 mRNA was detected in substantia nigra dopamine neurons, which were identified by melanin deposits. The expression of ErbB4 mRNA in nigral dopamine neurons was confirmed with an independent RNA probe, as well as with combined tyrosine hydroxylase immunostaining. Immunoblotting appeared to support the observation of in situ hybridization. Immunoreactivity for ErbB4 protein was much more enriched in substantia nigra pars compacta containing dopamine neurons than in neighboring substantia nigra pars reticulata. These observations suggest that ErbB4 is expressed in the dopaminergic neurons of primate substantia nigra and ErbB4 abnormality might contribute to the dopaminergic pathology associated with schizophrenia or other brain diseases.
Collapse
Affiliation(s)
- Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Carpenter G, Liao HJ. Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res 2009; 315:1556-66. [PMID: 18951890 PMCID: PMC2709404 DOI: 10.1016/j.yexcr.2008.09.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 12/23/2022]
Abstract
It has been known for at least 20 years that growth factors induce the internalization of cognate receptor tyrosine kinases (RTKs). The internalized receptors are then sorted to lysosomes or recycled to the cell surface. More recently, data have been published to indicate other intracellular destinations for the internalized RTKs. These include the nucleus, mitochondria, and cytoplasm. Also, it is recognized that trafficking to these novel destinations involves new biochemical mechanisms, such as proteolytic processing or interaction with translocons, and that these trafficking events have a function in signal transduction, implicating the receptor itself as a signaling element between the cell surface and the nucleus.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
36
|
Abe Y, Namba H, Zheng Y, Nawa H. In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons. Neuroscience 2009; 161:95-110. [PMID: 19298847 DOI: 10.1016/j.neuroscience.2009.03.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Although epidermal growth factor (EGF) and neuregulin-1 are neurotrophic factors for mesencephalic dopaminergic neurons and implicated in schizophrenia, the cellular localization and developmental regulation of their receptors (ErbB1-4) remain to be characterized. Here we investigated the distributions of mRNA for ErbB1-4 in the midbrain of the developing mouse with in situ hybridization and immunohistochemistry. The expression of ErbB1 and ErbB2 mRNAs was relatively high at the perinatal stage and frequently colocalized with mRNA for S100beta and Olig2, markers for immature astrocytes or oligodendrocyte precursors. Modest signal for ErbB1 mRNA was also detected in a subset of dopaminergic neurons. ErbB3 mRNA was detectable at postnatal day 10, peaked at postnatal day 18, and colocalized with 2',3'-cyclic nucleotide 3'-phosphodiesterase, a marker for oligodendrocytes. In contrast, ErbB4 mRNA was exclusively localized in neurons throughout development. Almost all of ErbB4 mRNA-expressing cells (94%-96%) were positive for tyrosine hydroxylase in the substantia nigra pars compacta but 66%-78% in the ventral tegmental area and substantia nigra pars lateralis. Conversely, 92%-99% of tyrosine hydroxylase-positive cells expressed ErbB4 mRNA. The robust and restricted expression of ErbB4 mRNA in the midbrain dopaminergic neurons suggests that ErbB4 ligands, neuregulin-1 and other EGF-related molecules, contribute to development or maintenance of this neuronal population.
Collapse
Affiliation(s)
- Y Abe
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8585, Japan
| | | | | | | |
Collapse
|
37
|
Blobel CP, Carpenter G, Freeman M. The role of protease activity in ErbB biology. Exp Cell Res 2009; 315:671-82. [PMID: 19013149 PMCID: PMC2646910 DOI: 10.1016/j.yexcr.2008.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/07/2008] [Indexed: 01/16/2023]
Abstract
Proteases are now recognized as having an active role in a variety of processes aside from their recognized metabolic role in protein degradation. Within the ErbB system of ligands and receptors, proteases are known to be necessary for the generation of soluble ligands from transmembrane precursors and for the processing of the ErbB4 receptor, such that its intracellular domain is translocated to the nucleus. There are two protease activities involved in the events: proteases that cleave within the ectodomain of ligand (or receptor) and proteases that cleave the substrate within the transmembrane domain. The former are the ADAM proteases and the latter are the gamma-secretase complex and the rhomboid proteases. This review discusses the roles of each of these protease systems within the ErbB system.
Collapse
Affiliation(s)
- Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, Department of Medicine and Department of Physiology and Biophysics, Weil Medical College of Cornell University, New York, NY 10021
| | - Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH United Kingdom
| |
Collapse
|
38
|
Kummer MP, Maruyama H, Huelsmann C, Baches S, Weggen S, Koo EH. Formation of Pmel17 amyloid is regulated by juxtamembrane metalloproteinase cleavage, and the resulting C-terminal fragment is a substrate for gamma-secretase. J Biol Chem 2009; 284:2296-306. [PMID: 19047044 PMCID: PMC2629115 DOI: 10.1074/jbc.m808904200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Indexed: 11/06/2022] Open
Abstract
The formation of insoluble cross beta-sheet amyloid is pathologically associated with disorders such as Alzheimer, Parkinson, and Huntington diseases. One exception is the nonpathological amyloid derived from the protein Pmel17 within melanosomes to generate melanin pigment. Here we show that the formation of insoluble MalphaC intracellular fragments of Pmel17, which are the direct precursors to Pmel17 amyloid, depends on a novel juxtamembrane cleavage at amino acid position 583 between the furin-like proprotein convertase cleavage site and the transmembrane domain. The resulting Pmel17 C-terminal fragment is then processed by the gamma-secretase complex to release a short-lived intracellular domain fragment. Thus, by analogy to the Notch receptor, we designate this cleavage the S2 cleavage site, whereas gamma-secretase mediates proteolysis at the intramembrane S3 site. Substitutions or deletions at this S2 cleavage site, the use of the metalloproteinase inhibitor TAPI-2, as well as small interfering RNA-mediated knock-down of the metalloproteinases ADAM10 and 17 reduced the formation of insoluble Pmel17 fragments. These results demonstrate that the release of the Pmel17 ectodomain, which is critical for melanin amyloidogenesis, is initiated by S2 cleavage at a juxtamembrane position.
Collapse
Affiliation(s)
- Markus P Kummer
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
39
|
Suppression of breast cancer cell growth by a monoclonal antibody targeting cleavable ErbB4 isoforms. Oncogene 2009; 28:1309-19. [PMID: 19151766 DOI: 10.1038/onc.2008.481] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ErbB4 isoforms mediate different cellular activities depending on their susceptibility to proteolytic cleavage. The biological significance of ErbB4 cleavage in tumorigenesis, however, remains poorly understood. Here, we describe characterization of a monoclonal antibody (mAb 1479) that selectively recognizes the ectodomain of cleavable ErbB4 JM-a isoforms both in vitro and in vivo. mAb 1479 was used to analyse ErbB4 JM-a expression and ectodomain shedding in a series of 17 matched breast cancer/histologically normal peripheral breast tissue pairs. ErbB4 ectodomain was observed in 75% of tumors expressing ErbB4 but only in 18% of normal breast tissue samples expressing ErbB4. Difference in the relative quantity of ErbB4 ectodomain between normal and tumor tissue pairs was statistically significant (P=0.015). Treatment with mAb 1479 suppressed ErbB4 function by inhibiting ErbB4 tyrosine phosphorylation and ectodomain shedding, and by stimulating ErbB4 downregulation and ubiquitination. mAb 1479 suppressed both anchorage-dependent and -independent growth of human breast cancer cell lines that naturally express cleavable ErbB4 JM-a. These findings indicate that ErbB4 ectodomain shedding is enhanced in breast cancer tissue in vivo, and that mAb 1479 represents a potential drug candidate that suppresses breast cancer cell growth by selectively binding cleavable ErbB4 isoforms.
Collapse
|
40
|
Frey MR, Edelblum KL, Mullane MT, Liang D, Polk DB. The ErbB4 growth factor receptor is required for colon epithelial cell survival in the presence of TNF. Gastroenterology 2009; 136:217-26. [PMID: 18973758 PMCID: PMC2811086 DOI: 10.1053/j.gastro.2008.09.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 08/12/2008] [Accepted: 09/18/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The ErbB4 receptor tyrosine kinase regulates cell growth, survival, and differentiation in several tissues, but its role in the gastrointestinal tract has not been reported. We tested the hypothesis that ErbB4 promotes intestinal cell survival and restitution following injury or inflammation. METHODS ErbB4 expression in human inflammatory bowel disease was determined by immunohistochemistry. Mice were subjected to dextran sulfate sodium (DSS, 3%) colitis or injected with tumor necrosis factor (TNF), and ErbB4 expression was quantified by immunohistochemistry and Western blot. Cultured young adult mouse colon (YAMC) cells were exposed to TNF, and ErbB4 messenger RNA, protein, and phosphorylation levels were measured. Cells transfected with ErbB4 small interfering RNA (siRNA), or over expressing ErbB4, were subjected to wound healing and apoptosis assays. RESULTS ErbB4 levels increased in Crohn's colitis and the colon epithelium of mice with DSS colitis or injected with TNF. In YAMC cells, TNF induced ErbB4 messenger RNA, protein, and phosphorylation; nuclear factor kappaB activation also stimulated ErbB4 accumulation. ErbB4 siRNA sensitized cells to TNF-stimulated apoptosis, while over expression blocked apoptosis induced by TNF plus cycloheximide. Additionally, ErbB4 siRNA decreased YAMC cell wound healing. ErbB4 knockdown attenuated, while over expression elevated, phosphorylation of Akt in response to TNF. Inhibition of the phosphatidylinositol 3-kinase/Akt signaling cascade reversed the ability of ErbB4 over expression to protect from cytokine-induced apoptosis. CONCLUSIONS ErbB4 expression and signaling are key elements for TNF responses in vivo and in cell culture, protecting intestinal epithelial cells from apoptosis in the inflammatory environment, possibly through Akt activation.
Collapse
Affiliation(s)
- Mark R. Frey
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine Nashville, TN 37232-0696
| | - Karen L. Edelblum
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0696
| | - Matthew T. Mullane
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine Nashville, TN 37232-0696
| | - Dongchun Liang
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine Nashville, TN 37232-0696
| | - D. Brent Polk
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine Nashville, TN 37232-0696
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0696
| |
Collapse
|
41
|
The E3 ubiquitin ligase WWP1 selectively targets HER4 and its proteolytically derived signaling isoforms for degradation. Mol Cell Biol 2008; 29:892-906. [PMID: 19047365 DOI: 10.1128/mcb.00595-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In general, epidermal growth factor receptor family members stimulate cell proliferation. In contrast, at least one HER4 isoform, JM-a/Cyt1, inhibits cell growth after undergoing a two-step proteolytic cleavage that first produces a membrane-anchored 80-kDa fragment (m80(HER4)) and subsequently liberates a soluble 80-kDa fragment, s80(HER4). Here we report that s80(HER4) Cyt1 action increased the expression of WWP1 (for WW domain-containing protein 1), an E3 ubiquitin ligase, but not other members of the Nedd4 E3 ligase family. The HER4 Cyt1 isoform contains three proline-rich tyrosine (PY) WW binding motifs, while Cyt2 has only two. WWP1 binds to all three Cyt1 PY motifs; the interaction with PY2 found exclusively in Cyt1 was strongest. WWP1 ubiquitinated and caused the degradation of HER4 but not of EGFR, HER2, or HER3. The HER4-WWP1 interaction also accelerated WWP1 degradation. Membrane HER4 (full length and m80(HER4), the product of the first proteolytic cleavage) were the preferred targets of WWP1, correlating with the membrane localization of WWP1. Conversely s80(HER4), a poorer WWP1 substrate, was found in the cell nucleus, while WWP1 was not. Deletion of the C2 membrane association domain of WWP1 allowed more efficient s80(HER4) degradation, suggesting that WWP1 is normally part of a membrane complex that regulates HER4 membrane species levels, with a predilection for the growth-inhibitory Cyt1 isoform. Finally, WWP1 expression diminished HER4 biologic activity in MCF-7 cells. We previously showed that nuclear s80(HER4) is ubiquitinated and degraded by the anaphase-promoting complex, suggesting that HER4 ubiquitination within specific cellular compartments helps regulate the unique HER4 signaling capabilities.
Collapse
|
42
|
Maarouf CL, Daugs ID, Spina S, Vidal R, Kokjohn TA, Patton RL, Kalback WM, Luehrs DC, Walker DG, Castaño EM, Beach TG, Ghetti B, Roher AE. Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Mol Neurodegener 2008; 3:20. [PMID: 19021905 PMCID: PMC2600784 DOI: 10.1186/1750-1326-3-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/20/2008] [Indexed: 01/19/2023] Open
Abstract
Background Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter γ-secretase activity to promote accumulation of toxic Aβ42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-β precursor protein (AβPP), Notch, N-cadherin and Erb-B4 by γ-secretase. In addition, the levels of Aβ40/42 peptides were quantified by ELISA. Results We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Aβ40 over Aβ42. The AβPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations. Conclusion These observations imply that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chuu CP, Chen RY, Barkinge JL, Ciaccio MF, Jones RB. Systems-level analysis of ErbB4 signaling in breast cancer: a laboratory to clinical perspective. Mol Cancer Res 2008; 6:885-91. [PMID: 18567793 DOI: 10.1158/1541-7786.mcr-07-0369] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although expression of the ErbB4 receptor tyrosine kinase in breast cancer is generally regarded as a marker for favorable patient prognosis, controversial exceptions have been reported. Alternative splicing of ErbB4 pre-mRNAs results in the expression of distinct receptor isoforms with differential susceptibility to enzymatic cleavage and different downstream signaling protein recruitment potential that could affect tumor progression in different ways. ErbB4 protein expression from nontransfected cells is generally low compared with ErbB1 in most cell lines, and much of our knowledge of the role of ErbB4 in breast cancer is derived from the ectopic overexpression of the receptor in non-breast-derived cell lines. One of the primary functions of ErbB4 in vivo is in the maturation of mammary glands during pregnancy and lactation induction. Pregnancy and extended lactation durations have been correlated with reduced risk of breast cancer, and the role of ErbB4 in tumor suppression may therefore be linked with its role in lactation. Most reports are consistent with a role for ErbB4 in reversing growth stimuli triggered by other ErbB family members during puberty. In this report, we provide a systems-level examination of several reports highlighting the seemingly opposing roles of ErbB4 in breast cancer and potential explanations for the discrepancies and draw the conclusion that future studies examining the function of ErbB4 in breast cancer should also take into account the pregnancy history, lactation status, and hormone supplementation or ablation history of the patient from whom the tumor or tumor cells are derived.
Collapse
Affiliation(s)
- Chih-Pin Chuu
- Gordon Center for Integrative Science, W306, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
44
|
HER2 oncogenic function escapes EGFR tyrosine kinase inhibitors via activation of alternative HER receptors in breast cancer cells. PLoS One 2008; 3:e2881. [PMID: 18682844 PMCID: PMC2483931 DOI: 10.1371/journal.pone.0002881] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 06/19/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses. METHODOLOGY AND PRINCIPAL FINDINGS Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment-induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa. CONCLUSIONS AND SIGNIFICANCE These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients.
Collapse
|
45
|
Muraoka-Cook RS, Sandahl M, Hunter D, Miraglia L, Earp HS. Prolactin and ErbB4/HER4 signaling interact via Janus kinase 2 to induce mammary epithelial cell gene expression differentiation. Mol Endocrinol 2008; 22:2307-21. [PMID: 18653779 DOI: 10.1210/me.2008-0055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Differentiation of mammary epithelium in vivo requires signaling through prolactin and ErbB4/HER4-dependent mechanisms. Although stimulation of either the prolactin receptor or ErbB4/HER4 results in activation of the transcription factor signal transducer and activator of transcription 5A (STAT5A) and induction of lactogenic differentiation, how these pathways intersect is unknown. We show herein that prolactin signaling in breast cells cooperates with and is substantially enhanced by the receptor tyrosine kinase ErbB4/HER4. Prolactin and the ErbB4/HER4 ligand heparin-binding epidermal growth factor each induced STAT5A tyrosine phosphorylation and nuclear translocation; each pathway required the intracellular tyrosine kinase Janus kinase 2 (JAK2). We found that full prolactin-mediated STAT5A activation and binding to the endogenous beta-casein promoter required ErbB4/HER4 but did not require ErbB1/epidermal growth factor receptor. For example, prolactin-induced STAT5A activity was markedly diminished in cells overexpressing kinase inactive HER4, in cells transfected with small interfering RNAs to specifically knock down endogenous ErbB4/HER4 expression and in cells treated with a small molecule inhibitor that targets ErbB4 kinase. Interestingly, prolactin caused ErbB4/HER4 tyrosine phosphorylation in a JAK2 kinase-dependent manner. Finally, prolactin receptor, ErbB4/HER4, and JAK2 were coimmunoprecipitated from prolactin-treated but not untreated cells. These results suggest that prolactin signaling engages the ErbB4 pathway via JAK2 and that ErbB4 provides an important component of STAT5A-dependent lactogenic differentiation; this pathway integration may help explain the similar deficit in mammary development observed in gene-targeted mice deficient in prolactin receptor, JAK2, ErbB4, or STAT5A.
Collapse
Affiliation(s)
- Rebecca S Muraoka-Cook
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, 102 Mason Farm Road, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Schizophrenia is a highly debilitating mental disorder that affects approximately 1% of the general population, yet it continues to be poorly understood. Recent studies have identified variations in several genes that are associated with this disorder in diverse populations, including those that encode neuregulin 1 (NRG1) and its receptor ErbB4. The past few years have witnessed exciting progress in our knowledge of NRG1 and ErbB4 functions and the biological basis of the increased risk for schizophrenia that is potentially conferred by polymorphisms in the two genes. An improved understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to schizophrenia might eventually lead to the development of more effective therapeutics.
Collapse
Affiliation(s)
- Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | |
Collapse
|
47
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
48
|
Zeng F, Zhang MZ, Singh AB, Zent R, Harris RC. ErbB4 isoforms selectively regulate growth factor induced Madin-Darby canine kidney cell tubulogenesis. Mol Biol Cell 2007; 18:4446-56. [PMID: 17761534 PMCID: PMC2043549 DOI: 10.1091/mbc.e07-03-0223] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ErbB4, a member of the epidermal growth factor (EGF) receptor family that can be activated by heregulin beta1 and heparin binding (HB)-EGF, is expressed as alternatively spliced isoforms characterized by variant extracellular juxtamembrane (JM) and intracellular cytoplasmic (CYT) domains. ErbB4 plays a critical role in cardiac and neural development. We demonstrated that ErbB4 is expressed in the ureteric buds and developing tubules of embryonic rat kidney and in collecting ducts in adult. The predominant isoforms expressed in kidney are JM-a and CYT-2. In ErbB4-transfected MDCK II cells, basal cell proliferation and hepatocyte growth factor (HGF)-induced tubule formation were decreased by all four isoforms. Only JM-a/CYT-2 cells formed tubules upon HB-EGF stimulation. ErbB4 was activated by both HRG-beta1 and HB-EGF stimulation; however, compared with HRG-beta1, HB-EGF induced phosphorylation of the 80-kDa cytoplasmic cleavage fragment of the JM-a/CYT-2 isoform. HB-EGF also induced early activation of ERK1/2 in JM-a/CYT-2 cells and promoted nuclear translocation of the JM-a/CYT-2 cytoplasmic tail. In summary, our data indicate that JM-a/CYT-2, the ErbB4 isoform that is proteinase cleavable but does not contain a PI3K-binding domain in its cytoplasmic tail, mediates important functions in renal epithelial cells in response to HB-EGF.
Collapse
Affiliation(s)
- Fenghua Zeng
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - Ming-Zhi Zhang
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - Amar B. Singh
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - Roy Zent
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
- Nashville Veterans Affairs Hospital, Nashville, TN 37232
| | - Raymond C. Harris
- *Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
- Nashville Veterans Affairs Hospital, Nashville, TN 37232
| |
Collapse
|
49
|
Lynch CC, Vargo-Gogola T, Martin MD, Fingleton B, Crawford HC, Matrisian LM. Matrix metalloproteinase 7 mediates mammary epithelial cell tumorigenesis through the ErbB4 receptor. Cancer Res 2007; 67:6760-7. [PMID: 17638887 DOI: 10.1158/0008-5472.can-07-0026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To delineate the role of matrix metalloproteinase 7 (MMP7) in mammary tumorigenesis, MMP7 was expressed in the normal murine mammary gland cell line, c57MG. MMP7 markedly enhanced the growth rate of the c57MG cells in three-dimensional culture and promoted tumor formation in vivo. Subsequent investigation showed that MMP7 (a) up-regulated ErbB4 receptor levels, (b) solubilized the ErbB4 receptor cognate ligand heparin-bound epidermal growth factor, and (c) mediated the proteolytic processing of ErbB4 to yield a soluble intracellular domain (ICD) that localized to the cytoplasm and the nucleus. Furthermore, overexpression of the ErbB4 ICD in the c57MG cell line recapitulated the proliferative effects of MMP7 in vitro and in vivo. These data indicate a novel mechanism for mammary epithelial cell transformation by MMP7.
Collapse
Affiliation(s)
- Conor C Lynch
- Department of Cancer Biology, Vanderbilt University, 23rd and Pierce Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
50
|
Feng SM, Sartor CI, Hunter D, Zhou H, Yang X, Caskey LS, Dy R, Muraoka-Cook RS, Earp HS. The HER4 cytoplasmic domain, but not its C terminus, inhibits mammary cell proliferation. Mol Endocrinol 2007; 21:1861-76. [PMID: 17505063 PMCID: PMC2917064 DOI: 10.1210/me.2006-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Unlike the proliferative action of other epidermal growth factor (EGF) receptor family members, HER4/ErbB4 is often associated with growth-inhibitory and differentiation signaling. These actions may involve HER4 two-step proteolytic processing by intramembraneous gamma-secretase, releasing the soluble, intracellular 80-kDa HER4 cytoplasmic domain, s80HER4. We demonstrate that pharmacological inhibition of either gamma-secretase activity or HER4 tyrosine kinase activity blocked heregulin-dependent growth inhibition of SUM44 breast cancer cells. We next generated breast cell lines stably expressing GFP-s80HER4 [green fluorescent protein (GFP) fused to the N terminus of the HER4 cytoplasmic domain, residues 676-1308], GFP-CT(HER4) (GFP fused to N terminus of the HER4 C-terminus distal to the tyrosine kinase domain, residues 989-1308), or GFP alone. Both GFP-s80HER4 and GFP-CTHER4 were found in the nucleus, but GFP-s80HER4 accumulated to a greater extent and sustained its nuclear localization. s80HER4 was constitutively tyrosine phosphorylated, and treatment of cells with a specific HER family tyrosine kinase inhibitor 1) blocked tyrosine phosphorylation; 2) markedly diminished GFP-s80HER4 nuclear localization; and 3) reduced signal transducer and activator of transcription (STAT)5A tyrosine phosphorylation and nuclear localization as well as GFP-s80HER4:STAT5A interaction. Multiple normal mammary and breast cancer cell lines, stably expressing GFP-s80HER4 (SUM44, MDA-MB-453, MCF10A, SUM102, and HC11) were growth inhibited compared with the same cell line expressing GFP-CTHER4 or GFP alone. The s80HER4-induced cell number reduction was due to slower growth because rates of apoptosis were equivalent in GFP-, GFP-CTHER4-, and GFP-s80HER4-expressing cells. Lastly, GFP-s80HER4 enhanced differentiation signaling as indicated by increased basal and prolactin-dependent beta-casein expression. These results indicate that surface HER4 tyrosine phosphorylation and ligand-dependent release of s80HER4 are necessary, and s80HER4 signaling is sufficient for HER4-dependent growth inhibition.
Collapse
Affiliation(s)
- Shu-Mang Feng
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Carolyn I. Sartor
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Debra Hunter
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Hong Zhou
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Xihui Yang
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Laura S. Caskey
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Ruth Dy
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - Rebecca S. Muraoka-Cook
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
- Department of Genetics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
- Department of Medicine and Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|