1
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
2
|
The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022; 27:molecules27196234. [PMID: 36234768 PMCID: PMC9573598 DOI: 10.3390/molecules27196234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last two decades, there has been an increasing awareness of the role of eicosanoids in the development and progression of several types of cancer, including breast, prostate, lung, and colorectal cancers. Several processes involved in cancer development, such as cell growth, migration, and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overexpression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival, and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth, and metastasis.
Collapse
|
3
|
Tanaka K, Adachi H, Akasaka H, Tamaoki J, Fuse Y, Kobayashi M, Kitazawa T, Teraoka H. Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated pre-cardiac edema in larval zebrafish. J Vet Med Sci 2021; 83:1050-1058. [PMID: 34024870 PMCID: PMC8349820 DOI: 10.1292/jvms.21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We reported the involvement of oxidative stress and prostaglandins including thromboxane and prostacyclin in pre-cardiac edema (early edema) caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While the involvement of oxidative stress in TCDD-induced toxicity has been frequently reported, the mechanism of its action is still unclear. In the present study, oxidative stress inducers including paraquat, hydrogen peroxide (H2O2) and rotenone augmented early edema (edema) induced by a low concentration of TCDD (0.1 ppb) at 55 hr post fertilization (hpf), while each of them alone did not cause edema. Edema caused by TCDD plus oxidative stress inducers was almost abolished by antioxidants, an antagonist for thromboxane receptor (ICI-192,605) and an agonist for prostacyclin receptor (beraprost), suggesting that the site of action of these inducers was in the regular signaling pathway after activation of aryl hydrocarbon receptor type 2 (AHR2) by TCDD. Oxidative stress inducers also enhanced edema caused by an agonist for the thromboxane receptor (U46619), and the enhancement was also inhibited by antioxidants. Sulforaphane and auranofin, activators of Nrf2 that is a master regulator of anti-oxidative response, did not affect U46619-evoked edema but almost abolished TCDD-induced edema and potentiation by paraquat in both TCDD- and U46619-induced edema. Taken together, the results suggest that oxidative stress augments pre-cardiac edema caused by TCDD via activation of thromboxane receptor-mediated signaling in developing zebrafish. As paraquat and other oxidative stress inducers used also are environmental pollutants, interaction between dioxin-like compounds and exogenous source of oxidative stress should also be considered.
Collapse
Affiliation(s)
- Katsuki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hironobu Akasaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
4
|
Figueroa EG, Gonzaléz-Candia A, Villanueva CA, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Beneficial effects of melatonin on prostanoids pathways in pulmonary hypertensive neonates. Vascul Pharmacol 2021; 138:106853. [PMID: 33766627 DOI: 10.1016/j.vph.2021.106853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023]
Abstract
Pulmonary arterial hypertension of the newborn (PAHN) is a syndrome caused by chronic hypoxia, characterized by decreased vasodilator function, a marked vasoconstrictor activity, proliferation of smooth muscle cells (SMC) and thickening of the extracellular matrix in the pulmonary circulation, among other characteristics. Prostaglandins are derived from the arachidonic acid (AA) metabolism and are important regulators of pulmonary vascular tone. Since hypoxia induces oxidative stress and has been related to PAHN, a postnatal treatment with melatonin has been proposed due to its antioxidant properties. Here, we determined the effects of melatonin on pulmonary vascular homeostasis given by prostanoids. Ten PAHN newborn lambs were divided in two groups and treated either with vehicle or melatonin. After 1 week of treatment, we assessed pulmonary vascular prostanoids function and expression by wire myography, RT-PCR, Western Blot and immunohistochemistry. Melatonin improved in vivo and ex vivo pulmonary vasodilation. This was associated with an increased function and expression of vasodilator prostanoids at the expense of vasoconstrictor prostanoids. Our study demonstrates for the first time that melatonin may enhance the vasodilator prostanoid pathway in PAHN.
Collapse
Affiliation(s)
- Esteban G Figueroa
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Alejandro Gonzaléz-Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile; Institute of Health Sciences, University of O'Higgins, Rancagua, Chile
| | - Cristian A Villanueva
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Germán Ebensperger
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Roberto V Reyes
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Aníbal J Llanos
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile
| | - Emilio A Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile; Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile.
| |
Collapse
|
5
|
Wilcox CS, Wang C, Wang D. Endothelin-1-Induced Microvascular ROS and Contractility in Angiotensin-II-Infused Mice Depend on COX and TP Receptors. Antioxidants (Basel) 2019; 8:antiox8060193. [PMID: 31234522 PMCID: PMC6616505 DOI: 10.3390/antiox8060193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/16/2023] Open
Abstract
(1) Background: Angiotensin II (Ang II) and endothelin 1 (ET-1) generate reactive oxygen species (ROS) that can activate cyclooxygenase (COX). However, thromboxane prostanoid receptors (TPRs) are required to increase systemic markers of ROS during Ang II infusion in mice. We hypothesized that COX and TPRs are upstream requirements for the generation of vascular ROS by ET-1. (2) Methods: ET-1-induced vascular contractions and ROS were assessed in mesenteric arterioles from wild type (+/+) and knockout (−/−) of COX1 or TPR mice infused with Ang II (400 ng/kg/min × 14 days) or a vehicle. (3) Results: Ang II infusion appeared to increase microvascular protein expression of endothelin type A receptors (ETARs), TPRs, and COX1 and 2 in COX1 and TPR +/+ mice but not in −/− mice. Ang II infusion increased ET-1-induced vascular contractions and ROS, which were prevented by a blockade of COX1 and 2 in TPR −/− mice. ET-1 increased the activity of aortic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and decreased superoxide dismutase (SOD) 1, 2, and 3 in Ang-II-infused mice, which were prevented by a blockade of TPRs. (4) Conclusion: Activation of vascular TPRs by COX products are required for ET-1 to increase vascular contractions and ROS generation from NADPH oxidase and reduce ROS metabolism by SOD. These effects require an increase in these systems by prior infusion of Ang II.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Cheng Wang
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Dan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| |
Collapse
|
6
|
Chakraborty R, Sikarwar AS, Hinton M, Dakshinamurti S, Chelikani P. Characterization of GPCR signaling in hypoxia. Methods Cell Biol 2018; 142:101-110. [PMID: 28964329 DOI: 10.1016/bs.mcb.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
G protein-coupled receptors (GPCRs) signal in response to various external stimuli including stress. GPCR signaling has been shown to play a critical role in the adaptation of cell response to limited oxygen supply. Hypoxia has been implicated in cardiovascular diseases, human pulmonary arterial responses, and persistent pulmonary hypertension in newborns. One of the key GPCRs implicated in hypoxia is the prostanoid receptor, thromboxane A2 receptor (TP). Hypoxia can affect TP localization, stability, and activity both in vivo and in vitro. To elucidate hypoxia-mediated GPCR signaling in vitro, we lay out a general strategy to perform hypoxic experiments using both primary pulmonary artery smooth muscle cells and TP expressed in HEK293T cells. We describe assay for measuring moderate tissue hypoxia using static cell cultures, monitoring pericellular media oxygen content, and signaling of TP.
Collapse
Affiliation(s)
- Raja Chakraborty
- College of Dentistry, Winnipeg, MB, Canada; Manitoba Chemosensory Biology (MCSB) Research Group, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anurag Singh Sikarwar
- College of Dentistry, Winnipeg, MB, Canada; Manitoba Chemosensory Biology (MCSB) Research Group, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Martha Hinton
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Manitoba Chemosensory Biology (MCSB) Research Group, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- College of Dentistry, Winnipeg, MB, Canada; Manitoba Chemosensory Biology (MCSB) Research Group, University of Manitoba, Winnipeg, MB, Canada; Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Mulvaney EP, Shilling C, Eivers SB, Perry AS, Bjartell A, Kay EW, Watson RW, Kinsella BT. Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential. Oncotarget 2018; 7:73171-73187. [PMID: 27689401 PMCID: PMC5341971 DOI: 10.18632/oncotarget.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
The prostanoid thromboxane (TX) A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown. This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Christine Shilling
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Antoinette S Perry
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital Malmö, Lund University, Lund, Sweden
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
8
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
9
|
Powell KL, Stevens V, Upton DH, McCracken SA, Simpson AM, Cheng Y, Tasevski V, Morris JM, Ashton AW. Role for the thromboxane A2 receptor β-isoform in the pathogenesis of intrauterine growth restriction. Sci Rep 2016; 6:28811. [PMID: 27363493 PMCID: PMC4929481 DOI: 10.1038/srep28811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a pathology of pregnancy that results in failure of the fetus to reach its genetically determined growth potential. In developed nations the most common cause of IUGR is impaired placentation resulting from poor trophoblast function, which reduces blood flow to the fetoplacental unit, promotes hypoxia and enhances production of bioactive lipids (TXA2 and isoprostanes) which act through the thromboxane receptor (TP). TP activation has been implicated as a pathogenic factor in pregnancy complications, including IUGR; however, the role of TP isoforms during pregnancy is poorly defined. We have determined that expression of the human-specific isoform of TP (TPβ) is increased in placentae from IUGR pregnancies, compared to healthy pregnancies. Overexpression of TPα enhanced trophoblast proliferation and syncytialisation. Conversely, TPβ attenuated these functions and inhibited migration. Expression of the TPβ transgene in mice resulted in growth restricted pups and placentae with poor syncytialisation and diminished growth characteristics. Together our data indicate that expression of TPα mediates normal placentation; however, TPβ impairs placentation, and promotes the development of IUGR, and represents an underappreciated pathogenic factor in humans.
Collapse
Affiliation(s)
- Katie L Powell
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, NSW, 2006, Australia.,Pathology North, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Veronica Stevens
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, NSW, 2006, Australia
| | - Dannielle H Upton
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sharon A McCracken
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, NSW, 2006, Australia
| | - Ann M Simpson
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yan Cheng
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Vitomir Tasevski
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Pathology North, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jonathan M Morris
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, NSW, 2006, Australia
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
10
|
Matsumoto T, Goulopoulou S, Taguchi K, Tostes RC, Kobayashi T. Constrictor prostanoids and uridine adenosine tetraphosphate: vascular mediators and therapeutic targets in hypertension and diabetes. Br J Pharmacol 2015; 172:3980-4001. [PMID: 26031319 DOI: 10.1111/bph.13205] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Vascular dysfunction plays a pivotal role in the development of systemic complications associated with arterial hypertension and diabetes. The endothelium, or more specifically, various factors derived from endothelial cells tightly regulate vascular function, including vascular tone. In physiological conditions, there is a balance between endothelium-derived factors, that is, relaxing factors (endothelium-derived relaxing factors; EDRFs) and contracting factors (endothelium-derived contracting factors; EDCFs), which mediate vascular homeostasis. However, in disease states, such as diabetes and arterial hypertension, there is an imbalance between EDRF and EDCF, with a reduction of EDRF signalling and an increase of EDCF signalling. Among EDCFs, COX-derived vasoconstrictor prostanoids play an important role in the development of vascular dysfunction associated with hypertension and diabetes. Moreover, uridine adenosine tetraphosphate (Up4 A), identified as an EDCF in 2005, also modulates vascular function. However, the role of Up4 A in hypertension- and diabetes-associated vascular dysfunction is unclear. In the present review, we focused on experimental and clinical evidence that implicate these two EDCFs (vasoconstrictor prostanoids and Up4 A) in vascular dysfunction associated with hypertension and diabetes.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Styliani Goulopoulou
- Department of Integrative Physiology and Anatomy, Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
11
|
Wang C, Luo Z, Kohan D, Wellstein A, Jose PA, Welch WJ, Wilcox CS, Wang D. Thromboxane prostanoid receptors enhance contractions, endothelin-1, and oxidative stress in microvessels from mice with chronic kidney disease. Hypertension 2015; 65:1055-63. [PMID: 25733239 DOI: 10.1161/hypertensionaha.115.05244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is frequent in chronic kidney disease and has been related to angiotensin II, endothelin-1 (ET-1), thromboxane A2, and reactive oxygen species (ROS). Because activation of thromboxane prostanoid receptors (TP-Rs) can generate ROS, which can generate ET-1, we tested the hypothesis that chronic kidney disease induces cyclooxygenase-2 whose products activate TP-Rs to enhance ET-1 and ROS generation and contractions. Mesenteric resistance arterioles were isolated from C57/BL6 or TP-R+/+ and TP-R-/- mice 3 months after SHAM-operation (SHAM) or surgical reduced renal mass (RRM, n=6/group). Microvascular contractions were studied on a wire myograph. Cellular (ethidium: dihydroethidium) and mitochondrial (mitoSOX) ROS were measured by fluorescence microscopy. Mice with RRM had increased excretion of markers of oxidative stress, thromboxane, and microalbumin; increased plasma ET-1; and increased microvascular expression of p22(phox), cyclooxygenase-2, TP-Rs, preproendothelin and endothelin-A receptors, and increased arteriolar remodeling. They had increased contractions to U-46,619 (118 ± 3 versus 87 ± 6, P<0.05) and ET-1 (108 ± 5 versus 89 ± 4, P<0.05), which were dependent on cellular and mitochondrial ROS, cyclooxygenase-2, and TP-Rs. RRM doubled the ET-1-induced cellular and mitochondrial ROS generation (P<0.05). TP-R-/- mice with RRM lacked these abnormal structural and functional microvascular responses and lacked the increased systemic and the increased microvascular oxidative stress and circulating ET-1. In conclusion, RRM leads to microvascular remodeling and enhanced ET-1-induced cellular and mitochondrial ROS and contractions that are mediated by cyclooxygenase-2 products activating TP-Rs. Thus, TP-Rs can be upstream from enhanced ROS, ET-1, microvascular remodeling, and contractility and may thereby coordinate vascular dysfunction in chronic kidney disease.
Collapse
Affiliation(s)
- Cheng Wang
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - Zaiming Luo
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - Donald Kohan
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - Anton Wellstein
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - Pedro A Jose
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - William J Welch
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - Christopher S Wilcox
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.)
| | - Dan Wang
- From the Hypertension, Kidney and Vascular Research Center and Division of Nephrology and Hypertension, Department of Medicine (C.W., Z.L., W.J.W., C.S.W., D.W.) and Department of Oncology, Lombardi Cancer Center (A.W.), Georgetown University, Washington, DC; Department of Nephrology, The Third Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (C.W.); Division of Nephrology, Department of Medicine, University of Utah, Salt Lake City (D.K.); and Division of Nephrology, Department of Medicine and Department of Physiology, University of Maryland, Baltimore, MD (P.A.J.).
| |
Collapse
|
12
|
Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol 2015; 171:3115-31. [PMID: 24646155 DOI: 10.1111/bph.12677] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Isoprostanes are free radical-catalysed PG-like products of unsaturated fatty acids, such as arachidonic acid, which are widely recognized as reliable markers of systemic lipid peroxidation and oxidative stress in vivo. Moreover, activation of enzymes, such as COX-2, may contribute to isoprostane formation. Indeed, formation of isoprostanes is considerably increased in various diseases which have been linked to oxidative stress, such as cardiovascular disease (CVD), and may predict the atherosclerotic burden and the risk of cardiovascular complications in the latter patients. In addition, several isoprostanes may directly contribute to the functional consequences of oxidant stress via activation of the TxA2 prostanoid receptor (TP), for example, by affecting endothelial cell function and regeneration, vascular tone, haemostasis and ischaemia/reperfusion injury. In this context, experimental and clinical data suggest that selected isoprostanes may represent important alternative activators of the TP receptor when endogenous TxA2 levels are low, for example, in aspirin-treated individuals with CVD. In this review, we will summarize the current understanding of isoprostane formation, biochemistry and (patho) physiology in the cardiovascular context.
Collapse
Affiliation(s)
- Jochen Bauer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Sobolesky PM, Halushka PV, Garrett-Mayer E, Smith MT, Moussa O. Regulation of the tumor suppressor FOXO3 by the thromboxane-A2 receptors in urothelial cancer. PLoS One 2014; 9:e107530. [PMID: 25202904 PMCID: PMC4159332 DOI: 10.1371/journal.pone.0107530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/19/2014] [Indexed: 01/27/2023] Open
Abstract
The transcription factor FOXO3 is a well-established tumor suppressor whose activity, stability, and localization are regulated by phosphorylation and acetylation. Previous data by our laboratory demonstrated amplified thromboxane-A2 signaling was associated with poor prognoses in bladder cancer patients and overexpression of the thromboxane-A2 isoform-β receptor (TPβ), but not TPα, induced malignant transformation of immortalized bladder cells in vivo. Here, we describe a mechanism of TP mediated modulation of FOXO3 activity and localization by phosphorylation and deacetylation in a bladder cancer cell model. In vitro gain and loss of function studies performed in non-transformed cell lines, UROsta and SV-HUC, revealed knockdown of FOXO3 expression by shRNA increased cell migration and invasion, while exogenously overexpressing TPβ raised basal phosphorylated (p)FOXO3-S294 levels. Conversely, overexpression of ERK-resistant, mutant FOXO3 reduced increases in UMUC3 cell migration and invasion, including that mediated by TP agonist (U46619). Additionally, stimulation of UMUC3 cells with U46619 increased pFOXO3-S294 expression, which could be attenuated by treatment with a TP antagonist (PTXA2) or ERK inhibitor (U0126). Initially U46619 caused nuclear accumulation of pFOXO3-S294; however, prolonged stimulation increased FOXO3 cytoplasmic localization. U46619 stimulation decreased overall FOXO3 transcriptional activity, but was associated with increased expression of its pro-survival target, manganese superoxide dismutase. The data also shows that TP stimulation increased the expression of the histone deacetylase, SIRT1, and corresponded with decreased acetylated-FOXO3. Collectively, the data suggest a role for TP signaling in the regulation of FOXO3 activity, mediated in part through phosphorylation and deacetylation.
Collapse
Affiliation(s)
- Philip M Sobolesky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Perry V Halushka
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America; Departments of Pharmacology and Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America; Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael T Smith
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Omar Moussa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
14
|
Wang D, Wang C, Wu X, Zheng W, Sandberg K, Ji H, Welch WJ, Wilcox CS. Endothelial dysfunction and enhanced contractility in microvessels from ovariectomized rats: roles of oxidative stress and perivascular adipose tissue. Hypertension 2014; 63:1063-9. [PMID: 24591333 DOI: 10.1161/hypertensionaha.113.02284] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ovarian hormone loss increases reactive oxidative species, endothelial dysfunction, and cardiovascular disease. Because perivascular adipose tissue (PVAT) regulates endothelial function, we hypothesized that reactive oxidative species in PVAT mediate adverse microvascular effects of ovarian hormone deficiency. Rats were ovariectomized or sham operated and given vehicle or tempol for 6 weeks. Mesenteric resistance arterioles from ovariectomized compared with sham-operated rats had dysfunctional responses to acetylcholine (ACh) including decreased ACh-induced endothelium-dependent relaxation (50±6% versus 72±2%) and endothelium-dependent relaxation factor (17±4% versus 37±2%) and increased endothelium-dependent contracting factor (27±5% versus 9±3%). OVX rat mesenteric arterioles had increased contractions to the thromboxane/prostanoid receptor agonist U-46 619 (58±3% versus 40±5%) and increased reactive oxidative species (tempo-9-AC fluorescence) with U-46 619 (0.65±0.17 versus 0.14±0.06 Δ unit) or ACh (0.49±0.09 versus 0.09±0.05 Δ unit) and increased p22(phox) protein expression (0.89±0.05 versus 0.18±0.04 Δ unit), whereas nitric oxide activity (DAF-FM [4-amino-5-methylamino-2',7'-difluorofluorescein diacetate] fluorescence) with ACh was reduced (0.39±0.1 versus 0.70±0.10 Δ unit). No differences were found in endothelium-dependent hyperpolarizing factor or contractile responses to phenylephrine. PVAT enhanced ACh-induced relaxation, endothelium-dependent relaxation factor, and nitric oxide only in sham-operated rats. Tempol prevented ovariectomy-induced endothelial dysfunction and restored the enhancing effects of PVAT on ACh-induced relaxation, endothelium-dependent relaxation factor, and nitric oxide in ovariectomized rat vessels, but both tempol and PVAT were required to normalize the enhanced U-46 619 contractions after ovariectomy. In conclusion, ovariectomy redirects endothelial responses from relaxation to contraction by reducing vascular nitric oxide, augmenting thromboxane/prostanoid receptor signaling, and attenuating the vasodilatory effects of PVAT, all of which were dependent on reactive oxidative species.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology and Hypertension, Georgetown University Medical Center, 6 PHC, Suite F6003, 3800 Reservoir Rd NW, Washington, DC 20007.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
16
|
Puri N, Zhang F, Monu SR, Sodhi K, Bellner L, Lamon BD, Zhang Y, Abraham NG, Nasjletti A. Antioxidants condition pleiotropic vascular responses to exogenous H(2)O(2): role of modulation of vascular TP receptors and the heme oxygenase system. Antioxid Redox Signal 2013; 18:471-80. [PMID: 22867102 PMCID: PMC3545357 DOI: 10.1089/ars.2012.4587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/13/2022]
Abstract
AIMS Hydrogen peroxide (H(2)O(2)), a nonradical oxidant, is employed to ascertain the role of redox mechanisms in regulation of vascular tone. Where both dilation and constriction have been reported, we examined the hypothesis that the ability of H(2)O(2) to effect vasoconstriction or dilation is conditioned by redox mechanisms and may be modulated by antioxidants. RESULTS Exogenous H(2)O(2) (0.1-10.0 μM), dose-dependently reduced the internal diameter of rat renal interlobular and 3rd-order mesenteric arteries (p<0.05). This response was obliterated in arteries pretreated with antioxidants, including tempol, pegylated superoxide dismutase (PEG-SOD), butylated hydroxytoluene (BHT), and biliverdin (BV). However, as opposed to tempol or PEG-SOD, BHT & BV, antioxidants targeting radicals downstream of H(2)O(2), also uncovered vasodilation. INNOVATIONS Redox-dependent vasoconstriction to H(2)O(2) was blocked by inhibitors of cyclooxygenase (COX) (indomethacin-10 μM), thromboxane (TP) synthase (CGS13080-10 μM), and TP receptor antagonist (SQ29548-1 μM). However, H(2)O(2) did not increase vascular thromboxane B(2) release; instead, it sensitized the vasculature to a TP agonist, U46619, an effect reversed by PEG-SOD. Antioxidant-conditioned dilatory response to H(2)O(2) was accompanied by enhanced vascular heme oxygenase (HO)-dependent carbon monoxide generation and was abolished by HO inhibitors or by HO-1 & 2 antisense oligodeoxynucleotides treatment of SD rats. CONCLUSION These results demonstrate that H(2)O(2) has antioxidant-modifiable pleiotropic vascular effects, where constriction and dilation are brought about in the same vascular segment. H(2)O(2)-induced oxidative stress increases vascular TP sensitivity and predisposes these arterial segments to constrictor prostanoids. Conversely, vasodilation is reliant upon HO-derived products whose synthesis is stimulated only in the presence of antioxidants targeting radicals downstream of H(2)O(2).
Collapse
Affiliation(s)
- Nitin Puri
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang D, Melancon JK, Verbesey J, Hu H, Liu C, Aslam S, Young M, Wilcox CS. Microvascular Endothelial Dysfunction and Enhanced Thromboxane and Endothelial Contractility in Patients with HIV. ACTA ACUST UNITED AC 2013; 4:267. [PMID: 24967147 DOI: 10.4172/2155-6113.1000267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
11 BACKGROUND The prevalence of cardiovascular disease is increased with human immunodeficiency virus (HIV) infection, but the mechanism is unclear. We hypothesized that HIV increases microvascular reactive oxygen species, thereby impairing endothelial function and enhancing contractility. 12 METHOD Subcutaneous microarterioles were isolated from gluteal skin biopsies in premenopausal, African American, HIV positive women receiving effective anti-retroviral therapy, but without cardiovascular risk factors except for increased body mass index (n=10) and healthy matched controls (n=10). The arterioles were mounted on myographs, preconstricted and relaxed with acetylcholine for: endothelium-dependent relaxation, endothelium-dependent relaxation factor (nitric oxide synthase-dependent relaxation), endothelium-dependent hyperpolarizing factor (potassium-channel dependent relaxation) and endothelium-independent relaxation (nitroprusside). Contractions were tested to endothelium-dependent contracting factor (acetylcholine contraction with blocked relaxation); phenylephrine, U-46,619 and endothelin-1. Plasma L-arginine and asymmetric dimethylarginine were measured by high performance capillary electrophoresis. 13 RESULTS The micro-arterioles from HIV positive women had significantly (% change in tension; P<0.05) reduced acetylcholine relaxation (-51 ± 6 vs. -78 ± 3%), endothelium-dependent relaxation factor (-28 ± 4 vs. -39 ± 3%), endothelium-dependent hyperpolarizing factor (-17 ± 4 vs. -37 ± 4%) and decreased nitric oxide activity (0.16 ± 0.03 vs. 0.70 ± 0.16 Δ unit) but unchanged nitroprusside relaxation. They had significantly enhanced endothelium-dependent contracting factor (+21 ± 6 vs. +7 ± 2%) and contractions to U-46,619 (+164 ± 10 vs. +117 ± 11%) and endothelin-1(+151 ± 12 vs. +97 ± 9%), but not to phenylephrine. There was enhanced reactive oxygen species with acetylcholine (0.11 ± 0.02 vs. 0.05 ± 0.01 Δ unit; P<0.05) and endothelin-1 (0.31 ± 0.06 vs. 0.10 ± 0.02 Δ unit; P<0.05). Plasma L-arginine: assymetric dimethyl arginine rates was reduced (173 ± 12 vs. 231 ± 6 μmol·μmol-1, P<0.05). 14 CONCLUSION Premenopausal HIV positive womenhad microvascular oxidative stress with severe endothelial dysfunction and reduced nitric oxide and arginine: assymetric dimethylarginine ratio but enhanced endothelial, thromboxane and endothelin contractions. These microvascular changes may herald later cardiovascular disease.
Collapse
Affiliation(s)
- Dan Wang
- Hypertension, Kidney and Vascular Research Center and the Division of Nephrology and Hypertension, Georgetown University, USA
| | | | | | - Haihong Hu
- Division of Infectious Disease and the Metropolitan Washington Women's HIV Study group, Georgetown University, Washington, USA
| | - Chenglong Liu
- Division of Infectious Disease and the Metropolitan Washington Women's HIV Study group, Georgetown University, Washington, USA
| | - Shakil Aslam
- Hypertension, Kidney and Vascular Research Center and the Division of Nephrology and Hypertension, Georgetown University, USA
| | - Mary Young
- Division of Infectious Disease and the Metropolitan Washington Women's HIV Study group, Georgetown University, Washington, USA
| | - Christopher S Wilcox
- Hypertension, Kidney and Vascular Research Center and the Division of Nephrology and Hypertension, Georgetown University, USA
| |
Collapse
|
18
|
|
19
|
Grad E, Pachino RM, FitzGerald GA, Danenberg HD. Role of Thromboxane Receptor in C-Reactive Protein–Induced Thrombosis. Arterioscler Thromb Vasc Biol 2012; 32:2468-74. [DOI: 10.1161/atvbaha.112.256073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective—
Thromboxane A
2
and prostacyclin are thromboregulatory prostaglandins. The inflammatory C-reactive protein (CRP) promotes thrombosis after vascular injury, presumably via potentiation of thromboxane activity. Using a genetic approach, we investigated the role of thromboxane receptor (TP) pathway in CRP-induced thrombosis.
Methods and Results—
Four genetically engineered mice strains were used:
C57BL
/
6
wild-type, human CRP transgenic (
CRPtg
), thromboxane receptor–deficient (
Tp
−/−
), and CRPtgTp
−/−
mice. CRP and TP expression were correlated, and suppression of CRP expression using small interfering RNA/CRP led to reduction in TP expression. Platelet–endothelial adherence was increased in CRPtg and suppressed in CRPtgTP
−/−
and CRPtg cells that were suppressed with TP small interfering RNA. TP deficiency in both platelets and endothelial cells was synergistic in affecting platelet–endothelial interactions. Time until arterial occlusion, measured after photochemical injury, was significantly shorter in CRPtg and prolonged in CRPtgTp
−/−
compared with controls (n=10–15, 35±3.4, 136±13.8, and 67±8.9 minutes, respectively;
P
<0.05).
Conclusion—
TP pathway is of major importance in CRP-induced thrombosis. The expression of TP is increased in CRPtg endothelial cells, and its blockade significantly suppresses the prothrombotic effect of CRP.
Collapse
Affiliation(s)
- Etty Grad
- From the Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel (E.G, R.M.P., H.D.D.); and the Institute for Translational Medicine and Therapeutics, The University of Pennsylvania, Philadelphia, PA (G.A.F.)
| | - Rachel M. Pachino
- From the Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel (E.G, R.M.P., H.D.D.); and the Institute for Translational Medicine and Therapeutics, The University of Pennsylvania, Philadelphia, PA (G.A.F.)
| | - Garret A. FitzGerald
- From the Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel (E.G, R.M.P., H.D.D.); and the Institute for Translational Medicine and Therapeutics, The University of Pennsylvania, Philadelphia, PA (G.A.F.)
| | - Haim D. Danenberg
- From the Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel (E.G, R.M.P., H.D.D.); and the Institute for Translational Medicine and Therapeutics, The University of Pennsylvania, Philadelphia, PA (G.A.F.)
| |
Collapse
|
20
|
Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 2012; 164:894-912. [PMID: 21323907 DOI: 10.1111/j.1476-5381.2011.01276.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent contractions contribute to endothelial dysfunction in various animal models of aging, diabetes and cardiovascular diseases. In the spontaneously hypertensive rat, the archetypal model for endothelium-dependent contractions, the production of the endothelium-derived contractile factors (EDCF) involves an increase in endothelial intracellular calcium concentration, the production of reactive oxygen species, the predominant activation of cyclooxygenase-1 (COX-1) and to a lesser extent that of COX-2, the diffusion of EDCF towards the smooth muscle cells and the subsequent stimulation of their thromboxane A2-endoperoxide TP receptors. Endothelium-dependent contractions are also observed in various models of hypertension, aging and diabetes. They generally also involve the generation of COX-1- and/or COX-2-derived products and the activation of smooth muscle TP receptors. Depending on the model, thromboxane A(2), PGH(2), PGF(2α), PGE(2) and paradoxically PGI(2) can all act as EDCFs. In human, the production of COX-derived EDCF is a characteristic of the aging and diseased blood vessels, with essential hypertension causing an earlier onset and an acceleration of this endothelial dysfunction. As it has been observed in animal models, COX-1, COX-2 or both isoforms can contribute to these endothelial dysfunctions. Since in most cases, the activation of TP receptors is the common downstream effector, selective antagonists of this receptor should curtail endothelial dysfunction and be of therapeutic interest in the treatment of cardiovascular disorders.
Collapse
|
21
|
Li Z, Wang Y, Vanhoutte PM. Upregulation of heme oxygenase 1 by hemin impairs endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Hypertension 2011; 58:926-34. [PMID: 21947473 DOI: 10.1161/hypertensionaha.111.173807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heme oxygenase converts heme to carbon monoxide, biliverdin (subsequently converted to bilirubin), and free iron. Pharmacological induction of heme oxygenase 1 has an antihypertensive effect in the spontaneously hypertensive rat. The present study investigated whether upregulation of heme oxygenase 1 by hemin reduces endothelial dysfunction in this animal. Thirty-six-week-old rats were divided into a hemin treatment (50 mg/kg, IP injection, once) and a control group. Aortas were isolated for the measurement of isometric tension, production of reactive oxygen species, and heme oxygenase activity, as well as gene and protein expressions. Hemin treatment augmented the expression and activity of heme oxygenase 1. This in vivo induction of heme oxygenase 1, but not in vitro incubation with the heme oxygenase products carbon monoxide or bilirubin, led to an improvement of endothelial function in that acetylcholine-induced relaxations were potentiated and acetylcholine- and calcium ionophore-induced contractions were attenuated. Free radical production was suppressed by hemin treatment, judging from the results of 2',7'-dichlorodihydrofluoresein diacetate staining, dihydroethidium staining, and lucigenin chemiluminescence, which was explained by the decreased expressions of NADPH oxidase 2 and cyclooxygenase 1. The production of prostacyclin was decreased by heme oxygenase 1 induction, which was explained by a lower expression of cyclooxygenase 1. Contractions to vasoconstrictor concentrations of prostacyclin and its mimetic iloprost were attenuated, suggesting that the responsiveness of thromboxane-prostanoid receptors to prostacyclin was decreased in hemin-treated rats. The suppressed production of free radicals and prostacyclin and the decrease of thromboxane-prostanoid receptors sensitivity concur to explain the impairment of endothelium-dependent contractions caused by heme oxygenase 1 induction by hemin.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Hemin/pharmacology
- Immunohistochemistry
- Male
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Prostaglandins/metabolism
- RNA, Messenger/analysis
- Random Allocation
- Rats
- Rats, Inbred SHR
- Reactive Oxygen Species/metabolism
- Sensitivity and Specificity
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Zhuoming Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
22
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
|
24
|
Reid HM, Wikström K, Kavanagh DJ, Mulvaney EP, Kinsella BT. Interaction of angio-associated migratory cell protein with the TPα and TPβ isoforms of the human thromboxane A2 receptor. Cell Signal 2011; 23:700-17. [DOI: 10.1016/j.cellsig.2010.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/12/2010] [Indexed: 11/16/2022]
|
25
|
Rowe D, Leonardo C, Hall A, Shahaduzzaman M, Collier L, Willing A, Pennypacker K. Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 2010; 1366:172-88. [PMID: 20883670 PMCID: PMC2993822 DOI: 10.1016/j.brainres.2010.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes (OLs), the predominant cell type found in cerebral white matter, are essential for structural integrity and proper neural signaling. Very little is known concerning stroke-induced OL dysfunction. Our laboratory has shown that infusion of human umbilical cord blood (HUCB) cells protects striatal white matter tracts in vivo and directly protects mature primary OL cultures from oxygen glucose deprivation (OGD). Microarray studies of RNA prepared from OL cultures subjected to OGD and treated with HUCB cells showed an increase in the expression of 33 genes associated with OL proliferation, survival, and repair functions, such as myelination. The microarray results were verified using quantitative RT-PCR for the following eight genes: U2AF homology motif kinase 1 (Uhmk1), insulin-induced gene 1 (Insig1), metallothionein 3 (Mt3), tetraspanin 2 (Tspan2), peroxiredoxin 4 (Prdx4), stathmin-like 2 (Stmn2), myelin oligodendrocyte glycoprotein (MOG), and versican (Vcan). Immunohistochemistry showed that MOG, Prdx4, Uhmk1, Insig1, and Mt3 protein expression were upregulated in the ipsilateral white matter tracts of rats infused with HUCB cells 48h after middle cerebral artery occlusion (MCAO). Furthermore, promoter region analysis of these genes revealed common transcription factor binding sites, providing insight into the shared signal transduction pathways activated by HUCB cells to enhance transcription of these genes. These results show expression of genes induced by HUCB cell therapy that could confer oligoprotection from ischemia.
Collapse
Affiliation(s)
- D.D. Rowe
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - C.C. Leonardo
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - A.A. Hall
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - M.D. Shahaduzzaman
- Center of Excellence for Aging & Brain Repair, University of South Florida, Tampa FL 33612
| | - L.A. Collier
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - A.E. Willing
- Center of Excellence for Aging & Brain Repair, University of South Florida, Tampa FL 33612
| | - K.R. Pennypacker
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Abstract
The stimulation of thromboxane/endoperoxide receptors (TP) elicits diverse physiological/pathophysiological reactions, including platelet aggregation and contraction of vascular smooth muscle. Furthermore, the activation of endothelial TP promotes the expression of adhesion molecules and favors adhesion and infiltration of monocytes/macrophages. In various cardiovascular diseases, endothelial dysfunction is predominantly the result of the release of endothelium-derived contracting factors that counteract the vasodilator effect of nitric oxide produced by the endothelial nitric oxide synthase. Endothelium-dependent contractions involve the activation of cyclooxygenases, the production of reactive oxygen species along with that of endothelium-derived contracting factors, which diffuse toward the vascular smooth muscle cells and activate their TP. TP antagonists curtail the endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and reduce vascular inflammation. Therefore, TP antagonists, because of this triple activity, may have a unique potential for the treatment of cardiovascular disorders.
Collapse
|
27
|
Ball SK, Field MC, Tippins JR. Regulation of thromboxane receptor signaling at multiple levels by oxidative stress-induced stabilization, relocation and enhanced responsiveness. PLoS One 2010; 5:e12798. [PMID: 20856817 PMCID: PMC2939892 DOI: 10.1371/journal.pone.0012798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 08/16/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Thromboxane A(2) (TxA(2)) is a major, unstable arachidonic acid metabolite, and plays a key role in normal physiology and control of vascular tone. The human thromboxane receptor (TPβ), expressed in COS-7 cells, is located predominantly in the endoplasmic reticulum (ER). Brief hydrogen peroxide exposure increases the efficiency of translocation of TPβ from the ER into the Golgi complex, inducing maturation and stabilization of TPβ. However, the ultimate fate of this post-ER TPβ pool is not known, nor is its capacity to initiate signal transduction. Here we specifically assessed if functional TPβ was transported to the plasma membrane following H(2)O(2) exposure. RESULTS We demonstrate, by biotinylation and confocal microscopy, that exposure to H(2)O(2) results in rapid delivery of a cohort of TPβ to the cell surface, which is stable for at least eight hours. Surface delivery is brefeldin A-sensitive, indicating that translocation of this receptor cohort is from internal pools and via the Golgi complex. H(2)O(2) treatment results in potentiation of the increase to intracellular calcium concentrations in response to TPβ agonists U46619 and 8-iso PGF(2α) and also in the loss of ligand-dependent receptor internalization. Further there is increased responsiveness to a second application of the agonist. Finally we demonstrate that the effect of H(2)O(2) on stimulating surface delivery is shared with the FP prostanoid receptor but not the EP3 or EP4 receptors. CONCLUSIONS/SIGNIFICANCE In summary, brief exposure to H(2)O(2) results in an immediate and sustained increase in the surface pool of thromboxane receptor that is capable of mediating a persistent hyper-responsiveness of the cell and suggests a highly sophisticated mechanism for rapidly regulating thromboxane signaling.
Collapse
Affiliation(s)
- Stephen K. Ball
- Division of Cell and Molecular Biology, Imperial College, London, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John R. Tippins
- Division of Cell and Molecular Biology, Imperial College, London, United Kingdom
| |
Collapse
|
28
|
Smyth EM. Thromboxane and the thromboxane receptor in cardiovascular disease. CLINICAL LIPIDOLOGY 2010; 5:209-219. [PMID: 20543887 PMCID: PMC2882156 DOI: 10.2217/clp.10.11] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thromboxane A(2) (TXA(2)), the primary product of COX-1-dependent metabolism of arachidonic acid, mediates its biological actions through the TXA(2) receptor, termed the TP. Irreversible inhibition of platelet COX-1-derived TXA(2) with low-dose aspirin affords protection against primary and secondary vascular thrombotic events, underscoring the central role of TXA(2) as a platelet agonist in cardiovascular disease. The limitations associated with aspirin use include significant gastrointestinal toxicity, bleeding complications, potential interindividual response variability and poor efficacy in some disease states. This, together with the broad role of TXA(2) in cardiovascular disease beyond the platelet, has refocused interest towards additional TXA(2)-associated drug targets, in particular TXA(2) synthase and the TP. The superiority of these agents over low-dose aspirin, in terms of clinical efficacy, tolerability and commercial viability, remain open questions that are the focus of ongoing research.
Collapse
Affiliation(s)
- Emer M Smyth
- Institute for Translation Medicine & Therapeutics, University of Pennsylvania, 421 Curie Blvd, 808 BRB 2/3, Philadelphia, PA 19104, USA Tel.: +1 215 573 2323
| |
Collapse
|
29
|
Félétou M, Huang Y, Vanhoutte PM. Vasoconstrictor prostanoids. Pflugers Arch 2010; 459:941-50. [PMID: 20333529 DOI: 10.1007/s00424-010-0812-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 01/20/2023]
Abstract
In cardiovascular diseases and during aging, endothelial dysfunction is due in part to the release of endothelium-derived contracting factors that counteract the vasodilator effect of the nitric oxide. Endothelium-dependent contractions involve the activation of endothelial cyclooxygenases and the release of various prostanoids, which activate thromboxane prostanoid (TP) receptors of the underlying vascular smooth muscle. The stimulation of TP receptors elicits not only the contraction and the proliferation of vascular smooth muscle cells but also diverse physiological/pathophysiological reactions, including platelet aggregation and activation of endothelial inflammatory responses. TP receptor antagonists curtail endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and prevent vascular inflammation.
Collapse
|
30
|
Cohen RA, Feletou M, Vanhoutte PM, Verbeuren TJ. TP receptors and oxidative stress hand in hand from endothelial dysfunction to atherosclerosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:85-106. [PMID: 21081216 PMCID: PMC3004095 DOI: 10.1016/b978-0-12-385061-4.00004-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thromboxane A(2) and the activation of TP receptors that it causes play an important role in platelet aggregation and therefore in thrombosis. However, TP receptors are also involved in the pathologies of the vascular wall including impaired endothelium-dependent vasodilation, increased oxidant generation, and increased expression of adhesion molecules. The beneficial effects of TP antagonists on the vascular wall attenuate these features of vascular disease. They are not shared by aspirin. In fact, TP antagonists are active in patients treated with aspirin, indicating that their potential beneficial effects are mediated by mechanisms different from the antithrombotic actions of aspirin. Our studies have demonstrated the vascular benefits of TP antagonists in experimental animals, particularly in models of diabetes mellitus, in which elevated levels of eicosanoids play a role not only in vascular pathologies but also in those of the kidney and other tissues. They suggest that TP blockade protects against fundamental and widespread tissular dysfunction associated with metabolic disease including hyperlipidemia and hyperglycemia. TP receptor antagonists represent a promising avenue for the prevention of vascular disease in part because of these pleiotropic actions that extend beyond their antithrombotic properties.
Collapse
Affiliation(s)
- Richard A. Cohen
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine
| | - Michel Feletou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | - Paul M. Vanhoutte
- Department Pharmacology and Pharmacy, Li Ka Shing Faculty Medicine, University of Hong Kong, Hong Kong, China and Department BIN Fusion Technology, Chonbuk National University, Jeonju, Korea
| | - Tony J. Verbeuren
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| |
Collapse
|
31
|
Wilson SJ, Cavanagh CC, Lesher AM, Frey AJ, Russell SE, Smyth EM. Activation-dependent stabilization of the human thromboxane receptor: role of reactive oxygen species. J Lipid Res 2009; 50:1047-56. [PMID: 19151335 DOI: 10.1194/jlr.m800447-jlr200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thromboxane A(2) (TxA(2)), the principle product of platelet COX-1-dependent arachidonic acid metabolism, directs multiple pro-atherogenic processes via its receptor, TP. Oxidative challenge offsets TP degradation, a key component in limiting TxA(2)'s actions. Following TP activation, we observed cellular reactive oxygen species (ROS) generation coincident with increased TP expression. We examined the link between TP-evoked ROS and TP regulation. TP expression was augmented in TPalpha-transfected cells treated with a TxA(2) analog [1S-1alpha,2beta(5Z),3alpha(1E,3R*),4alpha]]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan-2-yl]-5-heptenoic acid (IBOP). This was reduced with a cellular antioxidant, N-acetyl cysteine, or two distinct NADPH oxidase inhibitors, diphenyleneiodonium and apocynin. Homologous upregulation of the native TP was also reduced in apocynin-treated aortic smooth muscle cells (ASMCs) and was absent in ASMCs lacking an NADPH oxidase subunit (p47(-/-)). TP transcription was not increased in IBOP-treated cells, indicating a posttranscriptional mechanism. IBOP induced translocation of TPalpha to the Golgi and reduced degradation of the immature form of the receptor. These data are consistent with a ROS-dependent mechanism whereby TP activation enhanced TP stability early in posttranscriptional biogenesis. Given the significant role played by TP and ROS in perturbed cardiovascular function, the convergence of TP on ROS-generating pathways for regulation of TxA(2)-dependent events may be critical for cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Wilson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
33
|
Michel F, Simonet S, Vayssettes-Courchay C, Bertin F, Sansilvestri-Morel P, Bernhardt F, Paysant J, Silvestre JS, Levy BI, Félétou M, Verbeuren TJ. Altered TP receptor function in isolated, perfused kidneys of nondiabetic and diabetic ApoE-deficient mice. Am J Physiol Renal Physiol 2008; 294:F120-9. [DOI: 10.1152/ajprenal.00111.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early manifestations of kidney disease occur in atherosclerosis and activation of TP (thromboxane A2) receptors is implicated in atherosclerotic, diabetes, and renal diseases. The purpose of the present study was to analyze, in isolated, perfused mouse kidneys, the participation of TP receptors in renal vasoconstrictions and vasodilatations. In kidneys, taken from wild-type C57BL6, apolipoprotein E-deficient (ApoE-KO) and diabetic ApoE-KO mice, changes in perfusion pressure were recorded. Constrictions to TP receptor ligands U 46619, arachidonic acid, PGH2, and 8-iso-PGF2α, but not those to angiotensin II, endothelin, or norepinephrine, were inhibited by the selective TP receptor antagonist Triplion (S 18886; 10 nM). Acetylcholine and prostacyclin evoked biphasic responses during methoxamine constrictions; the constrictor part was blocked by Triplion. In ApoE-KO mouse kidneys, compared with C57BL6, a specific decrease in norepinephrine response and no modification in dilator responses were observed. In diabetic ApoE-KO mouse kidneys, constrictions to U 46619 and those to 8-iso-PGF2α were significantly and selectively augmented, without modification in the expression of the TP receptor, and again without any significant change in vasodilator activity. Thus TP receptors are functional, and their activation is not involved in norepinephrine, endothelin, and angiotensin II vasoconstrictions but is implicated in the unusual vasoconstrictions to acetylcholine and prostacyclin. Increased responsiveness of TP receptors occurs in diabetic ApoE-KO mouse kidneys. Thus early changes in TP receptor-mediated vasoconstrictor activity may participate in the development of kidney disease in atherosclerosis and diabetes.
Collapse
|
34
|
Welch WJ, Patel K, Modlinger P, Mendonca M, Kawada N, Dennehy K, Aslam S, Wilcox CS. Roles of vasoconstrictor prostaglandins, COX-1 and -2, and AT1, AT2, and TP receptors in a rat model of early 2K,1C hypertension. Am J Physiol Heart Circ Physiol 2007; 293:H2644-9. [PMID: 17766473 DOI: 10.1152/ajpheart.00748.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin (ANG) II activating type 1 receptors (AT1Rs) enhances superoxide anion (O2•−) and arachidonate (AA) formation. AA is metabolized by cyclooxygenases (COXs) to PGH2, which is metabolized by thromboxane (Tx)A2synthase to TxA2or oxidized to 8-isoprostane PGF2α(8-Iso) by O2•−. PGH2, TxA2, and 8-Iso activate thromboxane-prostanoid receptors (TPRs). We investigated whether blood pressure in a rat model of early (3 wk) two-kidney, one-clip (2K,1C) Goldblatt hypertension is maintained by AT1Rs or AT2Rs, driving COX-1 or -2-dependent products that activate TPRs. Compared with sham-operated rats, 2K,1C Goldblatt rats had increased mean arterial pressure (MAP; 120 ± 4 vs. 155 ± 3 mmHg; P < 0.001), plasma renin activity (PRA; 22 ± 7 vs. 48 ± 5 ng·ml−1·h−1; P < 0.01), plasma malondialdehyde (1.07 ± 0.05 vs. 1.58 ± 0.16 nmol/l; P < 0.01), and TxB2excretion (26 ± 4 vs. 51 ± 7 ng/24 h; P < 0.01). Acute graded intravenous doses of benazeprilat (angiotensin-converting enzyme inhibitor) reduced MAP at 20 min (−36 ± 5 mmHg; P < 0.001) and excretion of TxA2metabolites. Indomethacin (nonselective COX antagonist) or SC-560 (COX-1 antagonist) reduced MAP at 20 min (−25 ± 5 and −28 ± 7 mmHg; P < 0.001), whereas valdecoxib (COX-2 antagonist) was ineffective (−9 ± 5 mmHg; not significant). Losartan (AT1R antagonist) or SQ-29548 (TPR antagonist) reduced MAP at 150 min (−24 ± 6 and −22 ± 3 mmHg; P < 0.001), whereas PD-123319 (AT2R antagonist) was ineffective. Acute blockade of TPRs, COX-1, or COX-2 did not change PRA, but TxB2generation by the clipped kidney was reduced by blockade of COX-1 and increased by blockade of COX-2. 2K,1C hypertension in rats activates renin, O2•−, and vasoconstrictor PGs. Hypertension is maintained by AT1Rs and by COX-1, but not COX-2, products that activate TPRs.
Collapse
Affiliation(s)
- William J Welch
- Division of Nephrology and Hypertension, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sasaki M, Sukegawa J, Miyosawa K, Yanagisawa T, Ohkubo S, Nakahata N. Low expression of cell-surface thromboxane A2 receptor β-isoform through the negative regulation of its membrane traffic by proteasomes. Prostaglandins Other Lipid Mediat 2007; 83:237-49. [PMID: 17499743 DOI: 10.1016/j.prostaglandins.2006.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 12/11/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Human thromboxane A(2) receptor (TP) consists of two alternatively spliced isoforms, TP alpha and TP beta, which differ in their cytoplasmic tails. To examine the functional difference between TP alpha and TP beta, we searched proteins bound to C termini of TP isoforms by a yeast two-hybrid system, and found that proteasome subunit alpha 7 and proteasome activator PA28 gamma interacted potently with the C terminus of TP beta. The binding of TP beta with alpha 7 and PA28 gamma was confirmed by co-immunoprecipitation and pull-down assays. MG-132 and lactacystin, proteasome inhibitors, increased cell-surface expression of TP beta, but not TP alpha. Scatchard analysis of [(3)H]SQ29548 binding revealed that the B(max) was higher in transiently TP alpha-expressing cells than TP alpha-expressing cells. In addition, TP-mediated phosphoinositide hydrolysis was clearly observed in TP alpha-, but not TP beta-expressing cells. These results suggest that TP beta binds to alpha 7 and PA28 gamma, and the cell-surface expression of TP beta is lower than that of TP alpha through the negative regulation of its membrane traffic by proteasomes.
Collapse
Affiliation(s)
- Masako Sasaki
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Reid HM, Kinsella BT. Palmitoylation of the TPbeta isoform of the human thromboxane A2 receptor. Modulation of G protein: effector coupling and modes of receptor internalization. Cell Signal 2006; 19:1056-70. [PMID: 17229546 PMCID: PMC2680975 DOI: 10.1016/j.cellsig.2006.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/28/2022]
Abstract
Palmitoylation is a prevalent feature amongst G protein-coupled receptors. In this study we sought to establish whether the TPα and TPβ isoforms of the human prostanoid thromboxane (TX) A2 receptor (TP) are palmitoylated and to assess the functional consequences thereof. Consistent with the presence of three cysteines within its unique carboxyl-terminal domain, metabolic labelling and site-directed mutagenesis confirmed that TPβ is palmitoylated at Cys347 and, to a lesser extent, at Cys373,377 whereas TPα is not palmitoylated. Impairment of palmitoylation did not affect TPβ expression or its ligand affinity. Conversely, agonist-induced [Ca2+]i mobilization by TPβC347S and the non-palmitoylated TPβC347,373,377S, but not by TPβC373S or TPβC373,377S, was significantly reduced relative to the wild type TPβ suggesting that palmitoylation at Cys347 is specifically required for efficient Gq/phospholipase Cβ effector coupling. Furthermore, palmitoylation at Cys373,377 is critical for TPβ internalization with TPβC373S, TPβC373,377S and TPβC347,373,377S failing to undergo either agonist-induced or temperature-dependent tonic internalization. On the other hand, whilst TPβC347S underwent reduced agonist-induced internalization, it underwent tonic internalization to a similar extent as TPβ. The deficiency in agonist-induced internalization by TPβC347S, but not by TPβC373,377 nor TPβC347,373,377S, was overcome by over-expression of either β-arrestin1 or β-arrestin2. Taken together, data herein suggest that whilst palmitoylation of TPβ at Cys373,377 is critical for both agonist- and tonic-induced internalization, palmitoylation at Cys347 has a role in determining which pathway is followed, be it by the β-arrestin-dependent agonist-induced pathway or by the β-arrestin-independent tonic internalization pathway.
Collapse
|
37
|
Hinton M, Gutsol A, Dakshinamurti S. Thromboxane hypersensitivity in hypoxic pulmonary artery myocytes: altered TP receptor localization and kinetics. Am J Physiol Lung Cell Mol Physiol 2006; 292:L654-63. [PMID: 17085527 DOI: 10.1152/ajplung.00229.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-induced neonatal persistent pulmonary hypertension (PPHN) is characterized by sustained vasospasm and increased thromboxane (TxA2)-to-prostacyclin ratio. We previously demonstrated that moderate hypoxia induces myocyte TxA2 hypersensitivity. Here, we examined TxA2 prostanoid receptor (TP-R) localization and kinetics following hypoxia to determine the mechanism of hypoxia-induced TxA2 hypersensitivity. Primary cultured neonatal pulmonary artery myocytes were exposed to 10% O2 (hypoxic myocytes; HM) or 21% O2 (normoxic myocytes; NM) for 3 days. PPHN was induced in neonatal piglets by in vivo exposure to 10% FiO2 for 3 days. TP-R was studied in whole lung sections from pigs with hypoxic PPHN- and age-matched controls; intracellular localization was studied by immunocytochemistry. TP-R affinity was studied in cultured myocytes by saturation binding kinetics using 3H-SQ-29548 and competitive binding kinetics by coincubation with U-46619. Phosphorylation and coupling were examined in immunoprecipitated TP-R. We report distal propagation of TP-R expression in PPHN, extending to pulmonary arteries <50 microm. In HM, intracellular TP-R moves towards the perinuclear region, mirroring a change in endoplasmic reticulum (ER) morphology. TP-R kinetics also alter in HM membranes, with decreased Kd and Bmax (maximal binding sites). Additionally, in hypoxia, 3H-SQ-29548 is displaced at lower concentration of U-46619 than in normoxia, suggesting increased agonist affinity. Phosphorylation of serine residues on HM TP-R was significantly decreased compared with NM; this difference correlated with increased Galphaq coupling in hypoxia and was ablated by incubation with PKA. We conclude that the TP-R is normally desensitized in the neonatal pulmonary circuit by PKA-mediated regulatory phosphorylation, decreasing ligand affinity and coupling to Galphaq; this protection is lost following hypoxic exposure. Also, the appearance of TP-R in resistance arteries after development of hypoxic PPHN may contribute to increased pulmonary arterial pressure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding, Competitive
- Calcium/metabolism
- Cells, Cultured
- Disease Models, Animal
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Hypoxia/physiopathology
- Immunoenzyme Techniques
- Immunoprecipitation
- Kinetics
- Ligands
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Phosphorylation
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Swine
- Thromboxane A2/metabolism
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Martha Hinton
- Department of Physiology, University of Manitoba, Manitoba Institute of Child Health, Manitoba, Canada
| | | | | |
Collapse
|
38
|
Dassesse T, de Leval X, de Leval L, Pirotte B, Castronovo V, Waltregny D. Activation of the Thromboxane A2 Pathway in Human Prostate Cancer Correlates with Tumor Gleason Score and Pathologic Stage. Eur Urol 2006; 50:1021-31; discussion 1031. [PMID: 16522350 DOI: 10.1016/j.eururo.2006.01.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/15/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We investigated the potential involvement of the thromboxane A(2) (TXA(2)) pathway in human prostate cancer (PCa). METHODS Expression of cyclooxygenase-2 (COX-2), TXA(2) synthase (TXS), and TXA(2) receptors (TPRs), the main actors of the TXA(2) pathway, was analyzed on serial tissue sections from 46 human PCa specimens. RESULTS The expression levels of COX-2, TXS, and TPRs were significantly higher in malignant than in corresponding nontumoral prostatic epithelial cells. Increased immunoreactivity for these antigens was also observed in high-grade prostate intraepithelial neoplasia (HGPIN) glands. COX-2, TXS, and TPR proteins usually displayed a coordinated overexpression pattern in PCa lesions, as assessed in serial tissue sections. Increased levels of these proteins in the tumors were all significantly associated with higher Gleason scores and pathologic stages. CONCLUSIONS Proteins specifically involved in the TXA(2) pathway are up-regulated in human PCa and their level of expression is associated with tumor extraprostatic extension and loss of differentiation. Our study is the first to examine simultaneously all key proteins involved in this pathway including TXA(2) receptors and results suggest that the TXA(2) pathway may be a potential target for PCa prevention/therapy.
Collapse
Affiliation(s)
- Thibaut Dassesse
- Metastasis Research Laboratory, Center of Experimental Cancer Research, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Zhang L, DiLizio C, Kim D, Smyth EM, Manning DR. The G12 family of G proteins as a reporter of thromboxane A2 receptor activity. Mol Pharmacol 2006; 69:1433-40. [PMID: 16418336 DOI: 10.1124/mol.105.019703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite advances in the understanding of pathways regulated by the G12 family of heterotrimeric G proteins, much regarding the engagement of this family by receptors remains unclear. We explore here, using the thromboxane A2 receptor TPalpha, the ability of G12 and G13 to report differences in the potency and efficacy of receptor ligands. We were interested especially in the potential of the isoprostane 8-iso-prostaglandin F (8-iso-PGF2alpha), among other ligands examined, to activate G12 and G13 through TPalpha explicitly. We were also interested in the functionality of TPalpha-Galpha fusion proteins germane to G12 and G13. Using fusion proteins in Spodoptera frugiperda (Sf9) cells and independently expressed proteins in human embryonic kidney 293 cells, and using guanosine 5'-O-(3-[35S]thio)triphosphate binding to evaluate Galpha activation directly, we found for Galpha that no ligand tested, including 8-iso-prostaglandin F (8-iso-PGF2alpha and a purported antagonist (pinane thromboxane A2), was silent. The activity of agonists was especially pronounced when evaluated for TPalpha-Galpha13 and in the context of receptor reserve. Agonist activity for 8-iso-PGF2 was diminished and that for pinane thromboxane A nonexistent when Galpha12 was the reporter. These data establish that G12 and G13 can report differentially potency and efficacy and underscore the relevance of receptor and G protein context.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, USA
| | | | | | | | | |
Collapse
|
40
|
Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol 2005; 289:R913-35. [PMID: 16183628 DOI: 10.1152/ajpregu.00250.2005] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is growing evidence that oxidative stress contributes to hypertension. Oxidative stress can precede the development of hypertension. In almost all models of hypertension, there is oxidative stress that, if corrected, lowers BP, whereas creation of oxidative stress in normal animals can cause hypertension. There is overexpression of the p22(phox) and Nox-1 components of NADPH oxidase and reduced expression of extracellular superoxide dismutase (EC-SOD) in the kidneys of ANG II-infused rodents, whereas there is overexpression of p47(phox) and gp91(phox) and reduced expression of intracellular SOD with salt loading. Several mechanisms have been identified that can make oxidative stress self-sustaining. Reactive oxygen species (ROS) can enhance afferent arteriolar tone and reactivity both indirectly via potentiation of tubuloglomerular feedback and directly by microvascular mechanisms that diminish endothelium-derived relaxation factor/nitric oxide responses, generate a cyclooxygenase-2-dependent endothelial-derived contracting factor that activates thromboxane-prostanoid receptors, and enhance vascular smooth muscle cells reactivity. ROS can diminish the efficiency with which the kidney uses O(2) for Na(+) transport and thereby diminish the P(O(2)) within the kidney cortex. This may place a break on further ROS generation yet could further enhance vasculopathy and hypertension. There is a tight relationship between oxidative stress in the kidney and the development and maintenance of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Center, 3800 Reservoir Rd., NW, Washington, DC 20007, USA.
| |
Collapse
|
41
|
Valentin F, Tippins JR, Field MC. The role of alternative splicing and C-terminal amino acids in thromboxane receptor stabilization. Biochem Biophys Res Commun 2005; 329:898-904. [PMID: 15752740 DOI: 10.1016/j.bbrc.2005.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Indexed: 10/25/2022]
Abstract
The thromboxane receptor has two alternatively spliced isoforms, alpha and beta, which differ only in sequences within the cytoplasmic C-terminal domain. Oxidative stress induced by H(2)O(2) in a COS-7 cell model results in stabilization of the thromboxane receptor beta isoform by translocation from the endoplasmic reticulum to the Golgi complex, which in turn results in protection of the receptor from degradation. We now report that both the alpha and beta thromboxane receptor isoforms respond identically to oxidative stress. Further, mutagenesis studies indicate that replacing the normal C-terminus with a nonsense sequence also does not alter stabilization behaviour ruling out a role for the distinct C-termini in this process. Further mutagenesis implicates a cluster of arginine residues within the C-terminal domain as involved in oxidative stress-induced stabilization. These data identify a region of the thromboxane receptor that is responsible for responding to oxidative challenge and open the possibility of identification of the molecular machinery underpinning this response.
Collapse
Affiliation(s)
- François Valentin
- Division of Cell and Molecular Biology, Biochemistry Building, Imperial College, London SW7 2AZ, UK
| | | | | |
Collapse
|
42
|
Abstract
We tested the hypothesis that cyclooxygenase (COX), thromboxane A
2
synthase (TxA
2
-S), thromboxane prostanoid receptors (TP-Rs), or superoxide anion (O
2
−
) mediates enhanced contractions of renal afferent arterioles (Aff) of angiotensin II (Ang II)-infused rabbits. Rabbits were infused with vehicle (sham), Ang II 60 ng·kg
−1
·min
−1
(Ang II 60) or 200 ng·kg
−1
·min
−1
(Ang II 200). There was a selective enhanced vasoconstriction of Affs from Ang II 60 rabbits to Ang II (Δdiameter−78±8% versus −43±9%;
P
<0.01) that was normalized by a TP-R antagonist but not by a superoxide dismutase (SOD) mimetic. Affs from Ang II 200 rabbits had increased (
P
<0.01) mRNA for COX-2 and enhanced vasoconstriction to Ang II, U-46 619 (TP-R mimetic), and endothelin-1 that was normalized by ifetroban plus tempol together. Endothelium removal enhanced Ang II responses of Affs from sham rabbits but blunted responses from Ang II 200 rabbits and abolished responses to ifetroban. Affs from Ang II 200 rabbits had an endothelium-dependent contraction factor (EDCF) response to that was blunted (
P
<0.001) by a SOD mimetic or antagonists of COX-1 or TxA
2
-S but normalized by antagonists of COX-2 or TP-R. Thus, enhanced Ang II responses in Affs from rabbits infused with slow pressor Ang II are mediated independently by O
2
−
in the vascular smooth muscle cells and by an EDCF that is principally a vasoconstrictor prostaglandin generated by COX-2 >−1 activating TP-Rs, whereas enhanced responses in rabbits infused with a lower Ang II dose are dependent on TP-R but not O
2
−
.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Arterioles/drug effects
- Arterioles/physiopathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cyclic N-Oxides/pharmacology
- Cyclooxygenase 2
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Endothelins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Isoenzymes/physiology
- Kidney/blood supply
- Male
- Nitroarginine/pharmacology
- Norepinephrine/pharmacology
- Oxazoles/pharmacology
- Oxidative Stress
- Prostaglandin-Endoperoxide Synthases/physiology
- Pyrazoles/pharmacology
- RNA, Messenger/biosynthesis
- Rabbits
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/physiology
- Spin Labels
- Superoxides/metabolism
- Vascular Resistance/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology and Hypertension and the Cardiovascular-Kidney Institute, Georgetown University, Washington, DC 20007-2197, USA
| | | | | |
Collapse
|