1
|
Bettinsoli V, Melzi G, Marchese I, Pantaleoni S, Passoni FC, Corsini E. New approach methodologies to assess wanted and unwanted drugs-induced immunostimulation. Curr Res Toxicol 2025; 8:100222. [PMID: 40027547 PMCID: PMC11872130 DOI: 10.1016/j.crtox.2025.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
This review examines various classes of drugs, focusing on their therapeutic and adverse effects, particularly in relation to immunostimulation. We emphasize the potential of new approach methodologies (NAMs) to study both expected and unexpected immunostimulatory effects. By evaluating the modes of action of different immunostimulatory drugs, we aim to provide insights into effectively assessing unwanted immunostimulatory responses. The review begins by exploring drugs that stimulate the immune system-including immunostimulants, monoclonal antibodies, chemotherapeutics, and nucleic acid-based drugs-to outline NAMs that could be employed to evaluate immunostimulation.
Collapse
Affiliation(s)
- Valeria Bettinsoli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Irene Marchese
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Sofia Pantaleoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Francesca Carlotta Passoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| |
Collapse
|
2
|
Lu XJ, Ning YJ, Liu H, Nie L, Chen J. A Novel Lipopolysaccharide Recognition Mechanism Mediated by Internalization in Teleost Macrophages. Front Immunol 2018; 9:2758. [PMID: 30542348 PMCID: PMC6277787 DOI: 10.3389/fimmu.2018.02758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Macrophages in teleosts are less sensitive to lipopolysaccharide (LPS) compared to mammals. The functional equivalent of the mammalian LPS surface receptor in teleost macrophages for the pro-inflammatory response is either non-existent or replaced by negative regulation. LPS signaling in teleost macrophages remains unclear. Here, we found a scavenger receptor class B 2a (PaSRB2a) that played a crucial role in LPS signaling in teleost macrophages. The internalization of LPS and subsequent pro-inflammatory responses in macrophages were mediated by PaSRB2a, which is a novel isoform of the mammalian SRB2 gene. LPS internalization by PaSRB2a is dependent on its C-terminal intracellular domain. Following LPS internalization, it interacts with the ayu intracellular receptors nucleotide-binding oligomerization domain protein 1 (PaNOD1) and PaNOD2. Moreover, LPS pre-stimulation with sub-threshold concentrations reduced the effect of secondary LPS treatment on pro-inflammatory responses that were mediated by PaSRB2a. The pro-inflammatory responses in LPS-treated ayu were down-regulated upon PaSRB2a knockdown by lentivirus siRNA delivery. In grass carp and spotted green pufferfish, SRB2a also mediated LPS internalization and pro-inflammatory responses. Our work identifies a novel LPS signaling pathway in teleosts that differs from those in mammals, and contributes to our understanding of the evolution of pathogen recognition in vertebrates.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ying-Jun Ning
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - He Liu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Kim YE, Hwang CJ, Lee HP, Kim CS, Son DJ, Ham YW, Hellström M, Han SB, Kim HS, Park EK, Hong JT. Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology 2017; 117:21-32. [DOI: 10.1016/j.neuropharm.2017.01.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
|
4
|
Sanches LJ, Marinello PC, Panis C, Fagundes TR, Morgado-Díaz JA, de-Freitas-Junior JCM, Cecchini R, Cecchini AL, Luiz RC. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction. Tumour Biol 2017; 39:1010428317695914. [DOI: 10.1177/1010428317695914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.
Collapse
Affiliation(s)
- Larissa Juliani Sanches
- Laboratory of Molecular Pathology, Department of Pathological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Department of Pathological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão, Brazil
| | - Tatiane Renata Fagundes
- Laboratory of Molecular Pathology, Department of Pathological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | - Rubens Cecchini
- Laboratory of Pathophysiology of Free Radicals, Department of Pathological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Department of Pathological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Department of Pathological Sciences, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
5
|
Liu ZK, Ng CF, Shiu HT, Wong HL, Wong CW, Li KK, Zhang JF, Lam PK, Poon WS, Lau CBS, Leung PC, Ko CH. A traditional Chinese formula composed of Chuanxiong Rhizoma and Gastrodiae Rhizoma (Da Chuanxiong Formula) suppresses inflammatory response in LPS -induced RAW 264.7 cells through inhibition of NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:20-28. [PMID: 27965052 DOI: 10.1016/j.jep.2016.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da Chuanxiong Formula (DCXF) which origins from Jin Dynasty is a famous classical 2-herb Chinese medicinal prescription. It is composed of dried rhizomes of Ligusticum chuanxiong (Chuanxiong Rhizoma, CR) and Gastrodia elata (Gastrodiae Rhizoma, GR) at the ratio of 4:1 (w/w). It has been used to treat headache which is caused by wind pathogen and blood stasis for thousands of years in China. AIM OF STUDY The present study was performed to investigate the anti-inflammatory effect of DCXF and elucidate its underlying molecular mechanisms using LPS-stimulated RAW 264.7 cells. MATERIALS AND METHODS The anti-inflammatory effect of DCXF was evaluated using LPS-stimulated RAW 264.7 cells. Generation of nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by the Griess colorimetric method and enzyme-linked immunosorbent assay (ELISA), respectively. The gene expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the effect of DCXF on NF-κB activation was measured by western blot assay. RESULTS Treatment with DCXF significantly suppressed the productions of NO and PGE2 through inhibitions of iNOS and COX-2 expressions in LPS-stimulated RAW 264.7 cells. DCXF significantly decreased IκBα phosphorylation, inhibited p65 expression and reduced p-p65 level. These results suggested the anti-inflammatory effect of DCXF was associated with the reduction of inflammatory mediators through inhibition of NF-κB pathway. CONCLUSIONS These results indicated that DCXF inhibited inflammation in LPS-stimulated RAW 264.7 cells through inactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Zhi-Ke Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Chun-Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Hoi-Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Hing-Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Chun-Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Kai-Kai Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Jin-Fang Zhang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Ping-Kuen Lam
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Wai-Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Chun-Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
6
|
Park SY, Kim HY, Park HJ, Shin HK, Hong KW, Kim CD. Concurrent Treatment with Taxifolin and Cilostazol on the Lowering of β-Amyloid Accumulation and Neurotoxicity via the Suppression of P-JAK2/P-STAT3/NF-κB/BACE1 Signaling Pathways. PLoS One 2016; 11:e0168286. [PMID: 27977755 PMCID: PMC5158044 DOI: 10.1371/journal.pone.0168286] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023] Open
Abstract
Taxifolin is a potent flavonoid that exerts anti-oxidative effect, and cilostazol increases intracellular cAMP levels by inhibiting phosphodiesterase 3 that shows antiinflammatory actions. BACE1 (β-site APP cleaving enzyme 1) is the rate-limiting enzyme responsible for the β-cleavage of amyloid precursor proteins to Aβ peptides. In this study, endogenous Aβ and C99 accumulation was explored in N2a Swe cells exposed to 1% FBS medium. Increased Aβ and C99 levels were significantly attenuated by taxifolin alone and in combination with cilostazol. Increased phosphorylated JAK2 at Tyr1007/1008 (P-JAK), phosphorylated STAT3 at Tyr 705 (P-STAT3) expressions and increased expressions of BACE1 mRNA and protein in the activated N2a Swe cells were significantly attenuated by taxifolin (10~50 μM), cilostazol (10~50 μM) alone and in combination at minimum concentrations. In these cells, decreased cytosol IκBα expression was elevated, and increased nuclear NF-κB p65 level and nuclear NF-κB p65 DNA binding activity were significantly reduced by taxifolin and cilostazol in a similar manner. Following STAT3 gene (~70% reduction) knockdown in N2a cells, Aβ-induced nuclear NF-κB and BACE1 expressions were not observed. Taxifolin, cilostazol, or resveratrol significantly stimulated SIRT1 protein expression. In SIRT1 gene-silenced (~50%) N2a cells, taxifolin, cilostazol, and resveratrol all failed to suppress Aβ1-42-stimulated P-STAT3 and BACE1 expression. Consequently, taxifolin and cilostazol were found to significantly decrease lipopolysaccharide (1–10 μg/ml)-induced iNOS and COX-2 expressions, and nitrite production in cultured BV-2 microglia cells and to increase N2a cell viability. In conclusion, taxifolin and cilostazol strongly inhibited amyloidogenesis in a synergistic manner by suppressing P-JAK2/P-STAT3-coupled NF-κB-linked BACE1 expression via the up-regulation of SIRT1.
Collapse
Affiliation(s)
- So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hae Young Kim
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hee Jeong Park
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Speth JM, Bourdonnay E, Penke LRK, Mancuso P, Moore BB, Weinberg JB, Peters-Golden M. Alveolar Epithelial Cell-Derived Prostaglandin E2 Serves as a Request Signal for Macrophage Secretion of Suppressor of Cytokine Signaling 3 during Innate Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 196:5112-20. [PMID: 27183597 DOI: 10.4049/jimmunol.1502153] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/15/2016] [Indexed: 01/22/2023]
Abstract
Preservation of gas exchange mandates that the pulmonary alveolar surface restrain unnecessarily harmful inflammatory responses to the many challenges to which it is exposed. These responses reflect the cross-talk between alveolar epithelial cells (AECs) and resident alveolar macrophages (AMs). We recently determined that AMs can secrete suppressor of cytokine signaling (SOCS) proteins within microparticles. Uptake of these SOCS-containing vesicles by epithelial cells inhibits cytokine-induced STAT activation. However, the ability of epithelial cells to direct AM release of SOCS-containing vesicles in response to inflammatory insults has not been studied. In this study, we report that SOCS3 protein was elevated in bronchoalveolar lavage fluid of both virus- and bacteria-infected mice, as well as in an in vivo LPS model of acute inflammation. In vitro studies revealed that AEC-conditioned medium (AEC-CM) enhanced AM SOCS3 secretion above basal levels. Increased amounts of PGE2 were present in AEC-CM after LPS challenge, and both pharmacologic inhibition of PGE2 synthesis in AECs and neutralization of PGE2 in AEC-CM implicated this prostanoid as the major AEC-derived factor mediating enhanced AM SOCS3 secretion. Moreover, pharmacologic blockade of PGE2 synthesis or genetic deletion of a PGE2 synthase similarly attenuated the increase in bronchoalveolar lavage fluid SOCS3 noted in lungs of mice challenged with LPS in vivo. These results demonstrate a novel tunable form of cross-talk in which AECs use PGE2 as a signal to request SOCS3 from AMs to dampen their endogenous inflammatory responses during infection.
Collapse
Affiliation(s)
- Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Emilie Bourdonnay
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Loka Raghu Kumar Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter Mancuso
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and Division of Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
8
|
Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells. Neurochem Res 2015; 40:1792-8. [DOI: 10.1007/s11064-015-1659-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022]
|
9
|
Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology. Biomolecules 2015; 5:1284-301. [PMID: 26131975 PMCID: PMC4598752 DOI: 10.3390/biom5031284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces “immune tolerance” of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαlox/lox;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαlox/lox;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.
Collapse
|
10
|
|
11
|
Song SY, Jung YY, Hwang CJ, Lee HP, Sok CH, Kim JH, Lee SM, Seo HO, Hyun BK, Choi DY, Han SB, Ham YW, Hwang BY, Hong JT. Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 2014; 11:118. [PMID: 24985096 PMCID: PMC4090659 DOI: 10.1186/1742-2094-11-118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Background ent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-κB) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-κB pathways via its anti-inflammatory property. Methods To investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 μM) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. β-secretase and β-secretase activities and β-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-κB and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover’s Inc., Texas, United states). Results ent-Sauchinone (1, 5, and 10 μM) effectively decreased lipopolysaccharide (LPS)-(1 μg/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of β-secretase and β-secretase activity. NF- κB amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a concentration dependent manner by ent-Sauchinone by blocking the phosphorylation of I κB and STAT3 in cultured astrocytes and microglial BV-2 cells. The docking model approach showed that ent-Sauchinone binds to STAT3, and the employment of a STAT3 inhibitor and siRNA reversed ent-Sauchinone-induced inhibition NF-κB activation and Aβ generation. Conclusions These results indicated that ent-Sauchinone inhibited neuroinflammation and amyloidogenesis through the inhibition of STAT3-mediated NF-κB activity, and thus could be applied in the treatment of neuro-inflammatory diseases, including Alzheimer’s disease.
Collapse
Affiliation(s)
- Suk-Young Song
- College of Pharmacy and MRC, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yu W, Wang H, Ying H, Yu Y, Chen D, Ge W, Shi L. Daphnetin attenuates microglial activation and proinflammatory factor production via multiple signaling pathways. Int Immunopharmacol 2014; 21:1-9. [PMID: 24747094 DOI: 10.1016/j.intimp.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/06/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Daphnetin, a natural coumarin derivative, is known to display anti-inflammatory properties and has been used to treat inflammatory diseases. A novel finding suggested that daphnetin might have a neuroprotective effect in stressed mice, leading us to explore its role in the microglial inflammatory response, as well as its underlying mechanism of action. We found that the production of pro-inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), induced by lipopolysaccharide (LPS) or β-amyloid (Aβ) was significantly suppressed by daphnetin in a dose-dependent manner in BV2 microglia. Also, daphnetin inhibited LPS-induced nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and NO formation by microglia. Mechanistically, daphnetin blunted the transcriptional activity of nuclear factor-kappa B (NF-κB), which was associated with the down-regulation of the phosphorylation and nuclear translocation of RelA/p65. Inhibitors of kappa B (IκB) phosphorylation and degradation were also affected by daphnetin, which was likely due to the reduced activation of IκB kinase (IKK). Additionally, LPS-induced activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK, were, to a varying extent, altered by daphnetin. Finally, daphnetin blocked phosphatidylinositol-3 kinase (PI-3K)/protein kinase B (Akt) signaling in LPS-activated microglia, which appeared to at least partially account for the reduction in NF-κB transcriptional activity. Thus, daphnetin inhibited microglial activation and proinflammatory responses by modulating a series of intracellular signaling pathways, including IKK/IκB, MAPKs and PI-3K/Akt.
Collapse
Affiliation(s)
- Wenwen Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Huanhuan Wang
- Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Hangjie Ying
- Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yingying Yu
- Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Dandan Chen
- Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Weihong Ge
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Liyun Shi
- Department of Basic Medical Science, Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| |
Collapse
|
13
|
Lee HY, Park SH, Lee M, Kim HJ, Ryu SY, Kim ND, Hwang BY, Hong JT, Han SB, Kim Y. 1-Dehydro-[10]-gingerdione from ginger inhibits IKKβ activity for NF-κB activation and suppresses NF-κB-regulated expression of inflammatory genes. Br J Pharmacol 2012; 167:128-40. [PMID: 22489648 PMCID: PMC3448918 DOI: 10.1111/j.1476-5381.2012.01980.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/24/2012] [Accepted: 03/27/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pungent constituents of ginger (Zingiber officinale) have beneficial effects on inflammatory pain and arthritic swelling. However, the molecular basis for these pharmacological properties is only partially understood. Here, we investigated the molecular target of 1-dehydro-[10]-gingerdione (D10G), one of the pungent constituents of ginger, that mediates its suppression of NF-κB-regulated expression of inflammatory genes linked to toll-like receptor (TLR)-mediated innate immunity. EXPERIMENTAL APPROACH RAW 264.7 macrophages or primary macrophages-derived from bone marrows of C57BL/6 or C3H/HeJ mice were stimulated with the TLR4 agonist LPS in the presence of D10G. Catalytic activity of inhibitory κB (IκB) kinase β (IKKβ) was determined by a kinase assay and immunoblot analysis, and the expression of inflammatory genes by RT-PCR analysis and a promoter-dependent reporter assay. KEY RESULTS D10G directly inhibited the catalytic activity of cell-free IKKβ. Moreover, D10G irreversibly inhibited cytoplasmic IKKβ-catalysed IκBα phosphorylation in macrophages activated by TLR agonists or TNF-α, and also IKKβ vector-elicited NF-κB transcriptional activity in these cells. These effects of D10G were abolished by substitution of the Cys(179) with Ala in the activation loop of IKKβ, indicating a direct interacting site of D10G. This mechanism was shown to mediate D10G-induced disruption of NF-κB activation in LPS-stimulated macrophages and the suppression of NF-κB-regulated gene expression of inducible NOS, COX-2 and IL-6. CONCLUSION AND IMPLICATIONS This study demonstrates that IKKβ is a molecular target of D10G involved in the suppression of NF-κB-regulated gene expression in LPS-activated macrophages; this suggests D10G has therapeutic potential in NF-κB-associated inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Hwa Young Lee
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| | - Sun Hong Park
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| | - Misoon Lee
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| | - Hye-Jin Kim
- Korea Research Institute of Chemical TechnologyDaejeon, Korea
| | - Shi Yong Ryu
- Korea Research Institute of Chemical TechnologyDaejeon, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation FoundationDaegu, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National UniversityCheongju, Korea
| |
Collapse
|
14
|
Watanabe T, Kanamaru Y, Liu C, Suzuki Y, Tada N, Okumura K, Horikoshi S, Tomino Y. Negative regulation of inflammatory responses by immunoglobulin A receptor (FcαRI) inhibits the development of Toll-like receptor-9 signalling-accelerated glomerulonephritis. Clin Exp Immunol 2011; 166:235-50. [PMID: 21985370 DOI: 10.1111/j.1365-2249.2011.04452.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myeloid FcαRI, a receptor for immunoglobulin (Ig)A, mediates cell activation or inhibition depending on the type of ligand interaction, which can be either multivalent or monovalent. Anti-inflammatory signalling is triggered by monomeric targeting using anti-FcαRI Fab or IgA ligand binding, which inhibits immune and non-immune-mediated renal inflammation. The participation of Toll-like receptors (TLRs) in kidney pathology in experimental models and various forms of human glomerular nephritis has been discussed. However, little is known about negative regulation of innate-immune activation. In the present study, we generated new transgenic mice that express FcαRI(R209L) /FcRγ chimeric protein and showed that the monovalent targeting of FcαRI exhibited inhibitory effects in an in vivo model of TLR-9 signalling-accelerated nephritis. Mouse monoclonal anti-FcαRI MIP8a Fab improved urinary protein levels and reduced the number of macrophages and immunoglobulin deposition in the glomeruli. Monovalent targeting using MIP8a Fab attenuates the TLR-9 signalling pathway and is associated with phosphorylation of extracellular signal-related protein kinases [extracellular signal-regulated kinase (ERK), P38, c-Jun N-terminal kinase (JNK)] and the activation of nuclear factor (NF)-κB. The inhibitory mechanism involves recruitment of tyrosine phosphatase Src homology 2 domain-containing phosphatase-1 (SHP-1) to FcαRI. Furthermore, cell transfer studies with macrophages pretreated with MIP8a Fab showed that blockade of FcαRI signalling in macrophages prevents the development of TLR-9 signalling-accelerated nephritis. These results suggest a role of anti-FcαRI Fab as a negative regulator in controlling the magnitude of the innate immune response and a new type of anti-inflammatory drug for treatment of kidney disease.
Collapse
Affiliation(s)
- T Watanabe
- Department of Internal Medicine, Division of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee YJ, Choi DY, Choi IS, Han JY, Jeong HS, Han SB, Oh KW, Hong JT. Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 2011; 8:132. [PMID: 21982455 PMCID: PMC3207974 DOI: 10.1186/1742-2094-8-132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 10/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(p-hydroxyphenyl)-2-butenal in lipopolysaccharide (LPS)-stimulated astrocytes and microglial BV-2 cells. METHODS Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml) for 24 h, in the presence (1, 2, 5 μM) or absence of 2,4-bis(p-hydroxyphenyl)-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined using gel mobility shift assays. RESULTS We found that 2,4-bis(p-hydroxyphenyl)-2-butenal (1, 2, 5 μM) suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS (1 μg/ml)-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(p-hydroxyphenyl)-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(p-hydroxyphenyl)-2-butenal inhibited LPS-elevated Aβ42 levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3) siRNA and a pharmacological inhibitor showed that 2,4-bis(p-hydroxyphenyl)-2-butenal inhibits LPS-induced activation of STAT3. CONCLUSIONS These results indicate that 2,4-bis(p-hydroxyphenyl)-2-butenal inhibits neuroinflammatory reactions and amyloidogenesis through inhibition of NF-κB and STAT3 activation, and suggest that 2,4-bis(p-hydroxyphenyl)-2-butenal may be useful for the treatment of neuroinflammatory diseases like Alzheimer's disease.
Collapse
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts. PLoS One 2011; 6:e23482. [PMID: 21931601 PMCID: PMC3169535 DOI: 10.1371/journal.pone.0023482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/18/2011] [Indexed: 02/04/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (−91 bp to −84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the fibrogenic response.
Collapse
|
17
|
Dunne A, Marshall NA, Mills KHG. TLR based therapeutics. Curr Opin Pharmacol 2011; 11:404-11. [PMID: 21501972 DOI: 10.1016/j.coph.2011.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immune responses to infection. Binding of agonists to TLRs promotes maturation of antigen presenting cells, such as dendritic cells, which in turn directs the induction of adaptive immune responses. For this reason TLR agonists are being exploited as vaccine adjuvants for infectious disease or cancer and as therapeutics against tumors. However TLR agonists also promote inflammatory cytokine production and have a pathogenic role in many diseases with an inflammatory basis, including autoimmune diseases. Consequently, antibodies to TLRs and inhibitors of TLR signalling pathways have considerable potential as therapeutics for inflammatory disorders. Some have shown to be efficacious in pre-clinical models, and have now entered clinical trials.
Collapse
Affiliation(s)
- Aisling Dunne
- School of Biochemistry and Immunology, and Immunology Research Centre, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
18
|
Roh E, Lee HS, Kwak JA, Hong JT, Nam SY, Jung SH, Lee JY, Kim ND, Han SB, Kim Y. MD-2 as the Target of Nonlipid Chalcone in the Inhibition of Endotoxin LPS-Induced TLR4 Activity. J Infect Dis 2011; 203:1012-20. [DOI: 10.1093/infdis/jiq155] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Abstract
Our previous work has provided strong evidence that the proteasome is central to most of the genes induced in mouse macrophages in response to LPS stimulation. In the studies presented here, we evaluated the role of the macrophage proteasome in response to a second microbial product CpG DNA (unmethylated bacterial DNA). For these studies, we applied Affymetrix microarray analysis of RNA derived from murine macrophages stimulated with CpG DNA in the presence or absence of proteasome inhibitor, lactacystin. The results of these studies revealed that similar to LPS, most of those macrophage genes regulated by CpG DNA are also under the control of the proteasome at 4 h. In contrast to LPS stimulation, however, many of these genes were induced much later than 4 h, at 18 h, in response to CpG DNA. Lactacystin treatment of macrophages completely blocked the CpG DNA-induced gene expression of TNF-α and other genes involved in the production of inflammatory mediators. These data strongly support the conclusion that similar to LPS, the macrophage proteasome is a key regulator of CpG DNA-induced signaling pathways.
Collapse
|
20
|
Navarrete CM, Pérez M, de Vinuesa AG, Collado JA, Fiebich BL, Calzado MA, Muñoz E. Endogenous N-acyl-dopamines induce COX-2 expression in brain endothelial cells by stabilizing mRNA through a p38 dependent pathway. Biochem Pharmacol 2010; 79:1805-14. [PMID: 20206142 DOI: 10.1016/j.bcp.2010.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 01/31/2023]
Abstract
Cerebral microvascular endothelial cells play an active role in maintaining cerebral blood flow, microvascular tone and blood brain barrier (BBB) functions. Endogenous N-acyl-dopamines like N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA) have been recently identified as a new class of brain neurotransmitters sharing endocannabinoid and endovanilloid biological activities. Endocannabinoids are released in response to pathogenic insults and may play an important role in neuroprotection. In this study we demonstrate that NADA differentially regulates the release of PGE(2) and PGD(2) in the microvascular brain endothelial cell line, b.end5. We found that NADA activates a redox-sensitive p38 MAPK pathway that stabilizes COX-2 mRNA resulting in the accumulation of the COX-2 protein, which depends on the dopamine moiety of the molecule and that is independent of CB(1) and TRPV1 activation. In addition, NADA inhibits the expression of mPGES-1 and the release of PGE(2) and upregulates the expression of L-PGD synthase enhancing PGD(2) release. Hence, NADA and other molecules of the same family might be included in the group of lipid mediators that could prevent the BBB injury under inflammatory conditions and our findings provide new mechanistic insights into the anti-inflammatory activities of NADA in the central nervous system and its potential to design novel therapeutic strategies to manage neuroinflammatory diseases.
Collapse
Affiliation(s)
- Carmen M Navarrete
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba. Facultad de Medicina. Avda de Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Sakuma S, Sumi H, Kohda T, Arakawa Y, Fujimoto Y. Effects of Lipid Peroxidation-Derived Products on the Growth of Human Colorectal Cancer Cell Line HT-29. J Clin Biochem Nutr 2009; 45:171-7. [PMID: 19794925 PMCID: PMC2735629 DOI: 10.3164/jcbn.09-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/27/2009] [Indexed: 11/22/2022] Open
Abstract
Epidemiologic investigations indicate a close relationship between colorectal cancer and fat intake. However, to date the effects of lipid peroxidation-derived products that are formed from fat (especially free or esterified unsaturated fatty acids) on the initiation or progression of colorectal cancer have not been investigated extensively. Therefore, in the present study, we examined the effects of fatty acids, fatty acid hydroperoxides and aldehydes on the growth of human colorectal cancer cell line HT-29. At concentrations of 1 and 10 µM, linoleic, arachidonic and eicosapentaenoic acids, and 13-hydroperoxyoctadecadienoic and 15-hydroperoxyeicosapentaenoic acids had no significant effects on the growth of HT-29 cells. 4-Hydroxynonenal and 4-hydroxyhexenal had no significant effects on the growth of HT-29 cells up to 10 µM, whereas 4-oxononenal potently inhibited HT-29 cell growth (1–10 µM, 16–85% inhibition). Further experiments concerning DNA fragmentation, expression levels of Bax and Bcl-2 mRNA, expression levels of pro-caspase-3 and caspase-3 proteins, and activity of caspase-3 suggested that 4-oxononenal may increase the sensitivity of HT-29 cells to apoptosis through a decreased expression level of Bcl-2 and then increased formation of caspase-3 from pro-caspase-3.
Collapse
Affiliation(s)
- Satoru Sakuma
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.
Collapse
|
23
|
Park JE, Kim YI, Yi AK. Protein kinase D1 is essential for MyD88-dependent TLR signaling pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:6316-27. [PMID: 19414785 DOI: 10.4049/jimmunol.0804239] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinase D1 (PKD1) has been shown to be involved in certain MAPK activation and cytokine expression by several TLR ligands. However, the precise physiological role of PKD1 in individual signaling from TLRs has not been fully addressed. In this study, we provide evidence that PKD1 is being activated by TLR ligands, except the TLR3 ligand. PKD1 activation by TLR ligands is dependent on MyD88, IL-1R-associated kinase 4 and 1, but independent of TNF-alpha receptor-associated factor 6. PKD1-knockdown macrophages and bone marrow-derived dendritic cells revealed that PKD1 is indispensable for the MyD88-dependent ubiquitination of TNF-alpha receptor-associated factor 6; activation of TGF-beta-activated kinase 1, MAPKs, and transcription factors; and expression of proinflammatory genes induced by TLR ligands, but is not involved in expression of type I IFNs induced by TLR ligands and TRIF-dependent genes induced by TLR3 and TLR4 ligands. These results demonstrate that PKD1 is essential for MyD88-dependent proinflammatory immune responses.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Department of Pediatrics, Children's Foundation Research Center, Le Bonheur Children's Medical Center, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | |
Collapse
|
24
|
Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN, Vuopala KS, Harris KW, Selander KS. Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate 2009; 69:652-61. [PMID: 19152406 DOI: 10.1002/pros.20913] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Macrophage inhibitory cytokine-1 (MIC-1) belongs to the bone morphogenic protein/transforming growth factor-beta (BMP/TGF-beta) superfamily. Serum MIC-1 concentrations are elevated in patients with advanced prostate cancer. The effects of MIC-1 on prostate cancer bone metastases are unknown. METHODS In vitro effects of MIC-1 on osteoblast differentiation and activity were analyzed with alkaline phosphatase and mineralization assays; osteoclast numbers were counted microscopically. MIC-1 effects on TLR9 expression were studied with Western blotting. Human Du-145 prostate cancer cells were stably transfected with a cDNA encoding for mature MIC-1 or with an empty vector. The in vivo growth characteristics of the characterized cells were studied with the intra-tibial model of bone metastasis. Tumor associated bone changes were viewed with X-rays, histology, and histomorphometry. Bone formation was assayed by measuring serum PINP. RESULTS MIC-1 induced osteoblast differentiation and activity and osteoclast formation in vitro. These effects were independent of TLR9 expression, which was promoted by MIC-1. Both MIC-1 and control tumors induced mixed sclerotic/lytic bone lesions, but MIC-1 increased the osteolytic component of tumors. Osteoclast formation at the tumor-bone interface was significantly higher in the MIC-1 tumors, whereas bone formation was significantly higher in the control mice. At sacrifice, the mice bearing MIC-1 tumors were significantly lighter with significantly smaller tumors. CONCLUSIONS MIC-1 up-regulates TLR9 expression in various cells. MIC-1 stimulates both osteoblast and osteoclast differentiation in vitro, independently of TLR9. MIC-1 over-expressing prostate cancer cells that grow in bone induce osteoclast formation and cachexia.
Collapse
Affiliation(s)
- Savita Wakchoure
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
RNAi methodologies for the functional study of signaling molecules. PLoS One 2009; 4:e4559. [PMID: 19238203 PMCID: PMC2641016 DOI: 10.1371/journal.pone.0004559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 01/13/2009] [Indexed: 12/25/2022] Open
Abstract
RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi) platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of target genes and shows the potential of RNAi for use in functional studies of signaling molecules.
Collapse
|
26
|
Lin CB, Chen N, Scarpa R, Guan F, Babiarz-Magee L, Liebel F, Li WH, Kizoulis M, Shapiro S, Seiberg M. LIGR, a protease-activated receptor-2-derived peptide, enhances skin pigmentation without inducing inflammatory processes. Pigment Cell Melanoma Res 2008; 21:172-83. [PMID: 18426410 DOI: 10.1111/j.1755-148x.2008.00441.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.
Collapse
Affiliation(s)
- Connie B Lin
- The Johnson & Johnson Skin Research Center, Consumer Product Worldwide, A division of Johnson & Johnson Consumer Companies, Inc., 199 Grandview Rd., Skillman, NJ 08558, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ilvesaro JM, Merrell MA, Li L, Wakchoure S, Graves D, Brooks S, Rahko E, Jukkola-Vuorinen A, Vuopala KS, Harris KW, Selander KS. Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Mol Cancer Res 2008; 6:1534-43. [PMID: 18922969 DOI: 10.1158/1541-7786.mcr-07-2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toll-like receptor 9 (TLR9) belongs to the innate immune system and recognizes microbial and vertebrate DNA. We showed previously that treatment with the TLR9-agonistic ODN M362 (a CpG sequence containing oligonucleotide) induces matrix metalloproteinase-13-mediated invasion in TLR9-expressing human cancer cell lines. Here, we further characterized the role of the TLR9 pathway in this process. We show that CpG oligonucleotides induce invasion in macrophages from wild-type C57/B6 and MyD88 knockout mice and in human MDA-MB-231 breast cancer cells lacking MyD88 expression. This effect was significantly inhibited in macrophages from TLR9 knockout mice and in human MDA-MB-231 breast cancer cells stably expressing TLR9 small interfering RNA or dominant-negative tumor necrosis factor receptor-associated factor 6 (TRAF6). Sequence modifications to the CpG oligonucleotides that targeted the stem loop and other secondary structures were shown to influence the invasion-inducing effect in MDA-MB-231 cells. In contrast, methylation of the cytosine residues of the parent CpG oligonucleotide did not affect the TLR9-mediated invasion compared with the unmethylated parent CpG oligonucleotide. Finally, expression of TLR9 was studied in clinical breast cancer samples and normal breast epithelium with immunohistochemistry. TLR9 staining localized in epithelial cells in both cancer and normal samples. The mean TLR9 staining intensity was significantly increased in the breast cancer cells compared with normal breast epithelial cells. In conclusion, our results suggest that TLR9 expression is increased in breast cancer and CpG oligonucleotide-induced cellular invasion is mediated via TLR9 and TRAF6, independent of MyD88. Further, our findings suggest that the structure and/or stability of DNA may influence the induction of TLR9-mediated invasion in breast cancer.
Collapse
Affiliation(s)
- Joanna M Ilvesaro
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Judge A, MacLachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 2008; 19:111-24. [PMID: 18230025 DOI: 10.1089/hum.2007.179] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many types of nucleic acid, including canonical small interfering RNA (siRNA) duplexes, are potent activators of the mammalian innate immune system. Synthetic siRNA duplexes can induce high levels of inflammatory cytokines and type I interferons, in particular interferon-alpha, after systemic administration in mammals and in primary human blood cell cultures. These responses are greatly potentiated by the use of delivery vehicles that facilitate cellular uptake of the siRNA. Although the immunomodulatory effects of nucleic acids may be harnessed therapeutically, for example, in oncology and allergy applications, in many cases immune activation represents a significant undesirable side effect due to the toxicities associated with excessive cytokine release and associated inflammatory syndromes. The potential for siRNA-based drugs to be rendered immunogenic is also a cause for concern because the establishment of an antibody response may severely compromise both safety and efficacy. Clearly, there are significant implications both for the development of siRNA-based drugs and in the interpretation of gene-silencing effects elicited by siRNA. This review provides the background information required to anticipate, manage, and abrogate the immunological effects of siRNA and will assist the reader in the successful in vivo application of siRNA-based drugs.
Collapse
Affiliation(s)
- Adam Judge
- Protiva Biotherapeutics, Burnaby, British Columbia, Canada V5G 4Y1
| | | |
Collapse
|
29
|
Park JE, Kim YI, Yi AK. Protein kinase D1: a new component in TLR9 signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:2044-55. [PMID: 18641342 DOI: 10.4049/jimmunol.181.3.2044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase D1 (PKD1) is expressed ubiquitously and regulates diverse cellular processes such as oxidative stress, gene expression, cell survival, and vesicle trafficking. However, the presence and function of PKD1 in monocytic cells are currently unknown. In this study, we provide evidence that PKD1 is involved in TLR9 signaling in macrophages. Class B-type CpG DNA (CpG-B DNA) induced activation of PKD1 via a pathway that is dependent on endosomal pH, TLR9, MyD88, and IL-1R-associated kinase 1 in macrophages. Upon CpG-B DNA stimulation, PKD1 interacted with the TLR9/MyD88/IL-1R-associated kinase/TNFR-associated factor 6 complex. Knockdown of PKD1 revealed that PKD1 is required for activation of NF-kappaB and MAPKs, and subsequent expression of cytokines in response to CpG-B DNA. Our findings identify PKD1 as a key signaling modulator in TLR9-mediated macrophage activation.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | |
Collapse
|
30
|
Lee HJ, Jeong HS, Kim DJ, Noh YH, Yuk DY, Hong JT. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch Pharm Res 2008; 31:342-9. [DOI: 10.1007/s12272-001-1162-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 01/22/2023]
|
31
|
Kim YI, Park JE, Martinez-Hernandez A, Yi AK. CpG DNA prevents liver injury and shock-mediated death by modulating expression of interleukin-1 receptor-associated kinases. J Biol Chem 2008; 283:15258-70. [PMID: 18378686 DOI: 10.1074/jbc.m709549200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) produced by macrophages in response to CpG DNA induces severe liver injury and subsequent death of D-galactosamine (D-GalN)-sensitized mice. In the present study we demonstrate that mice pre-exposed to CpG DNA are resistant to liver injury and death induced by CpG DNA/D-GalN. CpG DNA/D-GalN failed to induce TNF-alpha production and hepatocyte apoptosis in the mice pre-exposed to CpG DNA. In addition, macrophages isolated from the CpG DNA-pretreated mice showed suppressed activation of MAPKs and NF-kappaB and production of TNF-alpha in response to CpG DNA, indicating that the CpG DNA-mediated protection of CpG DNA/D-GalN-challenged mice is due to the hyporesponsiveness of macrophages to CpG DNA. CpG DNA pretreatment in vivo inhibited expression of interleukin-1 receptor-associated kinase (IRAK)-1 while inducing IRAK-M expression in macrophages. Suppressed expression of IRAK-1 was responsible for the macrophage hyporesponsiveness to CpG DNA. However, increased expression of IRAK-M was not sufficient to render macrophages hyporesponsive to CpG DNA but was required for induction of the optimal level of macrophage hyporesponsiveness. Taken together, reduced expression of IRAK-1 and increased expression of IRAK-M after CpG DNA pretreatment resulted in the hyporesponsiveness of macrophages that leads to the protection of mice from hepatic injury and death caused by CpG DNA/D-GalN.
Collapse
Affiliation(s)
- Young-In Kim
- The Children's Foundation Research Center at Le Bonheur Children's Medical Center, and Department of Pediatrics, University of Tennessee Health Science Center, 50 N. Dunlap Street, Memphis, TN 38103, USA
| | | | | | | |
Collapse
|
32
|
Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, Tomai M, Krieg AM, Ghanekar S, Baum LL, Landay AL. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol 2008; 250:75-84. [PMID: 18334250 DOI: 10.1016/j.cellimm.2008.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/11/2008] [Accepted: 01/21/2008] [Indexed: 11/25/2022]
Abstract
We compared TLR responsiveness in PBMC from HIV-1-infected and uninfected individuals using the TLR agonists: TLR7 (3M-001), TLR8 (3M-002), and TLR7/8 (3M-011). Activation and maturation of plasmacytoid dendritic cells (pDC) were measured by evaluating CD86, CD40, and CD83 expression and myeloid dendritic cell (mDC) activation was measured by evaluating CD40 expression. All agonists tested induced activation and maturation of pDC in PBMC cultures of cells from HIV+ and HIV- individuals. The TLR7 agonist induced significantly less pDC maturation in cells from HIV+ individuals. Quantitative assessment of secreted IFN-alpha and pro-inflammatory cytokines at the single cell level showed that pDC from HIV+ individuals stimulated with TLR7 and TLR7/8 induced IFN-alpha. TLR8 and TLR7/8 agonists induced IL-12 and COX-2 expression in mDC from HIV+ and HIV- individuals. Understanding pDC and mDC activation and maturation in HIV-1 infection could lead to more rational development of immunotherapeutic strategies to stimulate the adaptive immune response to HIV-1.
Collapse
Affiliation(s)
- Jeffrey A Martinson
- Department of Immunology and Microbiology, Rush University Medical Center, Cohn Research Building, 1735 West Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang L, Zhang J, Zhang R, Xue F, Sun Y, Han X. Limitation in use of luciferase reporter genes for 3'-untranslated region analysis. Biotechnol Lett 2007; 29:1691-6. [PMID: 17611725 DOI: 10.1007/s10529-007-9448-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 01/28/2023]
Abstract
Luciferase reporter genes are widely used for the functional characterization of regulatory elements in 3'-untranslated region (3'-UTR). Using a transient expression assay system with pancreatic cell lines, we demonstrated that luciferase reporter gene constructs show not only the elements with special sequences in 3'-UTR that can affect luciferase activity, but also elements containing random sequences that were ligated into the same site. The extent of the decrease in luciferase activity was dependent on the length of the DNA fragments. Our findings strongly suggested a need to re-examine the 3'-UTR characterizations of many eukaryotic genes which have been studied to date with luciferase reporter genes.
Collapse
Affiliation(s)
- Lintao Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Hanzhong Rd. #140, Nanjing, 210029, P.R. China
| | | | | | | | | | | |
Collapse
|
34
|
Lee JW, Lee MS, Kim TH, Lee HJ, Hong SS, Noh YH, Hwang BY, Ro JS, Hong JT. Inhibitory effect of inflexinol on nitric oxide generation and iNOS expression via inhibition of NF-kappaB activation. Mediators Inflamm 2007; 2007:93148. [PMID: 17541474 PMCID: PMC1874678 DOI: 10.1155/2007/93148] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/24/2007] [Indexed: 01/25/2023] Open
Abstract
Inflexinol, an ent-kaurane diterpenoid, was isolated from the leaves of Isodon excisus. Many diterpenoids isolated from the genus Isodon (Labiatae) have antitumor and antiinflammatory activities. We investigated the antiinflammatory effect of inflexinol in RAW 264.7 cells and astrocytes. As a result, we found that inflexinol (1, 5, 10 μM) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO) in LPS-stimulated RAW 264.7 cells and astrocytes. Consistent with the inhibitory effect on iNOS and COX-2 expression, inflexinol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus. These results suggest that inflexinol inhibits iNOS and COX-2 expression through inhibition of NF-κB activation, thereby inhibits generation of inflammatory mediators in RAW 264.7 cells and astrocytes, and may be useful for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jae Woong Lee
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | - Moon Soon Lee
- National Institute of Environmental Research, Kyungseo-dong, Seo-gu, Incheon 404-780, South Korea
| | - Tae Hun Kim
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | - Hwa Jeong Lee
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | - Seong Su Hong
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | - Young Hee Noh
- Department of Medical Beauty, Konyang University, 26 Nae-dong, Nonsan, Chungnam 320-711, South Korea
| | - Bang Yeon Hwang
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | - Jai Seup Ro
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
| | - Jin Tae Hong
- College of Pharmacy and CBITRC, Chungbuk National University 12, Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, South Korea
- *Jin Tae Hong:
| |
Collapse
|
35
|
Ryan EP, Malboeuf CM, Bernard M, Rose RC, Phipps RP. Cyclooxygenase-2 Inhibition Attenuates Antibody Responses against Human Papillomavirus-Like Particles. THE JOURNAL OF IMMUNOLOGY 2006; 177:7811-9. [PMID: 17114452 DOI: 10.4049/jimmunol.177.11.7811] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vaccination to generate protective humoral immunity against infectious disease is becoming increasingly important due to emerging strains of virus, poorly immunogenic vaccines, and the threat of bioterrorism. We demonstrate that cyclooxygenase-2 (Cox-2) is crucial for optimal Ab responses to a model vaccine, human papillomavirus type 16 virus-like particles (HPV 16 VLPs). Cox-2-deficient mice produce 70% less IgG, 50% fewer Ab-secreting cells, and 10-fold less neutralizing Ab to HPV 16 VLP vaccination compared with wild-type mice. The reduction in Ab production by Cox-2(-/-) mice was partially due to a decrease in class switching. SC-58125, a structural analog of the Cox-2-selective inhibitor Celebrex reduced by approximately 70% human memory B cell differentiation to HPV 16 VLP IgG-secreting cells. The widespread use of nonsteroidal anti-inflammatory drugs and Cox-2-selective inhibitory drugs may therefore reduce vaccine efficacy, especially when vaccines are poorly immunogenic or the target population is poorly responsive to immunization.
Collapse
Affiliation(s)
- Elizabeth P Ryan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
36
|
McCluskie MJ, Krieg AM. Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol 2006; 311:155-78. [PMID: 17048708 DOI: 10.1007/3-540-32636-7_6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune system-with its remarkable ability to generate antigen-specific antibodies and T lymphocytes against pathogens never before "seen" by an organism-is one of the marvels of evolution. However, to generate these responses, the adaptive immune system requires activation by the innate immune system. Toll-like receptors (TLRs) are perhaps the best-understood family of innate immune receptors for detecting infections and stimulating adaptive immune responses. TLR9 appears to have evolved to recognize infections by a subtle structural difference between eukaryotic and prokaryotic/viral DNA; only the former frequently methylates CpG dinucleotides. Used as vaccine adjuvants, synthetic oligodeoxynucleotide (ODN) ligands for TLR9--CpG ODN--greatly enhance the speed and strength of the immune responses to vaccination.
Collapse
Affiliation(s)
- M J McCluskie
- Coley Pharmaceutical Group, Inc., 93 Worcester Street, Suite 101, Wellesley, MA 02481, USA
| | | |
Collapse
|
37
|
Osawa Y, Iho S, Takauji R, Takatsuka H, Yamamoto S, Takahashi T, Horiguchi S, Urasaki Y, Matsuki T, Fujieda S. Collaborative Action of NF-κB and p38 MAPK Is Involved in CpG DNA-Induced IFN-α and Chemokine Production in Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:4841-52. [PMID: 16982926 DOI: 10.4049/jimmunol.177.7.4841] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CpG DNA induces plasmacytoid dendritic cells (pDC) to produce type I IFN and chemokines. However, it has not been fully elucidated how the TLR9 signaling pathway is linked to these gene expressions. We examined the mechanisms involving the TLR9 and type I IFN signaling pathways, in relation to CpG DNA-induced IFN-alpha, IFN regulatory factor (IRF)-7, and chemokines CXCL10 and CCL3 in human pDC. In pDC, NF-kappaB subunits p65 and p50 were constitutively activated. pDC also constitutively expressed IRF-7 and CCL3, and the gene expressions seemed to be regulated by NF-kappaB. CpG DNA enhanced the NF-kappaB p65/p50 activity, which collaborated with p38 MAPK to up-regulate the expressions of IRF-7, CXCL10, and CCL3 in a manner independent of type I IFN signaling. We then examined the pathway through which IFN-alpha is expressed. Type I IFN induced the expression of IRF-7, but not of IFN-alpha, in a NF-kappaB-independent way. CpG DNA enabled the type I IFN-treated pDC to express IFN-alpha in the presence of NF-kappaB/p38 MAPK inhibitor, and chloroquine abrogated this effect. With CpG DNA, IRF-7, both constitutively and newly expressed, moved to the nuclei independently of NF-kappaB/p38 MAPK. These findings suggest that, in CpG DNA-stimulated human pDC, the induction of IRF-7, CXCL10, and CCL3 is mediated by the NF-kappaB/p38 MAPK pathway, and that IRF-7 is activated upstream of the activation of NF-kappaB/p38 MAPK in chloroquine-sensitive regulatory machinery, thereby leading to the expression of IFN-alpha.
Collapse
Affiliation(s)
- Youko Osawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Harris TH, Cooney NM, Mansfield JM, Paulnock DM. Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA. Infect Immun 2006; 74:4530-7. [PMID: 16861639 PMCID: PMC1539588 DOI: 10.1128/iai.01938-05] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of a type I cytokine response is important for early resistance to infection with Trypanosoma brucei rhodesiense, the extracellular protozoan parasite that causes African sleeping sickness. The work presented here demonstrates that trypanosome DNA activates macrophages to produce factors that may contribute to this response. Initial results demonstrated that T. brucei rhodesiense DNA was present in the plasma of C57BL/6 and C57BL/6-scid mice following infection. Subsequently, the effect of trypanosome DNA on macrophages was investigated; parasite DNA was found to be less stimulatory than Escherichia coli DNA but more stimulatory than murine DNA, as predicted by the CG dinucleotide content. Trypanosome DNA stimulated the induction of a signal transduction cascade associated with Toll-like receptor signaling in RAW 264.7 macrophage cells. The signaling cascade led to expression of mRNAs, including interleukin-12 (IL-12) p40, IL-6, IL-10, cyclooxygenase-2, and beta interferon. The treatment of RAW 264.7 cells and bone marrow-derived macrophages with trypanosome DNA induced the production of NO, prostaglandin E2, and the cytokines IL-6, IL-10, IL-12, and tumor necrosis factor alpha. In all cases, DNase I treatment of T. brucei rhodesisense DNA abolished the activation. These results suggest that T. brucei rhodesiense DNA serves as a ligand for innate immune cells and may play an important contributory role in early stimulation of the host immune response during trypanosomiasis.
Collapse
Affiliation(s)
- Tajie H Harris
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School of Medicine and Public Health, 1300 University Avenue, Madison, Wisconsin 53706-1532, USA
| | | | | | | |
Collapse
|
39
|
Abstract
In the decade since the discovery that mouse B cells respond to certain unmethylated CpG dinucleotides in bacterial DNA, a specific receptor for these 'CpG motifs' has been identified, Toll-like receptor 9 (TLR9), and a new approach to immunotherapy has moved into the clinic based on the use of synthetic oligodeoxynucleotides (ODN) as TLR9 agonists. This review highlights the current understanding of the mechanism of action of these CpG ODN, and provides an overview of the preclinical data and early human clinical trial results using these drugs to improve vaccines and treat cancer, infectious disease and allergy/asthma.
Collapse
Affiliation(s)
- Arthur M Krieg
- Coley Pharmaceutical Group, Inc., 93 Worcester Street, Suite 101, Wellesley, Massachusetts 02481, USA.
| |
Collapse
|
40
|
Yi AK, Yoon H, Park JE, Kim BS, Kim HJ, Martinez-Hernandez A. CpG DNA-mediated Induction of Acute Liver Injury in d-Galactosamine-sensitized Mice. J Biol Chem 2006; 281:15001-12. [PMID: 16554296 DOI: 10.1074/jbc.m601337200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Unmethylated CpG motifs present in bacterial DNA (CpG DNA) induce innate inflammatory responses, including rapid induction of proinflammatory cytokines. Although innate inflammatory responses induced by CpG DNA and other pathogen-associated molecular patterns are essential for the eradication of infectious microorganisms, excessive activation of innate immunity is detrimental to the host. In this study, we demonstrate that CpG DNA, but not control non-CpG DNA, induces a fulminant liver failure with subsequent shock-mediated death by promoting massive apoptotic death of hepatocytes in D-galactosamine (D-GalN)-sensitized mice. Inhibition of mitochondrial membrane permeability transition pore opening or caspase 9 activity in vivo protects D-GalN-sensitized mice from the CpG DNA-mediated liver injury and death. CpG DNA enhanced production of proinflammatory cytokines in D-GalN-sensitized mice via a TLR9/MyD88-dependent pathway. In addition, CpG DNA failed to induce massive hepatocyte apoptosis and subsequent fulminant liver failure and death in D-GalN-sensitized mice that lack TLR9, MyD88, tumor necrosis factor (TNF)-alpha, or TNF receptor I but not interleukin-6 or -12p40. Taken together, our results provide direct evidence that CpG DNA induces a severe acute liver injury and shock-mediated death through the mitochondrial apoptotic pathway-dependent death of hepatocytes caused by an enhanced production of TNF-alpha through a TLR9/MyD88 signaling pathway in D-GalN-sensitized mice.
Collapse
Affiliation(s)
- Ae-Kyung Yi
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and the Department of Pediatrics, University of Tennessee Health Science Center, 50 N. Dunlap Street, Memphis, TN 38103, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Derbigny WA, Kerr MS, Johnson RM. Pattern recognition molecules activated by Chlamydia muridarum infection of cloned murine oviduct epithelial cell lines. THE JOURNAL OF IMMUNOLOGY 2005; 175:6065-75. [PMID: 16237102 DOI: 10.4049/jimmunol.175.9.6065] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the United States and a major cause of female infertility due to infection-induced Fallopian tube scarring. Epithelial cells are likely central to host defense and pathophysiology as they are the principal cell type productively infected by C. trachomatis. We generated cloned murine oviduct epithelial cell lines without viral or chemical transformation to investigate the role of the TLRs and cytosolic nucleotide binding site/leucine-rich repeat proteins Nod1 and Nod2 in epithelial responses to Chlamydia muridarum infection. RT-PCR assays detected mRNA for TLR2 (TLRs 1 and 6), TLR3, and TLR5. No mRNA was detected for TLRs 4, 7, 8, and 9. Messenger RNAs for Nod1 and Nod2 were present in the epithelial cell lines. Oviduct epithelial cell lines infected with C. muridarum or exposed to the TLR2 agonist peptidoglycan secreted representative acute phase cytokines IL-6 and GM-CSF in a MyD88-dependent fashion. Infected epithelial cell lines secreted the immunomodulatory cytokine IFN-beta, even though C. muridarum does not have a clear pathogen-associated molecular pattern (PAMP) for triggering IFN-beta transcription. The oviduct epithelial lines did not secrete IFN-beta in response to the TLR2 agonist peptidoglycan or to the TLR3 agonist poly(I:C). Our data identify TLR2 as the principal TLR responsible for secretion of acute phase cytokines by C. muridarum-infected oviduct epithelial cell lines. The pattern recognition molecule responsible for infection-induced IFN-beta secretion by oviduct epithelial cells remains to be determined.
Collapse
Affiliation(s)
- Wilbert A Derbigny
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
42
|
Abujamra AL, Spanjaard RA, Akinsheye I, Zhao X, Faller DV, Ghosh SK. Leukemia virus long terminal repeat activates NFkappaB pathway by a TLR3-dependent mechanism. Virology 2005; 345:390-403. [PMID: 16289658 PMCID: PMC3808874 DOI: 10.1016/j.virol.2005.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/30/2005] [Accepted: 10/04/2005] [Indexed: 01/04/2023]
Abstract
The long terminal repeat (LTR) region of leukemia viruses plays a critical role in tissue tropism and pathogenic potential of the viruses. We have previously reported that U3-LTR from Moloney murine and feline leukemia viruses (Mo-MuLV and FeLV) upregulates specific cellular genes in trans in an integration-independent way. The U3-LTR region necessary for this action does not encode a protein but instead makes a specific RNA transcript. Because several cellular genes transactivated by the U3-LTR can also be activated by NFkappaB, and because the antiapoptotic and growth promoting activities of NFkappaB have been implicated in leukemogenesis, we investigated whether FeLV U3-LTR can activate NFkappaB signaling. Here, we demonstrate that FeLV U3-LTR indeed upregulates the NFkappaB signaling pathway via activation of Ras-Raf-IkappaB kinase (IKK) and degradation of IkappaB. LTR-mediated transcriptional activation of genes did not require new protein synthesis suggesting an active role of the LTR transcript in the process. Using Toll-like receptor (TLR) deficient HEK293 cells and PKR(-/-) mouse embryo fibroblasts, we further demonstrate that although dsRNA-activated protein kinase R (PKR) is not necessary, TLR3 is required for the activation of NFkappaB by the LTR. Our study thus demonstrates involvement of a TLR3-dependent but PKR-independent dsRNA-mediated signaling pathway for NFkappaB activation and thus provides a new mechanistic explanation of LTR-mediated cellular gene transactivation.
Collapse
Affiliation(s)
- Ana L. Abujamra
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Remco A. Spanjaard
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Departments of Otolaryngology and Biochemistry, Boston University School of Medicine, Boston, MA
| | - Idowu Akinsheye
- Cancer Research Center, Boston University School of Medicine, Boston, MA
| | - Xiansi Zhao
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Departments of Otolaryngology and Biochemistry, Boston University School of Medicine, Boston, MA
| | - Douglas V. Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Sajal K. Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, MA
- Address for Correspondence: Sajal K. Ghosh, Ph.D., Cancer Research Center, Boston University School of Medicine, 715 Albany Street, R908, Boston, MA 02118., Phone: (617) 638-5615, Fax: (617) 638-5609.,
| |
Collapse
|
43
|
Leung CH, Grill SP, Lam W, Han QB, Sun HD, Cheng YC. Novel mechanism of inhibition of nuclear factor-kappa B DNA-binding activity by diterpenoids isolated from Isodon rubescens. Mol Pharmacol 2005; 68:286-97. [PMID: 15872117 DOI: 10.1124/mol.105.012765] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of specific inhibitors that can block nuclear factor-kappaB (NF-kappaB) activation is an approach for the treatment of cancer, autoimmune, and inflammatory diseases. Several diterpenoids, oridonin, ponicidin, xindongnin A, and xindongnin B were isolated from the herb Isodon rubescens. These compounds were found to be potent inhibitors of NF-kappaB transcription activity and the expression of its downstream targets, cyclooxygenase-2 and inducible nitric-oxide synthase. The mechanisms of action of the diterpenoids against NF-kappaB are similar, but significant differences were also identified. All of the diterpenoids directly interfere with the DNA-binding activity of NF-kappaB to its response DNA sequence. Oridonin and ponicidin have an additional impact on the translocation of NF-kappaB from the cytoplasm to nuclei without affecting IkappaB-alpha phosphorylation and degradation. The effect of these compounds on the interaction of NF-kappaB with consensus DNA sequences is unique. Different inhibitory effects were observed when NF-kappaB bound to various DNA sequences. Both p65/p65 and p50/p50 homodimers, as well as p65/p50 heterodimer association with their responsive DNA, were inhibited. Kinetic studies on NF-kappaB-DNA interaction indicate that the diterpenoids decrease the B(max app) but have no effect on K(d app). This suggests that this class of compounds interacts with both p65 and p50 subunits at a site other than the DNA binding site and subsequently modulates the binding affinity of the transcription factor toward DNA with different NF-kappaB binding sequences. The diterpenoid structure could therefore serve as a scaffold for the development of more potent and selective NF-kappaB inhibitors that target regulated gene transcription.
Collapse
Affiliation(s)
- Chung-Hang Leung
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | | | | | |
Collapse
|
44
|
Frungieri MB, Albrecht M, Raemsch R, Mayerhofer A. The action of the mast cell product tryptase on cyclooxygenase-2 (COX2) and subsequent fibroblast proliferation involves activation of the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Cell Signal 2005; 17:525-33. [PMID: 15601629 DOI: 10.1016/j.cellsig.2004.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 12/28/2022]
Abstract
The mast cell product tryptase, via protease-activated receptor 2 (PAR2), induces cyclooxygenase-2 (COX2) and 15-deoxy-prostaglandin J2 (15d-PGJ2) synthesis. 15d-PGJ2, through the nuclear peroxisome proliferator activated receptor gamma (PPARgamma), subsequently causes fibroblast proliferation. In this study we attempted to determine initial events of the tryptase/PAR2 signaling pathway leading to COX2 induction and fibroblast proliferation. In human fibroblasts (HFFF2), cDNA array, RT-PCR and Western blotting studies demonstrated that tryptase, but not 15d-PGJ2, up-regulates c-jun, c-fos and COX2 expression, and phosphorylates the extracellular signal-regulated kinase isoforms 1 and 2 (erk1/2). Furthermore, tryptase effects on erk1/2, c-jun, c-fos, COX2 and cell proliferation were prevented by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK). Other kinases [P38, stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JUNK), erk5], intracellular Ca(2+) or cAMP were not affected by tryptase/PAR2. Our study identifies crucial intracellular events leading to induction of COX2 and fibroblast proliferation, i.e. a cornerstone of fibrosis.
Collapse
Affiliation(s)
- Mónica B Frungieri
- Anatomical Institute, Ludwig Maximilians University, D-80802 Munich, Germany.
| | | | | | | |
Collapse
|
45
|
Chen BC, Chang YS, Kang JC, Hsu MJ, Sheu JR, Chen TL, Teng CM, Lin CH. Peptidoglycan Induces Nuclear Factor-κB Activation and Cyclooxygenase-2 Expression via Ras, Raf-1, and ERK in RAW 264.7 Macrophages. J Biol Chem 2004; 279:20889-97. [PMID: 15007072 DOI: 10.1074/jbc.m311279200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression caused by peptidoglycan (PGN), a cell wall component of the Gram-positive bacterium Staphylococcus aureus, in RAW 264.7 macrophages. PGN caused dose- and time-dependent increases in COX-2 expression, which was attenuated by a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), and an MEK inhibitor (PD 098059). Treatment of RAW 264.7 macrophages with PGN caused time-dependent activations of Ras, Raf-1, and ERK. The PGN-induced increase in Ras activity was inhibited by manumycin A. Raf-1 phosphorylation at Ser-338 by PGN was inhibited by manumycin A and GW 5074. The PGN-induced increase in ERK activity was inhibited by manumycin A, GW 5074, and PD 098059. Stimulation of cells with PGN activated IkappaB kinase alpha/beta (IKKalpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, and kappaB-luciferase activity. Treatment of macrophages with an NF-kappaB inhibitor (pyrrolidine dithiocarbamate), an IkappaBalpha phosphorylation inhibitor (Bay 117082), and IkappaB protease inhibitors (l-1-tosylamido-2-phenylethyl chloromethyl ketone and calpain inhibitor I) all inhibited PGN-induced COX-2 expression. The PGN-mediated increase in the activities of IKKalpha/beta and kappaB-luciferase were also inhibited by the Ras dominant negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Further studies revealed that PGN induced the recruitment of p85alpha and Ras to Toll-like receptor 2 in a time-dependent manner. Our data demonstrate for the first time that PGN activates the Ras/Raf-1/ERK pathway, which in turn initiates IKKalpha/beta and NF-kappaB activation, and ultimately induces COX-2 expression in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Stovall SH, Yi AK, Meals EA, Talati AJ, Godambe SA, English BK. Role of vav1- and src-related tyrosine kinases in macrophage activation by CpG DNA. J Biol Chem 2004; 279:13809-16. [PMID: 14749335 DOI: 10.1074/jbc.m311434200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage activation by CpG DNA requires toll-like receptor 9 and the adaptor protein MyD88. Gram-negative bacterial lipopolysaccharide also activates macrophages via a toll-like receptor pathway (TLR-4), but we and others have reported that lipopolysaccharide also stimulates tyrosine phosphorylation in macrophages. Herein we report that exposure of RAW 264.7 murine macrophages to CpG DNA (but not non-CpG DNA) provoked the rapid tyrosine phosphorylation of vav1. PP1, a selective inhibitor of src-related tyrosine kinases, blocked both the CpG DNA-mediated tyrosine phosphorylation of vav1 and the CpG DNA-mediated up-regulation of macrophage tumor necrosis factor secretion and inducible nitric-oxide synthase protein accumulation. Furthermore, we found that the inducible expression of any of three dominant interfering mutants of vav1 (a truncated protein, vavC; a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and a form with an in-frame deletion of six amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt) consistently inhibited CpG DNA-mediated up-regulation of tumor necrosis factor secretion and inducible nitric-oxide synthase protein accumulation in RAW-TT10 macrophages. Finally, we determined that CpG DNA-mediated up-regulation of NF-kappaB activity (but not mitogen-activated protein kinase activation) was inhibited by preincubation with PP1 or by expression of the truncated vavC mutant. Taken together, our results indicate that the tyrosine phosphorylation of vav1 by a src-related tyrosine kinase or kinases plays an important role in the macrophage response to CpG DNA.
Collapse
Affiliation(s)
- Stephanie H Stovall
- Children's Foundation Research Center at Le Bonheur Children's Medical Center, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | | | | | | | |
Collapse
|