1
|
Chen X, Chen X. The Role of TRIM Proteins in Vascular Disease. Curr Vasc Pharmacol 2024; 22:11-18. [PMID: 38031766 DOI: 10.2174/0115701611241848231114111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
There are more than 80 different tripartite motifs (TRIM) proteins within the E3 ubiquitin ligase subfamily, including proteins that regulate intracellular signaling, apoptosis, autophagy, proliferation, inflammation, and immunity through the ubiquitination of target proteins. Studies conducted in recent years have unraveled the importance of TRIM proteins in the pathophysiology of vascular diseases. In this review, we describe the effects of TRIM proteins on vascular endothelial cells, smooth muscle cells, heart, and lungs. In particular, we discuss the potential mechanisms by which TRIMs regulate diseases and shed light on the potential therapeutic applications of TRIMs.
Collapse
Affiliation(s)
- Xinxin Chen
- Ophthalmology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, China
| | - Xiaolong Chen
- Ophthalmology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Veyssiere M, Sadat Aghamiri S, Hernandez Cervantes A, Henry T, Soumelis V. A mathematical model of Familial Mediterranean Fever predicts mechanisms controlling inflammation. Clin Immunol 2023; 257:109839. [PMID: 37952562 DOI: 10.1016/j.clim.2023.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Familial Mediterranean Fever (FMF) is a monogenic disease caused by gain-of-function mutations in the MEditerranean FeVer (MEFV) gene. The molecular dysregulations induced by these mutations and the associated causal mechanisms are complex and intricate. OBJECTIVE We sought to provide a computational model capturing the mechanistic details of biological pathways involved in FMF physiopathology and enabling the study of the patient's immune cell dynamics. METHODS We carried out a literature survey to identify experimental studies published from January 2000 to December 2020, and integrated its results into a molecular map and a mathematical model. Then, we studied the network of molecular interactions and the dynamic of monocytes to identify key players for inflammation phenotype in FMF patients. RESULTS We built a molecular map of FMF integrating in a structured manner the current knowledge regarding pathophysiological processes participating in the triggering and perpetuation of the disease flares. The mathematical model derived from the map reproduced patient's monocyte behavior, in particular its proinflammatory role via the Pyrin inflammasome activation. Network analysis and in silico experiments identified NF-κB and JAK1/TYK2 as critical to modulate IL-1β- and IL-18-mediated inflammation. CONCLUSION The in silico model of FMF monocyte proved its ability to reproduce in vitro observations. Considering the difficulties related to experimental settings and financial investments to test combinations of stimuli/perturbation in vitro, this model could be used to test complex hypotheses in silico, thus narrowing down the number of in vitro and ex vivo experiments to perform.
Collapse
Affiliation(s)
| | - Sara Sadat Aghamiri
- Université Paris Cité, INSERM U976, Paris, France; University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon F-69007, France
| | - Vassili Soumelis
- Université Paris Cité, INSERM U976, Paris, France; Owkin, 14 boulevard Poissonniere, Paris 75009, France.
| |
Collapse
|
3
|
Yi-Bin W, Xiang L, Bing Y, Qi Z, Fei-Tong J, Minghong W, Xiangxiang Z, Le K, Yan L, Ping S, Yufei G, Ye X, Chun-Yan W. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer's disease model. Cell Death Dis 2022; 13:318. [PMID: 35393391 PMCID: PMC8989877 DOI: 10.1038/s41419-022-04765-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
Neuroinflammation occurs early in Alzheimer’s disease (AD). The initial stage of AD is related to glial dysfunction, which contributes to impairment of Aβ clearance and disruption of synaptic connection. CEBPβ, a member of the CCAAT-enhancer-binding protein (CEBP) family, modulates the expression of inflammation-associated genes, and its expression is elevated in brains undergoing degeneration and injured brains. However, the mechanism underlying CEBPβ-mediated chronic inflammation in AD is unclear. In this study, we observed that increases in the levels of nuclear CEBPβ facilitated the interaction of CEBPβ with the NFκB p65 subunit, increasing the transcription of proinflammatory cytokines in the APP/PS1 mouse brain. Oral administration of nanocarrier-packaged carnosic acid (CA) reduced the aberrant activation of microglia and astrocytes and diminished mature IL-1β, TNFα and IL-6 production in the APP/PS1 mouse brain. CA administration reduced β-amyloid (Aβ) deposition and ameliorated cognitive impairment in APP/PS1 mice. We observed that CA blocked the interaction of CEBPβ with NFκB p65, and chromatin immunoprecipitation revealed that CA reduced the transcription of the NFκB target genes TNFα and IL-6. We confirmed that CA alleviated inflammatory mediator-induced neuronal degeneration and reduced Aβ secretion by inhibiting the CEBPβ-NFκB signalling pathway in vitro. Sulfobutyl ether-beta-cyclodextrin (SBEβCD) was used as the encapsulation agent for the CA-loaded nanocarrier to overcome the poor water solubility and enhance the brain bioavailability of CA. The CA nanoparticles (NPs) had no obvious toxicity. We demonstrated a feasible SBEβCD-based nanodelivery system targeting the brain. Our data provide experimental evidence that CA-loaded NPs are potential therapeutic agents for AD treatment.
Collapse
Affiliation(s)
- Wang Yi-Bin
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Li Xiang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yang Bing
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhang Qi
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Jiao Fei-Tong
- Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China
| | - Wang Minghong
- Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China
| | - Zhang Xiangxiang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Kang Le
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Li Yan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Sui Ping
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Gao Yufei
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xu Ye
- Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China.
| | - Wang Chun-Yan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, 110122, China. .,Translational Medicine Laboratory, School of Basic Medical Sciences, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
4
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
5
|
Allaeys I, Ribeiro de Vargas F, Bourgoin SG, Poubelle PE. Human Inflammatory Neutrophils Express Genes Encoding Peptidase Inhibitors: Production of Elafin Mediated by NF-κB and CCAAT/Enhancer-Binding Protein β. THE JOURNAL OF IMMUNOLOGY 2021; 206:1943-1956. [PMID: 33762327 DOI: 10.4049/jimmunol.2000852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
The concept of plasticity of neutrophils is highlighted by studies showing their ability to transdifferentiate into APCs. In this regard, transdifferentiated neutrophils were found at inflammatory sites of autoimmune arthritis (AIA). Exposure of neutrophils to inflammatory stimuli prolongs their survival, thereby favoring the acquisition of pathophysiologically relevant phenotypes and functions. By using microarrays, quantitative RT-PCR, and ELISAs, we showed that long-lived (LL) neutrophils obtained after 48 h of culture in the presence of GM-CSF, TNF, and IL-4 differentially expressed genes related to apoptosis, MHC class II, immune response, and inflammation. The expression of anti-inflammatory genes mainly of peptidase inhibitor families is upregulated in LL neutrophils. Among these, the PI3 gene encoding elafin was the most highly expressed. The de novo production of elafin by LL neutrophils depended on a synergism between GM-CSF and TNF via the activation and cooperativity of C/EBPβ and NF-κB pathways, respectively. Elafin concentrations were higher in synovial fluids (SF) of patients with AIA than in SF of osteoarthritis. SF neutrophils produced more elafin than blood counterparts. These results are discussed with respect to implications of neutrophils in chronic inflammation and the potential influence of elafin in AIA.
Collapse
Affiliation(s)
- Isabelle Allaeys
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Flavia Ribeiro de Vargas
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Patrice E Poubelle
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
6
|
Transcriptional Regulation of Inflammasomes. Int J Mol Sci 2020; 21:ijms21218087. [PMID: 33138274 PMCID: PMC7663688 DOI: 10.3390/ijms21218087] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are multimolecular complexes with potent inflammatory activity. As such, their activity is tightly regulated at the transcriptional and post-transcriptional levels. In this review, we present the transcriptional regulation of inflammasome genes from sensors (e.g., NLRP3) to substrates (e.g., IL-1β). Lineage-determining transcription factors shape inflammasome responses in different cell types with profound consequences on the responsiveness to inflammasome-activating stimuli. Pro-inflammatory signals (sterile or microbial) have a key transcriptional impact on inflammasome genes, which is largely mediated by NF-κB and that translates into higher antimicrobial immune responses. Furthermore, diverse intrinsic (e.g., circadian clock, metabolites) or extrinsic (e.g., xenobiotics) signals are integrated by signal-dependent transcription factors and chromatin structure changes to modulate transcriptionally inflammasome responses. Finally, anti-inflammatory signals (e.g., IL-10) counterbalance inflammasome genes induction to limit deleterious inflammation. Transcriptional regulations thus appear as the first line of inflammasome regulation to raise the defense level in front of stress and infections but also to limit excessive or chronic inflammation.
Collapse
|
7
|
Malik HS, Bliska JB. The pyrin inflammasome and the Yersinia effector interaction. Immunol Rev 2020; 297:96-107. [PMID: 32721043 DOI: 10.1111/imr.12907] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Pyrin is a cytosolic pattern-recognition receptor that normally functions as a guard to trigger capase-1 inflammasome assembly in response to bacterial toxins and effectors that inactivate RhoA. The MEFV gene encoding human pyrin is preferentially expressed in phagocytes. Key domains in pyrin include a pyrin domain (PYD), a linker region, and a B30.2 domain. Binding of ASC to pyrin by a PYD-PYD interaction triggers inflammasome assembly. Pyrin is held in an inactive conformation by negative regulation mechanisms to avoid premature inflammasome assembly. One mechanism of negative regulation involves phosphorylation of the linker by PRK kinase which in turn is positively regulated by active RhoA. The B30.2 domain also negatively regulates pyrin. Gain of function mutations in MEFV responsible for the autoinflammatory disease Familial Mediterranean Fever (FMF) map to exon 10 encoding the B30.2 domain. Insights into pyrin regulation have come from studies of several Yersinia effectors, which are injected into phagocytes and interact with the RhoA-PRK-pyrin axis during infection. Two effectors, YopE and YopT, inactivate RhoA to disrupt phagocytic signaling. To counteract an effector-triggered immune response, a third effector, YopM, binds to and inhibits pyrin by hijacking PRK and RSK and directing linker phosphorylation. Inhibition of pyrin by YopM is required for virulence of Yersinia pestis, the agent of plague. Recent results from infection studies with human phagocytes and mice producing pyrin B30.2 FMF variants show that gain of function MEFV mutations bypass inhibition by YopM. Population genetic data suggest that MEFV mutations were selected for in individuals of Mediterranean decent during historic plague pandemics. This review discusses current concepts of pyrin regulation and its interaction with Yersinia effectors.
Collapse
Affiliation(s)
- Haleema S Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
8
|
Christgen S, Place DE, Kanneganti TD. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 2020; 30:315-327. [PMID: 32152420 PMCID: PMC7118104 DOI: 10.1038/s41422-020-0295-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 11/27/2022] Open
Abstract
Inflammasomes are multi-component signaling complexes critical to the initiation of pyroptotic cell death in response to invading pathogens and cellular damage. A number of innate immune receptors have been reported to serve as inflammasome sensors. Activation of these sensors leads to the proteolytic activation of caspase-1, a proinflammatory caspase responsible for the cleavage of proinflammatory cytokines interleukin-1β and interleukin-18 and the effector of pyroptotic cell death, gasdermin D. Though crucial to the innate immune response to infection, dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. Therefore, clinical interest in the modulation of inflammasome activation is swiftly growing. As such, it is imperative to develop a mechanistic understanding of the regulation of these complexes. In this review, we divide the regulation of inflammasome activation into three parts. We discuss the transcriptional regulation of inflammasome components and related proteins, the post-translational mechanisms of inflammasome activation, and advances in the understanding of the structural basis of inflammasome activation.
Collapse
Affiliation(s)
- Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
9
|
Ratner D, Orning MPA, Proulx MK, Wang D, Gavrilin MA, Wewers MD, Alnemri ES, Johnson PF, Lee B, Mecsas J, Kayagaki N, Goguen JD, Lien E. The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathog 2016; 12:e1006035. [PMID: 27911947 PMCID: PMC5135138 DOI: 10.1371/journal.ppat.1006035] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production of pro-inflammatory cytokines IL-1β and IL-18, which are typically processed into their mature forms by active caspase-1 following inflammasome formation. Some effectors, like Y. pestis YopM, may block inflammasome activation. Here we show that YopM prevents Y. pestis induced activation of the Pyrin inflammasome induced by the RhoA-inhibiting effector YopE, which is a GTPase activating protein. YopM blocks YopE-induced Pyrin-mediated caspase-1 dependent IL-1β/IL-18 production and cell death. We also detected YopM in a complex with Pyrin and kinases RSK1 and PKN1, putative negative regulators of Pyrin. In contrast to wild-type mice, Pyrin deficient mice were also highly susceptible to an attenuated Y. pestis strain lacking YopM, emphasizing the importance of inhibition of Pyrin in vivo. A complex interplay between the Y. pestis T3SS and IL-1β/IL-18 production is evident, involving at least four inflammasome pathways. The secreted effector YopJ triggers caspase-8- dependent IL-1β activation, even when YopM is present. Additionally, the presence of the T3SS needle/translocon activates NLRP3 and NLRC4-dependent IL-1β generation, which is blocked by YopK, but not by YopM. Taken together, the data suggest YopM specificity for obstructing the Pyrin pathway, as the effector does not appear to block Y. pestis-induced NLRP3, NLRC4 or caspase-8 dependent caspase-1 processing. Thus, we identify Y. pestis YopM as a microbial inhibitor of the Pyrin inflammasome. The fact that so many of the Y. pestis T3SS components are participating in regulation of IL-1β/IL-18 release suggests that these effects are essential for maximal control of innate immunity during plague. Many pathogenic Gram-negative bacteria express type III secretion systems (T3SS) that translocate bacterial proteins into host cells with the potential of altering normal cell processes. Yersinia pestis, the causative agent of plague, harbors a T3SS which is particularly effective in suppressing innate immunity and release of pro-inflammatory cytokines IL-1β and IL-18, potent triggers of anti-bacterial responses. These cytokines are produced via processing by active caspase-1 in inflammasome complexes. Pyrin is an inflammasome component that recognizes alterations in certain host cell signals. Here we show that the T3SS effector protein YopM inhibits effector YopE-mediated Pyrin-induced caspase-1 activation, IL-1β, IL-18 and cell death triggered by Y. pestis. We also found that blocking the Pyrin pathway is important for disease development in a mouse model of bubonic plague. Thus, YopM is a microbial molecule blocking Pyrin inflammasomes.
Collapse
Affiliation(s)
- Dmitry Ratner
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
| | - M. Pontus A. Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Megan K. Proulx
- UMass Medical School, Department of Microbiology and Physiological Systems, Worcester, Massachusetts, United States of America
| | - Donghai Wang
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Mikhail A. Gavrilin
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Peter F. Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Bettina Lee
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nobuhiko Kayagaki
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Jon D. Goguen
- UMass Medical School, Department of Microbiology and Physiological Systems, Worcester, Massachusetts, United States of America
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
10
|
Pak JH, Son WC, Seo SB, Hong SJ, Sohn WM, Na BK, Kim TS. Peroxiredoxin 6 expression is inversely correlated with nuclear factor-κB activation during Clonorchis sinensis infestation. Free Radic Biol Med 2016; 99:273-285. [PMID: 27554973 DOI: 10.1016/j.freeradbiomed.2016.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology and Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Tong-Soo Kim
- Department of Parasitology, Inha University School of Medicine, Incheon 400-103, Republic of Korea
| |
Collapse
|
11
|
Akula MK, Shi M, Jiang Z, Foster CE, Miao D, Li AS, Zhang X, Gavin RM, Forde SD, Germain G, Carpenter S, Rosadini CV, Gritsman K, Chae JJ, Hampton R, Silverman N, Gravallese EM, Kagan JC, Fitzgerald KA, Kastner DL, Golenbock DT, Bergo MO, Wang D. Control of the innate immune response by the mevalonate pathway. Nat Immunol 2016; 17:922-9. [PMID: 27270400 PMCID: PMC4955724 DOI: 10.1038/ni.3487] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/05/2016] [Indexed: 02/08/2023]
Abstract
Deficiency of mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate (GGPP), a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, protein post-translational modification catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) cause autoinflammatory Familial Mediterranean Fever (FMF) syndrome. Here, we show that protein geranylgeranylation enables Toll-like receptor (TLR)-induced phosphatidylinositol-3-OH kinase PI(3)K) activation by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages deficient for GGTase I or p110δ exhibited constitutive interleukin-1β release that was MEFV-dependent, but NLRP3-, AIM2- and NLRC4- inflammasome independent. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows for an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.
Collapse
Affiliation(s)
- Murali K Akula
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Man Shi
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhaozhao Jiang
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Celia E Foster
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David Miao
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Annie S Li
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaoman Zhang
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ruth M Gavin
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sorcha D Forde
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gail Germain
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Susan Carpenter
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Charles V Rosadini
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kira Gritsman
- Department of Medicine, Albert Einstein College of Medicine, New York City, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, New York City, New York, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Randolph Hampton
- Division of Biology, University of California San Diego, La Jolla, California, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Department of Medicine, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas T Golenbock
- Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Donghai Wang
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA.,Division of Infectious Diseases and Immunology, the University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:395-424. [PMID: 25423351 DOI: 10.1146/annurev-pathol-012414-040431] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation, a vital response of the immune system to infection and damage to tissues, can be initiated by various germline-encoded innate immune-signaling receptors. Among these, the inflammasomes are critical for activation of the potent proinflammatory interleukin-1 cytokine family. Additionally, inflammasomes can trigger and maintain inflammatory responses aimed toward excess nutrients and the numerous danger signals that appear in a variety of chronic inflammatory diseases. We discuss our understanding of how inflammasomes assemble to trigger caspase-1 activation and subsequent cytokine release, describe how genetic mutations in inflammasome-related genes lead to autoinflammatory syndromes, and review the contribution of inflammasome activation to various pathologies arising from metabolic dysfunction. Insights into the mechanisms that govern inflammasome activation will help in the development of novel therapeutic strategies, not only for managing genetic diseases associated with overactive inflammasomes, but also for treating common metabolic diseases for which effective therapies are currently lacking.
Collapse
|
13
|
Rebl A, Rebl H, Korytář T, Goldammer T, Seyfert HM. The proximal promoter of a novel interleukin-8-encoding gene in rainbow trout (Oncorhynchus mykiss) is strongly induced by CEBPA, but not NF-κB p65. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:155-164. [PMID: 24721762 DOI: 10.1016/j.dci.2014.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Interleukin-8 (IL8) is an immediate-early chemokine that has been well characterized in several fish species. Ten IL8 gene variants have already been described in rainbow trout, but none of their promoters has structurally been defined or functionally characterized in teleost fish. To uncover key factors regulating IL8 expression, we intended to functionally characterize an IL8 promoter from rainbow trout. Incidentally, we isolated a novel IL8 gene variant (IL8-G). It is structurally highly similar to the other trout IL8 gene variants and its mRNA concentration increased significantly in secondary lymphoid tissues after infecting healthy fish with Aeromonas salmonicida. The proximal promoter sequence of the IL8-G-encoding gene features in close proximity two consensus elements for CEBP attachment. The proximal site overlaps with a NF-κB-binding site. Cotransfection of an IL8-G promoter-driven reporter gene together with vectors expressing various mammalian CEBP or NF-κB factors revealed in human HEK-293 cells that CEBPA and NF-κB p50, but not NF-κB p65 activate this promoter. The stimulatory effect of NF-κB p50 is likely conveyed by synergizing with CEBPA. Deletion or mutation of either the distal or the proximal CEBP-binding site, respectively, caused a significant decrease in IL8-G promoter activation. We confirmed the significance of the CEBPA factor for IL8-G expression by comparing the stimulatory capacity of the trout CEBPA and -B factors, thereby reducing the evolutionary distance in the inter-species expression assays. Similar promoter induction potential and intracellular localization of the mammalian and teleostean CEBPA and -B factors suggests their functional conservation throughout evolution.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
14
|
Duval N, Daubas P, Bourcier de Carbon C, St Cloment C, Tinevez JY, Lopes M, Ribes V, Robert B. Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine spinal cord. Development 2014; 141:1726-36. [PMID: 24715462 DOI: 10.1242/dev.099002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dorsal spinal neurogenesis is orchestrated by the combined action of signals secreted from the roof plate organizer and a downstream transcriptional cascade. Within this cascade, Msx1 and Msx2, two homeodomain transcription factors (TFs), are induced earlier than bHLH neuralizing TFs. Whereas bHLH TFs have been shown to specify neuronal cell fate, the function of Msx genes remains poorly defined. We describe dramatic alterations of neuronal patterning in Msx1/Msx2 double-mutant mouse embryos. The most dorsal spinal progenitor pool fails to express the bHLH neuralizing TF Atoh1, which results in a lack of Lhx2-positive and Barhl2-positive dI1 interneurons. Neurog1 and Ascl1 expression territories are dorsalized, leading to ectopic dorsal differentiation of dI2 and dI3 interneurons. In proportion, the amount of Neurog1-expressing progenitors appears unaffected, whereas the number of Ascl1-positive cells is increased. These defects occur while BMP signaling is still active in the Msx1/Msx2 mutant embryos. Cell lineage analysis and co-immunolabeling demonstrate that Atoh1-positive cells derive from progenitors expressing both Msx1 and Msx2. In vitro, Msx1 and Msx2 proteins activate Atoh1 transcription by specifically interacting with several homeodomain binding sites in the Atoh1 3' enhancer. In vivo, Msx1 and Msx2 are required for Atoh1 3' enhancer activity and ChIP experiments confirm Msx1 binding to this regulatory sequence. These data support a novel function of Msx1 and Msx2 as transcriptional activators. Our study provides new insights into the transcriptional control of spinal cord patterning by BMP signaling, with Msx1 and Msx2 acting upstream of Atoh1.
Collapse
Affiliation(s)
- Nathalie Duval
- Institut Pasteur, Morphogenesis Molecular Genetics, CNRS URA 2578, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ozgocmen S, Akgul O. Anti-TNF agents in familial Mediterranean fever: report of three cases and review of the literature. Mod Rheumatol 2014. [DOI: 10.3109/s10165-011-0463-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
The regulation of MEFV expression and its role in health and familial Mediterranean fever. Genes Immun 2011; 12:497-503. [DOI: 10.1038/gene.2011.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. The α1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and co-expression with the γ subunit in hair cells. J Neurochem 2011; 103:2651-64. [PMID: 17961150 DOI: 10.1111/j.1471-4159.2007.04980.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholine is a key neurotransmitter of the inner ear efferent system. In this study, we identify two novel nAChR subunits in the inner ear: α1 and γ, encoded by Chrna1 and Chrng, respectively. In situ hybridization shows that the messages of these two subunits are present in vestibular and cochlear hair cells during early development. Chrna1 and Chrng expression begin at embryonic stage E13.5 in the vestibular system and E17.5 in the organ of Corti. Chrna1 message continues through P7, whereas Chrng is undetectable at post-natal stage P6. The α1 and γ subunits are known as muscle-type nAChR subunits and are surprisingly expressed in hair cells which are sensory-neural cells. We also show that ATOH1/MATH1, a transcription factor essential for hair cell development, directly activates CHRNA1 transcription. Electrophoretic mobility-shift assays and supershift assays showed that ATOH1/E47 heterodimers selectively bind on two E boxes located in the proximal promoter of CHRNA1. Thus, Chrna1 could be the first transcriptional target of ATOH1 in the inner ear. Co-expression in Xenopus oocytes of the α1 subunit does not change the electrophysiological properties of the α9α10 receptor. We suggest that hair cells transiently express α1γ-containing nAChRs in addition to α9α10, and that these may have a role during development of the inner ear innervation.
Collapse
|
18
|
Ozgocmen S, Akgul O. Anti-TNF agents in familial Mediterranean fever: report of three cases and review of the literature. Mod Rheumatol 2011; 21:684-90. [PMID: 21567247 DOI: 10.1007/s10165-011-0463-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
Familial Mediterranean fever (FMF) is an autoinflammatory disease characterized by recurrent fever, peritonitis/pleuritis, or arthritis attacks. Patients may have FMF-associated mutations of pyrin. The role of biologics such as anti-tumor necrosis factor (TNF) agents (infliximab, etanercept, adalimumab, golimumab) and anakinra, canakinumab, or rilonacept in the treatment of FMF needs to be clarified. Herein we present reports of three patients (all were positive for HLA B27) with typical spondylitis associated with FMF who were successfully managed with anti-TNF agents, along with a literature review. The patients were a 37-year-old man with concomitant Crohn's disease and amyloidosis who was treated with infliximab (INF, 5 mg/kg for 3 years) and switched to adalimumab (ADA), and two female patients (a 24-year-old and a 31-year-old) with FMF who developed severe spondylitis and who were also treated with ADA. Anti-TNF agents can control FMF attacks quite effectively and they reveal a promising role in the treatment of FMF-associated amyloidosis and spondylitis.
Collapse
Affiliation(s)
- Salih Ozgocmen
- Division of Rheumatology, Dept. PMR, Gevher Nesibe Hospital, Erciyes University, School of Medicine, 38039 Kayseri, Turkey.
| | | |
Collapse
|
19
|
Bonello GB, Pham MH, Begum K, Sigala J, Sataranatarajan K, Mummidi S. An evolutionarily conserved TNF-alpha-responsive enhancer in the far upstream region of human CCL2 locus influences its gene expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:7025-38. [PMID: 21551367 DOI: 10.4049/jimmunol.0900643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Comparative cross-species genomic analysis has served as a powerful tool to discover novel noncoding regulatory regions that influence gene expression in several cytokine loci. In this study, we have identified several evolutionarily conserved regions (ECRs) that are shared between human, rhesus monkey, dog, and horse and that are upstream of the promoter regions that have been previously shown to play a role in regulating CCL2 gene expression. Of these, an ECR that was ~16.5 kb (-16.5 ECR) upstream of its coding sequence contained a highly conserved NF-κB site. The region encompassing the -16.5 ECR conferred TNF-α responsiveness to homologous and heterologous promoters. In vivo footprinting demonstrated that specific nucleotide residues in the -16.5 ECR were protected or became hypersensitive after TNF-α treatment. The footprinted regions were found to bind NF-κB subunits in vitro and in vivo. Mutation/deletion of the conserved NF-κB binding site in the -16.5 ECR led to loss of TNF-α responsiveness. After TNF-α stimulation, the -16.5 ECR showed increased sensitivity to nuclease digestion and loss of histone signatures that are characteristic of a repressive chromatin. Chromosome conformation capture assays indicated that -16.5 ECR physically interacts with the CCL2 proximal promoter after TNF-α stimulation. Taken together, these results suggest that the -16.5 ECR may play a critical role in the regulation of CCL2.
Collapse
Affiliation(s)
- Grégory B Bonello
- Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hong JW, Wu LC. ZAS3 represses NFκB-dependent transcription by direct competition for DNA binding. BMB Rep 2011; 43:807-12. [PMID: 21189157 DOI: 10.5483/bmbrep.2010.43.12.807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NFκB and ZAS3 are transcription factors that control important cellular processes including immunity, cell survival and apoptosis. Although both proteins bind the κB-motif, they produce opposite physiological consequences; NFκB activates transcription, promotes cell growth and is often found to be constitutively expressed in cancer cells, while ZAS3 generally represses transcription, inhibits cell proliferation and is downregulated in some cancers. Here, we show that ZAS3 inhibits NFκB-dependent transcription by competing with NFκB for the κB-motif. Transient transfection studies show that N-terminal 645 amino acids is sufficient to repress transcription activated by NFκB, and that the identical region also possesses intrinsic repression activity to inhibit basal transcription from a promoter. Finally, in vitro DNA-protein interaction analysis shows that ZAS3 is able to displace NFκB by competing with NFκB for the κB-motif. It is conceivable that ZAS3 has therapeutic potential for controlling aberrant activation of NFκB in various diseases.
Collapse
Affiliation(s)
- Joung-Woo Hong
- Internal Medicine, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
21
|
Jude JA, Solway J, Panettieri RA, Walseth TF, Kannan MS. Differential induction of CD38 expression by TNF-{alpha} in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L879-90. [PMID: 20693316 DOI: 10.1152/ajplung.00021.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ADP-ribosyl cyclase activity of CD38, a membrane protein expressed in human airway smooth muscle (ASM) cells, generates cyclic ADP-ribose (cADPR), a Ca²(+)-mobilizing agent. cADPR-mediated Ca²(+) responses to agonists are augmented in human ASM cells by TNF-α. CD38-deficient mice fail to develop airway hyperresponsiveness following intranasal TNF-α or IL-13 challenge, suggesting a role in asthma. The role of CD38 in human asthma remains unknown. We hypothesized that CD38 expression will be elevated in ASM cells from asthmatic donors (ASMA cells). CD38 mRNA and ADP-ribosyl cyclase activity were measured in cells maintained in growth-arrested conditions and exposed to vehicle or TNF-α (10-40 ng/ml). TNF-α-induced induction of CD38 expression was greater in ASMA than in ASM cells from nonasthmatic donors (ASMNA). In four of the six donors, basal and TNF-α-induced ERK and p38 MAPK activation were higher in ASMA than ASMNA cells. JNK MAPK activation was lower in ASMA than ASMNA cells. Nuclear NF-κB (p50 subunit) and phosphorylated c-Jun were comparable in cells from both groups, although nuclear c-Fos (part of the AP-1 complex) levels were lower in ASMA than ASMNA cells. NF-κB or AP-1 binding to their consensus sequences was comparable in ASMNA and ASMA cells, as are the decay kinetics of CD38 mRNA. The findings suggest that the differential induction of CD38 by TNF-α in ASMA cells is due to increased transcriptional regulation involving ERK and p38 MAPK activation and is independent of changes in NF-κB or AP-1 activation. The findings suggest a potential role for CD38 in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Joseph A Jude
- Dept. of Veterinary and Biomedical Sciences, Univ. of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
22
|
Son DS, Terranova PF, Roby KF. Interaction of adenosine 3',5'-cyclic monophosphate and tumor necrosis factor-alpha on serum amyloid A3 expression in mouse granulosa cells: dependence on CCAAT-enhancing binding protein-beta isoform. Endocrinology 2010; 151:3407-19. [PMID: 20444945 PMCID: PMC2903928 DOI: 10.1210/en.2009-1321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNFalpha is an inflammatory-related cytokine that has inhibitory effects on gonadotropin- and cAMP-stimulated steroidogenesis and folliculogenesis. Because ovulation is an inflammatory reaction and TNF specifically induces serum amyloid A3 (SAA3) in mouse granulosa cells, the effect of cAMP on TNF-induced SAA3 promoter activity, mRNA and protein was investigated. Granulosa cells from immature mice were cultured with TNF and/or cAMP. TNF increased SAA3 promoter activity, mRNA, and protein, which were further increased by cAMP. cAMP alone increased SAA3 promoter activity, but SAA3 mRNA and protein remained undetectable. Thus, there appeared to be different mechanisms by which TNF and cAMP regulated SAA3 expression. SAA3 promoters lacking a nuclear factor (NF)-kappaB-like site or containing its mutant were not responsive to TNF but were responsive to cAMP. Among four CCAAT-enhancing binding protein (C/EBP) sites in the SAA3 promoter, the C/EBP site nearest the NF-kappaB-like site was required for TNF-induced SAA3. The C/EBP site at -75/-67 was necessary for responsiveness to cAMP. Dominant-negative C/EBP and cAMP response element-binding protein or short interfering RNA of C/EBPbeta blocked TNF- or cAMP-induced SAA3 promoter activity. The combination of TNF and cAMP increased C/EBPbeta protein above that induced by TNF or cAMP alone. Thus, cAMP in combination with TNF specifically induced C/EBPbeta protein, leading to enhanced SAA3 expression but requiring NF-kappaB in mouse granulose cells. In addition, like TNF, SAA inhibited cAMP-induced estradiol accumulation and CYP19 levels. These data indicate SAA may play a role in events occurring during the ovulation process.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Obstetrics and Gynecology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
23
|
|
24
|
Kim MH, Minton AZ, Agrawal V. C/EBPbeta regulates metastatic gene expression and confers TNF-alpha resistance to prostate cancer cells. Prostate 2009; 69:1435-47. [PMID: 19489038 DOI: 10.1002/pros.20993] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND CCAAT/enhancer-binding protein beta (C/EBPbeta) is a transcription factor and consists of three isoforms, transcription-activating A/B (C/EBPbeta-AB) and transcription inhibitory C (C/EBPbeta-C). We previously reported that C/EBPbeta-C was predominantly expressed in hormone-dependent LNCaP cells, while C/EBPbeta-AB forms were predominant in hormone-independent prostate cancer (HI-PCa) cells. METHODS Reporter gene analysis was performed to investigate transcriptional activity of C/EBPbeta on metastatic gene expression upon TNF-alpha treatment. NF-kappaB activation and C/EBPbeta protein upregulation were determined by immunoblotting. WST assay was used to determine the role of C/EBPbeta in TNF-alpha-induced cell death. RESULTS We first determined that the C/EBPbeta-C overexpression or siRNA-mediated C/EBPbeta depletion decreased TNF-alpha-induced promoter activities of Bfl-1, IL-6, and IL-8 genes. IL-6 and IL-8 are autocrine growth factors of HI-PCa cells and Bfl-1 is an anti-apoptotic protein whose function in prostate cancer is yet to be determined. Secondly, we determined differential regulation of C/EBPbeta by TNF-alpha. In DU-145 cells, C/EBPbeta was upregulated by TNF-alpha, but downregulated in LNCaP cells, although NF-kappaB was activated in both cells. This result suggested cell-type specific activation of signaling pathways leading to C/EBPbeta upregulation, which was distinct from that leading to NF-kappaB activation. Most importantly, C/EBPbeta depletion decreased cell growth and sensitized DU-145 cells to TNF-alpha-induced cell death. Conversely, overexpression of C/EBPbeta-A in LNCaP cells increased resistance to TNF-induced cell death and TNF-induced promoter activities of IL-6 and Bfl-1. CONCLUSION Our study, for the first time, demonstrated that C/EBPbeta regulated cell growth and conferred TNF-alpha resistance to PCa cells, in part, via regulation of metastatic gene expression. Prostate 69: 1435-1447, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Myoung H Kim
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| | | | | |
Collapse
|
25
|
Haddad JJ. The role of inflammatory cytokines and NF-kappaB/MAPK signaling pathways in the evolution of familial Mediterranean fever: current clinical perspectives and potential therapeutic approaches. Cell Immunol 2009; 260:6-13. [PMID: 19733345 DOI: 10.1016/j.cellimm.2009.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 01/27/2023]
Abstract
Familial Mediterranean fever (FMF) is one of the social and health care problems for several populations that is known as a historically endemic disease of inflammatory nature. FMF, albeit a rare disorder, is characterized by recurrent fevers and painful inflammation of various body parts, especially the abdomen, lungs, and joints. FMF is typically characterized by inflammation of the abdominal lining (peritonitis), inflammation of the lining surrounding the lungs (pleurisy), painful, swollen joints (arthralgia and occasionally arthritis), and a characteristic ankle rash, a condition that is referred to as recurrent polyserositis, or familial paroxysmal polyserositis. Moreover, FMF is an inherited inflammatory disorder usually occurring in people of Mediterranean origin - including Sephardic Jews, Arabs, Armenians, and Turks; but it may ostensibly affect any other ethnic group, however, rarely. While there's no cure for this disorder, FMF is typically diagnosed during childhood, and signs and symptoms are treatable - or even preventable - by specialized medical attrition. The inflammatory signaling pathways associated with the evolution of FMF are currently being unraveled has that has therapeutic repercussions. In this review, I recap major concepts associated with the cellular and molecular immunology of FMF, especially shedding light on the likely roles of inflammatory cytokines, the transcription factor nuclear factor (NF)-kappaB, and the superfamily of mitogen-activated protein kinases (MAPKs). Furthermore, I summarize current advances for the clinical treatments available for FMF.
Collapse
Affiliation(s)
- John J Haddad
- Cellular and Molecular Signaling Research Group, Department of Clinical Laboratory Science, Faculty of Health Sciences, American University of Science and Technology, Aschrafieh, Beirut, Lebanon.
| |
Collapse
|
26
|
Ajithdoss DK, Reddy SM, Suchodolski PF, Lee LF, Kung HJ, Lupiani B. In vitro characterization of the Meq proteins of Marek's disease virus vaccine strain CVI988. Virus Res 2009; 142:57-67. [PMID: 19189855 DOI: 10.1016/j.virusres.2009.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/06/2009] [Accepted: 01/13/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Dharani K Ajithdoss
- Department of Poultry Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
27
|
Gulcan E, Gulcan A, Koplay M, Alcelik A, Korkmaz U. Co-existence of Hashimoto's thyroiditis with familial Mediterranean fever: is there a pathophysiological association between the two diseases? Clin Exp Immunol 2009; 156:373-6. [PMID: 19250274 PMCID: PMC2759487 DOI: 10.1111/j.1365-2249.2009.03891.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2008] [Indexed: 11/26/2022] Open
Abstract
Familial Mediterranean fever is an autosomal recessive disease characterized by periodic attacks of fever and polyserositis, while Hashimoto's thyroiditis is the most common cause of hypothyroidism. We suggest that common autoimmune mechanisms may underlie both disorders, describe their clinical co-existence in a patient, and discuss a possible causal link between them.
Collapse
Affiliation(s)
- E Gulcan
- Department of Internal Medicine, Dumlupinar University School of Medicine, Kutaya, Turkey.
| | | | | | | | | |
Collapse
|
28
|
Wang D, Paz-Priel I, Friedman AD. NF-kappa B p50 regulates C/EBP alpha expression and inflammatory cytokine-induced neutrophil production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5757-62. [PMID: 19380823 PMCID: PMC2672404 DOI: 10.4049/jimmunol.0803861] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NF-kappaB is a key transcriptional inducer of the inflammatory response in mature myeloid cells, and also stimulates cell survival, but its role in immature myeloid cell development has not been well characterized. C/EBPalpha is required for the development of monocytic and granulocytic myeloid cells from early progenitors, and NF-kappaB and C/EBPbeta cooperatively induce several inflammatory mediators. Having found that C/EBPalpha binds NF-kappaB p50 preferentially compared with NF-kappaB p65, we have now investigated myelopoiesis in nfkb1(-/-) mice lacking NF-kappaB p50. Absence of p50 leads to a significant reduction in the number of granulocytic progenitors, CFU-granulocyte, obtained with G-CSF or GM-CSF in vitro and reduces neutrophil production in vivo in response to G-CSF, with preservation of monopoiesis in vitro in response to cytokines or LPS. To gain insight into the mechanism underlying reduced granulopoiesis in the absence of NF-kappaB p50, we assessed the expression of several myeloid regulatory proteins in lineage-negative, immature myeloid cells. Although PU.1, C/EBPbeta, and STAT3 levels were unchanged, C/EBPalpha protein and RNA levels were reduced approximately 3-fold in the absence of NF-kappaB p50. In addition, NF-kappaB p50 and C/EBPalpha bound the endogenous C/EBPalpha promoter in a chromatin immunoprecipitation assay, and NF-kappaB p50 trans activated the C/EBPalpha promoter, alone or in cooperation with C/EBPalpha. Despite reduction of C/EBPalpha, G-CSFR and M-CSFR levels were maintained in total marrow and in lineage-negative cells. Together, these data indicate that acute inflammation not only activates mature myeloid cells, but also stimulates neutrophil production via NF-kappaB p50 induction of C/EBPalpha transcription.
Collapse
Affiliation(s)
- Dehua Wang
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231
| | - Ido Paz-Priel
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231
| | - Alan D. Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231
| |
Collapse
|
29
|
Friedman AD. C/EBPalpha induces PU.1 and interacts with AP-1 and NF-kappaB to regulate myeloid development. Blood Cells Mol Dis 2007; 39:340-3. [PMID: 17669672 PMCID: PMC2083642 DOI: 10.1016/j.bcmd.2007.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
C/EBPalpha and PU.1 are key regulators of early myeloid development. Mice lacking C/EBPalpha or PU.1 have reduced granulocytes and monocytes. Consistent with a model in which induction of PU.1 by C/EBPalpha contributes to monocyte lineage specification, mice with reduced PU.1 have diminished monocytes but retain granulocytes, C/EBPalpha directly activates PU.1 gene transcription, and exogenous C/EBPalpha increases monocytic lineage commitment from bipotential myeloid progenitors. In addition to C/EBPalpha, AP-1 proteins also have the capacity to induce monocytic maturation. C/EBPalpha:c-Jun or C/EBPalpha:c-Fos leucine zipper heterodimers induce monopoiesis more potently than C/EBPalpha or c-Jun homodimers or c-Fos:c-Jun heterodimers. C/EBPs and NF-kappaB cooperatively regulate numerous genes during the inflammatory response. The C/EBPalpha basic region interacts with NF-kappaB p50, but not p65, to induce bcl-2, and this interaction may be relevant to myeloid cell survival and development.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, CRB I, Room 253, 1650 Orleans St., Baltimore, MD 21231, USA.
| |
Collapse
|
30
|
|
31
|
Scheffer D, Sage C, Corey DP, Pingault V. Gene expression profiling identifies Hes6 as a transcriptional target of ATOH1 in cochlear hair cells. FEBS Lett 2007; 581:4651-6. [PMID: 17826772 DOI: 10.1016/j.febslet.2007.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/08/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
ATOH1 is a basic Helix-Loop-Helix transcription factor crucial for hair cell (HC) differentiation in the inner ear. In order to identify ATOH1 target genes, we performed a genome-wide expression profiling analysis in cells expressing ATOH1 under the control of a tetracycline-off system and found that HES6 expression is induced by ATOH1. We performed in situ hybridisation and showed that the rise and fall of Hes6 expression closely follow that of Atoh1 in cochlear HC. Moreover, electrophoretic mobility shift assays and luciferase assays show that ATOH1 activates HES6 transcription through binding to three clustered E boxes of its promoter.
Collapse
|
32
|
Giaglis S, Papadopoulos V, Kambas K, Doumas M, Tsironidou V, Rafail S, Kartalis G, Speletas M, Ritis K. MEFV alterations and population genetics analysis in a large cohort of Greek patients with familial Mediterranean fever. Clin Genet 2007; 71:458-467. [PMID: 17489852 DOI: 10.1111/j.1399-0004.2007.00789.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Familial Mediterranean fever (FMF) is a disease characterized by recurrent, self-limiting bouts of fever and serositis and caused by altered pyrin due to mutated MEFV gene. FMF is common in the Mediterranean Basin populations, although with varying genetic patterns. The spectrum and clinical significance of MEFV alterations in Greece has yet not been elucidated. The aim of this study was to analyze the spectrum of MEFV alterations in FMF patients and healthy individuals in Greece. A cohort of 152 Greek FMF patients along with 140 Greek healthy controls was enrolled. Non-isotopic RNase cleavage assay (NIRCA) and sequencing allowed mutational and haplotypic analysis of the entire coding sequence of MEFV. The ARLEQUIN 2.0, DNASP 4.0 and PHYLIP software were used for population genetics analysis. Among patients, 127 (83.6%) carried at least one known mutation. The most common mutations identified were M694V (38.1%), M680I (19.7%), V726A (12.2%), E148Q (10.9%) and E230K (6.1%). The total carrier rate among healthy individuals was 0.7%. The presence of R202Q homozygosity in 12 of the remaining 25 MEFV negative FMF patients might be considered as disease related in Greeks. Population genetics analysis revealed that Greeks rely closer to the eastern rather than western populations of the Mediterranean Basin.
Collapse
Affiliation(s)
- S Giaglis
- First Division of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De L Karlson T, Whiting CV, Bland PW. Proinflammatory cytokine synthesis by mucosal fibroblasts from mouse colitis is enhanced by interferon-gamma-mediated up-regulation of CD40 signalling. Clin Exp Immunol 2007; 147:313-23. [PMID: 17223973 PMCID: PMC1810481 DOI: 10.1111/j.1365-2249.2006.03267.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gut mesenchymal fibroblasts form complex phenotypical and functional populations. They participate actively in homeostatic maintenance of the extracellular matrix, epithelial barrier function, repair mechanisms and leucocyte migration. In inflammation, they become activated, change matrix expression and synthesize proinflammatory mediators. Subpopulations of mucosal fibroblasts express CD40 and the aim of this study was to define its role in their proinflammatory function. Stable primary fibroblast lines derived from normal mouse colon and inflamed colon from CD4(+) CD45RB(high)-transplanted SCID mice were used as models to explore the role of mucosal fibroblast CD40 in the inflammatory process. Phenotype correlated with in situ fibroblast phenotype in the tissues of origin. Lines from both sources co-expressed CD40 and Thy1.2 independently of alpha-smooth muscle actin. A subpopulation of CD40(+) fibroblasts from normal colon expressed CD40 at high levels and expression was enhanced by interferon (IFN)-gamma treatment, whereas all CD40(+) fibroblasts from colitis expressed at low levels and expression was unaffected by IFN-gamma treatment. Despite lower-level expression of CD40 by cells from colitis, they secreted constitutively interleukin (IL)-6 and C-C chemokine (CCL)2. Ligation of CD40 enhanced secretion of these mediators and induced secretion of CCL3. CD40 in cells from colitis was more responsive to ligation than CD40 on cells from normal tissue and this sensitivity was amplified selectively by the action of IFN-gamma. We conclude that the inflammatory milieu in colitis induces long-lasting changes in phenotype and proinflammatory function in colonic fibroblasts. In particular, proinflammatory signalling from fibroblast CD40 is amplified synergistically by the Th1 effector T cell cytokine, IFN-gamma.
Collapse
Affiliation(s)
- T De L Karlson
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden.
| | | | | |
Collapse
|
34
|
Mukerjee R, Sawaya BE, Khalili K, Amini S. Association of p65 and C/EBPbeta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 2007; 100:1210-6. [PMID: 17031851 DOI: 10.1002/jcb.21109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In human immunodeficiency virus type 1 (HIV-1) latently infected cells, NF-kappaB (NF-kappaB) plays a critical role in the transcriptional induction of the HIV-1 promoter. The trans-activating ability of NF-kappaB can be modified by another nuclear factor C/EBPbeta that can physically bind to NF-kappaB and regulate its activity. Because the HIV-1 promoter also contains a C/EBPbeta site adjacent to the NF-kappaB site, the present study examined cooperative functional in vivo interaction of the p65 subunit of NF-kappaB and C/EBPbeta, and the impact of Tat in this event. We demonstrated that ectopic expression of p65 along with Tat increases p65 binding to HIV-1 LTR, and that this increase correlates with enhanced HIV-1 promoter activity. Further, co-expression of C/EBPbeta and Tat leads to a decrease in p65 binding, which allows C/EBPbeta to bind more efficiently to the LTR. Inhibition of p65 expression by siRNA significantly decreases C/EBPbeta-binding and LTR expression. Using ChIP assay, we confirmed the existence of an interchange between p65 and C/EBPbeta and their abilities to bind to the LTR in vivo. These observations demonstrate that a delicate balance of interaction between p65, C/EBPbeta, and Tat can dictate the level of HIV-1 LTR transcription.
Collapse
Affiliation(s)
- Ruma Mukerjee
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The CCAAT enhancer binding protein-beta (C/EBPbeta) is a critical regulator of many cellular processes. Exposure of C/EBPbeta-deficient fibroblasts to tumor necrosis factor-alpha (TNF) resulted in their death due to apoptosis. While, the expression of Bad, Bcl-2, Bcl-x, CAS, and hILP/XIAP, as well as the nuclear translocation of NF-kappaB was normal in C/EBPbeta-deficient cells, induction of manganous superoxide dismutase (MnSOD) gene did not occur. Ectopic expression of C/EBPbeta in C/EBPbeta-deficient fibroblasts prevented TNF-induced apoptosis. C/EBPbeta complemented cells were able to induce MnSOD in response to TNF, ruling out the possibilities that C/EBPbeta could render protection by regulating early apoptotic gene expression and/or NF-kappaB p65 expression. Moreover, C/EBPbeta-deficient cells stably transfected with an MnSOD expression vector bypassed the requirement of C/EBPbeta in protection against TNF-induced cell death, suggesting that C/EBPbeta protects TNF-induced apoptotic cell death through its role in activating MnSOD expression. Mechanistically, C/EBPbeta was required for induced NF-kappaB p65 binding to MnSOD's intronic TNF response element and indispensable for histone acetylation of the element in response to TNF. These results suggest a role for C/EBPbeta in MnSOD regulation through remodeling of local chromatin structure.
Collapse
Affiliation(s)
- Priya Ranjan
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
36
|
Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 2006; 290:L622-L645. [PMID: 16531564 DOI: 10.1152/ajplung.00477.2005] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of sepsis and septic shock involves complex cytokine and inflammatory mediator networks. NF-kappaB activation is a central event leading to the activation of these networks. The role of NF-kappaB in septic pathophysiology and the signal transduction pathways leading to NF-kappaB activation during sepsis have been an area of intensive investigation. NF-kappaB is activated by a variety of pathogens known to cause septic shock syndrome. NF-kappaB activity is markedly increased in every organ studied, both in animal models of septic shock and in human subjects with sepsis. Greater levels of NF-kappaB activity are associated with a higher rate of mortality and worse clinical outcome. NF-kappaB mediates the transcription of exceptional large number of genes, the products of which are known to play important roles in septic pathophysiology. Mice deficient in those NF-kappaB-dependent genes are resistant to the development of septic shock and to septic lethality. More importantly, blockade of NF-kappaB pathway corrects septic abnormalities. Inhibition of NF-kappaB activation restores systemic hypotension, ameliorates septic myocardial dysfunction and vascular derangement, inhibits multiple proinflammatory gene expression, diminishes intravascular coagulation, reduces tissue neutrophil influx, and prevents microvascular endothelial leakage. Inhibition of NF-kappaB activation prevents multiple organ injury and improves survival in rodent models of septic shock. Thus NF-kappaB activation plays a central role in the pathophysiology of septic shock.
Collapse
Affiliation(s)
- Shu Fang Liu
- Div. of Pulmonary and Critical Care Medicine, Long Island Jewish Medical Center, RM B371, New Hyde Park, NY 11040, USA.
| | | |
Collapse
|
37
|
Paz-Priel I, Cai DH, Wang D, Kowalski J, Blackford A, Liu H, Heckman CA, Gombart AF, Koeffler HP, Boxer LM, Friedman AD. CCAAT/enhancer binding protein alpha (C/EBPalpha) and C/EBPalpha myeloid oncoproteins induce bcl-2 via interaction of their basic regions with nuclear factor-kappaB p50. Mol Cancer Res 2006; 3:585-96. [PMID: 16254192 DOI: 10.1158/1541-7786.mcr-05-0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CEBPA gene is mutated in 10% of acute myeloid leukemia (AML) cases. We find that CEBPA and Bcl-2 RNA levels correlate highly in low-risk human AMLs, suggesting that inhibition of apoptosis via induction of bcl-2 by CCAAT/enhancer binding protein alpha (C/EBPalpha) or its mutant variants contributes to transformation. C/EBPalphap30, lacking a NH2-terminal transactivation domain, or C/EBPalphaLZ, carrying in-frame mutations in the leucine zipper that prevent DNA binding, induced bcl-2 in hematopoietic cell lines, and C/EBPalpha induced bcl-2 in normal murine myeloid progenitors and in the splenocytes of H2K-C/EBPalpha-Emu transgenic mice. C/EBPalpha protected Ba/F3 cells from apoptosis on interleukin-3 withdrawal but not if bcl-2 was knocked down. Remarkably, C/EBPalphaLZ oncoproteins activated the bcl-2 P2 promoter despite lack of DNA binding, and C/EBPalphap30 also activated the promoter. C/EBPalpha and the C/EBPalpha oncoproteins cooperated with nuclear factor-kappaB (NF-kappaB) p50, but not p65, to induce bcl-2 transcription. Endogenous C/EBPalpha preferentially coimmunoprecipitated with p50 versus p65 in myeloid cell extracts. Mutation of residues 297 to 302 in the C/EBPalpha basic region prevented induction of endogenous bcl-2 or the bcl-2 promoter and interaction with p50 but not p65. These findings suggest that C/EBPalpha or its mutant variants tether to a subset of NF-kappaB target genes, including Bcl-2, via p50 to facilitate gene activation and offer an explanation for preferential in-frame rather than out-of-frame mutation of the leucine zipper with sparing of the basic region in C/EBPalphaLZ oncoproteins. Targeting interaction between C/EBPalpha basic region and NF-kappaB p50 may contribute to the therapy of AML and other malignancies expressing C/EBPs.
Collapse
MESH Headings
- Adult
- Animals
- Apoptosis/physiology
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Cell Line
- HL-60 Cells
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- NF-kappa B p50 Subunit/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Transcriptional Activation
Collapse
Affiliation(s)
- Ido Paz-Priel
- Division of Pediatric Oncology, Johns Hopkins University, CRB 253, 1650 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res 2006; 21:37-47. [PMID: 16355272 DOI: 10.1359/jbmr.050908] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 08/31/2005] [Accepted: 09/13/2005] [Indexed: 01/09/2023]
Abstract
UNLABELLED Monocytes express 1alpha-hydroxylase, the enzyme responsible for final hydroxylation of vitamin D3, in response to IFNgamma and CD14/TLR4 activation. Cross-talk between the JAK-STAT, the NF-kappaB, and the p38 MAPK pathways is necessary, and direct binding of C/EBPbeta to its recognition sites in the promoter of the 1alpha-hydroxylase gene is a prerequisite. INTRODUCTION The activated form of vitamin D3, 1,25(OH)2D3, known for its action in bone and mineral homeostasis, has important immunomodulatory effects. 1,25(OH)2D3 modulates the immune system through specific nuclear receptors, whereas macrophages produce 1,25(OH)2D3. In monocytes, the expression of 1alpha-hydroxylase, the enzyme responsible for final hydroxylation of vitamin D3, is regulated by immune stimuli. The aim of this study was to elucidate the intracellular pathways through which interferon (IFN)gamma and Toll-like receptor (TLR) modulation regulate expression of 1alpha-hydroxylase in monocytes/macrophages. MATERIALS AND METHODS Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) and stimulated with IFNgamma (12.5 U/ml) and/or lipopolysaccharide (LPS; 100 ng/ml) for 48 h. The following inhibitors were used: janus kinase (JAK) inhibitor AG490 (50 microM), NF-kappaB inhibitor sulfasalazine (0.25 mM), p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 (5 microM). 1alpha-hydroxylase mRNA expression was monitored by qRT-PCR. Phosphorylation of transcription factors was studied by Western blotting. Transfection of mutated or deletion promoter constructs, cloned in the pGL3-luciferase reporter plasmid, were performed in the RAW264.7 cell line. Cells were stimulated with IFNgamma (100 U/ml) and LPS (100 microg/ml), and promoter activity was studied. Binding of signal transducer and activator of transcription (STAT)1alpha, NF-kappaB, and C/EBPbeta to their respective binding sites in the promoter was analyzed by gel shift assays. RESULTS 1alpha-hydroxylase mRNA expression in monocytes is synergistically induced by IFNgamma and CD14/TLR4 ligation and paralleled by 1,25(OH)2D3 production. This induction requires the JAK-STAT, NF-kappaB, and p38 MAPK pathways. Each of them is essential, because blocking individual pathways is sufficient to block 1alpha-hydroxylase expression (JAK inhibitor, 60% inhibition, p < 0.01; NF-kappaB inhibitor, 70% inhibition, p < 0.05; p38 MAPK inhibitor, 95% inhibition, p < 0.005). In addition, we show the involvement of the p38 MAPK pathway in phosphorylation of C/EBPbeta. Direct binding of C/EBPbeta to its recognition sites in the 1alpha-hydroxylase promoter is necessary to enable its immune-stimulated upregulation. CONCLUSION IFNgamma and CD14/TLR4 binding regulate expression of 1alpha-hydroxylase in monocytes in a synergistic way. Combined activation of the JAK-STAT, p38 MAPK, and NF-kappaB pathways is necessary, with C/EBPbeta most probably being the essential transcription factor controlling immune-mediated transcription.
Collapse
Affiliation(s)
- Katinka Stoffels
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Rossou E, Kouvatsi A, Aslanidis C, Deltas C. Multiplex Molecular Diagnosis of MEFV Mutations in Patients with Familial Mediterranean Fever by LightCycler Real-Time PCR. Clin Chem 2005; 51:1725-7. [PMID: 16120953 DOI: 10.1373/clinchem.2005.050344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Rossou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
40
|
de Winther MPJ, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25:904-14. [PMID: 15731497 DOI: 10.1161/01.atv.0000160340.72641.87] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is an inflammatory disease, characterized by the accumulation of macrophage-derived foam cells in the vessel wall and accompanied by the production of a wide range of chemokines, cytokines, and growth factors. These factors regulate the turnover and differentiation of immigrating and resident cells, eventually influencing plaque development. One of the key regulators of inflammation is the transcription factor nuclear factor kappaB (NF-kappaB), which, for a long time, has been regarded as a proatherogenic factor, mainly because of its regulation of many of the proinflammatory genes linked to atherosclerosis. NF-kappaB may play an important role in guarding the delicate balance of the atherosclerotic process as a direct regulator of proinflammatory and anti-inflammatory genes and as a regulator of cell survival and proliferation. Here we address recent literature on the function of NF-kappaB in inflammatory responses and its relation to atherosclerosis.
Collapse
Affiliation(s)
- Menno P J de Winther
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|