1
|
Pradhan S, Gao R, Bush K, Zhang N, Wairkar YP, Sarkar PS. Polyglutamine Expansion in Huntingtin and Mechanism of DNA Damage Repair Defects in Huntington’s Disease. Front Cell Neurosci 2022; 16:837576. [PMID: 35444517 PMCID: PMC9013776 DOI: 10.3389/fncel.2022.837576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that DNA repair deficiency and genome instability may be the impending signs of many neurological diseases. Genome-wide association (GWAS) studies have established a strong correlation between genes that play a role in DNA damage repair and many neurodegenerative diseases, including Huntington’s disease (HD), and several other trinucleotides repeat expansion-related hereditary ataxias. Recently, many reports have documented a significant role played by the DNA repair processes in aging and in modifying many neurodegenerative diseases, early during their progression. Studies from our lab and others have now begun to understand the mechanisms that cause defective DNA repair in HD and surprisingly, many proteins that have a strong link to known neurodegenerative diseases seem to be important players in these cellular pathways. Mutations in huntingtin (HTT) gene that lead to polyglutamine repeat expansion at the N-terminal of HTT protein has been shown to disrupt transcription-coupled DNA repair process, a specialized DNA repair process associated with transcription. Due to the recent progress made in understanding the mechanisms of DNA repair in relation to HD, in this review, we will mainly focus on the mechanisms by which the wild-type huntingtin (HTT) protein helps in DNA repair during transcription, and the how polyglutamine expansions in HTT impedes this process in HD. Further studies that identify new players in DNA repair will help in our understanding of this process in neurons. Furthermore, it should help us understand how various DNA repair mechanism(s) coordinate to maintain the normal physiology of neurons, and provide insights for the development of novel drugs at prodromal stages of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pradhan
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Keegan Bush
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Nan Zhang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Yogesh P. Wairkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Partha S. Sarkar,
| |
Collapse
|
2
|
Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci 2021; 15:689332. [PMID: 34211373 PMCID: PMC8239291 DOI: 10.3389/fncel.2021.689332] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is a monogenic disease that results in a combination of motor, psychiatric and cognitive symptoms. HD is caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which results in the production of a pathogenic mutant HTT protein (mHTT). Although there is no cure at present for HD, a number of RNA-targeting therapies have recently entered clinical trials which aim to lower mHTT production through the use of antisense oligonucleotides (ASOs) and RNAi. However, many of these treatment strategies are non-selective in that they cannot differentiate between non-pathogenic wild type HTT (wtHTT) and the mHTT variant. As HD patients are already born with decreased levels of wtHTT, these genetic therapies may result in critically low levels of wtHTT. The consequence of wtHTT reduction in the adult brain is currently under debate, and here we argue that wtHTT loss is not well-tolerated at the synaptic level. Synaptic dysfunction is an extremely sensitive measure of subsequent cell death, and is known to precede neurodegeneration in numerous brain diseases including HD. The present review focuses on the prominent role of wtHTT at the synapse and considers the consequences of wtHTT loss on both pre- and postsynaptic function. We discuss how wtHTT is implicated in virtually all major facets of synaptic neurotransmission including anterograde and retrograde transport of proteins to/from terminal buttons and dendrites, neurotransmitter release, endocytic vesicle recycling, and postsynaptic receptor localization and recycling. We conclude that wtHTT presence is essential for proper synaptic function.
Collapse
Affiliation(s)
- Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Emily P Hurley
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
3
|
Toczek M, Pierzynowska K, Kutryb-Zajac B, Gaffke L, Slominska EM, Wegrzyn G, Smolenski RT. Characterization of adenine nucleotide metabolism in the cellular model of Huntington's disease. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:630-638. [PMID: 30587076 DOI: 10.1080/15257770.2018.1481508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that is caused by expanded CAG repeats within the exon-1 of the huntingtin (HTT) gene. It has been shown that HTT interacts with the proteins involved in the gene transcription, endocytosis and metabolism, nevertheless the biochemical pathways by which mutant HTT causes a cellular dysfunction remain unclear. Thus, this study aimed to establish the role of mutant HTT expansion in energy and nucleotide metabolism deteriorations. We examined HEK 293 T cell line transfected with plasmids expressing wild-type (control) or mutant exon 1 of the HTT gene (HD). Analysis of intracellular concentration of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+), as well as activities of intra- and extracellular enzymes of nucleotide catabolism (such as adenine monophosphate deaminase (AMPD), adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP) and ectonucleoside triphosphate diphosphohydrolase (eNTPD), ecto-5'-nucleotidase (e5NT), ecto-adenosine deaminase (eADA) were performed with high pressure liquid chromatography. Protein concentration was measured with Bradford method. We found diminished intracellular ATP concentration (22.5 ± 1.7 in HD; 29.3 ± 1.4 nmol/mg protein in control), increased ADA activity (27.9 ± 1.0 in HD; 21.1 ± 1.6 nmol/min/mg protein in control) and reduced activities of eNTPD (2.4 ± 0.5 in HD; 5.8 ± 0.7 nmol/min/mg protein in control), e5NT (0.1 ± 0.01 in HD; 0.2 ± 0.01 nmol/min/mg protein in control) and eADA (0.3 ± 0.03 in HD; 0.4 ± 0.04 nmol/min/mg protein in control) while NAD+ concentration, AMPD and PNP activities remained unchanged. This study highlights that the mutant HTT expansion resulted in depletion of cellular ATP concentration and reduced rates of extracellular nucleotide breakdown. In conclusion, such changes may contribute to the pathology of HD.
Collapse
Affiliation(s)
- Marta Toczek
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | | | | | - Lidia Gaffke
- b Department of Molecular Biology , University of Gdansk , Gdansk , Poland
| | - Ewa M Slominska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Grzegorz Wegrzyn
- b Department of Molecular Biology , University of Gdansk , Gdansk , Poland
| | - Ryszard T Smolenski
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
4
|
Park H. Cortical Axonal Secretion of BDNF in the Striatum Is Disrupted in the Mutant-huntingtin Knock-in Mouse Model of Huntington's Disease. Exp Neurobiol 2018; 27:217-225. [PMID: 30022873 PMCID: PMC6050413 DOI: 10.5607/en.2018.27.3.217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023] Open
Abstract
Deficient BDNF signaling is known to be involved in neurodegenerative diseases such as Huntington's disease (HD). Mutant huntingtin (mhtt)-mediated disruption of either BDNF transcription or transport is thought to be a factor contributing to striatal atrophy in the HD brain. Whether and how activity-dependent BDNF secretion is affected by the mhtt remains unclear. In the present study, I provide evidence for differential effects of the mhtt on cortical BDNF secretion in the striatum during HD progression. By two-photon imaging of fluorescent BDNF sensor (BDNF-pHluorin and -EGFP) in acute striatal slices of HD knock-in model mice, I found deficient cortical BDNF secretion regardless of the HD onset, but antisense oligonucleotide (ASO)-mediated reduction of htts only rescues BDNF secretion in the early HD brain before the disease onset. Although secretion modes of individual BDNF-containing vesicle were not altered in the pre-symptomatic brain, the full-fusion and partial-fusion modes of BDNF-containing vesicles were significantly altered after the onset of HD symptoms. Thus, besides abnormal BDNF transcription and transport, our results suggest that mhtt-mediated alteration in activity-dependent BDNF secretion at corticostriatal synapses also contributes to the development of HD.
Collapse
Affiliation(s)
- Hyungju Park
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.,Molecular Neurobiology Lab, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
5
|
Montojo MT, Aganzo M, González N. Huntington's Disease and Diabetes: Chronological Sequence of its Association. J Huntingtons Dis 2018; 6:179-188. [PMID: 28968242 PMCID: PMC5676851 DOI: 10.3233/jhd-170253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although Huntington’s disease (HD) is primarily considered a rare neurodegenerative disorder, it has been linked to glucose metabolism alterations and diabetes, as has been described in other neuro syndromes such as Friedreich’s ataxia or Alzheimer’s disease. This review surveys the existing literature on HD and its potential relationship with diabetes, glucose metabolism-related indexes and pancreas morphology, in humans and in animal’s models. The information is reported in chronological sequence. That is, studies performed before and after the identification of the genetic defect underlying HD (CAG: encoding glutamine ≥36 repeats located in exon 1 of the HTT gene) and with the development and evolution of HD animal models. The aim of the review is to evaluate whether impaired glucose metabolism contributes to the development of HD, and whether optimized glycemic control may ameliorate the symptoms of HD.
Collapse
Affiliation(s)
- María Teresa Montojo
- Department of Neurology, Movement Disorders Unit, Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Aganzo
- Division of Endocrinology, Fundación Jiménez Díaz, Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) network, Madrid, Spain
| |
Collapse
|
6
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 PMCID: PMC5394918 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
8
|
Dallérac GM, Levasseur G, Vatsavayai SC, Milnerwood AJ, Cummings DM, Kraev I, Huetz C, Evans KA, Walters SW, Rezaie P, Cho Y, Hirst MC, Murphy KP. Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. NEURODEGENER DIS 2015; 15:93-108. [DOI: 10.1159/000375126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
|
9
|
Soldati C, Bithell A, Johnston C, Wong KY, Stanton LW, Buckley NJ. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease. J Neurochem 2013; 124:418-30. [PMID: 23145961 DOI: 10.1111/jnc.12090] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/12/2022]
Abstract
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
Collapse
Affiliation(s)
- Chiara Soldati
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
10
|
Kielar C, Sawiak SJ, Navarro Negredo P, Tse DHY, Morton AJ. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse. PLoS One 2012; 7:e32636. [PMID: 22393426 PMCID: PMC3290572 DOI: 10.1371/journal.pone.0032636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/-)) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/-) mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/-) mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/-) and Cplx1(+/+) mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/-) mice when compared to Cplx1(+/+) animals. Our study is the first to describe pathological changes in Cplx1(-/-) mouse brain. We suggest that the ataxia in Cplx1(-/-) mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/-) mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Desmond H. Y. Tse
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Bond LM, Peden AA, Kendrick-Jones J, Sellers JR, Buss F. Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Mol Biol Cell 2011; 22:54-65. [PMID: 21148290 PMCID: PMC3016977 DOI: 10.1091/mbc.e10-06-0553] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/14/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022] Open
Abstract
During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion.
Collapse
Affiliation(s)
- Lisa M. Bond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew A. Peden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | - James R. Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
12
|
Glynn D, Gibson HE, Harte MK, Reim K, Jones S, Reynolds GP, Morton AJ. Clorgyline-mediated reversal of neurological deficits in a Complexin 2 knockout mouse. Hum Mol Genet 2010; 19:3402-12. [PMID: 20584925 DOI: 10.1093/hmg/ddq252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Complexin 2 is a protein modulator of neurotransmitter release that is downregulated in humans suffering from depression, animal models of depression and neurological disorders such as Huntington's disease in which depression is a major symptom. Although complexin 2 knockout (Cplx2-/-) mice are overtly normal, they show significant abnormalities in cognitive function and synaptic plasticity. Here we show that Cplx2-/- mice also have disturbances in emotional behaviours that include abnormal social interactions and depressive-like behaviour. Since neurotransmitter deficiencies are thought to underlie depression, we examined neurotransmitter levels in Cplx2-/- mice and found a significant decrease in levels of noradrenaline and the serotonin metabolite 5-hydroxyindoleacetic acid in the hippocampus. Chronic treatment with clorgyline, an irreversible inhibitor of monoamine oxidase A, restored hippocampal noradrenaline to normal levels (from 60 to 97% of vehicle-treated Cplx2+/+ mice, P<0.001), and reversed the behavioural deficits seen in Cplx2-/- mice. For example, clorgyline-treated Cplx2-/- mice spent significantly more time interacting with a novel visitor mouse compared with vehicle-treated Cplx2-/- mice in the social recognition test (34 compared with 13%, P<0.01). We were also able to reverse the selective deficit seen in mossy fibre-long-term potentiation (MF-LTP) in Cplx2-/- mice using the noradrenergic agonist isoprenaline. Pre-treatment with isoprenaline in vitro increased MF-LTP by 125% (P<0.001), thus restoring it to control levels. Our data strongly support the idea that complexin 2 is a key player in normal neurological function, and that downregulation of complexin 2 could lead to changes in neurotransmitter release sufficient to cause significant behavioural abnormalities such as depression.
Collapse
Affiliation(s)
- Dervila Glynn
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
An SJ, Grabner CP, Zenisek D. Real-time visualization of complexin during single exocytic events. Nat Neurosci 2010; 13:577-83. [PMID: 20383135 PMCID: PMC2860691 DOI: 10.1038/nn.2532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/15/2010] [Indexed: 11/09/2022]
Abstract
Understanding the fundamental role of soluble NSF attachment protein receptor (SNARE) complexes in membrane fusion requires knowledge of the spatiotemporal dynamics of their assembly. We visualized complexin (cplx), a cytosolic protein that binds assembled SNARE complexes, during single exocytic events in live cells. We found that cplx appeared briefly during full fusion. However, a truncated version of cplx containing only the SNARE-complex binding region persisted at fusion sites for seconds and caused fusion to be transient. Resealing pores with the mutant cplx only partially released transmitter and lipid probes, indicating that the pores are narrow and not purely lipidic in structure. Depletion of cplx similarly caused secretory cargo to be retained. These data suggest that cplx is recruited at a late step in exocytosis and modulates fusion pores composed of SNARE complexes.
Collapse
Affiliation(s)
- Seong J An
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
14
|
Dittami GM, Rabbitt RD. Electrically evoking and electrochemically resolving quantal release on a microchip. LAB ON A CHIP 2010; 10:30-35. [PMID: 20024047 PMCID: PMC3000936 DOI: 10.1039/b911763f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A microchip was applied to electrically depolarize rat pheochromocytoma (PC12) cells and to simultaneously detect exocytotic catecholamine release amperometrically. Results demonstrate exocytosis elicited by flowing cells through an electric field generated by a potentiostat circuit in a microchannel, as well as exocytosis triggered by application of an extracellular voltage pulse across. Electrical finite element model (FEM) analysis illustrated that larger cells experienced greater depolarizing excitation from the extracellular electric fields due to the smaller shunt path and higher resistance to current flow in the channel around the cell. Consistent with these simulations, data recorded from cell clusters and large cells exhibited increased release rates relative to data from the smaller cells. Overall, the system was capable of resolving single vesicle quantal release, in the zeptomole range, as well as the kinetics associated with the vesicle fusion process. Analysis of spike population statistics suggested detection of catecholamines from multiple release sites around the cells. The potential for such a device to be used in flow cytometry to evoke and detect exocytosis was demonstrated.
Collapse
Affiliation(s)
- Gregory M Dittami
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84118, USA.
| | | |
Collapse
|
15
|
Ortiz AN, Kurth BJ, Osterhaus GL, Johnson MA. Dysregulation of intracellular dopamine stores revealed in the R6/2 mouse striatum. J Neurochem 2009; 112:755-61. [PMID: 19929911 DOI: 10.1111/j.1471-4159.2009.06501.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a fatal, neurodegenerative movement disorder characterized by preferential and extensive striatal degeneration. Here, we used fast-scan cyclic voltammetry to study the mobilization and efflux of reserve pool dopamine (DA) in striatal brain slices from HD model R6/2 mice. When applying stimulus trains of 120 pulses, evoked DA release in wild-type (WT) slices was greater than that in R6/2 slices at the higher frequencies (50 and 60 Hz). To quantify cytosolic and reserve pool DA levels, amphetamine-induced DA efflux was measured after pre-treatment with either tetrabenazine or alpha-methyl-p-tyrosine. Slices from 12-week-old R6/2 mice released less DA than slices from WT mice, while no difference was noted in slices from 6-week old mice. The vesicular release of reserve pool DA, mobilized by treatment with cocaine, was shorter lived in R6/2 slices compared with WT slices even though peak DA release was the same. Moreover, the number of DA reserve pool vesicles in R6/2 mice was less than half of that in WT. Therefore, our data suggest that the same number of DA molecules are present in each reserve pool vesicle in WT and R6/2 mice and that these vesicles are readily mobilized in both genotypes; however, R6/2 mice have fewer DA reserve pool vesicles available for mobilization.
Collapse
Affiliation(s)
- Andrea N Ortiz
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, Kansas 66047-7572, USA
| | | | | | | |
Collapse
|
16
|
HSP40 ameliorates impairment of insulin secretion by inhibiting huntingtin aggregation in a HD pancreatic beta cell model. Biosci Biotechnol Biochem 2009; 73:1787-92. [PMID: 19661690 DOI: 10.1271/bbb.90147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes frequently develops in Huntington's disease patients. Here, we found that mutant huntingtin forms aggregates in the cytoplasm and reduces insulin secretion from huntingtin transfected pancreatic beta cell lines, NIT-1 cells. Activity of the pro-survival factor, Akt, is enhanced in these cells, which might improve the maintenance of insulin content. Overexpression of heat shock protein 40 (HSP40) inhibits aggregation, reverses impaired insulin release, and blocks the enhancement of Akt activity. These results suggest that impairment of beta cells is mostly linked with the aggregate formation of mutant huntingtin, and that HSP40 ameliorates the malfunction of pancreatic beta cells by inhibiting aggregation.
Collapse
|
17
|
Roze E, Betuing S, Deyts C, Vidailhet M, Caboche J. Physiopathologie de la maladie de Huntington : état des connaissances. Rev Neurol (Paris) 2008; 164:977-94. [DOI: 10.1016/j.neurol.2008.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 12/16/2022]
|
18
|
Abstract
Neurotransmitter release at synapses involves a highly specialized form of membrane fusion that is triggered by Ca(2+) ions and is optimized for speed. These observations were established decades ago, but only recently have the molecular mechanisms that underlie this process begun to come into view. Here, we summarize findings obtained from genetically modified neurons and neuroendocrine cells, as well as from reconstituted systems, which are beginning to reveal the molecular mechanism by which Ca(2+)-acting on the synaptic vesicle (SV) protein synaptotagmin I (syt)-triggers rapid exocytosis. This work sheds light not only on presynaptic aspects of synaptic transmission, but also on the fundamental problem of membrane fusion, which has remained a puzzle that has yet to be solved in any biological system.
Collapse
Affiliation(s)
- Edwin R Chapman
- Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Abstract
The aqueous compartment inside a vesicle makes its first connection with the extracellular fluid through an intermediate structure termed the exocytotic fusion pore. Progress in exocytosis can be measured in terms of the formation and growth of the fusion pore. The fusion pore has become a major focus of research in exocytosis; sensitive biophysical measurements have provided various glimpses of what it looks like and how it behaves. Some of the principal questions about the molecular mechanism of exocytosis can be cast explicitly in terms of properties and transitions of fusion pores. This Review will present current knowledge about fusion pores in Ca(2+)-triggered exocytosis, highlight recent advances and relate questions about fusion pores to broader issues concerning how cells regulate exocytosis and how nerve terminals release neurotransmitter.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison,WI 53706, USA.
| | | |
Collapse
|
20
|
Burnett BG, Andrews J, Ranganathan S, Fischbeck KH, Di Prospero NA. Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol Dis 2008; 30:365-374. [PMID: 18417352 DOI: 10.1016/j.nbd.2008.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/31/2008] [Accepted: 02/22/2008] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease is caused by polyglutamine expansion in the huntingtin protein. Huntingtin directly interacts with profilin, a major actin monomer sequestering protein and a key integrator of signals leading to actin polymerization. We observed a progressive loss of profilin in the cerebral cortex of Huntington's disease patients, and in cell culture and Drosophila models of polyglutamine disease. This loss of profilin is likely due to increased degradation through the ubiquitin proteasome system. Profilin loss reduces the F/G actin ratio, indicating a shift in actin polymerization. Overexpression of profilin abolishes mutant huntingtin toxicity in cells and partially ameliorates the morphological and functional eye phenotype and extends lifespan in a transgenic polyglutamine Drosophila model. These results indicate a link between huntingtin and profilin and implicate profilin in Huntington's disease pathogenesis.
Collapse
Affiliation(s)
- Barrington G Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
| | - Jaime Andrews
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Srikanth Ranganathan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Nicholas A Di Prospero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Johnson MA, Villanueva M, Haynes CL, Seipel AT, Buhler LA, Wightman RM. Catecholamine exocytosis is diminished in R6/2 Huntington's disease model mice. J Neurochem 2007; 103:2102-10. [PMID: 17868298 DOI: 10.1111/j.1471-4159.2007.04908.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this work, the mechanisms responsible for dopamine (DA) release impairments observed previously in Huntington's disease model R6/2 mice were evaluated. Voltammetrically measured DA release evoked in striatal brain slices from 12-week old R6/2 mice by a single electrical stimulus pulse was only 19% of wild-type (WT) control mice. Iontophoresis experiments suggest that the concentration of released DA is not diluted by a larger striatal extracellular volume arising from brain atrophy, but, rather, that striatal dopaminergic terminals have a decreased capacity for DA release. This decreased capacity was not due to an altered requirement for extracellular Ca(2+), and, as in WT mice, the release in R6/2 mice required functioning vesicular transporters. Catecholamine secretion from individual vesicles was measured during exocytosis from adrenal chromaffin cells harvested from R6/2 and WT mice. While the number of exocytotic events was unchanged, the amounts released per vesicle were significantly diminished in R6/2 mice, indicating that vesicular catecholamines are present in decreased amounts. Treatment of chromaffin cells with 3-nitropropionic acid decreased the vesicular release amount from WT cells by 50%, mimicking the release observed from untreated R6/2 cells. Thus, catecholamine release from tissues isolated from R6/2 mice is diminished because of impaired vesicle loading.
Collapse
Affiliation(s)
- Michael A Johnson
- Department of Chemistry The University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
22
|
Glynn D, Reim K, Brose N, Morton AJ. Depletion of Complexin II does not affect disease progression in a mouse model of Huntington's disease (HD); support for role for complexin II in behavioural pathology in a mouse model of HD. Brain Res Bull 2007; 72:108-20. [PMID: 17352934 DOI: 10.1016/j.brainresbull.2006.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Huntington's disease (HD) is a progressive, inherited, neurological disorder with a complicated phenotype that is characterised by movement abnormalities, cognitive impairments and psychiatric symptoms. Although HD is a neurodegenerative disease, recent evidence indicates that neurological dysfunction, rather than frank neurodegeneration contributes to, and may even cause early symptoms in the absence of neurodegeneration. One protein that may contribute to neurological dysfunction in HD is complexin II. Complexins are presynaptic proteins that are believed to modulate neurotransmitter release. Complexin II levels are reduced in human HD striatum and cortex, and a progressive depletion of complexin II mRNA and protein has also been shown in the R6/2 mouse model of HD. Interestingly, complexin II knockout mice share behavioural deficits in reversal learning in common with R6/2 mice. Further, the two strains both show abnormalities in long-term potentiation. This evidence led us to wonder whether or not loss of complexin II underlies some of the behavioural deficits seen in R6/2 mice. To investigate this, we crossbred complexin II knockout mice with R6/2 mice to generate a double mutant mouse. The behavioural phenotype of R6/2 mice on a null complexin II background was characterised and was compared to that seen in control mice. Complete knockout of complexin II did not significantly affect the phenotype of R6/2 mice. This indicates that loss of complexin II is part of the mechanism underlying the R6/2 phenotype. Whether it is causal or compensatory remains to be determined.
Collapse
Affiliation(s)
- Dervila Glynn
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | | | | | |
Collapse
|
23
|
Melia TJ. Putting the clamps on membrane fusion: How complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 2007; 581:2131-9. [PMID: 17350005 DOI: 10.1016/j.febslet.2007.02.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/15/2007] [Accepted: 02/26/2007] [Indexed: 11/20/2022]
Abstract
Three recent papers have addressed a long-standing question in exocytosis: how does a sudden calcium influx trigger a coordinated synchronous release in regulated exocytosis [Giraudo, C.G., Eng, W.S., Melia, T.J. and Rothman, J.E. (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676-680; Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. and McNew, J.A. (2006) Hemifusion arrest by complexin is relieved by Ca(2+)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748-750; Tang, J., Maximov, A., Shin, O.H., Dai, H., Rizo, J. and Sudhof, T.C. (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175-1187]? Using diverse approaches that include cell-free reconstitution of the membrane fusion machinery and in vivo manipulation of fusogenic proteins, these groups have established that the complexin proteins are fusion clamps. By arresting vesicle secretion just prior to fusion, complexin primes select vesicles for a fast, synchronous response to calcium.
Collapse
Affiliation(s)
- Thomas J Melia
- Columbia University, Department of Physiology and Cellular Biophysics, 1150 Saint Nicholas Avenue, New York, NY 10032, USA
| |
Collapse
|
24
|
Johnson MA, Rajan V, Miller CE, Wightman RM. Dopamine release is severely compromised in the R6/2 mouse model of Huntington's disease. J Neurochem 2006; 97:737-46. [PMID: 16573654 DOI: 10.1111/j.1471-4159.2006.03762.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, alterations in dopamine signaling have been implicated in Huntington's disease. In this work, dopamine release and uptake was measured in striatal slices from the R6/2 transgenic mouse model of Huntington's disease using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Dopamine release in brain slices from 6-week-old R6/2 mice is substantially reduced (53% of wild type), while dopamine uptake is unaffected. In agreement with this, R6/2 mice injected with the dopamine uptake inhibitor cocaine exhibited a blunted motor activity response (54% of wild type). At 10 weeks of age, an even more dramatic motor activity decrease in response to cocaine injection (21% of wild type) was observed. Moreover, the pre-drug activity of 10-week-old R6/2 mice was significantly reduced (by 37%) compared with 6-week-old R6/2 mice. Striatal dopamine release decreased with age, indicating that progressive alterations in dopaminergic pathways may affect motor activity. The inhibition constants of cocaine and methamphetamine (METH) determined in brain slices differed little between genotype or age group, suggesting that the decreased responses to cocaine and METH arise from compromised dopamine release rather than differences in uptake or drug action. Collectively, these data demonstrate (i) a reduction in the ability of dopamine terminals to release dopamine and (ii) the importance of this attenuation of release on the motor symptoms of Huntington's disease.
Collapse
Affiliation(s)
- Michael A Johnson
- Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that generally begins in middle age with abnormalities of movement, cognition, personality, and mood. Neuronal loss is most marked among the medium-sized projection neurons of the dorsal striatum. HD is an autosomal dominant genetic disorder caused by a CAG expansion in exon 1 of the HD gene, encoding an expanded polyglutamine (polyQ) tract near the N-terminus of the protein huntingtin. Despite identification of the gene mutation more than a decade ago, the normal function of this ubiquitously expressed protein is still under investigation and the mechanisms underlying selective neurodegeneration in HD remain poorly understood. Detailed postmortem analyses of brains of HD patients have provided important clues, and HD transgenic and knock-in mouse models have facilitated investigations into potential pathogenic mechanisms. Subcellular fractionation and immunolocalization studies suggest a role for huntingtin in organelle transport, protein trafficking, and regulation of energy metabolism. Consistent with this, evidence from vertebrate and invertebrate models of HD indicates that expression of the polyQ-expanded form of huntingtin results in early impairment of axonal transport and mitochondrial function. As well, alteration in activity of the N-methyl-d-aspartate (NMDA) type glutamate receptor, which has been implicated as a main mediator of excitotoxic neuronal death, especially in the striatum, is an early effect of mutant huntingtin. Proteolysis and nuclear localization of huntingtin also occur relatively early, while formation of ubiquitinated aggregates of huntingtin and transcriptional dysregulation occur as late effects of the gene mutation. Although each of these processes may contribute to neuronal loss in HD, here we review the data to support a strong role for NMDA receptor (NMDAR)-mediated excitotoxicity and mitochondrial dysfunction in conferring selective neuronal vulnerability in HD.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | |
Collapse
|
26
|
Yi JH, Hoover R, McIntosh TK, Hazell AS. Early, Transient Increase in Complexin I and Complexin II in the Cerebral Cortex following Traumatic Brain Injury Is Attenuated by N-Acetylcysteine. J Neurotrauma 2006; 23:86-96. [PMID: 16430375 DOI: 10.1089/neu.2006.23.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alteration of excitatory neurotransmission is a key feature of traumatic brain injury (TBI) in which extracellular glutamate levels rise. Although increased synaptic release of glutamate occurs at the injury site, the precise mechanism is unclear. Complexin I and complexin II constitute a family of cytosolic proteins involved in the regulation of neurotransmitter release, competing with the chaperone protein alpha-SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) for binding to the synaptic vesicle protein synaptobrevin as well as the synaptic membrane proteins SNAP-25 and syntaxin, which together form the SNAP receptor (SNARE) complex. Complexin I is predominantly a marker of axosomatic (inhibitory) synapses, whereas complexin II mainly labels axodendritic and axospinous synapses, the majority of which are excitatory. In order to examine the role of these proteins in TBI, we have studied levels of both complexins in the injured hemisphere by immunoblotting over a time period ranging from 6 h to 7 days following lateral fluid-percussion brain injury in the rat. Transient increases in the levels of complexin I and complexin II proteins were detected in the injured cerebral cortex 6 h following TBI. This increase was followed by a decrease of complexin I in the injured cortex and hippocampus, and a decrease in both complexins in the injured thalamus region at day 3 and day 7 post-injury. The early, transient increase in the injured cortex was completely blocked by N-acetylcysteine (NAC) administered 5 min following trauma, suggesting an involvement of oxidative stress. Neuronal loss was also reduced in the injured hemisphere with post-TBI NAC treatment. Our findings suggest a dysregulation of both inhibitory and excitatory neurotransmission following traumatic injury that is responsive to antioxidant treatment. These alterations in complexin levels may also play an important role in neuronal cell loss following TBI, and thus contribute to the pathophysiology of cerebral damage following brain injury.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Department of Medicine, Hôpital Saint-Luc, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
27
|
Smith R, Petersén A, Bates GP, Brundin P, Li JY. Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington's disease, a possible culprit in synaptic dysfunction. Neurobiol Dis 2005; 20:673-84. [PMID: 15967669 DOI: 10.1016/j.nbd.2005.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/08/2005] [Accepted: 05/02/2005] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by progressive psychiatric, cognitive, and motor disturbances. We studied the expression of synaptic vesicle proteins in the R6/1 transgenic mouse model of HD. We observed that the levels of rabphilin 3A, a protein involved in exocytosis, is substantially decreased in synapses of most brain regions in R6/1 mice. The appearance of the reduction coincides with the onset of motor deficits and behavioral disturbances. Double immunohistochemistry did not show colocalization between rabphilin 3A and huntingtin aggregates in the HD mice. Using in situ hybridization, we demonstrated that rabphilin 3A mRNA expression was substantially reduced in the R6/1 mouse cortex compared to wild-type mice. Our results indicate that a decrease in mRNA levels underlie the depletion of protein levels of rabphilin 3A, and we suggest that this reduction may be involved in causing impaired synaptic transmission in R6/1 mice.
Collapse
Affiliation(s)
- Ruben Smith
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
28
|
Raevskaya NM, Dergunova LV, Vladychenskaya IP, Stavchansky VV, Oborina MV, Poltaraus AB, Limborska SA. Structural organization of the human complexin 2 gene (CPLX2) and aspects of its functional activity. Gene 2005; 359:127-37. [PMID: 16162394 DOI: 10.1016/j.gene.2005.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/07/2005] [Accepted: 07/09/2005] [Indexed: 11/21/2022]
Abstract
We report here on the in vitro and in silico characterization of the organization of the human complexin 2 (CPLX2) gene. This encodes for a protein of 134 amino acid residues, contains five exons, is localized on human chromosome 5q35.3, and spans more than 87 kb. We performed in silico analysis of the CPLX2 5' untranslated region (UTR) and propose an alternative variant of the gene transcript. Compared to the mRNA reported earlier [McMahon, H.T., Missler, M., Li, C., Sudhof, T.C., 1995. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111-119.], this transcript bears a partly altered 5'-UTR associated with the same open reading frame. Both CPLX2 transcripts share exons III-V; the alternative transcript is devoid of exons I and II, and includes exon A instead. Exon A is localized within CPLX2 intron 2 about 7 kb upstream to exon III. Using reverse transcription polymerase chain reaction (RT-PCR) we detected both types of transcripts in human brain mRNA. In silico data suggest that two putative alternative TATA-less promoter regions separated by 74 kb govern the expression of two CPLX2 transcripts. Several potential transcription start sites were detected by primer extension for each of two alternative CPLX2 transcripts. The relative abundance of the alternative transcripts was investigated in human and rat forebrain, cerebellum, and hippocampus. Whereas both transcripts were detected in human and rat brain, their expression levels were found to vary significantly among the regions investigated. The organization of CPLX2 transcripts is conserved in humans and rodents.
Collapse
Affiliation(s)
- Natalja M Raevskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | | | | | | | | | |
Collapse
|
29
|
Gibson HE, Reim K, Brose N, Morton AJ, Jones S. A similar impairment in CA3 mossy fibre LTP in the R6/2 mouse model of Huntington's disease and in the complexin II knockout mouse. Eur J Neurosci 2005; 22:1701-12. [PMID: 16197510 DOI: 10.1111/j.1460-9568.2005.04349.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexin II is reduced in Huntington's disease (HD) patients and in the R6/2 mouse model of HD. Mice lacking complexin II (Cplx2-/- mice) show selective cognitive deficits that reflect those seen in R6/2 mice. To determine whether or not there is a common mechanism that might underlie the cognitive deficits, long-term potentiation (LTP) was examined in the CA3 region of hippocampal slices from R6/2 mice and Cplx2-/- mice. While associational/commissural (A/C) LTP was not significantly different, mossy fibre (MF) LTP was significantly reduced in slices from R6/2 mice and Cplx2-/- mice compared with wild-type (WT) and Cplx2+/+ control mice. MF field excitatory postsynaptic potentials (fEPSPs) in response to paired stimuli were not significantly different between control mice and R6/2 or Cplx2-/- mice, suggesting that MF basal glutamate release is unaffected. Forskolin (30 microm) caused an increase in glutamate release at MF synapses in slices from R6/2 mice and from Cplx2-/- mice that was not significantly different from that seen in control mice, indicating that the capacity for increased glutamate release is not diminished. Thus, R6/2 mice and Cplx2-/- mice have a common selective impairment of MF LTP in the CA3 region. Together, these data suggest that complexin II is required for MF LTP, and that depletion of complexin II causes a selective impairment in MF LTP in the CA3 region. This impairment in MF LTP could contribute to spatial learning deficits observed in R6/2 and Cplx2-/- mice.
Collapse
Affiliation(s)
- Helen E Gibson
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
30
|
Tadokoro S, Nakanishi M, Hirashima N. Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. J Cell Sci 2005; 118:2239-46. [PMID: 15870114 DOI: 10.1242/jcs.02338] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) proteins are involved in exocytotic release in mast cells as in neurotransmitter release. However, the roles of the proteins that regulate the structure and activity of SNARE proteins are poorly understood. Complexin is one such regulatory protein and is involved in neurotransmitter release, although ideas about its role are still controversial. In this study, we investigated the expression and role of complexin in the regulation of exocytotic release (degranulation) in mast cells. We found that complexin II, but not complexin I, is expressed in mast cells. We obtained RBL-2H3 cells that expressed a low level of complexin II and found that antigen-induced degranulation was suppressed in these cells. No significant changes in the Ca2+ response or expression levels of syntaxins and synaptotagmin were observed in knockdown cells. An immunocytochemical study revealed that complexin II was distributed throughout the cytoplasm before antigen stimulation. However, the distribution of complexin II changed dramatically with stimulation and it became localized on the plasma membrane. This change in the intracellular distribution was observed even in the absence of extracellular Ca2+, while exocytotic release was inhibited almost completely under this condition. The degranulation induced by phorbol 12-myristate 13-acetate and A23187 depended on the extracellular Ca2+ concentration, and its sensitivity to Ca2+ was decreased in knockdown cells. These results suggest that complexin II regulates exocytosis positively by translocating to the plasma membrane and enhancing the Ca2+ sensitivity of fusion machinery, although this translocation to the plasma membrane is not sufficient to trigger exocytotic membrane fusion.
Collapse
Affiliation(s)
- Satoshi Tadokoro
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
31
|
Morton AJ, Hunt MJ, Hodges AK, Lewis PD, Redfern AJ, Dunnett SB, Jones L. A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. Eur J Neurosci 2005; 21:855-70. [PMID: 15787692 DOI: 10.1111/j.1460-9568.2005.03895.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease is a genetic disease caused by a single mutation. It is characterized by progressive movement, emotional and cognitive deficits. R6/2 mice transgenic for exon 1 of the HD gene with 150+ CAG repeats have a progressive neurological phenotype, including deterioration in cognitive function. The mechanism underlying the cognitive deficits in R6/2 mice is unknown, but dysregulated gene expression, reduced neurotransmitter levels and abnormal synaptic function are present before the cognitive decline becomes pronounced. Our goal here was to ameliorate the cognitive phenotype in R6/2 mice using a combination drug therapy (tacrine, moclobemide and creatine) aimed at boosting neurotransmitter levels in the brain. Treatment from 5 weeks of age prevented deterioration in two different cognitive tasks until at least 12 weeks. However, motor deterioration continued unabated. Microarray analysis of global gene expression revealed that many genes significantly up- or down-regulated in untreated R6/2 mice had returned towards normal levels after treatment, though a minority were further dysregulated. Thus dysregulated gene expression was reversed by the combination treatment in the R6/2 mice and probably underlies the observed improvements in cognitive function. Our study shows that cognitive decline caused by a genetic mutation can be slowed by a combination drug treatment, and gives hope that cognitive symptoms in HD can be treated.
Collapse
Affiliation(s)
- A Jennifer Morton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Björkqvist M, Fex M, Renström E, Wierup N, Petersén A, Gil J, Bacos K, Popovic N, Li JY, Sundler F, Brundin P, Mulder H. The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 2005; 14:565-74. [PMID: 15649949 DOI: 10.1093/hmg/ddi053] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes frequently develops in Huntington's disease (HD) patients and in transgenic mouse models of HD such as the R6/2 mouse. The underlying mechanisms have not been clarified. Elucidating the pathogenesis of diabetes in HD would improve our understanding of the molecular mechanisms involved in HD neuropathology. With this aim, we examined our colony of R6/2 mice with respect to glucose homeostasis and islet function. At week 12, corresponding to end-stage HD, R6/2 mice were hyperglycemic and hypoinsulinemic and failed to release insulin in an intravenous glucose tolerance test. In vitro, basal and glucose-stimulated insulin secretion was markedly reduced. Islet nuclear huntingtin inclusions increased dramatically over time, predominantly in beta-cells. beta-cell mass failed to increase normally with age in R6/2 mice. Hence, at week 12, beta-cell mass and pancreatic insulin content in R6/2 mice were 35+/-5 and 16+/-3% of that in wild-type mice, respectively. The normally occurring replicating cells were largely absent in R6/2 islets, while no abnormal cell death could be detected. Single cell patch-clamp experiments revealed unaltered electrical activity in R6/2 beta-cells. However, exocytosis was virtually abolished in beta- but not in alpha-cells. The blunting of exocytosis could be attributed to a 96% reduction in the number of insulin-containing secretory vesicles. Thus, diabetes in R6/2 mice is caused by a combination of deficient beta-cell mass and disrupted exocytosis.
Collapse
|
33
|
Freeman W, Morton AJ. Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull 2004; 63:45-55. [PMID: 15121238 DOI: 10.1016/j.brainresbull.2003.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 12/12/2003] [Indexed: 11/16/2022]
Abstract
Changes in mRNA expression of soluble NSF-attachment protein receptors (SNAREs) and SNARE-associated proteins have been shown to occur in a number of disorders such as schizophrenia, Alzheimer's disease and Parkinson's disease. We have shown previously that there is a decrease in protein levels of the SNARE-associated protein, complexin II (CPLXII) in Huntington's disease brain and in the R6/2 mouse model of Huntington's disease. In the current study, we used quantitative in situ hybridisation to examine mRNA expression of SNAREs (25 kDa synaptosome-associated protein (SNAP-25), syntaxin-1A and synaptobrevin-2) and SNARE-associated proteins (alpha-SNAP, CPLXI and CPLXII) in brain of R6/2 mice and their wild type littermates between 3 and 15 weeks of age. We found an early and progressive decrease of CPLXII expression in R6/2 mice brains. In contrast, no changes in SNARE expression were seen in R6/2 brains compared with wild type brain. Further, while decreased expression of alpha-SNAP and CPLXI was seen, this was not until 15 weeks of age and even then the changes were small. We suggest that downregulation of expression of mRNA encoding SNARE-associated proteins, first CPLXII and later CPLXI and alpha-SNAP, contributes to the progressive neuropathology of the R6/2 mouse model of Huntington's disease.
Collapse
Affiliation(s)
- Whitney Freeman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
34
|
Abstract
Huntington's disease (HD) is caused by a polyglutamine expansion in the protein huntingtin. In its terminal stage, HD is characterized by widespread neuronal death in the neocortex and the striatum. Classically, this neuronal death has been thought to underlie most of the symptoms of the disease. Accumulating evidence suggests, however, that cellular dysfunction is important in the pathogenesis of HD. We propose that specific impairment of the exocytosis and endocytosis machinery contributes to the development of HD. We also suggest that abnormal synaptic transmission underlies the early symptoms of HD and can contribute to the triggering of cell death in later stages of the disease.
Collapse
Affiliation(s)
- Jia-Yi Li
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84, Lund, Sweden
| | | | | |
Collapse
|