1
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Wu Y, Liu H, Sun Z, Liu J, Li K, Fan R, Dai F, Tang H, Hou Q, Li J, Tang X. The adhesion-GPCR ADGRF5 fuels breast cancer progression by suppressing the MMP8-mediated antitumorigenic effects. Cell Death Dis 2024; 15:455. [PMID: 38937435 PMCID: PMC11211477 DOI: 10.1038/s41419-024-06855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
ADGRF5 (GPR116) has been identified as a facilitator of breast cancer cell migration and metastasis, yet the underlying mechanisms remain largely elusive. Our current study reveals that the absence of ADGRF5 in breast cancer cells impairs extracellular matrix (ECM)-associated cell motility and impedes in vivo tumor growth. This correlates with heightened expression of matrix metalloproteinase 8 (MMP8), a well-characterized antitumorigenic MMP, and a shift in the polarization of tumor-associated neutrophils (TANs) towards the antitumor N1 phenotype in the tumor microenvironment (TME). Mechanistically, ADGRF5 inhibits ERK1/2 activity by enhancing RhoA activation, leading to decreased phosphorylation of C/EBPβ at Thr235, hindering its nuclear translocation and subsequent activation. Crucially, two C/EBPβ binding motifs essential for MMP8 transcription are identified within its promoter region. Consequently, ADGRF5 silencing fosters MMP8 expression and CXCL8 secretion, attracting increased infiltration of TANs; simultaneously, MMP8 plays a role in decorin cleavage, which leads to trapped-inactivation of TGF-β in the TME, thereby polarizing TANs towards the antitumor N1 neutrophil phenotype and mitigating TGF-β-enhanced cell motility in breast cancer. Our findings reveal a novel connection between ADGRF5, an adhesion G protein-coupled receptor, and the orchestration of the TME, which dictates malignancy progression. Overall, the data underscore ADGRF5 as a promising therapeutic target for breast cancer intervention.
Collapse
Grants
- 82372645 National Natural Science Foundation of China (National Science Foundation of China)
- 81972602 National Natural Science Foundation of China (National Science Foundation of China)
- 82002716 National Natural Science Foundation of China (National Science Foundation of China)
- 82273497 National Natural Science Foundation of China (National Science Foundation of China)
- 81502331 National Natural Science Foundation of China (National Science Foundation of China)
- The Natural Science Foundation of Hunan Province (grant nos. 2023JJ20021), the Fundamental Research Funds for the Central Universities (521119200099, 541109030051).
- The Natural Science Foundation of Hunan Province (grant nos.2024JJ6490)
- Natural Science Foundation of Henan Province (222300420029), Program for Science and Technology Innovation Talents in Universities of Henan Province (23HASTIT042).
- The Project of Department of Education of Guangdong Province, (2019KTSCX146), the Shenzhen Science and Technology Program (JCYJ20190808164209301), the Shenzhen Scientific Research Foundation for Excellent Returned Scholars (000493), the Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD005), the Disciple gathering teaching project of Shenzhen University, the Shenzhen Key Laboratory Foundation (ZDSYS20200811143757022), the Teaching Reform Research Project of Shenzhen University (YXBJG202339), and the Shenzhen International Cooperation Research Project (GJHZ20220913143004008).
- The Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University (YX202105), Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ31010).
Collapse
Affiliation(s)
- Yalan Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Huixia Liu
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhe Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jieling Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ronghui Fan
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637003, Sichuan, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen, 518061, China
| | - JinSong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaolong Tang
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| |
Collapse
|
3
|
Larcombe MR, Hsu S, Polo JM, Knaupp AS. Indirect Mechanisms of Transcription Factor-Mediated Gene Regulation during Cell Fate Changes. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200015. [PMID: 36911290 PMCID: PMC9993476 DOI: 10.1002/ggn2.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 06/18/2023]
Abstract
Transcription factors (TFs) are the master regulators of cellular identity, capable of driving cell fate transitions including differentiations, reprogramming, and transdifferentiations. Pioneer TFs recognize partial motifs exposed on nucleosomal DNA, allowing for TF-mediated activation of repressed chromatin. Moreover, there is evidence suggesting that certain TFs can repress actively expressed genes either directly through interactions with accessible regulatory elements or indirectly through mechanisms that impact the expression, activity, or localization of other regulatory factors. Recent evidence suggests that during reprogramming, the reprogramming TFs initiate opening of chromatin regions rich in somatic TF motifs that are inaccessible in the initial and final cellular states. It is postulated that analogous to a sponge, these transiently accessible regions "soak up" somatic TFs, hence lowering the initial barriers to cell fate changes. This indirect TF-mediated gene regulation event, which is aptly named the "sponge effect," may play an essential role in the silencing of the somatic transcriptional network during different cellular conversions.
Collapse
Affiliation(s)
- Michael R. Larcombe
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Sheng Hsu
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Jose M. Polo
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
- Adelaide Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Anja S. Knaupp
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| |
Collapse
|
4
|
Miga KH. Centromere studies in the era of 'telomere-to-telomere' genomics. Exp Cell Res 2020; 394:112127. [PMID: 32504677 DOI: 10.1016/j.yexcr.2020.112127] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/23/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022]
Abstract
We are entering into an exciting era of genomics where truly complete, high-quality assemblies of human chromosomes are available end-to-end, or from 'telomere-to-telomere' (T2T). This technological advance offers a new opportunity to include endogenous human centromeric regions in high-resolution, sequence-based studies. These emerging reference maps are expected to reveal a new functional landscape in the human genome, where centromere proteins, transcriptional regulation, and spatial organization can be examined with base-level resolution across different stages of development and disease. Such studies will depend on innovative assembly methods of extremely long tandem repeats (ETRs), or satellite DNAs, paired with the development of new, orthogonal validation methods to ensure accuracy and completeness. This review reflects the progress in centromere genomics, credited by recent advancements in long-read sequencing and assembly methods. In doing so, I will discuss the challenges that remain and the promise for a new period of scientific discovery for satellite DNA biology and centromere function.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, CA, 95064, USA.
| |
Collapse
|
5
|
Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, Caltabiano R, Barbagallo D, Biondi A, Cappellani A, Basile F, Di Pietro C, Purrello M, Ragusa M. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:229-241. [PMID: 30195762 PMCID: PMC6023947 DOI: 10.1016/j.omtn.2018.05.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute to the onset of many neoplasias through RNA-RNA competitive interactions; in addition, they could be secreted by cancer cells into biological fluids, suggesting their potential diagnostic application. By analyzing the expression of 17 lncRNAs and 31 circRNAs in biopsies and serum exosomes from colorectal cancer (CRC) patients through qRT-PCR, we detected CCAT1, CCAT2, HOTAIR, and UCA1 upregulation and CDR1AS, MALAT1, and TUG1 downregulation in biopsies. In serum exosomes, UCA1 was downregulated, while circHIPK3 and TUG1 were upregulated. Combined receiver operating characteristic (ROC) curves of TUG1:UCA1 and circHIPK3:UCA1 showed high values of sensitivity and specificity. Through in vitro (i.e., RNA silencing and mitogen-activated protein kinase [MAPK] inhibition) and in silico analyses (i.e., expression correlation and RNA-RNA-binding prediction), we found that UCA1 could (1) be controlled by MAPKs through CEBPB; (2) sequester miR-135a, miR-143, miR-214, and miR-1271, protecting ANLN, BIRC5, IPO7, KIF2A, and KIF23 from microRNA (miRNA)-induced degradation; and (3) interact with mRNA 3'-UTRs, preventing miRNA binding. UCA1 and its co-regulated antisense LINC01764 could interact and reciprocally mask their own miRNA-binding sites. Functional enrichment analysis of the RNA-RNA network controlled by UCA1 suggested its potential involvement in cellular migration. The UCA1 regulatory axis would represent a promising target to develop innovative RNA-based therapeutics against CRC.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Magnano
- Digestive Endoscopy Service, Vittorio Emanuele Hospital, Catania 95124, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania 95123, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Alessandro Cappellani
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Francesco Basile
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN) 94018, Italy.
| |
Collapse
|
6
|
Charó NL, Galigniana NM, Piwien-Pilipuk G. Heterochromatin protein (HP)1γ is not only in the nucleus but also in the cytoplasm interacting with actin in both cell compartments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:432-443. [PMID: 29208528 DOI: 10.1016/j.bbamcr.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.
Collapse
Affiliation(s)
- Nancy L Charó
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2. Sci Rep 2016; 6:36699. [PMID: 27819326 PMCID: PMC5098188 DOI: 10.1038/srep36699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023] Open
Abstract
Fascin 1 (FSCN1) is a cytoskeleton-associated protein recognized to function primarily in the regulation of cytoskeleton structure and formation of plasma membrane protrusions. Here we report a novel nuclear function for Fascin 1. Biochemical studies and genome wide localization using ChIP-seq identified phosphorylated Fascin 1 (pFascin) in complexes associated with transcription and that it co-localizes with histone H3 Lys4 trimethylation (H3K4me3) on chromatin. Gene expression profiling identified genes affected by Fascin 1 including SLC3A2, a gene encoding for a plasma membrane transporter that regulates intracellular amino acid levels. RbBP5, a subunit of the H3K4 histone methyltransferase (HMT) complex was found to interact with Fascin 1 supporting its role in H3K4me3 establishment at target genes. Moreover, we show that changes to SLC3A2 levels affect amino acid-mediated mTORC1 activation. These results reveal that Fascin 1 has a yet undiscovered nuclear function as an epigenetic modulator of genes essential for amino acid metabolism.
Collapse
|
8
|
Shi L, Weng XQ, Sheng Y, Wu J, Ding M, Cai X. Staurosporine enhances ATRA-induced granulocytic differentiation in human leukemia U937 cells via the MEK/ERK signaling pathway. Oncol Rep 2016; 36:3072-3080. [PMID: 27665842 DOI: 10.3892/or.2016.5123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Although all-trans retinoic acid (ATRA) is regarded as a prominent example of differentiation therapy, it is not effective for the treatment of other subtypes of acute myeloid leukemia (AML) beyond acute promyelocytic leukemia (APL). Therefore, new strategies need to be explored to extend the efficacy of ATRA-based therapy to non-APL AML patients. In the present study, staurosporine, a protein kinase C (PKC) pan-inhibitor, exhibited synergism with ATRA to promote granulocytic differentiation in poorly ATRA-sensitive U937 cells but not in ATRA unresponsive K562 and Kasumi cells. Staurosporine or the combined treatment did not affect PKC activity in U937 cells. Moreover, other selective PKC inhibitors, UCN-01, Go6976 or rottlerin failed to enhance ATRA‑induced granulocytic differentiation in U937 cells. Therefore, staurosporine-enhanced ATRA-induced granulocytic differentiation in U937 cells may be independent of PKC. Staurosporine activated mitogen‑activated protein kinase kinase (MEK) and extracellular signal‑regulated kinase (ERK). Meanwhile, staurosporine also enhanced ATRA-promoted upregulation of the protein level of CCAAT/enhancer‑binding protein β (C/EBPβ) and C/EBPε in U937 cells. Furthermore, blockade of MEK activation suppressed staurosporine‑enhanced differentiation as well as the elevated protein level of C/EBPs. Taken together, we concluded that staurosporine enhanced ATRA‑induced granulocytic differentiation in U937 cells via MEK/ERK-mediated modulation of the protein level of C/EBPs.
Collapse
Affiliation(s)
- Lei Shi
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yan Sheng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jing Wu
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ming Ding
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xun Cai
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
9
|
Interleukin-6-stimulated progranulin expression contributes to the malignancy of hepatocellular carcinoma cells by activating mTOR signaling. Sci Rep 2016; 6:21260. [PMID: 26879559 PMCID: PMC4754634 DOI: 10.1038/srep21260] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
This study aimed to determine the expression of progranulin (PGRN) in hepatocellular carcinoma (HCC) cells in response to interleukin 6 (IL-6), a non-cellular component of the tumor microenvironment, and the molecular mechanism of PGRN oncogenic activity in hepatocarcinogenesis. Levels of IL-6 and PGRN were increased and positively correlated in HCC tissues. IL-6 dose- and time-dependently increased PGRN level in HCC cells. IL-6-driven PGRN expression was at least in part mediated by Erk/C/EBPβ signaling, and reduced expression of PGRN impaired IL-6-stimulated proliferation, migration and invasion of HepG2 cells. PGRN activated mammalian target of rapamycin (mTOR) signaling, as evidenced by increased phosphorylation of p70S6K, 4E-BP1, and Akt-Ser473/FoxO1. Inhibition of mTOR signaling with rapamycin, an mTOR signaling inhibitor, disturbed PGRN- or IL-6-mediated proliferation, migration and invasion of HCC cells in vitro. Persistent activation of mTOR signaling by knockdown of TSC2 restored PGRN-knockdown-attenuated pro-proliferation effects of IL-6 in HepG2 cells. In addition, rapamycin treatment in vivo in mice slowed tumor growth stimulated by recombinant human PGRN. Our findings provide a better understanding of the biological activities of the IL-6/PGRN/mTOR cascade in the carcinogenesis of HCC, which may suggest a novel target in the treatment of HCC.
Collapse
|
10
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
11
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Toneatto J, Guber S, Charó NL, Susperreguy S, Schwartz J, Galigniana MD, Piwien-Pilipuk G. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 2013; 126:5357-68. [PMID: 24101724 DOI: 10.1242/jcs.125799] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-cα by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-cα, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial-nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype.
Collapse
Affiliation(s)
- Judith Toneatto
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Gaya M, Repetto V, Toneatto J, Anesini C, Piwien-Pilipuk G, Moreno S. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. Biochim Biophys Acta Gen Subj 2013; 1830:3796-806. [DOI: 10.1016/j.bbagen.2013.03.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/21/2013] [Accepted: 03/20/2013] [Indexed: 01/24/2023]
|
15
|
Viart V, Varilh J, Lopez E, René C, Claustres M, Taulan-Cadars M. Phosphorylated C/EBPβ influences a complex network involving YY1 and USF2 in lung epithelial cells. PLoS One 2013; 8:e60211. [PMID: 23560079 PMCID: PMC3613372 DOI: 10.1371/journal.pone.0060211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 01/19/2023] Open
Abstract
The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPβ, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional activity. Our data reveal that C/EBPβ cooperates with USF2 and acts antagonistically to YY1 in the control of CFTR expression. Interestingly, YY1, a strong repressor, fails to repress the CFTR activation induced by USF2 through DNA binding competition. Collectively, the data strongly suggest a model by which USF2 functionally interacts with YY1 blocking its inhibitory activity, in favour of C/EBPβ transactivation. Further investigation into the interactions between these three proteins revealed that phosphorylation of C/EBPβ influences the DNA occupancy of YY1 and favours the interaction between USF2 and YY1. This phosphorylation process has several implications in the CFTR transcriptional process, thus evoking an additional layer of complexity to the mechanisms influencing CFTR gene regulation.
Collapse
Affiliation(s)
- Victoria Viart
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
| | - Jessica Varilh
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- Laboratoire de Génétique Moléculaire, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Estelle Lopez
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
| | - Céline René
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- Laboratoire de Génétique Moléculaire, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Mireille Claustres
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- Laboratoire de Génétique Moléculaire, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Magali Taulan-Cadars
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Rininger A, Dejesus C, Totten A, Wayland A, Halterman MW. MKP-1 antagonizes C/EBPβ activity and lowers the apoptotic threshold after ischemic injury. Cell Death Differ 2012; 19:1634-43. [PMID: 22522596 DOI: 10.1038/cdd.2012.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dual specificity phosphatase MAPK phosphatase-1 (MKP-1) feeds back on MAP kinase signaling to regulate metabolic, inflammatory and survival responses. MKP-1 is widely expressed in the central nervous system (CNS) and induced after ischemic stress, although its function in these contexts remains unclear. Here we report that MKP-1 activated several cell death factors, including BCL2 and adenovirus E1B 19 kDa interacting protein 3, and caspases 3 and 12 culminating in apoptotic cell death in vitro. MKP-1 also exerted inhibitory effects on the bZIP transcription factor CCAAT/enhancer-binding protein (C/EBPβ), previously shown to have neuroprotective properties. These effects included reduced expression of the full-length C/EBPβ variant and hypo-phosphorylation at the MEK-ERK1/2-sensitive Thr(188) site. Notably, enforced expression C/EBPβ rescued cells from MKP-1-induced toxicity. Studies performed in knock-out mice indicate that the MKP-1 activity is required to exclude C/EBPβ from the nucleus basally, and that MKP-1 antagonizes C/EBPβ expression after global forebrain ischemia, particularly within the vulnerable CA1 sector of the hippocampus. Overall, MKP-1 appears to lower the cellular apoptotic threshold by inhibiting C/EBPβ and enhancing both BH3 protein expression and cellular caspase activity. Thus, although manipulation of the MKP-1-C/EBPβ axis could have therapeutic value in ischemic disorders, our observations using MKP-1 catalytic mutants suggest that approaches geared towards inhibiting MKP-1's phosphatase activity alone may be ineffective.
Collapse
Affiliation(s)
- A Rininger
- Department of Pediatrics, University of Rochester Medical Center, NY, USA
| | | | | | | | | |
Collapse
|
17
|
Lombardi A, Ulianich L, Treglia AS, Nigro C, Parrillo L, Lofrumento DD, Nicolardi G, Garbi C, Beguinot F, Miele C, Di Jeso B. Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway. Diabetologia 2012; 55:141-53. [PMID: 22006246 DOI: 10.1007/s00125-011-2315-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Beta cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (decline of glucose-stimulated insulin secretion, downregulation of specific gene expression). Apoptosis and dysfunction are caused, at least in part, by lipoglucotoxicity. The mechanisms implicated are oxidative stress, increase in the hexosamine biosynthetic pathway (HBP) flux and endoplasmic reticulum (ER) stress. Oxidative stress plays a role in glucotoxicity-induced beta cell dedifferentiation, while glucotoxicity-induced ER stress has been mostly linked to beta cell apoptosis. We sought to clarify whether ER stress caused by increased HBP flux participates in a dedifferentiating response of beta cells, in the absence of relevant apoptosis. METHODS We used INS-1E cells and murine islets. We analysed the unfolded protein response and the expression profile of beta cells by real-time RT-PCR and western blot. The signal transmission pathway elicited by ER stress was investigated by real-time RT-PCR and immunofluorescence. RESULTS Glucosamine and high glucose induced ER stress, but did not decrease cell viability in INS-1E cells. ER stress caused dedifferentiation of beta cells, as shown by downregulation of beta cell markers and of the transcription factor, pancreatic and duodenal homeobox 1. Glucose-stimulated insulin secretion was inhibited. These effects were prevented by the chemical chaperone, 4-phenyl butyric acid. The extracellular signal-regulated kinase (ERK) signal transmission pathway was implicated, since its inhibition prevented the effects induced by glucosamine and high glucose. CONCLUSIONS/INTERPRETATION Glucotoxic ER stress dedifferentiates beta cells, in the absence of apoptosis, through a transcriptional response. These effects are mediated by the activation of ERK1/2.
Collapse
Affiliation(s)
- A Lombardi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università degli Studi del Salento, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lundemo AG, Pettersen CHH, Berge K, Berge RK, Schønberg SA. Tetradecylthioacetic acid inhibits proliferation of human SW620 colon cancer cells--gene expression profiling implies endoplasmic reticulum stress. Lipids Health Dis 2011; 10:190. [PMID: 22027281 PMCID: PMC3235040 DOI: 10.1186/1476-511x-10-190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/25/2011] [Indexed: 01/20/2023] Open
Abstract
Background Previous reports have shown an antiproliferative effect of the synthetic, 3-thia fatty acid tetradecylthioacetic acid (TTA) on different cancer cells in vitro and in vivo. The mechanisms behind the observed effects are poorly understood. We therefore wanted to explore the molecular mechanisms involved in TTA-induced growth inhibition of the human colon cancer cell line SW620 by gene expression profiling. Methods An antiproliferative effect of TTA on SW620 cells in vitro was displayed in real time using the xCELLigence System (Roche). Affymetrix gene expression profiling was performed to elucidate the molecular mechanisms behind the antiproliferative effect of TTA. Changes in gene expression were verified at protein level by western blotting. Results TTA reduced SW620 cell growth, measured as baseline cell index, by 35% and 55% after 48 h and 72 h, respectively. We show for the first time that TTA induces an endoplasmic reticulum (ER) stress response in cancer cells. Gene expression analysis revealed changes related to ER stress and unfolded protein response (UPR). This was verified at protein level by phosphorylation of eukaryote translation initiation factor 2 alpha (eIF2α) and downstream up-regulation of activating transcription factor 4 (ATF4). Transcripts for positive and negative cell cycle regulators were down- and up-regulated, respectively. This, together with a down-regulation of Cyclin D1 at protein level, indicates inhibition of cell cycle progression. TTA also affected transcripts involved in calcium homeostasis. Moreover, mRNA and protein level of the ER stress inducible C/EBP-homologous protein (CHOP), Tribbles homolog 3 (Drosophila) (TRIB3) and CCAAT/enhancer binding protein beta (C/EBPβ) were enhanced, and the C/EBPβ LIP/LAP ratio was significantly increased. These results indicate prolonged ER stress and a possible link to induction of cell death. Conclusion We find that TTA-induced growth inhibition of SW620 cells seems to be mediated through induction of ER stress and activation of the UPR pathway.
Collapse
Affiliation(s)
- Anne G Lundemo
- Norwegian University of Science and Technology, Faculty of Medicine, Department of Laboratory Medicine, Children's and Women's Health, PO Box 8905, N-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
19
|
Lisowski P, Juszczak GR, Goscik J, Wieczorek M, Zwierzchowski L, Swiergiel AH. Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors. Eur Neuropsychopharmacol 2011; 21:45-62. [PMID: 20961740 DOI: 10.1016/j.euroneuro.2010.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses.
Collapse
Affiliation(s)
- Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells. Exp Cell Res 2010; 317:706-23. [PMID: 21122806 DOI: 10.1016/j.yexcr.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 10/18/2010] [Accepted: 11/15/2010] [Indexed: 01/13/2023]
Abstract
How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBPβ dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1α. HP1α inhibits LAP transcriptional capacity and occupies the promoter of the C/EBPβ-dependent gene c/ebpα in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1α binding decreases from c/ebpα promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBPβ associated with chromatin or nucleoskeleton, and dynamic changes in their interaction with HP1α, play key roles in the regulation of C/EBP target genes during adipogenesis.
Collapse
|
21
|
Anastasov N, Bonzheim I, Rudelius M, Klier M, Dau T, Angermeier D, Duyster J, Pittaluga S, Fend F, Raffeld M, Quintanilla-Martinez L. C/EBPβ expression in ALK-positive anaplastic large cell lymphomas is required for cell proliferation and is induced by the STAT3 signaling pathway. Haematologica 2009; 95:760-7. [PMID: 20015877 DOI: 10.3324/haematol.2009.014050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by the t(2;5) chromosomal translocation, resulting in the expression of a fusion protein formed of nucleophosmin (NPM) and ALK. Recently, we reported the abnormal expression of the transcription factor CCAAT/enhancer binding protein-beta (C/EBPbeta) in ALK-positive anaplastic large cell lymphomas, and demonstrated its dependence on NPM-ALK activity. DESIGN AND METHODS In this study, the role of C/EBPbeta in proliferation and survival of ALK-positive anaplastic large cell lymphomas was investigated, as well as the mechanism of its expression and activity. Highly effective short hairpin RNA sequences and/or pharmacological inhibitors were used to abrogate the expression or activity of C/EBPbeta, signal transducer and activator of transcription 3 (STAT3), AKT, extracellular signal-related kinase 1/2 (ERK1/2) and mammalian target of rapamycin (mTOR). RESULTS Interference with C/EBPbeta expression resulted in a dramatic decrease in cell proliferation in ALK-positive anaplastic large cell lymphomas, with a mild induction of apoptosis after 6 days. Down-regulation of STAT3 resulted in a marked decrease in C/EBPbeta mRNA and protein levels with impairment in cell proliferation and viability, underscoring the important role of these two proteins in ALK-mediated oncogenesis. Additionally, we demonstrated that reduction of ERK1/2 activity led to C/EBPbeta Thr(235) dephosphorylation and moderate growth retardation. The AKT/mTOR signaling pathway did not have any influence on C/EBPbeta expression or C/EBPbeta phosphorylation. CONCLUSIONS These findings reveal the convergence of STAT3 and ERK1/2 signaling pathways activated by NPM-ALK in mediating the regulation of C/EBPbeta expression, a transcription factor central to NPM-ALK transformation.
Collapse
Affiliation(s)
- Natasa Anastasov
- Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park YK, Park H. Prevention of CCAAT/enhancer-binding protein beta DNA binding by hypoxia during adipogenesis. J Biol Chem 2009; 285:3289-99. [PMID: 19940121 DOI: 10.1074/jbc.m109.059212] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPbeta (CCAAT/enhancer binding protein beta). Early induced C/EBPbeta is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G(1)/S checkpoint synchronously. Thr(188) of C/EBPbeta is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser(184) or Thr(179) by GSK3beta, which translocates into the nuclei during the G(1)/S transition. Many events take place during the G(1)/S transition, including reduction in p27(Kip1) protein levels, retinoblastoma (Rb) phosphorylation, GSK3beta nuclear translocation, and C/EBPbeta binding to target promoters. During hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) is stabilized, thus maintaining expression of p27(Kip1), which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27(Kip1) blocks the nuclear translocation of GSK3beta and DNA binding capability of C/EBPbeta. Hypoxia also blocks nuclear translocation of GSK3beta and DNA binding capability of C/EBPbeta in HIF-1alpha knockdown 3T3-L1 cells that fail to induce p27(Kip1). Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G(1)/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3beta and the DNA binding capability of C/EBPbeta by blocking the G(1)/S transition through HIF-1alpha-dependent induction of p27(Kip1) and an HIF-1alpha/p27-independent mechanism.
Collapse
Affiliation(s)
- Young-Kwon Park
- Department of Life Science, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | | |
Collapse
|
23
|
Ravimohan S, Gama L, Barber SA, Clements JE. Regulation of SIV mac 239 basal long terminal repeat activity and viral replication in macrophages: functional roles of two CCAAT/enhancer-binding protein beta sites in activation and interferon beta-mediated suppression. J Biol Chem 2009; 285:2258-73. [PMID: 19933495 DOI: 10.1074/jbc.m109.075929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) beta and C/EBP sites in the HIV-1 long terminal repeat (LTR) are crucial for HIV-1 replication in monocyte/macrophages and for the ability of interferon beta (IFN beta) to inhibit ongoing active HIV replication in these cells. This IFN beta-mediated down-regulation involves induction of the truncated, dominant-negative isoform of C/EBP beta referred to as liver-enriched transcriptional inhibitory protein (LIP). Although binding of the C/EBP beta isoform to C/EBP sites in the simian immunodeficiency virus (SIV) LTR has previously been examined, the importance of these sites in core promoter-mediated transcription, virus replication, IFN beta-mediated regulation, and the relative binding of the two isoforms (C/EBP beta and LIP) has not been investigated. Here, we specifically examine two C/EBP sites, JC1 (-100 bp) and DS1 (+134 bp), located within the minimal region of the SIV LTR, required for core promoter-mediated transcription and virus replication in macrophages. Our studies revealed that the JC1 but not DS1 C/EBP site is important for basal level transcription, whereas the DS1 C/EBP site is imperative for productive virus replication in primary macrophages. In contrast, either JC1 or DS1 C/EBP site is sufficient to mediate IFN beta-induced down-regulation of SIV LTR activity and virus replication in these cells. We also characterized the differential binding properties of C/EBP beta and LIP to the JC1 and DS1 sites. In conjunction with previous studies from our laboratory, we demonstrate the importance of these sites in virus gene expression, and we propose a model for their role in establishing latency and persistence in macrophages in the brain.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- McKusick-Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
24
|
Banman SL, McFie PJ, Wilson HL, Roesler WJ. Nuclear redistribution of TCERG1 is required for its ability to inhibit the transcriptional and anti-proliferative activities of C/EBPα. J Cell Biochem 2009; 109:140-51. [DOI: 10.1002/jcb.22391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Xu J, Albrecht E, Viergutz T, Nürnberg G, Zhao R, Wegner J. Perilipin, C/EBPα, and C/EBPβ mRNA abundance in longissimus muscle and different adipose tissues of Holstein and Charolais cattle. Meat Sci 2009; 83:120-6. [DOI: 10.1016/j.meatsci.2009.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/09/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
|
26
|
Cloutier A, Guindi C, Larivée P, Dubois CM, Amrani A, McDonald PP. Inflammatory Cytokine Production by Human Neutrophils Involves C/EBP Transcription Factors. THE JOURNAL OF IMMUNOLOGY 2008; 182:563-71. [DOI: 10.4049/jimmunol.182.1.563] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Chromatin-bound mitogen-activated protein kinases transmit dynamic signals in transcription complexes in beta-cells. Proc Natl Acad Sci U S A 2008; 105:13315-20. [PMID: 18755896 DOI: 10.1073/pnas.0806465105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MAPK pathways regulate transcription through phosphorylation of transcription factors and other DNA-binding proteins. In pancreatic beta-cells, ERK1/2 are required for transcription of the insulin gene and several other genes in response to glucose. We show that binding of glucose-sensitive transcription activators and repressors to the insulin gene promoter depends on ERK1/2 activity. We also find that glucose and NGF stimulate the binding of ERK1/2 to the insulin gene and other promoters. An ERK1/2 cascade module, including MEK1/2 and Rsk, are found in complexes bound to these promoters. These findings imply that MAPK-containing signaling complexes are positioned on sensitive promoters with their protein substrates to modulate transcription in situ in response to incoming signals.
Collapse
|
28
|
Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, Kubota T, Hanash SM. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 2008; 41:253-71. [PMID: 18432406 PMCID: PMC2430169 DOI: 10.1080/08916930802024202] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/02/2008] [Indexed: 02/07/2023]
Abstract
The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-kappaB, and TNFalpha signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2 at 1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Human Genetics Program, Tulane Medical School, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Deprivation of protein or amino acid induces C/EBPbeta synthesis and binding to amino acid response elements, but its action is not an absolute requirement for enhanced transcription. Biochem J 2008; 410:473-84. [PMID: 18052938 DOI: 10.1042/bj20071252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A nutrient stress signalling pathway is triggered in response to protein or amino acid deprivation, namely the AAR (amino acid response), and previous studies have shown that C/EBPbeta (CCAAT/enhancer-binding protein beta) expression is up-regulated following activation of the AAR. DNA-binding studies, both in vitro and in vivo, have revealed increased C/EBPbeta association with AARE (AAR element) sequences in AAR target genes, but its role is still unresolved. The present results show that in HepG2 human hepatoma cells, the total amount of C/EBPbeta protein, both the activating [LAP* and LAP (liver-enriched activating protein)] and inhibitory [LIP (liver-enriched inhibitory)] isoforms, was increased in histidine-deprived cells. Immunoblotting of subcellular fractions and immunostaining revealed that most of the C/EBPbeta was located in the nucleus. Consistent with these observations, amino acid limitation caused an increase in C/EBPbeta DNA-binding activity in nuclear extracts and chromatin immunoprecipitation revealed an increase in C/EBPbeta binding to the AARE region in vivo, but at a time when transcription from the target gene was declining. A constant fraction of the basal and increased C/EBPbeta protein was phosphorylated on Thr(235) and the phospho-C/EBPbeta did bind to an AARE. Induction of AARE-enhanced transcription was slightly greater in C/EBPbeta-deficient MEFs (mouse embryonic fibroblasts) or C/EBPbeta siRNA (small interfering RNA)-treated HepG2 cells compared with the corresponding control cells. Transient expression of LAP*, LAP or LIP in C/EBPbeta-deficient fibroblasts caused suppression of increased transcription from an AARE-driven reporter gene. Collectively, the results demonstrate that C/EBPbeta is not required for transcriptional activation by the AAR pathway but, when present, acts in concert with ATF3 (activating transcription factor 3) to suppress transcription during the latter stages of the response.
Collapse
|
30
|
Pennini ME, Liu Y, Yang J, Croniger CM, Boom WH, Harding CV. CCAAT/enhancer-binding protein beta and delta binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein. THE JOURNAL OF IMMUNOLOGY 2007; 179:6910-8. [PMID: 17982082 DOI: 10.4049/jimmunol.179.10.6910] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TLR2 signaling by Mycobacterium tuberculosis 19-kDa lipoprotein (LpqH) inhibits IFN-gamma-induced expression of CIITA by macrophages. Microarray analysis, quantitative RT-PCR, and Western blots showed that LpqH induced C/EBPbeta and C/EBPdelta in kinetic correlation with inhibition of CIITA expression. Of the C/EBPbeta isoforms, liver inhibitory protein (LIP) was notably induced and liver-activating protein was increased by LpqH. Putative C/EBP binding sites were identified in CIITA promoters I and IV (pI and pIV). LpqH induced binding of C/EBPbeta (LIP and liver-activating protein) to biotinylated oligodeoxynucleotide containing the pI or pIV binding sites, and chromatin immunoprecipitation showed that LpqH induced binding of C/EBPbeta and C/EBPdelta to endogenous CIITA pI and pIV. Constitutive expression of C/EBPbeta LIP inhibited IFN-gamma-induced CIITA expression in transfected cells. In summary, LpqH induced expression of C/EBPbeta and C/EBPdelta, and their binding to CIITA pI and pIV, in correlation with inhibition of IFN-gamma-induced expression of CIITA in macrophages, suggesting a role for C/EBP as a novel regulator of CIITA expression.
Collapse
Affiliation(s)
- Meghan E Pennini
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
31
|
Hasselgren PO. Ubiquitination, phosphorylation, and acetylation--triple threat in muscle wasting. J Cell Physiol 2007; 213:679-89. [PMID: 17657723 DOI: 10.1002/jcp.21190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of muscle mass is commonly seen in patients with critical illness and is associated with increased expression of multiple genes controlling protein breakdown. Transcription factors that are activated during muscle wasting include NF-kB and members of the FOXO and C/EBP transcription factor families. The activity of these transcription factors is regulated by multiple posttranslational modifications, including ubiquitination, phosphorylation, and acetylation, providing for a complex and integrated network of regulatory mechanisms in muscle wasting. Targeting posttranslational modifications of transcription factors may prove important in the prevention and treatment of the debilitating consequences of muscle wasting.
Collapse
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
32
|
Liu X, Wu B, Szary J, Kofoed EM, Schaufele F. Functional sequestration of transcription factor activity by repetitive DNA. J Biol Chem 2007; 282:20868-76. [PMID: 17526489 PMCID: PMC3812952 DOI: 10.1074/jbc.m702547200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Higher eukaryote genomes contain repetitive DNAs, often concentrated in transcriptionally inactive heterochromatin. Although repetitive DNAs are not typically considered as regulatory elements that directly affect transcription, they can contain binding sites for some transcription factors. Here, we demonstrate that binding of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) to the mouse major alpha-satellite repetitive DNA sequesters C/EBPalpha in the transcriptionally inert pericentromeric heterochromatin. We find that this sequestration reduces the transcriptional capacity of C/EBPalpha. Functional sequestration of C/EBPalpha was demonstrated by experimentally reducing C/EBPalpha binding to the major alpha-satellite DNA, which elevated the concentration of C/EBPalpha in the non-heterochromatic subcompartment of the cell nucleus. The reduction in C/EBPalpha binding to alpha-satellite DNA was induced by the co-expression of the transcription factor Pit-1, which removes C/EBPalpha from the heterochromatic compartment, and by the introduction of an altered-specificity mutation into C/EBPalpha that reduces binding to alpha-satellite DNA but permits normal binding to sites in some gene promoters. In both cases the loss of alpha-satellite DNA binding coincided with an elevation in the binding of C/EBPalpha to a promoter and an increased transcriptional output from that promoter. Thus, the binding of C/EBPalpha to this highly repetitive DNA reduced the amount of C/EBPalpha available for binding to and regulation of this promoter. The functional sequestration of some transcription factors through binding to repetitive DNAs may represent an underappreciated mechanism controlling transcription output.
Collapse
Affiliation(s)
- Xiaowei Liu
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Bo Wu
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Jaroslaw Szary
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Eric M. Kofoed
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California 94143
| | - Fred Schaufele
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
33
|
Kantidze OL, Iarovaia OV, Philonenko ES, Yakutenko II, Razin SV. Unusual compartmentalization of CTCF and other transcription factors in the course of terminal erythroid differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:924-33. [PMID: 17467075 DOI: 10.1016/j.bbamcr.2007.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/06/2007] [Accepted: 03/21/2007] [Indexed: 01/31/2023]
Abstract
It is demonstrated that in chicken embryonic and mature erythrocyte nuclei the distribution of a versatile transcription factor CTCF differs drastically from its distribution in nuclei of proliferating erythroid and non-erythroid cells. In the latter case CTCF was distributed throughout the whole nucleus volume, being concentrated in many small compartments (punctuate nuclear staining). In contrast, in embryonic and mature erythrocytes CTCF was concentrated in a limited number of large compartments. These large CTCF-containing compartments were not observed in other cells. Occasionally, but not in all cells, some of these compartments were localized close to nucleoli but did not colocalize with them. In mature erythrocytes a clear exclusion of CTCF-containing compartments from the chromatin domain was observed. This exclusion correlated with a tight association of CTCF with the nuclear matrix. Concentration in relatively large compartments and exclusion from the chromatin domain in nuclei of mature erythrocytes were also observed for RNA polymerase II and several transcription factors. The data are discussed in the context of a hypothesis postulating that relocalization of different components of the transcriptional machinery from the chromatin domain into the interchromatin compartment is an important step of the terminal inactivation of chicken erythrocyte nuclei.
Collapse
Affiliation(s)
- Omar L Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, 34/5 Vavilov Street, 119334 Moscow, Russia
| | | | | | | | | |
Collapse
|
34
|
Broderick KE, Zhang T, Rangaswami H, Zeng Y, Zhao X, Boss GR, Pilz RB. Guanosine 3',5'-cyclic monophosphate (cGMP)/cGMP-dependent protein kinase induce interleukin-6 transcription in osteoblasts. Mol Endocrinol 2007; 21:1148-62. [PMID: 17341596 DOI: 10.1210/me.2005-0389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Natriuretic peptides and nitric oxide (NO) activate the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway and play an important role in bone development and adult bone homeostasis. The cytokine IL-6 regulates bone turnover and osteoclast and osteoblast differentiation. We found that C-type natriuretic peptide and the NO donor Deta-NONOate induced IL-6 mRNA expression in primary human osteoblasts, an effect mimicked by the membrane-permeable cGMP analog 8-chlorophenylthio-cGMP (8-CPT-cGMP). Similar results were obtained in rat UMR106 osteosarcoma cells, where C-type natriuretic peptide and 8-CPT-cGMP stimulated transcription of the human IL-6 promoter and increased IL-6 secretion into the medium. Cotransfection of type I PKG enhanced the cGMP effect on the IL-6 promoter, whereas small interfering RNA-mediated silencing of PKG I expression prevented the cGMP effect on IL-6 mRNA expression. Step-wise deletion of the IL-6 promoter demonstrated a cAMP response element to be critical for transcriptional effects of cGMP, and experiments with dominant interfering proteins showed that cGMP activation of the promoter required cAMP response element binding-related proteins, and, to a lesser extent, proteins of the CAAT enhancer-binding protein and activator protein-1 (Fos/Jun) families. 8-CPT-cGMP induced nuclear translocation of type I PKG and increased cAMP response element binding-related protein phosphorylation on Ser(133). PKG regulation of the IL-6 promoter appeared to be of physiological significance, because inhibitors of the NO/cGMP/PKG signaling pathway largely prevented fluid shear stress-induced increases of IL-6 mRNA in UMR106 cells.
Collapse
Affiliation(s)
- Kate E Broderick
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0652, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ceseña TI, Cui TX, Piwien-Pilipuk G, Kaplani J, Calinescu AA, Iñiguez-Lluhí JA, Kwok R, Schwartz J. Multiple mechanisms of growth hormone-regulated gene transcription. Mol Genet Metab 2007; 90:126-33. [PMID: 17129742 PMCID: PMC1986646 DOI: 10.1016/j.ymgme.2006.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/21/2006] [Accepted: 10/21/2006] [Indexed: 12/21/2022]
Abstract
Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as targets for regulation by hormones and signaling pathways. Evidence that GH regulates transcription at multiple levels is exemplified by analysis of the proto-oncogene c-fos. Among the GH-regulated transcription factors on c-fos, C/EBPbeta appears to be key, since depletion of C/EBPbeta by RNA interference blocks the stimulation of c-fos by GH. The phosphorylation state of C/EBPbeta and its ability to activate transcription are regulated by GH through MAPK and PI3K/Akt-mediated signaling cascades. The acetylation of C/EBPbeta also contributes to its ability to activate c-fos transcription. These and other post-translational modifications of C/EBPbeta appear to be integrated for regulation of transcription by GH. The formation of nuclear proteins into complexes associated with DNA-bound transcription factors is also regulated by GH. Both C/EBPbeta and the co-activator p300 are recruited to c-fos in response to GH, altering c-fos promoter activation. In addition, GH rapidly induces spatio-temporal re-localization of C/EBPbeta within the nucleus. Thus, GH-regulated gene transcription mediated by C/EBPbeta reflects the integration of diverse mechanisms including post-translational modifications, modulation of protein complexes associated with DNA and re-localization of gene regulatory proteins. Similar integration involving other transcription factors, including Stats, appears to be a feature of regulation by GH of other gene targets.
Collapse
Affiliation(s)
- Teresa I. Ceseña
- Cellular & Molecular Biology Program, University Michigan, Ann Arbor, MI 48109
| | - Tracy Xiao Cui
- Dept. of Molecular & Integrative Physiology, University Michigan, Ann Arbor, MI 48109
| | | | - Julianne Kaplani
- Dept. of Molecular & Integrative Physiology, University Michigan, Ann Arbor, MI 48109
| | | | | | - Roland Kwok
- Depts of Biological Chemistry and Ob/Gyn, University Michigan, Ann Arbor, MI 48109
| | - Jessica Schwartz
- Cellular & Molecular Biology Program, University Michigan, Ann Arbor, MI 48109
- Dept. of Molecular & Integrative Physiology, University Michigan, Ann Arbor, MI 48109
| |
Collapse
|
36
|
Abstract
IL-17A and its receptor are the founding members of a recently described cytokine family, with unique sequences and functions in the immune system and elsewhere. Consisting of six ligands (IL-17A-F) and five receptors (IL-17RA-IL-17RE) in mammals, these molecules have distinct primary amino acid structures with only minimal homology to other cytokine families. By far the best studied of these cytokines to date are IL-17A and its receptor, IL-17RA. IL-17A is produced primarily by T cells, and is the hallmark cytokine of a newly defined T helper cell subset that appears to be involved in generation of autoimmunity. Despite its production by the adaptive immune system, IL-17A exhibits proinflammatory activities similar to innate immune cytokines such as IL-1beta and TNF-alpha and appears to play important and nonredundant roles in regulating granulocytes in vivo. As a result, IL-17A also plays key roles in host defense. In contrast to the restricted expression of IL-17A, the IL-17RA receptor is ubiquitously expressed, and thus most cells are potential physiological targets of IL-17A. This chapter describes the major molecular properties, biological activities, and known signaling pathways of the IL-17 family, with an emphasis on IL-17A and IL-17RA.
Collapse
Affiliation(s)
- Sarah L Gaffen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Growth hormone (GH) is a major regulatory factor for overall body growth as evidenced by the height extremes in people with abnormal circulating GH levels or GH receptor (GHR) disruptions. GH also affects metabolism, cardiac and immune function, mental agility and aging. Currently, GH is being used therapeutically for a variety of clinical conditions including promotion of growth in short statured children, treatment of adults with GH deficiency and HIV-associated wasting. To help reveal previous unrecognized functions of GH, better understand the known functions of GH, and avoid adverse consequences that are often associated with exogenous GH administration, careful delineation of the molecular mechanisms whereby GH induces its diverse effects is needed. GH is a peptide hormone that is secreted into the circulation by the anterior pituitary and acts upon various target tissues expressing GHR. GH binding of GHR activates the tyrosine kinase Janus kinase 2 (JAK2), thus initiating a multitude of signaling cascades that result in a variety of biological responses including cellular proliferation, differentiation and migration, prevention of apoptosis, cytoskeletal reorganization and regulation of metabolic pathways. A number of signaling proteins and pathways activated by GH have been identified, including JAKs, signal transducers and activators of transcription (Stats), the mitogen activated protein kinase (MAPK) pathway, and the phosphatidylinositol 3'-kinase (PI3K) pathway. Although these signal transduction pathways have been well characterized, the manner by which GH activates these pathways, the downstream signals induced by these pathways, and the cross-talk with other pathways are not completely understood. Recent findings have added vital information to our understanding of these downstream signals induced by GH and mechanisms that terminate GH signaling, and identified new GH signaling proteins and pathways. This review will highlight some of these findings, many of which are unexpected and some of which challenge previously held beliefs about the mechanisms of GH signaling.
Collapse
Affiliation(s)
- Nathan J Lanning
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109-0622, USA.
| | | |
Collapse
|
38
|
Ceseña TI, Cardinaux JR, Kwok R, Schwartz J. CCAAT/enhancer-binding protein (C/EBP) beta is acetylated at multiple lysines: acetylation of C/EBPbeta at lysine 39 modulates its ability to activate transcription. J Biol Chem 2006; 282:956-67. [PMID: 17110376 DOI: 10.1074/jbc.m511451200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription factor function can be modulated by post-translational modifications. Because the transcription factor CCAAT/enhancer-binding protein (C/EBP) beta associates with the nuclear coactivator p300, which contains acetyltransferase activity, acetylation of C/EBPbeta was examined to understand its regulation and function. C/EBPbeta is acetylated by acetyltransferases p300 and p300/CREB-binding protein associated factor. Endogenous C/EBPbeta in 3T3-F442A preadipocytes is also recognized by an acetyl-lysine-specific antibody. Analysis of truncations of C/EBPbeta and peptides based on C/EBPbeta sequences identified multiple lysines within C/EBPbeta that can be acetylated. Among these, a novel acetylation site at lysine 39 of C/EBPbeta was identified. Mutation of Lys-39 to arginine or alanine impairs its acetylation and the ability of C/EBPbeta to activate transcription at the promoters for C/EBPalpha and c-fos. Different C/EBPbeta-responsive promoters require different patterns of acetylated lysines in C/EBPbeta for transcription activation. Furthermore, C/EBPbeta acetylation was increased by growth hormone, and mutation of Lys-39 impaired growth hormone-stimulated c-fos promoter activation. These data suggest that acetylation of Lys-39 of C/EBPbeta, alone or in combination with acetylation at other lysines, may play a role in C/EBPbeta-mediated transcriptional activation.
Collapse
Affiliation(s)
- Teresa I Ceseña
- Cellular and Molecular Biology Program, Department of Obstetrics/Gynecology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
39
|
He HJ, Zhu TN, Xie Y, Fan J, Kole S, Saxena S, Bernier M. Pyrrolidine Dithiocarbamate Inhibits Interleukin-6 Signaling through Impaired STAT3 Activation and Association with Transcriptional Coactivators in Hepatocytes. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
He HJ, Zhu TN, Xie Y, Fan J, Kole S, Saxena S, Bernier M. Pyrrolidine dithiocarbamate inhibits interleukin-6 signaling through impaired STAT3 activation and association with transcriptional coactivators in hepatocytes. J Biol Chem 2006; 281:31369-79. [PMID: 16926159 DOI: 10.1074/jbc.m603762200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-6 is a proinflammatory cytokine that has been implicated in the expression of acute phase plasma proteins and hepatic insulin resistance through activation of the JAK/STAT3 pathway. Although previous studies have demonstrated that pyrrolidine dithiocarbamate (PDTC) exerts protection against inflammatory responses, its role in the regulation of IL-6 receptor signaling remains unclear. Here we show that treatment of cultured HepG2 hepatoma cells with PDTC inhibits IL-6-stimulated tyrosine phosphorylation and subsequent nuclear translocation of STAT3 in a dose- and time-dependent fashion. No inhibition of JAK-1 activity was observed. To provide insight into PDTC signaling, we constructed a conditionally active STAT3 by fusing it with the ligand binding domain of the estrogen receptor (STAT3-ER). In the presence of 4-hydroxytamoxifen STAT3-ER was translocated in the nucleus of HepG2 cells in a phosphorylation-independent manner, and treatment with PDTC mitigated the response. Although STAT3 coprecipitated with heat-shock protein 90 (Hsp90) in control cells, coprecipitation of the two proteins was greatly reduced after PDTC treatment or after exposure to geldanamycin, an Hsp90 inhibitor. As a result there was a decrease in IL-6-induced association of STAT3 with the transcriptional coactivators FOXO1a and C/EBPbeta together with significant reduction in the expression of SOCS-3 protein and that of two major acute phase plasma proteins. Importantly, treatment of HepG2 cells and a primary culture of rat hepatocytes with PDTC restored insulin responsiveness that was abrogated by IL-6. These studies are consistent with the ability of PDTC to down-regulate IL-6-induced STAT3 activation by altering the stability of STAT3-Hsp90 complex.
Collapse
Affiliation(s)
- Hua-Jun He
- Diabetes Section, Laboratory of Clinical Investigation, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Demarco IA, Voss TC, Booker CF, Day RN. Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus. Mol Cell Biol 2006; 26:8087-98. [PMID: 16908544 PMCID: PMC1636741 DOI: 10.1128/mcb.02410-05] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.
Collapse
Affiliation(s)
- Ignacio A Demarco
- Department of Medicine, University of Virginia Health Services, Charlottesville, VA 22908-0578, USA
| | | | | | | |
Collapse
|
42
|
Demarco IA, Periasamy A, Booker CF, Day RN. Monitoring dynamic protein interactions with photoquenching FRET. Nat Methods 2006; 3:519-24. [PMID: 16791209 PMCID: PMC2921620 DOI: 10.1038/nmeth889] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 05/15/2006] [Indexed: 12/22/2022]
Abstract
The mammalian cell nucleus is a dynamic and highly organized structure. Most proteins are mobile within the nuclear compartment, and this mobility reflects transient interactions with chromatin, as well as network interactions with a variety of protein partners. To study these dynamic processes in living cells, we developed an imaging method that combines the photoactivated green fluorescent protein (PA-GFP) and fluorescence resonance energy transfer (FRET) microscopy. We used this new method, photoquenching FRET (PQ-FRET), to define the dynamic interactions of the heterochromatin protein-1 alpha (HP1alpha) and the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha) in regions of centromeric heterochromatin in mouse pituitary cells. The advantage of the PQ-FRET assay is that it provides simultaneous measurement of a protein's mobility, its exchange within macromolecular complexes and its interactions with other proteins in the living cell without the need for corrections based on reference images acquired from control cells.
Collapse
Affiliation(s)
- Ignacio A Demarco
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
43
|
Marcinkowska E, Garay E, Gocek E, Chrobak A, Wang X, Studzinski GP. Regulation of C/EBPbeta isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3. Exp Cell Res 2006; 312:2054-65. [PMID: 16624284 PMCID: PMC2814412 DOI: 10.1016/j.yexcr.2006.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 01/30/2023]
Abstract
C/EBPbeta is known to be important for monocytic differentiation and macrophage function. Here, we found that expression of all three C/EBPbeta isoforms induced in HL60 cells by 1,25-dihydroxyvitamin D3 (1,25D) was upregulated in a sustained manner that correlates with the appearance of monocytic phenotype and with the G1 phase cell cycle arrest. In 1,25D-resistant HL60-40AF cells, isoforms beta-1 and beta-3 were expressed at levels comparable to 1,25D-sensitive HL60-G cells, but isoform beta-2 was difficult to detect. Treatment of sensitive HL60 cells with 1,25D resulted in predominantly nuclear localization of C/EBP isoforms beta-2 and beta-3, while a large proportion of C/EBPbeta-1 remained in the cytoplasm. Attenuation of the MEK-ERK MAPK pathway by the inhibitor PD98059 markedly reduced the expression, 1,25D-induced phosphorylation and nuclear localization of C/EBPbeta-2 and C/EBPbeta-3. Interestingly, only the lower molecular mass isoforms of C/EBPbeta phosphorylated on Thr235 were found in the nuclei, while C/EBPbeta-1 was constitutively phosphorylated and was detected principally in the cytoplasmic fraction. Although the role of C/EBPbeta isoforms in 1,25D-induced differentiation is complex, our results taken together strongly suggest that the phosphorylation of C/EBPbeta isoforms on Thr235 takes place mainly via the MEK-ERK pathway and that C/EBPbeta-2 is the principal transcription factor in this cell system.
Collapse
Affiliation(s)
- Ewa Marcinkowska
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Edward Garay
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Elzbieta Gocek
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Agnieszka Chrobak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl St. 12, 53-114 Wroclaw, Poland
| | - Xuening Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - George P. Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
44
|
Berberich-Siebelt F, Berberich I, Andrulis M, Santner-Nanan B, Jha MK, Klein-Hessling S, Schimpl A, Serfling E. SUMOylation Interferes with CCAAT/Enhancer-Binding Protein β-Mediated c-mycRepression, but Not IL-4 Activation in T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:4843-51. [PMID: 16585579 DOI: 10.4049/jimmunol.176.8.4843] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transcription factor C/EBPbeta transactivates the IL-4 gene in murine T lymphocytes and facilitates Th2 cell responses. In this study, we demonstrate that C/EBPbeta also acts as a repressor of T cell proliferation. By binding to the c-myc promoter(s), C/EBPbeta represses c-Myc expression and, therefore, arrests T cells in the G1 phase of the cell cycle. For C/EBPbeta-mediated repression, the integrity of its N-terminal transactivation domain is essential whereas the central regulatory domain is dispensable. This central regulatory domain is sumoylated in vivo which leads to an alteration of the activity of C/EBPbeta. Whereas sumoylation does not affect the C/EBPbeta-mediated activation of the IL-4 gene, it relieves its repressive effect on c-Myc expression and T cell proliferation. Similar to several other transcription factors, sumoylation redistributes nuclear C/EBPbeta and targets it to pericentric heterochromatin. These results suggest an important role of sumoylation in adjusting the finely tuned balance between proliferation and differentiation in peripheral T cells which is controlled by C/EBPbeta.
Collapse
|
45
|
Lawrence MC, McGlynn K, Park BH, Cobb MH. ERK1/2-dependent Activation of Transcription Factors Required for Acute and Chronic Effects of Glucose on the Insulin Gene Promoter. J Biol Chem 2005; 280:26751-9. [PMID: 15899886 DOI: 10.1074/jbc.m503158200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin promoter is both positively and negatively regulated in response to conditions to which pancreatic beta-cells are exposed. Exposure of intact rat islets and INS-1 pancreatic beta-cells to 11 mm glucose for minutes to hours results in an enhancement in the rate of insulin gene transcription assessed with a reporter linked to the insulin gene promoter. In contrast, chronic exposure of rat islets or beta-cells to 11 mm glucose results in loss of the glucose responsiveness of the insulin gene promoter. By 48 h, glucose inhibits insulin gene promoter activity. Here we show that not only the acute effect of elevated glucose to stimulate the insulin gene promoter but also the chronic effect of elevated glucose to inhibit the insulin gene promoter depend on ERK1/2 mitogen-activated protein kinase activity. In examining the underlying mechanism, we found that acute exposure to 11 mm glucose resulted in the binding of the transcription factors NFAT and Maf to the glucose-responsive A2C1 element of the insulin gene promoter. An NFAT and C/EBP-beta complex was observed in cells chronically exposed to 11 mm glucose. Formation of NFAT-Maf and NFAT-C/EBP-beta complexes was sensitive to inhibitors of ERK1/2 and calcineurin, consistent with our previous finding that activation of ERK1/2 by glucose required calcineurin activity and the well documented regulation of NFAT by calcineurin. These results indicate that the ERK1/2 pathway modulates partners of NFAT, which may either stimulate or repress insulin gene transcription during stimulatory and chronic exposure to elevated glucose.
Collapse
Affiliation(s)
- Michael C Lawrence
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
46
|
Berry FB, O'Neill MA, Coca-Prados M, Walter MA. FOXC1 transcriptional regulatory activity is impaired by PBX1 in a filamin A-mediated manner. Mol Cell Biol 2005; 25:1415-24. [PMID: 15684392 PMCID: PMC548007 DOI: 10.1128/mcb.25.4.1415-1424.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FOXC1 mutations underlie Axenfeld-Rieger syndrome, an autosomal dominant disorder that is characterized by a spectrum of ocular and nonocular phenotypes and results in an increased susceptibility to glaucoma. Proteins interacting with FOXC1 were identified in human nonpigmented ciliary epithelial cells. Here we demonstrate that FOXC1 interacts with the actin-binding protein filamin A (FLNA). In A7 melanoma cells possessing elevated levels of nuclear FLNA, FOXC1 is unable to activate transcription and is partitioned to an HP1alpha, heterochromatin-rich region of the nucleus. This inhibition is mediated through an interaction between FOXC1 and the homeodomain protein PBX1a. In addition, we demonstrate that efficient nuclear and subnuclear localization of PBX1 is mediated by FLNA. Together, these data reveal a mechanism by which structural proteins such as FLNA can influence the activity of a developmentally and pathologically important transcription factor such as FOXC1. Given the resemblance of the skeletal phenotypes caused by FOXC1 loss-of-function mutations and FLNA gain-of-function mutations, this inhibitory activity of FLNA on FOXC1 may contribute to the pathogenesis of FLNA-linked skeletal disorders.
Collapse
Affiliation(s)
- Fred B Berry
- Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada.
| | | | | | | |
Collapse
|
47
|
Rowland JE, Lichanska AM, Kerr LM, White M, d'Aniello EM, Maher SL, Brown R, Teasdale RD, Noakes PG, Waters MJ. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol Cell Biol 2005; 25:66-77. [PMID: 15601831 PMCID: PMC538772 DOI: 10.1128/mcb.25.1.66-77.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth hormone receptor (GHR) is a critical regulator of postnatal growth and metabolism. However, the GHR signaling domains and pathways that regulate these processes in vivo are not defined. We report the first knock-in mouse models with deletions of specific domains of the receptor that are required for its in vivo actions. Mice expressing truncations at residue m569 (plus Y539/545-F) and at residue m391 displayed a progressive impairment of postnatal growth with receptor truncation. Moreover, after 4 months of age, marked male obesity was observed in both mutant 569 and mutant 391 and was associated with hyperglycemia. Both mutants activated hepatic JAK2 and ERK2, whereas STAT5 phosphorylation was substantially decreased for mutant 569 and absent from mutant 391, correlating with loss of IGF-1 expression and reduction in growth. Microarray analysis of these and GHR(-/-) mice demonstrated that particular signaling domains are responsible for the regulation of different target genes and revealed novel actions of growth hormone. These mice represent the first step in delineating the domains of the GHR regulating body growth and composition and the transcripts associated with these domains.
Collapse
Affiliation(s)
- Jennifer E Rowland
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Terzidou V, Sooranna SR, Kim LU, Thornton S, Bennett PR, Johnson MR. Mechanical stretch up-regulates the human oxytocin receptor in primary human uterine myocytes. J Clin Endocrinol Metab 2005; 90:237-46. [PMID: 15494465 DOI: 10.1210/jc.2004-0277] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Oxytocin receptor (OTR) expression is increased before the onset of labor in all models of parturition. However, the mechanisms responsible for the increase in OTR expression are uncertain. Animal data suggest that uterine stretch increases OTR mRNA expression. In primary cultures of human uterine smooth muscle cells obtained from nonpregnant (NP) women and pregnant women before (NL) and after (L) the onset of labor, we investigated the effect of stretch on the expression of OTR mRNA and DNA binding of activator protein-1 (AP-1), CCAAT/enhancer binding protein (C/EBP)beta, and nuclear factor-kappaB transcription factors. OTR expression was least in NL, intermediate in NP, and greatest in L cells. Stretch of NL cells resulted in up-regulation of OTR mRNA expression associated with increased OTR gene promoter activity. Stretch of NP and L cells did not affect OTR mRNA expression. The increased promoter activity was associated with increased DNA binding of C/EBP and AP-1 but not nuclear factor-kappaB transcription factors. Overexpression of C/EBP, but not AP-1, increased OTR promoter activity. We conclude that stretch of NL cells results in increased OTR mRNA expression probably through increased C/EBPbeta DNA binding. These data suggest that stretch contributes to the massive increase in OTR expression before the onset of human labor.
Collapse
Affiliation(s)
- Vasso Terzidou
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Wang GS, Hong CJ, Yen TY, Huang HY, Ou Y, Huang TN, Jung WG, Kuo TY, Sheng M, Wang TF, Hsueh YP. Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron 2004; 42:113-28. [PMID: 15066269 DOI: 10.1016/s0896-6273(04)00139-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 01/13/2004] [Accepted: 02/25/2004] [Indexed: 01/18/2023]
Abstract
CASK acts as a coactivator for Tbr-1, an essential transcription factor in cerebral cortex development. Presently, the molecular mechanism of the CASK coactivation effect is unclear. Here, we report that CASK binds to another nuclear protein, CINAP, which binds histones and facilitates nucleosome assembly. CINAP, via its interaction with CASK, forms a complex with Tbr-1, regulating expression of the genes controlled by Tbr-1 and CASK, such as NR2b and reelin. A knockdown of endogenous CINAP in hippocampal neurons reduces the promoter activity of NR2b. Moreover, NMDA stimulation results in a reduction in the level of CINAP protein, via a proteasomal degradation pathway, correlating with a decrease in NR2b expression in neurons. This study suggests that reduction of the CINAP protein level by synaptic stimulation contributes to regulation of the transcriptional activity of the Tbr-1/CASK/CINAP protein complex and thus modifies expression of the NR2b gene.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Blotting, Western/methods
- Carrier Proteins/physiology
- Cells, Cultured
- Chlorocebus aethiops
- Chromatin/metabolism
- Cloning, Molecular
- Cycloheximide/pharmacology
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian
- Excitatory Amino Acid Agonists/pharmacology
- Gene Expression Regulation/drug effects
- Hippocampus/cytology
- Humans
- Indoles/metabolism
- Mice
- Models, Neurological
- Molecular Sequence Data
- Mutation
- N-Methylaspartate/pharmacology
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Neuroblastoma
- Neurons/physiology
- Nuclear Proteins/metabolism
- Nucleosomes/metabolism
- Precipitin Tests/methods
- Protein Binding
- Protein Synthesis Inhibitors/pharmacology
- RNA, Antisense/metabolism
- RNA, Messenger/biosynthesis
- RNA, Small Interfering
- Rats
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reelin Protein
- Reverse Transcriptase Polymerase Chain Reaction/methods
- T-Box Domain Proteins
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic/physiology
- Two-Hybrid System Techniques
- Yeasts
Collapse
Affiliation(s)
- Guey-Shin Wang
- Institute of Molecular Biology, Academia Sinica, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|