1
|
Lee J, Choi HK, Shin HS, Kim GD. Natural Products as Modulators of Aryl Hydrocarbon Receptor Signaling in Atopic Dermatitis Management. Molecules 2024; 29:5951. [PMID: 39770040 PMCID: PMC11678720 DOI: 10.3390/molecules29245951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by immune dysregulation, skin barrier dysfunction, and a significant patient burden. Recent studies have highlighted the aryl hydrocarbon receptor (AhR) as a promising therapeutic target for AD management because of its pivotal role in modulating immune responses and maintaining skin barrier integrity. The dysfunction of the AhR pathway has been linked to AD pathogenesis, emphasizing the need for therapies that can restore its regulatory functions. Natural products have emerged as potential modulators of the AhR and are effective and safe alternatives to conventional treatments. Compounds such as curcumin, resveratrol, quercetin, and microbial metabolites have demonstrated the ability to activate AhR, reduce inflammation, and promote skin barrier function. These natural agents have fewer side effects and enhance patient compliance compared with conventional therapies, making them attractive candidates for long-term AD management. The integration of natural products targeting the AhR pathway provides a multifaceted approach that alleviates symptoms, addresses underlying disease mechanisms, and promotes sustainable improvements in skin health. This review highlights the therapeutic potential of natural AhR modulators and their potential roles in enhancing patient outcomes through novel integrative treatment strategies.
Collapse
Affiliation(s)
- Jangho Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (J.L.); (H.-K.C.); (H.S.S.)
| | - Hyo-Kyoung Choi
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (J.L.); (H.-K.C.); (H.S.S.)
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (J.L.); (H.-K.C.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (J.L.); (H.-K.C.); (H.S.S.)
| |
Collapse
|
2
|
Kazzaz SA, Tawil J, Harhaj EW. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor. J Biol Chem 2024; 300:107157. [PMID: 38479600 PMCID: PMC11002312 DOI: 10.1016/j.jbc.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
3
|
Wen Z, Zhang Y, Zhang B, Hang Y, Xu L, Chen Y, Xie Q, Zhao Q, Zhang L, Li G, Zhao B, Sun F, Zhai Y, Zhu Y. Cryo-EM structure of the cytosolic AhR complex. Structure 2023; 31:295-308.e4. [PMID: 36649707 DOI: 10.1016/j.str.2022.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is an important ligand-activated transcription factor involved in the regulation of various important physiological functions. Here, we report the cryo-EM structures of the Hsp90-AhR-p23 complex with or without bound XAP2, where the structure of the mouse AhR PAS-B domain is resolved. A highly conserved bridge motif of AhR is responsible for the interaction with the Hsp90 dimeric lumen. The ligand-free AhR PAS-B domain is attached to the Hsp90 dimer and is stabilized in the complex with bound XAP2. In addition, the DE-loop and a group of conserved pocket inner residues in the AhR PAS-B domain are found to be important for ligand binding. These results reveal the structural basis of the biological functions of AhR. Moreover, the protein purification method presented here allows the isolation of stable mouse AhR protein, which could be used to develop high-sensitivity biosensors for environmental pollutant detection.
Collapse
Affiliation(s)
- Zuoling Wen
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Beirong Zhang
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yumo Hang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, CAS, Beijing, China.
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
5
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
6
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
The Aryl Hydrocarbon Receptor Undergoes Chaperone-Mediated Autophagy in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22041654. [PMID: 33562118 PMCID: PMC7914569 DOI: 10.3390/ijms22041654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule expressed in many cell types, including triple-negative and non-triple-negative breast cancer cells. It affects breast cancer growth and crosstalk with estrogen receptor signaling. Normally, this receptor is degraded shortly after ligand activation via the 26S proteasome. Here, we report that AHR undergoes chaperone-mediated autophagy in MDA-MB-468 triple-negative breast cancer cells. This lysosomal degradation of AHR exhibits the following characteristics: (1) it is triggered by 6 amino-nicotinamide, starvation, and piperazinylpyrimidine compound Q18; (2) it is not observed in non-triple-negative breast cancer cells (MCF-7, T47D, and MDA-MB-361); (3) it can be inhibited by progesterone receptor B but not estrogen receptor alpha; (4) it can be reversed by chloroquine but not MG132; (5) it requires LAMP2A; and (6) it involves AHR-HSC70 and AHR-LAMP2A interactions. The NEKFF sequence localized at amino acid 558 of human AHR appears to be a KFERQ-like motif of chaperone-mediated autophagy, responsible for the LAMP2A-mediated AHR protein degradation.
Collapse
|
8
|
Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol 2021; 18:259-268. [PMID: 33408340 PMCID: PMC8027889 DOI: 10.1038/s41423-020-00585-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut-brain axis and its potential value as a therapeutic target for immune-mediated diseases.
Collapse
Affiliation(s)
- Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - João Vitor Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Henrique Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci 2020; 21:E5382. [PMID: 32751111 PMCID: PMC7432778 DOI: 10.3390/ijms21155382] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is an eczematous, pruritic skin disorder with extensive barrier dysfunction and elevated interleukin (IL)-4 and IL-13 signatures. The barrier dysfunction correlates with the downregulation of barrier-related molecules such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL). IL-4 and IL-13 potently inhibit the expression of these molecules by activating signal transducer and activator of transcription (STAT)6 and STAT3. In addition to IL-4 and IL-13, IL-22 and IL-17A are probably involved in the barrier dysfunction by inhibiting the expression of these barrier-related molecules. In contrast, natural or medicinal ligands for aryl hydrocarbon receptor (AHR) are potent upregulators of FLG, LOR, and IVL expression. As IL-4, IL-13, IL-22, and IL-17A are all capable of inducing oxidative stress, antioxidative AHR agonists such as coal tar, glyteer, and tapinarof exert particular therapeutic efficacy for AD. These antioxidative AHR ligands are known to activate an antioxidative transcription factor, nuclear factor E2-related factor 2 (NRF2). This article focuses on the mechanisms by which FLG, LOR, and IVL expression is regulated by IL-4, IL-13, IL-22, and IL-17A. The author also summarizes how AHR and NRF2 dual activators exert their beneficial effects in the treatment of AD.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Sun D, Stopka-Farooqui U, Barry S, Aksoy E, Parsonage G, Vossenkämper A, Capasso M, Wan X, Norris S, Marshall JL, Clear A, Gribben J, MacDonald TT, Buckley CD, Korbonits M, Haworth O. Aryl Hydrocarbon Receptor Interacting Protein Maintains Germinal Center B Cells through Suppression of BCL6 Degradation. Cell Rep 2020; 27:1461-1471.e4. [PMID: 31042473 PMCID: PMC6506688 DOI: 10.1016/j.celrep.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/03/2018] [Accepted: 03/28/2019] [Indexed: 10/29/2022] Open
Abstract
B cell lymphoma-6 (BCL6) is highly expressed in germinal center B cells, but how its expression is maintained is still not completely clear. Aryl hydrocarbon receptor interacting protein (AIP) is a co-chaperone of heat shock protein 90. Deletion of Aip in B cells decreased BCL6 expression, reducing germinal center B cells and diminishing adaptive immune responses. AIP was required for optimal AKT signaling in response to B cell receptor stimulation, and AIP protected BCL6 from ubiquitin-mediated proteasomal degradation by the E3-ubiquitin ligase FBXO11 by binding to the deubiquitinase UCHL1, thus helping to maintain the expression of BCL6. AIP was highly expressed in primary diffuse large B cell lymphomas compared to healthy tissue and other tumors. Our findings describe AIP as a positive regulator of BCL6 expression with implications for the pathobiology of diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dijue Sun
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Urszula Stopka-Farooqui
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sayka Barry
- Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ezra Aksoy
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gregory Parsonage
- Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anna Vossenkämper
- Center for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Melania Capasso
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xinyu Wan
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sherine Norris
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Clear
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - John Gribben
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas T MacDonald
- Center for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Márta Korbonits
- Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Oliver Haworth
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Biological Sciences, Westminster University, London W1W 6UW, UK.
| |
Collapse
|
11
|
Baicalein Inhibits Benzo[a]pyrene-Induced Toxic Response by Downregulating Src Phosphorylation and by Upregulating NRF2-HMOX1 System. Antioxidants (Basel) 2020; 9:antiox9060507. [PMID: 32526964 PMCID: PMC7346154 DOI: 10.3390/antiox9060507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Benzo[a]pyrene (BaP), a major environmental pollutant, activates aryl hydrocarbon receptor (AHR), induces its cytoplasmic-to-nuclear translocation and upregulates the production of cytochrome P450 1A1 (CYP1A1), a xenobiotic metabolizing enzyme which metabolize BaP. The BaP-AHR-CYP1A1 axis generates reactive oxygen species (ROS) and induces proinflammatory cytokines. Although the anti-inflammatory phytochemical baicalein (BAI) is known to inhibit the BaP-AHR-mediated CYP1A1 expression, its subcellular signaling remains elusive. In this study, normal human epidermal keratinocytes and HaCaT keratinocytes were treated with BAI, BaP, or BAI + BaP, and assessed for the CYP1A1 expression, antioxidative pathways, ROS generation, and proinflammatory cytokine expressions. BAI and BAI-containing herbal medicine Wogon and Oren-gedoku-to could inhibit the BaP-induced CYP1A1 expression. In addition, BAI activated antioxidative system nuclear factor-erythroid 2-related factor-2 (NRF2) and heme oxygenase 1 (HMOX1), leading the reduction of BaP-induced ROS production. The BaP-induced IL1A and IL1B was also downregulated by BAI. BAI inhibited the phosphorylation of Src, a component of AHR cytoplasmic complex, which eventually interfered with the cytoplasmic-to-nuclear translocation of AHR. These results indicate that BAI and BAI-containing herbal drugs may be useful for inhibiting the toxic effects of BaP via dual AHR-CYP1A1-inhibiting and NRF2-HMOX1-activating activities.
Collapse
|
12
|
Does NLRP3 Inflammasome and Aryl Hydrocarbon Receptor Play an Interlinked Role in Bowel Inflammation and Colitis-Associated Colorectal Cancer? Molecules 2020; 25:molecules25102427. [PMID: 32456012 PMCID: PMC7287590 DOI: 10.3390/molecules25102427] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a hallmark in many forms of cancer; with colitis-associated colorectal cancer (CAC) being a progressive intestinal inflammation due to inflammatory bowel disease (IBD). While this is an exemplification of the negatives of inflammation, it is just as crucial to have some degree of the inflammatory process to maintain a healthy immune system. A pivotal component in the maintenance of such intestinal homeostasis is the innate immunity component, inflammasomes. Inflammasomes are large, cytosolic protein complexes formed following stimulation of microbial and stress signals that lead to the expression of pro-inflammatory cytokines. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been extensively studied in part due to its strong association with colitis and CAC. The aryl hydrocarbon receptor (AhR) has recently been acknowledged for its connection to the immune system aside from its role as an environmental sensor. AhR has been described to play a role in the inhibition of the NLRP3 inflammasome activation pathway. This review will summarise the signalling pathways of both the NLRP3 inflammasome and AhR; as well as new-found links between these two signalling pathways in intestinal immunity and some potential therapeutic agents that have been found to take advantage of this link in the treatment of colitis and CAC.
Collapse
|
13
|
Furue M, Tsuji G. Chloracne and Hyperpigmentation Caused by Exposure to Hazardous Aryl Hydrocarbon Receptor Ligands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234864. [PMID: 31816860 PMCID: PMC6926551 DOI: 10.3390/ijerph16234864] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Dioxins and dioxin-like compounds are environmental pollutants that are hazardous to human skin. They can be present in contaminated soil, water, and air particles (such as ambient PM2.5). Exposure to a high concentration of dioxins induces chloracne and hyperpigmentation. These chemicals exert their toxic effects by activating the aryl hydrocarbon receptor (AHR) which is abundantly expressed in skin cells, such as keratinocytes, sebocytes, and melanocytes. Ligation of AHR by dioxins induces exaggerated acceleration of epidermal terminal differentiation (keratinization) and converts sebocytes toward keratinocyte differentiation, which results in chloracne formation. AHR activation potently upregulates melanogenesis in melanocytes by upregulating the expression of melanogenic enzymes, which results in hyperpigmentation. Because AHR-mediated oxidative stress contributes to these hazardous effects, antioxidative agents may be potentially therapeutic for chloracne and hyperpigmentation.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan;
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan;
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci 2019; 20:ijms20215424. [PMID: 31683543 PMCID: PMC6862295 DOI: 10.3390/ijms20215424] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR)/AHR-nuclear translocator (ARNT) system is a sensitive sensor for small molecular, xenobiotic chemicals of exogenous and endogenous origin, including dioxins, phytochemicals, microbial bioproducts, and tryptophan photoproducts. AHR/ARNT are abundantly expressed in the skin. Once activated, the AHR/ARNT axis strengthens skin barrier functions and accelerates epidermal terminal differentiation by upregulating filaggrin expression. In addition, AHR activation induces oxidative stress. However, some AHR ligands simultaneously activate the nuclear factor-erythroid 2-related factor-2 (NRF2) transcription factor, which is a master switch of antioxidative enzymes that neutralizes oxidative stress. The immunoregulatory system governing T-helper 17/22 (Th17/22) and T regulatory cells (Treg) is also regulated by the AHR system. Notably, AHR agonists, such as tapinarof, are currently used as therapeutic agents in psoriasis and atopic dermatitis. In this review, we summarize recent topics on AHR related to atopic dermatitis and psoriasis.
Collapse
|
15
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Gutiérrez-Vázquez C, Quintana FJ. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018; 48:19-33. [PMID: 29343438 DOI: 10.1016/j.immuni.2017.12.012] [Citation(s) in RCA: 650] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by small molecules provided by the diet, microorganisms, metabolism, and pollutants. AhR is expressed by a number of immune cells, and thus AhR signaling provides a molecular pathway that integrates the effects of the environment and metabolism on the immune response. Studies have shown that AhR signaling plays important roles in the immune system in health and disease. As its activity is regulated by small molecules, AhR also constitutes a potential target for therapeutic immunomodulation. In this review we discuss the role of AhR in the regulation of the immune response in the context of autoimmunity, infection, and cancer, as well as the potential opportunities and challenges of developing AhR-targeted therapeutics.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
17
|
Seo J, Lee EW, Shin J, Seong D, Nam YW, Jeong M, Lee SH, Lee C, Song J. K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death. Oncogene 2018; 37:4994-5006. [PMID: 29795330 DOI: 10.1038/s41388-018-0323-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
Abstract
Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro-14-gil, Seoul, 02792, Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Manhyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seon-Hyeong Lee
- Cancer Cell & Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro-14-gil, Seoul, 02792, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
18
|
p23 protects the human aryl hydrocarbon receptor from degradation via a heat shock protein 90-independent mechanism. Biochem Pharmacol 2018; 152:34-44. [PMID: 29555469 DOI: 10.1016/j.bcp.2018.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule which is involved in diverse biological functions ranging from cancer metastasis to immune regulation. This receptor forms a cytoplasmic complex with Hsp90, p23, and XAP2. We have previously reported that down-regulation of p23 triggers degradation of the AHR protein, uncovering a potentially dynamic event which controls the cellular AHR levels without ligand treatment. Here we investigate the underlying mechanisms for this p23 effect using wild-type HeLa and the p23 knockdown HeLa cells. Reduction of the Hsp90 and XAP2 contents, however, did not affect the AHR protein levels, implying that this p23 effect on AHR is more than just alteration of the cytoplasmic complex dynamics. Association of p23 with Hsp90 is not important for the modulation of the AHR levels since exogenous expression of p23 mutants with modest Hsp90-binding affinity effectively restored the AHR message and protein levels. The protein folding property of p23 which resides at the terminal 50-amino acid region is not involved for this p23 effect. Results from our interaction study using the affinity purified thioredoxin fusion proteins and GST fusion proteins showed that p23 directly interacts with AHR and the interaction surface lies within AHR amino acid 1-216 and p23 amino acid 1-110. Down-regulation of the p23 protein content promotes the ubiquitination of AHR, indicating that p23 protects AHR from the ubiquitin-meditated protein degradation.
Collapse
|
19
|
Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 2018; 8:1909. [PMID: 29354125 PMCID: PMC5760495 DOI: 10.3389/fimmu.2017.01909] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes- group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host-environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Signaling network map of the aryl hydrocarbon receptor. J Cell Commun Signal 2016; 10:341-346. [PMID: 27465749 DOI: 10.1007/s12079-016-0341-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
|
21
|
Zhou L. AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol 2016; 37:17-31. [PMID: 26700314 PMCID: PMC4707131 DOI: 10.1016/j.it.2015.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with AHR's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for AHR in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate AHR transcription and function. I propose a conceptual framework in which AHR function is determined by three factors: the amount of AHR in any given cell, the abundance and potency of AHR ligands within certain tissues, and the tissue microenvironment wherein AHR(+) cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of AHR function.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
22
|
Tsai CH, Li CH, Liao PL, Cheng YW, Lin CH, Huang SH, Kang JJ. NcoA2-Dependent Inhibition of HIF-1α Activation Is Regulated via AhR. Toxicol Sci 2015; 148:517-30. [PMID: 26350169 DOI: 10.1093/toxsci/kfv199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nuclear translocator (ARNT) for complex formation with hypoxia-inducible factor-1α (HIF-1α) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1α, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1α nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1α and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine; Graduate Institute of Medical Sciences, College of Medicine, and
| | - Po-Lin Liao
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsuan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Jou Kang
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan;
| |
Collapse
|
23
|
Awji EG, Chand H, Bruse S, Smith KR, Colby JK, Mebratu Y, Levy BD, Tesfaigzi Y. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52:377-86. [PMID: 25137396 DOI: 10.1165/rcmb.2014-0142oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation.
Collapse
Affiliation(s)
- Elias G Awji
- 1 COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 2015; 78:35-68. [PMID: 25487015 DOI: 10.1007/978-3-319-11731-7_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hsp90 functionally interacts with a broad array of client proteins, but in every case examined Hsp90 is accompanied by one or more co-chaperones. One class of co-chaperone contains a tetratricopeptide repeat domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is now clear that the client protein influences, and is influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Naihsuan C Guy
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 79968, El Paso, TX, USA,
| | | | | | | | | |
Collapse
|
25
|
Lecoq AL, Kamenický P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol 2015; 11:43-54. [PMID: 25350067 DOI: 10.1038/nrendo.2014.181] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pituitary adenomas are benign intracranial neoplasms that can result in morbidity owing to local invasion and/or excessive or deficient hormone production. The prevalence of symptomatic pituitary adenomas is approximately 1:1,000 in the general population. The vast majority of these tumours occur sporadically and are not part of syndromic disorders. However, germline mutations in genes known to predispose individuals to familial pituitary adenomas are found in a few patients with sporadic pituitary adenomas. Mutations in AIP (encoding aryl-hydrocarbon receptor-interacting protein) are the most frequently observed germline mutations. The prevalence of these mutations in patients with sporadic pituitary adenomas is ∼4%, but can increase to 8-20% in young adults with macroadenomas or gigantism, and also in children. Germline mutations in MEN1 (encoding menin) result in multiple endocrine neoplasia type 1 and are found in very young patients with isolated sporadic pituitary adenomas, which highlights the importance of the chromosome 11q13 locus in pituitary tumorigenesis. In this Review, we describe the clinical features of patients with sporadic pituitary adenomas that are associated with AIP or MEN1 mutations, and discuss the molecular mechanisms that might be involved in pituitary adenoma tumorigenesis. We also discuss genetic screening of patients with sporadic pituitary adenomas and investigations of relatives of these patients who also have the same genetic mutations.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 685] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
27
|
The E3 ligase CHIP: insights into its structure and regulation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:918183. [PMID: 24868554 PMCID: PMC4017836 DOI: 10.1155/2014/918183] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP.
Collapse
|
28
|
Sugatani J. Function, Genetic Polymorphism, and Transcriptional Regulation of Human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet 2013; 28:83-92. [DOI: 10.2133/dmpk.dmpk-12-rv-096] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Nguyen PM, Wang D, Wang Y, Li Y, Uchizono JA, Chan WK. p23 co-chaperone protects the aryl hydrocarbon receptor from degradation in mouse and human cell lines. Biochem Pharmacol 2012; 84:838-50. [PMID: 22759865 DOI: 10.1016/j.bcp.2012.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-sensitive transcription factor which is responsible for most 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicities. Without ligand, the AhR complex is cytoplasmic and contains p23. Our objective was to investigate whether the wild type p23 levels are important for the AhR function. We generated eight p23-specific knockdown stable cell lines via either electroporation or lentiviral infection. Five of these stable cell lines were generated from a mouse hepatoma cell line (Hepa1c1c7) and three were from human hepatoma and cervical cell lines (Hep3B and HeLa). All of them expressed lower AhR protein levels, leading to reduced ligand-induced, DRE-driven downstream activity. The AhR protein levels in p23-specific knockdown stable cells were reversed back to wild type levels after exogenous p23 was introduced. Reduction of the AhR protein levels in these stable cells was caused by a decrease in the AhR message levels and an increase of the AhR protein degradation in the absence of ligand. This ligand-independent degradation of AhR was not reversed by MG132, suggesting that the 26S proteasome was not responsible for the degradation. In addition, MG132 could not protect AhR from the ligand-induced degradation in both mouse and human p23-knockdown stable cells.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Labour Physiology, Vietnam Military Medical University, Hadong, Hanoi, Viet Nam
| | | | | | | | | | | |
Collapse
|
30
|
Elliott A, Joiakim A, Mathieu PA, Duniec-Dmuchowski Z, Kocarek TA, Reiners JJ. p-Anilinoaniline enhancement of dioxin-induced CYP1A1 transcription and aryl hydrocarbon receptor occupancy of CYP1A1 promoter: role of the cell cycle. Drug Metab Dispos 2012; 40:1032-40. [PMID: 22344700 PMCID: PMC3336796 DOI: 10.1124/dmd.111.042549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is targeted by ubiquitination for degradation by the proteasome shortly after its activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In silico screening identified p-anilinoaniline (pAA) as a putative inhibitor of an E2 ligase that partners with an E3 ligase implicated in AhR ubiquitination. We investigated whether pAA could modify AhR-dependent activation of its target gene CYP1A1. pAA (1-200 μM) alone did not affect AhR content, or stimulate CYP1A1 mRNA accumulation in human mammary epithelial MCF10A cultures. However, pretreatment with ≥100 μM pAA suppressed TCDD-induced CYP1A1 activation and AhR degradation via its functioning as an AhR antagonist. At a lower concentration (25 μM), pAA cotreatment increased TCDD-induced CYP1A1 mRNA accumulation, without inhibiting AhR turnover or altering CYP1A1 mRNA half-life. Whereas TCDD alone did not affect MCF10A proliferation, 25 μM pAA was cytostatic and induced a G(1) arrest that lasted ∼7 h and induced an S phase arrest that peaked 5 to 8 h later. TCDD neither affected MCF10A cell cycle progression nor did it alter pAA effects on the cell cycle. The magnitude of CYP1A1 activation depended upon the time elapsed between pAA pretreatment and TCDD addition. Maximal AhR occupancy of the CYP1A1 promoter and accumulation of CYP1A1 heterogeneous nuclear RNA and mRNA occurred when pAA-pretreated cultures were exposed to TCDD in late G(1) and early/mid S phase. TCDD-mediated induction of CYP2S1 was also cell cycle-dependent in MCF10A cultures. Similar studies with HepG2 cultures indicated that the cell cycle dependence of CYP1A1 induction is cell context-dependent.
Collapse
Affiliation(s)
- Althea Elliott
- Institute of Environmental Health Sciences, 259 Mack Ave., Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol Cell 2011; 43:599-612. [PMID: 21855799 DOI: 10.1016/j.molcel.2011.05.036] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/22/2011] [Accepted: 05/31/2011] [Indexed: 01/29/2023]
Abstract
The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3.
Collapse
|
32
|
Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation. Biochem J 2011; 435:755-69. [PMID: 21323643 DOI: 10.1042/bj20101184] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
cAMP-specific PDE (phosphodiesterase) 4 isoforms underpin compartmentalized cAMP signalling in mammalian cells through targeting to specific signalling complexes. Their importance is apparent as PDE4 selective inhibitors exert profound anti-inflammatory effects and act as cognitive enhancers. The p38 MAPK (mitogen-activated protein kinase) signalling cascade is a key signal transduction pathway involved in the control of cellular immune, inflammatory and stress responses. In the present study, we show that PDE4A5 is phosphorylated at Ser147, within the regulatory UCR1 (ultraconserved region 1) domain conserved among PDE4 long isoforms, by MK2 (MAPK-activated protein kinase 2, also called MAPKAPK2). Phosphorylation by MK2, although not altering PDE4A5 activity, markedly attenuates PDE4A5 activation through phosphorylation by protein kinase A. This modification confers the amplification of intracellular cAMP accumulation in response to adenylate cyclase activation by attenuating a major desensitization system to cAMP. Such reprogramming of cAMP accumulation is recapitulated in wild-type primary macrophages, but not MK2/3-null macrophages. Phosphorylation by MK2 also triggers a conformational change in PDE4A5 that attenuates PDE4A5 interaction with proteins whose binding involves UCR2, such as DISC1 (disrupted in schizophrenia 1) and AIP (aryl hydrocarbon receptor-interacting protein), but not the UCR2-independent interacting scaffold protein β-arrestin. Long PDE4 isoforms thus provide a novel node for cross-talk between the cAMP and p38 MAPK signalling systems at the level of MK2.
Collapse
|
33
|
Jaffrain-Rea ML, Daly AF, Angelini M, Petrossians P, Bours V, Beckers A. Genetic susceptibility in pituitary adenomas: from pathogenesis to clinical implications. Expert Rev Endocrinol Metab 2011; 6:195-214. [PMID: 30290451 DOI: 10.1586/eem.10.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pituitary adenomas usually present sporadically, with a multifactorial pathogenesis including somatic mutational events in cancer-related genes. Genetic predisposition implies the presence of germline DNA alterations with a range of impacts on pituitary cell biology, translating into a variable penetrance of the disease. Genetic causes must be considered in the presence of specific clinical settings, such as familial occurrence of pituitary adenoma, with or without extrapituitary diseases, and may also be suspected in young patients (<30 years of age) with macroadenomas. We review the clinical implications of genetic predisposition, with special attention on multiple endocrine neoplasia type 1, Carney complex and familial isolated pituitary adenoma. Genetic screening in selected patients with an apparently sporadic disease is also discussed.
Collapse
Affiliation(s)
- Marie-Lise Jaffrain-Rea
- a University of L'Aquila, via Vetoio, Coppito 2, 67100 L'Aquila, Italy
- b Neuromed Institute, via Atinense, 86077 Pozzilli, Italy
- c Fondazione 'Carlo Ferri' per la prevenzione e la diagnosi precoce dei tumori, via Edmondo Riva, 00015 Monterotondo, Italy
| | - Adrian F Daly
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | | | - Patrick Petrossians
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | - Vincent Bours
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- d University of Liège, CHU of Liège, Domaine du Sart-Tilman, 4000 Liège, Belgium
- e
| |
Collapse
|
34
|
Craig Rowlands J, Urban JD, Wikoff DS, Budinsky RA. An Evaluation of Single Nucleotide Polymorphisms in the Human Aryl Hydrocarbon Receptor-Interacting Protein (AIP) Gene. Drug Metab Pharmacokinet 2011; 26:431-9. [DOI: 10.2133/dmpk.dmpk-11-sc-013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 2010; 49:9964-71. [PMID: 20961098 DOI: 10.1021/bi1012996] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity and stability of the tumor suppressor p53 are regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased level of dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Pα1 and Pα2), which extend from Phe19 to Leu25 and from Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Cα1, residues 2066-2075; Cα2, residues 2081-2092; and Cα3, residues 2095-2105) with a hydrophobic groove into which p53 helices Pα1 and Pα2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.
Collapse
Affiliation(s)
- Chul Won Lee
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
36
|
Vandeva S, Vasilev V, Vroonen L, Naves L, Jaffrain-Rea ML, Daly AF, Zacharieva S, Beckers A. Familial pituitary adenomas. ANNALES D'ENDOCRINOLOGIE 2010; 71:479-85. [PMID: 20961530 DOI: 10.1016/j.ando.2010.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/31/2022]
Abstract
Pituitary adenomas are benign intracranial neoplasms that present a major clinical concern because of hormonal overproduction or compression symptoms of adjacent structures. Most arise in a sporadic setting with a small percentage developing as a part of familial syndromes such as multiple endocrine neoplasia type 1 (MEN1), Carney complex (CNC), and the recently described familial isolated pituitary adenomas (FIPA) and MEN-4. While the genetic alterations responsible for the formation of sporadic adenomas remain largely unknown, considerable advances have been made in defining culprit genes in these familial syndromes. Mutations in MEN1 and PRKAR1A genes are found in the majority of MEN1 and CNC patients, respectively. About 15% of FIPA kindreds present with mutations of the aryl hydrocarbon receptor-interacting protein (AIP) gene. Mutations in the CDKN1B gene, encoding p27(Kip)¹ were identified in MEN4 cases. Familial tumours appear to differ from their sporadic counterparts not only in genetic basis but also in clinical characteristics. Evidence suggests that, especially in MEN1 and FIPA, they are more aggressive and affect patients at younger age, therefore justifying the importance of early diagnosis. In this review, we summarize the genetic and clinical characteristics of these familial pituitary adenomas.
Collapse
Affiliation(s)
- S Vandeva
- Department of Endocrinology, University of Liège, CHU de Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li H, Wang H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab Toxicol 2010; 6:409-26. [PMID: 20113149 DOI: 10.1517/17425251003598886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Xenobiotic receptors (XRs) play pivotal roles in regulating the expression of genes that determine the clearance and detoxification of xenobiotics, such as drugs and environmental chemicals. Recently, it has become increasingly evident that most XRs shuttle between the cytoplasm and nucleus, and activation of such receptors is directly associated with xenobiotic-induced nuclear import. AREAS COVERED IN THIS REVIEW The scope of this review covers research literature that discusses nuclear translocation and activation of XRs, as well as unpublished data generated from this laboratory. Specific emphasis is given to the constitutive androstane receptor (CAR), the pregnane X receptor and the aryl hydrocarbon receptor. WHAT THE READERS WILL GAIN A number of molecular chaperons presumably associated with cellular localization of XRs have been identified. Primary hepatocyte cultures have been established as a unique model retaining inactive CAR in the cytoplasm. Moreover, several splicing variants of human CAR exhibit altered cellular localization and chemical activation. TAKE HOME MESSAGE Nuclear accumulation is an essential step in the activation of XRs. Although great strides have been made, much remains to be understood concerning the mechanisms underlying intracellular localization and trafficking of XRs, which involve both direct ligand-binding and indirect pathways.
Collapse
Affiliation(s)
- Haishan Li
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
38
|
Fujii-Kuriyama Y, Kawajiri K. Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:40-53. [PMID: 20075607 PMCID: PMC3417568 DOI: 10.2183/pjab.86.40] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) was originally identified as a ligand-activated transcription factor that is involved in the induction of xenobiotic-metabolizing Cytochrome P4501A1 (CYP1A1). For several decades, AhR has been studied in relation to toxicology and pharmacology. With recent discoveries on novel AhR functions, AhR research has expanded into multiple aspects of physiology, such as reproduction, innate immunity and tumor suppression. In this review, we summarize and discuss recent progress in mechanistic and functional studies on AhR with particular emphasis on physiological processes.
Collapse
Affiliation(s)
- Yoshiaki Fujii-Kuriyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 5-18-7 Honkomagame, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
39
|
Abstract
The vast majority of pituitary tumors are benign and occur sporadically; however, they can still result in significant morbidity and even premature mortality through mass effects and hormone dysfunction. The etiology of sporadic tumors is still poorly understood; by contrast, advances have been made in our understanding of familial pituitary adenoma syndromes in the past decade. Currently, four genes are known to be associated with familial pituitary tumor syndromes: MEN1, CDKN1B, PRKAR1A and AIP. The first three genes are associated with a variety of extrapituitary pathologies, for example, primary hyperparathyroidism with multiple endocrine neoplasia type 1, which might aid identification of these syndromes. By contrast, AIP mutations seem to occur in the setting of isolated familial pituitary adenomas, particularly of the growth-hormone-secreting subtype. Awareness and identification of familial pituitary tumor syndromes is important because of potential associated pathologies and important implications for family members. Here, we review the current knowledge of familial pituitary tumor syndromes.
Collapse
Affiliation(s)
- Marianne S Elston
- Cancer Genetics Laboratory, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | | | | | | |
Collapse
|
40
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Flaveny C, Perdew GH, Miller CA. The Aryl-hydrocarbon receptor does not require the p23 co-chaperone for ligand binding and target gene expression in vivo. Toxicol Lett 2009; 189:57-62. [PMID: 19447165 DOI: 10.1016/j.toxlet.2009.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 12/27/2022]
Abstract
The Aryl-hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates most of the toxic affects of 2,3,7,8-tetrachlorodibenzo-(p)-dioxin (TCDD) and other xenobiotic compounds. The AHR cytoplasmic complex consists of two molecules of HSP90 and at least one molecule of Hepatitis B Virus-X associated protein 2 and the co-chaperone p23. With the use of in vitro model systems, p23 has been shown previously to be important to maintaining the efficient ligand binding and subsequent downstream inducibility of the AHR. In this study we attempted to identify the role p23 plays in AHR signaling in vivo using a p23 null mouse. Ligand binding assays and western blot analysis revealed that p23 was not required for AHR protein stability and competent ligand binding in liver. Real-time RT-PCR analysis conducted on p23 null, heterozygous and homozygous mice suggested that p23 is dispensable for stable AHR protein levels, or efficient TCDD-mediated AHR activation of Cyp1a1 and Cyp1a2.
Collapse
Affiliation(s)
- Colin Flaveny
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
42
|
Nakata A, Urano D, Fujii-Kuriyama Y, Mizuno N, Tago K, Itoh H. G-protein signalling negatively regulates the stability of aryl hydrocarbon receptor. EMBO Rep 2009; 10:622-8. [PMID: 19390533 DOI: 10.1038/embor.2009.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/22/2009] [Accepted: 02/12/2009] [Indexed: 11/09/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor that works as a dioxin receptor and is also involved in various physiological phenomena, including development and cell proliferation. Here, we show that the Galpha13 signal destabilizes AhR by promoting the ubiquitination of AhR. Galpha13 interacts directly with AhR-interacting protein (AIP) and inhibits the interaction between AhR and AIP, a crucial interacting protein of AhR. Strikingly, a reporter gene assay and a quantitative reverse transcription-PCR analysis indicate that the Galpha13 signal shows a potent inhibitory effect on the ligand-induced transcriptional activation of AhR. Galpha13 results in the nuclear translocation of AhR in a ligand-independent manner. However, in the presence of active Galpha13, AhR fails to form the active transcriptional complex. Taken together, we propose a new negative regulation of dioxin signalling by the G protein.
Collapse
Affiliation(s)
- Asuka Nakata
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
43
|
de Oliveira SK, Smolenski A. Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling. Biochem Pharmacol 2008; 77:723-33. [PMID: 18805402 DOI: 10.1016/j.bcp.2008.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 11/16/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a major transcription factor regulated by different mechanisms. The classical view of AHR activation by xenobiotics needs to be amended by recent findings on the regulation of AHR by endogenous ligands and by crosstalk with other signaling pathways. In the cytosol the AHR recruits a large number of binding partners, including HSP90, p23, XAP2 and the ubiquitin ligases cullin 4B and CHIP. Furthermore, XAP2 binds the cyclic nucleotide phosphodiesterases PDE2A and PDE4A5. PDE2A inhibits nuclear translocation of AHR suggesting an important regulatory role of cyclic nucleotides in AHR trafficking. Signaling involving cAMP is organized in subcellular compartments and a distinct cAMP compartment might be required for proper AHR mobility and function. We conclude that the AHR complex integrates ligand binding and cyclic nucleotide signaling to generate an adequate transcriptional response.
Collapse
|
44
|
PDE4 associates with different scaffolding proteins: modulating interactions as treatment for certain diseases. Handb Exp Pharmacol 2008:125-66. [PMID: 18491051 DOI: 10.1007/978-3-540-72843-6_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
cAMP is an ubiquitous second messenger that is crucial to many cellular processes. The sole means of terminating the cAMP signal is degradation by cAMP phosphodiesterases (PDEs). The PDE4 family is of particular interest because PDE4 inhibitors have therapeutic potential for the treatment of various inflammatory and auto-immune diseases and also have anti-depressant and memory-enhancing effects. The subcellular targeting of PDE4 isoforms is fundamental to the compartmentalization of cAMP signaling pathways and is largely achieved via proteinprotein interactions. Increased knowledge of these protein-protein interactions and their regulatory properties could aid in the design of novel isoform-specific inhibitors with improved efficacy and fewer prohibitive side effects.
Collapse
|
45
|
Lin BC, Sullivan R, Lee Y, Moran S, Glover E, Bradfield CA. Deletion of the Aryl Hydrocarbon Receptor-associated Protein 9 Leads to Cardiac Malformation and Embryonic Lethality. J Biol Chem 2007; 282:35924-32. [DOI: 10.1074/jbc.m705471200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
Daly AF, Vanbellinghen JF, Beckers A. Characteristics of familial isolated pituitary adenomas. Expert Rev Endocrinol Metab 2007; 2:725-733. [PMID: 30290472 DOI: 10.1586/17446651.2.6.725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The familial occurrence of pituitary adenomas has been recognized for many years and currently accounts for approximately 5% of all cases. Molecular, genetic and clinical features of familial pituitary adenomas have been well characterized in multiple endocrine neoplasia type 1 (MEN-1) and Carney's complex (CNC), which account for the majority of familial pituitary tumor cases. These conditions are caused by MEN1 and PRKAR1A gene mutations, respectively, and the clinical and pathological features of pituitary pathology in these diseases differ from those of sporadic pituitary tumors. Familial acromegaly has been recognized for many years and, more recently, the clinical features of this clinical phenotype, referred to as isolated familial somatotropinoma, have been clarified. Over the past decade, the concept of non-MEN-1/CNC familial pituitary tumors has been expanded significantly to include all phenotypes, a condition known as familial isolated pituitary adenomas (FIPA). In FIPA, tumors can present homogeneously (same phenotype) or heterogeneously (different tumor phenotypes) within the same family. Compared with sporadic pituitary adenomas, patients with FIPA have a younger age at diagnosis and have larger tumors. The clinical features of FIPA differ from those of MEN-1 in terms of a higher frequency of somatotropinomas and a lower frequency of prolactinomas. The recent discovery of the involvement of mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene in association with pituitary tumors has provided new information regarding potential mechanisms of tumorigenesis in FIPA patients. While very infrequent in sporadic pituitary tumors, approximately 15% of FIPA patients have AIP mutations, rising to half of patients with familial acromegaly. In this review, we detail the clinical features of FIPA and discuss tumor pathology and genetic findings in this increasingly recognized clinical condition.
Collapse
Affiliation(s)
- Adrian F Daly
- a University of Liège, Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium
| | - Jean-François Vanbellinghen
- b University of Liège, Department of Molecular Genetics, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium.
| | - Albert Beckers
- c Chief, Department of Endocrinology, CHU de Liège, University of Liege, Domaine Universitaire du Sart Tilman, 4000 Liège, Belgium.
| |
Collapse
|
47
|
Morales JL, Perdew GH. Carboxyl terminus of hsc70-interacting protein (CHIP) can remodel mature aryl hydrocarbon receptor (AhR) complexes and mediate ubiquitination of both the AhR and the 90 kDa heat-shock protein (hsp90) in vitro. Biochemistry 2007; 46:610-21. [PMID: 17209571 PMCID: PMC2527729 DOI: 10.1021/bi062165b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regulation of the aryl hydrocarbon receptor (AhR) protein levels has been an area of keen interest, given its important role in mediating the cellular adaptation and toxic response to several environmental pollutants. The carboxyl terminus of hsc70-interacting protein (CHIP) ubiquitin ligase was previously associated with the regulation of the aryl hydrocarbon receptor, although the mechanisms were not directly demonstrated. In this study, we established that CHIP could associate with the AhR at cellular levels of these two proteins, suggesting a potential role for CHIP in the regulation of the AhR complex. The analysis of the sucrose-gradient-fractionated in vitro translated AhR complexes revealed that CHIP can mediate hsp90 ubiquitination while cooperating with unidentified factors to promote the ubiquitination of mature unliganded AhR complexes. In addition, the immunophilin-like protein XAP2 was able to partially protect the AhR from CHIP-mediated ubiquitination in vitro. This protection required the direct interaction of the XAP2 with the AhR complex. Surprisingly, CHIP silencing in Hepa-1c1c7 cells by siRNA methods did not reveal the function of CHIP in the AhR complex, because it did not affect well-characterized activities of the AhR nor affect its steady-state protein levels. However, the presence of potential compensatory mechanisms may be confounding this particular observation. Our results suggest a model where the E3 ubiquitin ligase CHIP cooperates with other ubiquitination factors to remodel native AhR-hsp90 complexes and where co-chaperones such as the XAP2 may affect the ability of CHIP to target AhR complexes for ubiquitination.
Collapse
Affiliation(s)
- J Luis Morales
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
48
|
Hollingshead BD, Patel RD, Perdew GH. Endogenous hepatic expression of the hepatitis B virus X-associated protein 2 is adequate for maximal association with aryl hydrocarbon receptor-90-kDa heat shock protein complexes. Mol Pharmacol 2006; 70:2096-107. [PMID: 16988012 DOI: 10.1124/mol.106.029215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that acts as an environmental sensor by binding to a variety of xenobiotics. AHR activation serves to combat xenotoxic stress by inducing metabolic enzyme expression in the liver. The hepatitis B virus X-associated protein (XAP2) is a component of the cytosolic AHR complex and modulates AHR transcriptional properties in vitro and in cell culture and yeast systems. Expression of XAP2 is low in liver compared with other nonhepatic tissues and the AHR exhibits high ligand-induced transcriptional activity. Because XAP2 has been demonstrated to repress AHR activity, we hypothesized that XAP2 may be limiting in liver and that increasing XAP2 levels would attenuate AHR transcriptional activity. To this end, transgenic mice were generated that exhibit hepatocyte-specific elevation in XAP2 expression. Transgenic XAP2 expression was restricted to liver, and its ability to complex with the AHR was verified. Gene expression experiments were performed by inducing AHR transcriptional activity with beta-naphthoflavone via intraperitoneal injection, and mRNA quantification was done by real-time polymerase chain reaction. Wild-type and transgenic animals showed little difference in constitutive or ligand-induced CYP1A1; CYP1A2; UDP glucuronosyltransferase 1A2; NAD(P)H dehydrogenase, quinone 1; constitutive androstane receptor; or nuclear factor erythroid 2-related factor 2 mRNA expression. Sucrose density fractionation and AHR immunoprecipitation experiments found little or no stoichiometric increase in bound XAP2 to the AHR between genotypes. Gene array studies were performed to identify novel XAP2-regulated targets. Taken together, this work shows that despite the relatively low level of XAP2 in liver, it is not a limiting component in AHR regulation.
Collapse
Affiliation(s)
- Brett D Hollingshead
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
49
|
Fujii-Kuriyama Y, Mimura J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem Biophys Res Commun 2005; 338:311-7. [PMID: 16153594 DOI: 10.1016/j.bbrc.2005.08.162] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
AhR, a ligand-activated transcription factor, mediates xenobiotic signaling to enhance the expression of target genes, including drug-metabolizing cytochrome P450s. The recent development of several new techniques, including chromatin immunoprecipitation and RNA interference, has expanded and deepened our knowledge of AhR function in the xenobiotic signal transduction. In this review, we briefly summarize our current understanding of the activation and inactivation of AhR activities and discuss the future directions of AhR research.
Collapse
Affiliation(s)
- Y Fujii-Kuriyama
- Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan.
| | | |
Collapse
|
50
|
Pollenz RS, Dougherty EJ. Redefining the role of the endogenous XAP2 and C-terminal hsp70-interacting protein on the endogenous Ah receptors expressed in mouse and rat cell lines. J Biol Chem 2005; 280:33346-56. [PMID: 16085934 DOI: 10.1074/jbc.m506619200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies using transient expression systems have implicated the XAP2 protein in the control of aryl hydrocarbon receptor (AHR) stability and subcellular location. Thus, studies were performed in cell lines that expressed endogenous rat or mouse Ah(b-1) (C57BL/6) or Ah(b-2) (C3H) AHRs with similar levels of endogenous XAP2. Unliganded rat and mouse Ah(b-2) receptor complexes associated with reduced levels of XAP2 and exhibited dynamic nucleocytoplasmic shuttling in comparison with Ah(b-1) receptors. Rat and mouse Ah(b-2) receptors also exhibited a greater magnitude of ligand-induced degradation than Ah(b-1) receptors. Small interfering RNA reduction of endogenous XAP2 by >80% had minimal impact on the level of Ah(b-2) receptors but resulted in a 25-30% reduction of Ah(b-1) receptors. XAP2 reduction resulted in increased susceptibility of the Ah(b-1) receptor to ligand-induced degradation yet produced higher levels of endogenous CYP1A1 induction. Stable expression of the Ah(b-2) receptor in the C57BL/6 background resulted in a protein with reduced association with XAP2, dynamic nucleocytoplasmic shuttling, and increased levels of ligand-induced degradation. Small interfering RNA reduction of endogenous XAP2 in a C-terminal hsp70-interacting protein knockout mouse cell line, exhibited a 25-30% reduction in the level of endogenous Ah(b-1) AHR and showed high levels of ligand-induced degradation. Thus, endogenous XAP2 exerts a negative function on a small fraction of the endogenous Ah(b-1) receptor complex but appears to have a minimal impact on endogenous rat or Ah(b-2) receptors. This implies that the analysis of the AHR-mediated signaling via rat and mouse Ah(b-2) receptors may better represent the physiology of this signal transduction pathway.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Biology, University of South Florida, Tampa, Florida 33620, USA.
| | | |
Collapse
|