1
|
Aye HM, Li FJ, He CY. Dynamic composition of stress granules in Trypanosoma brucei. PLoS Pathog 2024; 20:e1012666. [PMID: 39480887 PMCID: PMC11556693 DOI: 10.1371/journal.ppat.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/12/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Stress granules (SGs) are stress-induced RNA condensates consisting of stalled initiation complexes resulting from translational inhibition. The biochemical composition and function of SGs are highly diverse, and this diversity has been attributed to different stress conditions, signalling pathways involved and specific cell types. Interestingly, mRNA decay components, which are found in ubiquitous cytoplasmic foci known as processing bodies (PB), have also been identified in SG proteomes. A major challenge in current SG studies is to understand the cause of SG diversity, as well as the function of SG under different stress conditions. Trypanosoma brucei is a single-cellular parasite that causes Human African Trypanosomiasis (sleeping sickness). In this study, we showed that by varying the supply of extracellular carbon sources during starvation, cellular ATP levels changed rapidly, resulting in SGs of different compositions and dynamics. We identified a subset of SG components, which dissociated from the SGs in response to cellular ATP depletion. Using expansion microscopy, we observed sub-granular compartmentalization of PB- and SG-components within the stress granules. Our results highlight the importance of cellular ATP in SG composition and dynamics, providing functional insight to SGs formed under different stress conditions.
Collapse
Affiliation(s)
- Htay Mon Aye
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Chmelová Ľ, Záhonová K, Albanaz ATS, Hrebenyk L, Horváth A, Yurchenko V, Škodová-Sveráková I. Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids. Genome Biol Evol 2024; 16:evae042. [PMID: 38447055 PMCID: PMC10946238 DOI: 10.1093/gbe/evae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Liudmyla Hrebenyk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Cheng B, Zhang D, Lin Q, Xi S, Ma J, Zan F, Biswal BK, Wang Z, Guo G. Short-chain fatty acid production and phosphorous recovery from waste activated sludge via anaerobic fermentation: A comparison of in-situ and ex-situ thiosulfate-assisted Fe 2+/persulfate pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162172. [PMID: 36775172 DOI: 10.1016/j.scitotenv.2023.162172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Recently, increasing attention is given on the resource and energy recovery (e.g. short-chain fatty acids (SCFAs) and phosphorus (P)) from waste active sludge (WAS) under the "Dual carbon goals". This study compared four thiosulfate-assisted Fe2+/persulfate (TAFP) pretreatments of WAS, i.e. in-situ TAFP pretreatment (R1), ex-situ TAFP pretreatment (R2), in-situ TAFP pretreatment + pH adjustment (R3) and ex-situ TAFP pretreatment + pH adjustment (R4), followed by anaerobic fermentation over 20 days for SCFA production and P recovery. The results showed that the maximal SCFA yields in R1-4 were 730.2 ± 7.0, 1017.4 ± 13.9, 860.1 ± 40.8, and 1072.0 ± 33.2 mg COD/L, respectively, significantly higher than Control (365.2 ± 17.8 mg COD/L). The findings indicated that TAFP pretreatments (particularly ex-situ TAFP pretreatment) enhanced WAS disintegration and provided more soluble organics and subsequently promoted SCFA production. The P fractionation results showed the non-apatite inorganic P increased from 11.6 ± 0.2 mg P/g TSS in Control to 11.8 ± 0.5 (R1), 12.4 ± 0.3 (R2), 13.2 ± 0.7 (R3) and 12.7 ± 0.7 mg P/g TSS (R4), suggesting TAFP pretreatments improved P bioavailability due to formation of Fe-P mineral (Fe(H2PO4)2·2H2O), which could be recycled through magnetic separators. These findings were further strengthened by the analysis of microbial community and related marker genes that fermentative bacteria containing SCFA biosynthesis genes (e.g. pyk, pdhA, accA and accB) and iron-reducing bacteria containing iron-related proteins (e.g. feoA and feoB) were enriched in R1-4 (dominant in ex-situ pretreatment systems, R2 and R4). Economic evaluation further verified ex-situ TAFP pretreatment was cost-effective and a better strategy over other operations to treat WAS for SCFA production and P recovery.
Collapse
Affiliation(s)
- Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Da Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Qingshan Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Shihao Xi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Jie Ma
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| |
Collapse
|
4
|
Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. mBio 2022; 13:e0235721. [PMID: 35012336 PMCID: PMC8749461 DOI: 10.1128/mbio.02357-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought.
Collapse
|
5
|
Wargnies M, Plazolles N, Schenk R, Villafraz O, Dupuy JW, Biran M, Bachmaier S, Baudouin H, Clayton C, Boshart M, Bringaud F. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem 2021; 296:100548. [PMID: 33741344 PMCID: PMC8065229 DOI: 10.1016/j.jbc.2021.100548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.
Collapse
Affiliation(s)
- Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Robin Schenk
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Oriana Villafraz
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | | | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Sabine Bachmaier
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Hélène Baudouin
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZBMH), Universität Heidelberg, Heidelberg, Germany
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France.
| |
Collapse
|
6
|
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. Bioenergetic consequences of F oF 1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 2021; 296:100357. [PMID: 33539923 PMCID: PMC7949148 DOI: 10.1016/j.jbc.2021.100357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1–ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1–ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1–ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1–ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1–ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1–ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1–ATP synthase loss in insect versus mammalian forms of the parasite.
Collapse
Affiliation(s)
- Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Caroline Dewar
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | | | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
7
|
MacLean A, Bley AM, Appanna VP, Appanna VD. Metabolic manipulation by Pseudomonas fluorescens: a powerful stratagem against oxidative and metal stress. J Med Microbiol 2020; 69:339-346. [PMID: 31961786 DOI: 10.1099/jmm.0.001139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolism is the foundation of all living organisms and is at the core of numerous if not all biological processes. The ability of an organism to modulate its metabolism is a central characteristic needed to proliferate, to be dormant and to survive any assault. Pseudomonas fluorescens is bestowed with a uniquely versatile metabolic framework that enables the microbe to adapt to a wide range of conditions including disparate nutrients and toxins. In this mini-review we elaborate on the various metabolic reconfigurations evoked by this microbial system to combat reactive oxygen/nitrogen species and metal stress. The fine-tuning of the NADH/NADPH homeostasis coupled with the production of α-keto-acids and ATP allows for the maintenance of a reductive intracellular milieu. The metabolic networks propelling the synthesis of metabolites like oxalate and aspartate are critical to keep toxic metals at bay. The biochemical processes resulting from these defensive mechanisms provide molecular clues to thwart infectious microbes and reveal elegant pathways to generate value-added products.
Collapse
Affiliation(s)
- Alex MacLean
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Anondo Michel Bley
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Varun P Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
8
|
Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, Šimek P, Lukeš J. Unique Dynamics of Paramylon Storage in the Marine Euglenozoan Diplonema papillatum. Protist 2020; 171:125717. [PMID: 32087573 DOI: 10.1016/j.protis.2020.125717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/07/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Diplonemids belong to the most diverse and abundant marine protists, which places them among the key players of the oceanic ecosystem. Under in vitro conditions, their best-known representative Diplonema papillatum accumulates in its cytoplasm a crystalline polymer. When grown under the nutrient-poor conditions, but not nutrient-rich conditions, D. papillatum synthesizes a β-1,3-glucan polymer, also known as paramylon. This phenomenon is unexpected, as it is in striking contrast to the accumulation of paramylon in euglenids, since these related flagellates synthesize this polymer solely under nutrient-rich conditions. The capacity of D. papillatum to store an energy source in the form of polysaccharides when the environment is poor in nutrients is unexpected and may contribute to the wide distribution of these protists in the ocean.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
9
|
Schädeli D, Serricchio M, Ben Hamidane H, Loffreda A, Hemphill A, Beneke T, Gluenz E, Graumann J, Bütikofer P. Cardiolipin depletion–induced changes in theTrypanosoma bruceiproteome. FASEB J 2019; 33:13161-13175. [DOI: 10.1096/fj.201901184rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Schädeli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Alessio Loffreda
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Zheng F, Colasante C, Voncken F. Characterisation of a mitochondrial iron transporter of the pathogen Trypanosoma brucei. Mol Biochem Parasitol 2019; 233:111221. [DOI: 10.1016/j.molbiopara.2019.111221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
|
11
|
Ramirez-Barrios R, Reyna-Bello A, Parra O, Valeris R, Tavares-Marques L, Brizard JP, Demettre E, Seveno M, Martinez-Moreno A, Holzmuller P. Trypanosoma vivax infection in sheep: Different patterns of virulence and pathogenicity associated with differentially expressed proteomes. Vet Parasitol 2019; 276S:100014. [PMID: 32904712 PMCID: PMC7458391 DOI: 10.1016/j.vpoa.2019.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
Trypanosoma vivax strains exhibit different virulence and pathogenicity patterns. TvMT1 strain showed low virulence and high pathogenicity. TvLIEM176 strain showed high virulence and moderate pathogenicity. Protein expression varies in high virulence/moderate pathogenicity strain vs low virulence/high pathogenicity strain.
Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3 × 107 (95% CI, 7.9 × 105–2 × 108) parasites/ml in TvLIEM176-infected animals, and 2.5 × 106 (95% CI, 1.6 × 105–4 × 107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73 kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains’ virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.
Collapse
|
12
|
Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog 2018; 14:e1007502. [PMID: 30557412 PMCID: PMC6312356 DOI: 10.1371/journal.ppat.1007502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/31/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.
Collapse
|
13
|
Pineda E, Thonnus M, Mazet M, Mourier A, Cahoreau E, Kulyk H, Dupuy JW, Biran M, Masante C, Allmann S, Rivière L, Rotureau B, Portais JC, Bringaud F. Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. PLoS Pathog 2018; 14:e1007412. [PMID: 30383867 PMCID: PMC6245841 DOI: 10.1371/journal.ppat.1007412] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/20/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet. Since the production of glycerol is an important primary function of adipocytes, we have adapted BSF trypanosomes to a glucose-depleted but glycerol-rich culture medium (CMM_Glyc/GlcNAc) and compared their metabolism and proteome to those of parasites grown in standard glucose-rich conditions (CMM_Glc). BSF were shown to consume 2-folds more oxygen per consumed carbon unit in CMM_Glyc/GlcNAc and were 11.5-times more sensitive to SHAM, a specific inhibitor of the plant-like alternative oxidase (TAO), which is the only mitochondrial terminal oxidase expressed in BSF. This is consistent with (i) the absolute requirement of the mitochondrial respiratory activity to convert glycerol into dihydroxyacetone phosphate, as deduced from the updated metabolic scheme and (ii) with the 1.8-fold increase of the TAO expression level compared to the presence of glucose. Proton NMR analysis of excreted end products from glycerol and glucose metabolism showed that these two carbon sources are metabolised through the same pathways, although the contributions of the acetate and succinate branches are more important in the presence of glycerol than glucose (10.2% versus 3.4% of the excreted end products, respectively). In addition, metabolomic analyses by mass spectrometry showed that, in the absence of glucose, 13C-labelled glycerol was incorporated into hexose phosphates through gluconeogenesis. As expected, RNAi-mediated down-regulation of glycerol kinase expression abolished glycerol metabolism and was lethal for BSF grown in CMM_Glyc/GlcNAc. Interestingly, BSF have adapted their metabolism to grow in CMM_Glyc/GlcNAc by concomitantly increasing their rate of glycerol consumption and decreasing that of glucose. However, the glycerol kinase activity was 7.8-fold lower in CMM_Glyc/GlcNAc, as confirmed by both western blotting and proteomic analyses. This suggests that the huge excess in glycerol kinase that is not absolutely required for glycerol metabolism, might be used for another yet undetermined non-essential function in glucose rich-conditions. Altogether, these data demonstrate that BSF trypanosomes are well-adapted to glycerol-rich conditions that could be encountered by the parasite in extravascular niches, such as the skin and adipose tissues. Until very recently, the bloodstream forms (BSF) of the Trypanosoma brucei group species have been considered to propagate exclusively in the mammalian fluids, including the blood, the lymphatic network and the cerebrospinal fluid. All these fluids are rich in glucose, which is widely considered by the scientific community as the only carbon source used by the parasite to feed its central carbon metabolism and its ATP production. Here, we show for the first time that the BSF trypanosomes efficiently grow in glucose-free conditions as long as glycerol is supplied. The raison d'être of this capacity developed by BSF trypanosomes to grow in glycerol-rich conditions regardless of the glucose concentration, including in glucose-free conditions, is not yet understood. However, the recent discovery that trypanosomes colonize and proliferate in the skin and the adipose tissues of their mammalian hosts may provide a rational explanation for the development of a glycerol-based metabolism in BSF. Indeed, the adipocytes composing adipose tissues and also abundantly present in subcutaneous layers excrete large amounts of glycerol produced from the catabolism of glucose and triglycerides. We also show that BSF trypanosomes adapted to glucose-depleted conditions activate gluconeogenesis to produce the essential hexose phosphates from glycerol metabolism. Interestingly, the constitutive expression of the key gluconeogenic enzyme fructose-1,6-bisphosphatase, which is not used for glycolysis, suggests that BSF trypanosomes maintained in the standard glucose-rich medium are pre-adapted to glucose-depleted conditions. This further strengthens the new paradigm that BSF trypanosomes can use glycerol in tissues producing this carbon source, such as the skin the adipose tissues.
Collapse
Affiliation(s)
- Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Magali Thonnus
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Arnaud Mourier
- Institute of Biochemistry and Genetics of the Cell (IBGC) du CNRS, Université de Bordeaux, Bordeaux, France
| | - Edern Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Hanna Kulyk
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome, Université de Bordeaux, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Cyril Masante
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Loïc Rivière
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | | | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
- * E-mail:
| |
Collapse
|
14
|
Peña-Diaz P, Mach J, Kriegová E, Poliak P, Tachezy J, Lukeš J. Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase. PLoS One 2018; 13:e0196474. [PMID: 29698456 PMCID: PMC5919513 DOI: 10.1371/journal.pone.0196474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
Upon their translocation into the mitochondrial matrix, the N-terminal pre-sequence of nuclear-encoded proteins undergoes cleavage by mitochondrial processing peptidases. Some proteins require more than a single processing step, which involves several peptidases. Down-regulation of the putative Trypanosoma brucei mitochondrial intermediate peptidase (MIP) homolog by RNAi renders the cells unable to grow after 48 hours of induction. Ablation of MIP results in the accumulation of the precursor of the trypanosomatid-specific trCOIV protein, the largest nuclear-encoded subunit of the cytochrome c oxidase complex in this flagellate. However, the trCOIV precursor of the same size accumulates also in trypanosomes in which either alpha or beta subunits of the mitochondrial processing peptidase (MPP) have been depleted. Using a chimeric protein that consists of the N-terminal sequence of a putative subunit of respiratory complex I fused to a yellow fluorescent protein, we assessed the accumulation of the precursor protein in trypanosomes, in which RNAi was induced against the alpha or beta subunits of MPP or MIP. The observed accumulation of precursors indicates MIP depletion affects the activity of the cannonical MPP, or at least one of its subunits.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Jan Mach
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Pavel Poliak
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Tachezy
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
15
|
Colasante C, Zheng F, Kemp C, Voncken F. A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in Trypanosoma brucei. Mol Biochem Parasitol 2018; 221:36-51. [PMID: 29581011 DOI: 10.1016/j.molbiopara.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
The procyclic form of the human parasite Trypanosoma brucei harbors one single, large mitochondrion containing all tricarboxylic acid (TCA) cycle enzymes and respiratory chain complexes present also in higher eukaryotes. Metabolite exchange among subcellular compartments such as the cytoplasm, the mitochondrion, and the peroxisomes is crucial for redox homeostasis and for metabolic pathways whose enzymes are dispersed among different organelles. In higher eukaryotes, mitochondrial carrier family (MCF) proteins transport TCA-cycle intermediates across the inner mitochondrial membrane. Previously, we identified several MCF members that are essential for T. brucei survival. Among these, only one MCF protein, TbMCP12, potentially could transport dicarboxylates and tricarboxylates. Here, we conducted phylogenetic and sequence analyses and functionally characterised TbMCP12 in vivo. Our results suggested that similarly to its homologues in plants, TbMCP12 transports both dicarboxylates and tricarboxylates across the mitochondrial inner membrane. Deleting this carrier in T. brucei was not lethal, while its overexpression was deleterious. Our results suggest that the intracellular abundance of TbMCP12 is an important regulatory element for the NADPH balance and mitochondrial ATP-production.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, Fu Zhou, Fujian, PR China
| | - Cordula Kemp
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| |
Collapse
|
16
|
Mantilla BS, Marchese L, Casas-Sánchez A, Dyer NA, Ejeh N, Biran M, Bringaud F, Lehane MJ, Acosta-Serrano A, Silber AM. Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector. PLoS Pathog 2017; 13:e1006158. [PMID: 28114403 PMCID: PMC5289646 DOI: 10.1371/journal.ppat.1006158] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/02/2017] [Accepted: 12/29/2016] [Indexed: 01/18/2023] Open
Abstract
Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly’s midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut. Bloodsucking insects play a major role in the transmission of pathogens that cause major tropical diseases. Their capacity to transmit these diseases is directly associated with the availability and turnover of energy sources. Proline is the main readily-mobilizable fuel of the tsetse fly, which is the vector of sub-species of Trypanosoma brucei parasites that cause human sleeping sickness and are partly responsible for animal trypanosomiasis (Nagana disease) in sub-Saharan Africa. Once trypanosomes are ingested from an infected host by the tsetse, the parasites encounter an environment that is poor in glucose (as it is rapidly metabolized by the fly) but rich in proline, which then becomes the main carbon source once the parasite differentiates into the first insect (procyclic) stage. In this work, we provide evidence on the essentiality of T. b. brucei proline catabolism for procyclic survival within the tsetse’s digestive tract, as this organism is unable to synthesize this amino acid and strictly depends on the proline provided by the fly. We also show that parasites deficient in TbP5CDH, a mitochondrial enzyme involved in the proline degradative pathway, failed to proliferate in vitro, showed a diminished respiratory capacity, and showed compromised maintenance of energy levels and metabolic flux when proline was offered as the main carbon source. Thus, the integrity of the trypanosome proline degradation pathway is needed to maintain essential functions related to parasite bioenergetics, replication and infectivity within the insect host. Our observations answer a long-standing question on the role of parasite proline metabolism in tsetse-trypanosome interplay.
Collapse
Affiliation(s)
- Brian S. Mantilla
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Naomi A. Dyer
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas Ejeh
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marc Biran
- Centre de Résonance Magnétique des Systemes Biologiques, Université Bordeaux, Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systemes Biologiques, Université Bordeaux, Bordeaux, France
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AMS); (AAS)
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail: (AMS); (AAS)
| |
Collapse
|
17
|
Aldarini N, Alhasawi AA, Thomas SC, Appanna VD. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress. Antonie van Leeuwenhoek 2017; 110:629-639. [PMID: 28097538 DOI: 10.1007/s10482-017-0829-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022]
Abstract
Oxidative stress is known to severely impede aerobic adenosine triphosphate (ATP) synthesis. However, the metabolically-versatile Pseudomonas fluorescens survives this challenge by invoking alternative ATP-generating networks. When grown in a medium with glutamine as the sole organic nutrient in the presence of H2O2, the microbe utilizes glutamine synthetase (GS) to modulate its energy budget. The activity of this enzyme that mediates the release of energy stored in glutamine was sharply increased in the stressed cells compared to the controls. The enhanced activities of such enzymes as acetate kinase, adenylate kinase and nucleotide diphosphate kinase ensured the efficacy of this ATP producing-machine by transferring the high energy phosphate. The elevated amounts of phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase recorded in the H2O2 exposed cells provided another route to ATP independent of the reduction of O2. This is the first demonstration of a metabolic pathway involving GS dedicated to ATP synthesis. The phospho-transfer network that is pivotal to the survival of the microorganism under oxidative stress may reveal therapeutic targets against infectious microbes reliant on glutamine for their proliferation.
Collapse
Affiliation(s)
- Nohaiah Aldarini
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Azhar A Alhasawi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Sean C Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
18
|
Appanna VP, Alhasawi AA, Auger C, Thomas SC, Appanna VD. Phospho-transfer networks and ATP homeostasis in response to an ineffective electron transport chain in Pseudomonas fluorescens. Arch Biochem Biophys 2016; 606:26-33. [PMID: 27431058 DOI: 10.1016/j.abb.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
Although oxidative stress is known to impede the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the nutritionally-versatile microbe, Pseudomonas fluorescens has been shown to proliferate in the presence of hydrogen peroxide (H2O2) and nitrosative stress. In this study we demonstrate the phospho-transfer system that enables this organism to generate ATP was similar irrespective of the carbon source utilized. Despite the diminished activities of enzymes involved in the TCA cycle and in the electron transport chain (ETC), the ATP levels did not appear to be significantly affected in the stressed cells. Phospho-transfer networks mediated by acetate kinase (ACK), adenylate kinase (AK), and nucleoside diphosphate kinase (NDPK) are involved in maintaining ATP homeostasis in the oxidatively-challenged cells. This phospho-relay machinery orchestrated by substrate-level phosphorylation is aided by the up-regulation in the activities of such enzymes like phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), and phosphoenolpyruvate synthase (PEPS). The enhanced production of phosphoenolpyruvate (PEP) and pyruvate further fuel the synthesis of ATP. Taken together, this metabolic reconfiguration enables the organism to fulfill its ATP need in an O2-independent manner by utilizing an intricate phospho-wire module aimed at maximizing the energy potential of PEP with the participation of AMP.
Collapse
Affiliation(s)
- V P Appanna
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - A A Alhasawi
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - C Auger
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - S C Thomas
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - V D Appanna
- Faculty of Science and Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
19
|
González-Marcano E, Acosta H, Mijares A, Concepción JL. Kinetic and molecular characterization of the pyruvate phosphate dikinase from Trypanosoma cruzi. Exp Parasitol 2016; 165:81-7. [PMID: 27003459 DOI: 10.1016/j.exppara.2016.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi, like other trypanosomatids analyzed so far, can use both glucose and amino acids as carbon and energy source. In these parasites, glycolysis is compartmentalized in glycosomes, authentic but specialized peroxisomes. The major part of this pathway, as well as a two-branched glycolytic auxiliary system, are present in these organelles. The first enzyme of one branch of this auxiliary system is the PPi-dependent pyruvate phosphate dikinase (PPDK) that converts phosphoenolpyruvate (PEP), inorganic pyrophosphate (PPi) and AMP into pyruvate, inorganic phosphate (Pi) and ATP, thus contributing to the ATP/ADP balance within the glycosomes. In this work we cloned, expressed and purified the T. cruzi PPDK. It kinetic parameters were determined, finding KM values for PEP, PPi and AMP of 320, 70 and 17 μM, respectively. Using molecular exclusion chromatography, two native forms of the enzyme were found with estimated molecular weights of 200 and 100 kDa, corresponding to a homodimer and monomer, respectively. It was established that T. cruzi PPDK's specific activity can be enhanced up to 2.6 times by the presence of ammonium in the assay mixture. During growth of epimastigotes in batch culture an apparent decrease in the specific activity of PPDK was observed. However, when its activity is normalized for the presence of ammonium in the medium, no significant modification of the enzyme activity per cell in time was found.
Collapse
Affiliation(s)
- Eglys González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| | - Alfredo Mijares
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 1020-A, Venezuela.
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| |
Collapse
|
20
|
Szempruch AJ, Choudhury R, Wang Z, Hajduk SL. In vivo analysis of trypanosome mitochondrial RNA function by artificial site-specific RNA endonuclease-mediated knockdown. RNA (NEW YORK, N.Y.) 2015; 21:1781-1789. [PMID: 26264591 PMCID: PMC4574754 DOI: 10.1261/rna.052084.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/08/2015] [Indexed: 05/29/2023]
Abstract
Trypanosomes possess a unique mitochondrial genome called the kinetoplast DNA (kDNA). Many kDNA genes encode pre-mRNAs that must undergo guide RNA-directed editing. In addition, alternative mRNA editing gives rise to diverse mRNAs and several kDNA genes encode open reading frames of unknown function. To better understand the mechanism of RNA editing and the function of mitochondrial RNAs in trypanosomes, we have developed a reverse genetic approach using artificial site-specific RNA endonucleases (ASREs) to directly silence kDNA-encoded genes. The RNA-binding domain of an ASRE can be programmed to recognize unique 8-nucleotide sequences, allowing the design of ASREs to cleave any target RNA. Utilizing an ASRE containing a mitochondrial localization signal, we targeted the extensively edited mitochondrial mRNA for the subunit A6 of the F0F1 ATP synthase (A6) in the procyclic stage of Trypanosoma brucei. This developmental stage, found in the midgut of the insect vector, relies on mitochondrial oxidative phosphorylation for ATP production with A6 forming the critical proton half channel across the inner mitochondrial membrane. Expression of an A6-targeted ASRE in procyclic trypanosomes resulted in a 50% reduction in A6 mRNA levels after 24 h, a time-dependent decrease in mitochondrial membrane potential (ΔΨm), and growth arrest. Expression of the A6-ASRE, lacking the mitochondrial localization signal, showed no significant growth defect. The development of the A6-ASRE allowed the first in vivo functional analysis of an edited mitochondrial mRNA in T. brucei and provides a critical new tool to study mitochondrial RNA biology in trypanosomes.
Collapse
Affiliation(s)
- Anthony J Szempruch
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Rajarshi Choudhury
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zefeng Wang
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephen L Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
21
|
Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective. PLoS One 2015; 10:e0137976. [PMID: 26367006 PMCID: PMC4569355 DOI: 10.1371/journal.pone.0137976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/24/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism and its optimal growth. Finally, through our in silico knockout analysis, we could identify possible therapeutic targets that provide experimentally testable hypotheses.
Collapse
|
22
|
Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity. PLoS One 2015; 10:e0137353. [PMID: 26340747 PMCID: PMC4560413 DOI: 10.1371/journal.pone.0137353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
Background Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties. Results The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions. Conclusion Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross the blood-brain-barrier, ethyl pyruvate could be considered as new candidate agent to treat the hemolymphatic as well as neurological stages of sleeping sickness.
Collapse
|
23
|
Bringaud F, Biran M, Millerioux Y, Wargnies M, Allmann S, Mazet M. Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways. Mol Microbiol 2015; 96:917-26. [PMID: 25753950 DOI: 10.1111/mmi.12990] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Numerous eukaryotes have developed specific metabolic traits that are not present in extensively studied model organisms. For instance, the procyclic insect form of Trypanosoma brucei, a parasite responsible for sleeping sickness in its mammalian-specific bloodstream form, metabolizes glucose into excreted succinate and acetate through pathways with unique features. Succinate is primarily produced from glucose-derived phosphoenolpyruvate in peroxisome-like organelles, also known as glycosomes, by a soluble NADH-dependent fumarate reductase only described in trypanosomes so far. Acetate is produced in the mitochondrion of the parasite from acetyl-CoA by a CoA-transferase, which forms an ATP-producing cycle with succinyl-CoA synthetase. The role of this cycle in ATP production was recently demonstrated in procyclic trypanosomes and has only been proposed so far for anaerobic organisms, in addition to trypanosomatids. We review how nuclear magnetic resonance spectrometry can be used to analyze the metabolic network perturbed by deletion (knockout) or downregulation (RNAi) of the candidate genes involved in these two particular metabolic pathways of procyclic trypanosomes. The role of succinate and acetate production in trypanosomes is discussed, as well as the connections between the succinate and acetate branches, which increase the metabolic flexibility probably required by the parasite to deal with environmental changes such as oxidative stress.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marion Wargnies
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Stefan Allmann
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| |
Collapse
|
24
|
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, Morand P, Millerioux Y, Biran M, Kerkhoven EJ, Chokkathukalam A, Weidt SK, Burgess KEV, Breitling R, Watson DG, Bringaud F, Barrett MP. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog 2015; 11:e1004689. [PMID: 25775470 PMCID: PMC4361558 DOI: 10.1371/journal.ppat.1004689] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. In this work we have followed the distribution of carbon derived from glucose in bloodstream form trypanosomes, the causative agent of African trypanosomiasis, revealing it to enter a diverse range of metabolites. The work involved using 13C-labelled glucose and following the fate of the labelled carbon with an LC-MS based metabolomics platform. Beyond glycolysis and the oxidative branch of the pentose phosphate pathway the label entered lipid biosynthesis both through glycerol 3-phosphate and also acetate. Glucose derived carbon also entered nucleotide synthesis through ribose and pyrimidine synthesis through oxaloacetate-derived aspartate. Appreciable quantities of the carboxylic acids succinate and malate were identified, although labelling patterns indicate they are not TCA cycle derived. Amino sugars and sugar nucleotides were also labelled as was inositol used in protein modification but not in inositol phospholipid headgroup production. We confirm active and essential oxaloacetate production in bloodstream form trypanosomes and show that phosphoenolpyruvate carboxykinase is essential to these parasites using RNA interference. The amount of glucose entering these metabolites is minor compared to the quantity that enters pyruvate excreted from the cell, but the observation that enzymes contributing to the metabolism of glucose beyond glycolysis can be essential offers potential new targets for chemotherapy against trypanosomiasis.
Collapse
Affiliation(s)
- Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Fiona Achcar
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jana Anderson
- Department of Public Health, Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ruwida Kamour
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Achuthanunni Chokkathukalam
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karl E. V. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Michael P. Barrett
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
A novel ATP-generating machinery to counter nitrosative stress is mediated by substrate-level phosphorylation. Biochim Biophys Acta Gen Subj 2014; 1850:43-50. [PMID: 25304769 DOI: 10.1016/j.bbagen.2014.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND It is well-known that elevated amounts of nitric oxide and other reactive nitrogen species (RNS) impact negatively on the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. These perturbations severely compromise O2-dependent energy production. While bacteria are known to adapt to RNS, a key tool employed by macrophages to combat infections, the exact mechanisms are unknown. METHODS The bacterium was cultured in a defined mineral medium and cell-free extracts obtained at the same growth phase were utilized for various biochemical studies Blue native polyacrylamide gel electrophoresis followed by in-gel activity assays, high performance liquid chromatography and co-immunoprecipitaton are applied to investigate the effects of RNS on the model microbe Pseudomonas fluorescens. RESULTS Citrate is channeled away from the tricarboxylic acid cycle using a novel metabolon consisting of citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK). This metabolic engine comprising three disparate enzymes appears to transiently assemble as a supercomplex aimed at ATP synthesis. The up-regulation in the activities of adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK) ensured the efficacy of this ATP-making machine. CONCLUSION Microbes may escape the effects of nitrosative stress by re-engineering metabolic networks in order to generate and store ATP anaerobically when the electron transport chain is defective. GENERAL SIGNIFICANCE The molecular configuration described herein provides further understanding of how metabolism plays a key role in the adaptation to nitrosative stress and reveals novel targets that will inform the development of antimicrobial agents to counter RNS-resistant pathogens.
Collapse
|
26
|
Rodriguez-Contreras D, Hamilton N. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase. J Biol Chem 2014; 289:32989-3000. [PMID: 25288791 DOI: 10.1074/jbc.m114.569434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- From the Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | - Nicklas Hamilton
- From the Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
27
|
Induction of mitochondrial dysfunction and oxidative stress in Leishmania donovani by orally active clerodane diterpene. Antimicrob Agents Chemother 2014; 58:5916-28. [PMID: 25070112 DOI: 10.1128/aac.02459-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was performed to investigate the mechanistic aspects of cell death induced by a clerodane diterpene (K-09) in Leishmania donovani promastigotes that was previously demonstrated to be safe and orally active against visceral leishmaniasis (VL). K-09 caused depolarization of the mitochondrion and the generation of reactive oxygen species, triggering an apoptotic response in L. donovani promastigotes. Mitochondrial dysfunction subsequently resulted in the release of cytochrome c into the cytosol, impairing ATP production. Oxidative stress caused the depletion of reduced glutathione, while pretreatment with antioxidant N-acetyl cysteine (NAC) was able to abrogate oxidative stress. However, NAC failed to restore the mitochondrial membrane potential or intracellular calcium homeostasis after K-09 treatment, suggesting that the generation of oxidative stress is a downstream event relative to the other events. Caspase-3/-7-like protease activity and genomic DNA fragmentation were observed. Electron microscopy studies revealed gross morphological alterations typical of apoptosis, including severe mitochondrial damage, pyknosis of the nucleus, structural disruption of the mitochondrion-kinetoplast complex, flagellar pocket alterations, and the displacement of organelles. Moreover, an increased number of lipid droplets was detected after K-09 treatment, which is suggestive of altered lipid metabolism. Our results indicate that K-09 induces mitochondrial dysfunction and oxidative stress-mediated apoptotic cell death in L. donovani promastigotes, sharing many features with metazoan apoptosis. These mechanistic insights provide a basis for further investigation toward the development of K-09 as a potential drug candidate for VL.
Collapse
|
28
|
Appanna VP, Auger C, Thomas SC, Omri A. Fumarate metabolism and ATP production in Pseudomonas fluorescens exposed to nitrosative stress. Antonie van Leeuwenhoek 2014; 106:431-8. [PMID: 24923559 DOI: 10.1007/s10482-014-0211-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 12/11/2022]
Abstract
Although nitrosative stress is known to severely impede the ability of living systems to generate adenosine triphosphate (ATP) via oxidative phosphorylation, there is limited information on how microorganisms fulfill their energy needs in order to survive reactive nitrogen species (RNS). In this study we demonstrate an elaborate strategy involving substrate-level phosphorylation that enables the soil microbe Pseudomonas fluorescens to synthesize ATP in a defined medium with fumarate as the sole carbon source. The enhanced activities of such enzymes as phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase coupled with the increased activities of phospho-transfer enzymes like adenylate kinase and nucleoside diphophate kinase provide an effective strategy to produce high energy nucleosides in an O2-independent manner. The alternate ATP producing machinery is fuelled by the precursors derived from fumarate with the aid of fumarase C and fumarate reductase. This metabolic reconfiguration is key to the survival of P. fluorescens and reveals potential targets against RNS-resistant organisms.
Collapse
Affiliation(s)
- Varun P Appanna
- Department of Biology, Laurentian University, Sudbury, ON, P3E2C6, Canada
| | | | | | | |
Collapse
|
29
|
Deramchia K, Morand P, Biran M, Millerioux Y, Mazet M, Wargnies M, Franconi JM, Bringaud F. Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the Trypanosoma brucei procyclic form. J Biol Chem 2014; 289:17365-78. [PMID: 24794874 DOI: 10.1074/jbc.m114.567230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdk/Δpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdk/Δpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdk/Δpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.
Collapse
Affiliation(s)
- Kamel Deramchia
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Pauline Morand
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marc Biran
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Yoann Millerioux
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Muriel Mazet
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marion Wargnies
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jean-Michel Franconi
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Frédéric Bringaud
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
30
|
Solanesyl diphosphate synthase, an enzyme of the ubiquinone synthetic pathway, is required throughout the life cycle of Trypanosoma brucei. EUKARYOTIC CELL 2013; 13:320-8. [PMID: 24376001 DOI: 10.1128/ec.00271-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.
Collapse
|
31
|
Dellibovi-Ragheb TA, Gisselberg JE, Prigge ST. Parasites FeS up: iron-sulfur cluster biogenesis in eukaryotic pathogens. PLoS Pathog 2013; 9:e1003227. [PMID: 23592980 PMCID: PMC3617024 DOI: 10.1371/journal.ppat.1003227] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Teegan A. Dellibovi-Ragheb
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jolyn E. Gisselberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sean T. Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
33
|
Wu C, Dunaway-Mariano D, Mariano PS. Design, synthesis, and evaluation of inhibitors of pyruvate phosphate dikinase. J Org Chem 2012; 78:1910-22. [PMID: 23094589 DOI: 10.1021/jo3018473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyruvate phosphate dikinase (PPDK) catalyzes the phosphorylation reaction of pyruvate that forms phosphoenolpyruvate (PEP) via two partial reactions: PPDK + ATP + P(i) → PPDK-P + AMP + PP(i) and PPDK-P + pyruvate → PEP + PPDK. Based on its role in the metabolism of microbial human pathogens, PPDK is a potential drug target. A screen of substances that bind to the PPDK ATP-grasp domain active site revealed that flavone analogues are potent inhibitors of the Clostridium symbiosum PPDK. In silico modeling studies suggested that placement of a 3–6 carbon-tethered ammonium substituent at the 3′- or 4′-positions of 5,7-dihydroxyflavones would result in favorable electrostatic interactions with the PPDK Mg-ATP binding site. As a result, polymethylene-tethered amine derivatives of 5,7-dihydroxyflavones were prepared. Steady-state kinetic analysis of these substances demonstrates that the 4′-aminohexyl-5,7-dyhydroxyflavone 10 is a potent competitive PPDK inhibitor (K(i) = 1.6 ± 0.1 μM). Single turnover experiments were conducted using 4′-aminopropyl-5,7-dihydroxyflavone 7 to show that this flavone specifically targets the ATP binding site and inhibits catalysis of only the PPDK + ATP + P(i) → PPDK-P + AMP PP(i) partial reaction. Finally, the 4′-aminopbutyl-5,7-dihydroxyflavone 8 displays selectivity for inhibition of PPDK versus other enzymes that utilize ATP and NAD.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | |
Collapse
|
34
|
Peña-Diaz P, Pelosi L, Ebikeme C, Colasante C, Gao F, Bringaud F, Voncken F. Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen Trypanosoma brucei. J Biol Chem 2012; 287:41861-74. [PMID: 23074217 DOI: 10.1074/jbc.m112.404699] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is a kinetoplastid parasite of medical and veterinary importance. Its digenetic life cycle alternates between the bloodstream form in the mammalian host and the procyclic form (PCF) in the bloodsucking insect vector, the tsetse fly. PCF trypanosomes rely in the glucose-depleted environment of the insect vector primarily on the mitochondrial oxidative phosphorylation of proline for their cellular ATP provision. We previously identified two T. brucei mitochondrial carrier family proteins, TbMCP5 and TbMCP15, with significant sequence similarity to functionally characterized ADP/ATP carriers from other eukaryotes. Comprehensive sequence analysis confirmed that TbMCP5 contains canonical ADP/ATP carrier sequence features, whereas they are not conserved in TbMCP15. Heterologous expression in the ANC-deficient yeast strain JL1Δ2Δ3u(-) revealed that only TbMCP5 was able to restore its growth on the non-fermentable carbon source lactate. Transport studies in yeast mitochondria showed that TbMCP5 has biochemical properties and ADP/ATP exchange kinetics similar to those of Anc2p, the prototypical ADP/ATP carrier of S. cerevisiae. Immunofluorescence microscopy and Western blot analysis confirmed that TbMCP5 is exclusively mitochondrial and is differentially expressed with 4.5-fold more TbMCP5 in the procyclic form of the parasite. Silencing of TbMCP5 expression in PCF T. brucei revealed that this ADP/ATP carrier is essential for parasite growth, particularly when depending on proline for energy generation. Moreover, ADP/ATP exchange in isolated T. brucei mitochondria was eliminated upon TbMCP5 depletion. These results confirmed that TbMCP5 functions as the main ADP/ATP carrier in the trypanosome mitochondrion. The important role of TbMCP5 in the T. brucei energy metabolism is further discussed.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Department of Biological Sciences and Hull York Medical School, University of Hull, Cottingham Road, HU6 7RX Hull, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Flux Analysis of the Trypanosoma brucei Glycolysis Based on a Multiobjective-Criteria Bioinformatic Approach. Adv Bioinformatics 2012; 2012:159423. [PMID: 23097667 PMCID: PMC3477527 DOI: 10.1155/2012/159423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/11/2012] [Indexed: 01/26/2023] Open
Abstract
Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates its life cycle between the mammal host(s) (bloodstream form) and the insect vector (procyclic form), with two divergent glucose metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so far. We present a computational analysis (called Metaboflux) that exploits the metabolic topology of the procyclic form, and allows the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experimental data are modeled in a multiobjective function.
Our results show that the current metabolic model is in agreement with experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution through the malic enzyme steps.
Collapse
|
36
|
Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, Ebikeme C, Deramchia K, Gales L, Portais JC, Boshart M, Franconi JM, Bringaud F. ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem 2012; 287:17186-17197. [PMID: 22474284 DOI: 10.1074/jbc.m112.355404] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insect stage trypanosomes use an "acetate shuttle" to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F(0)/F(1)-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F(0)/F(1)-ATP synthase F(1)β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F(0)/F(1)-ATP synthase, for ATP production in the mitochondrion.
Collapse
Affiliation(s)
- Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marion Wargnies
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charles Ebikeme
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Kamel Deramchia
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Lara Gales
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Michael Boshart
- Biozentrum, Genetik, Ludwig-Maximilians-Universität München, Grosshadernerstr, 2-4, D-82152 Martinsried, Germany
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
37
|
Gonçalves RLS, Barreto RFSM, Polycarpo CR, Gadelha FR, Castro SL, Oliveira MF. A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 2011; 43:651-61. [PMID: 22081211 DOI: 10.1007/s10863-011-9398-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/28/2011] [Indexed: 12/24/2022]
Abstract
Trypanosoma cruzi is a hemoflagellate protozoan that causes Chagas' disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host. Herein, we performed a functional assessment of mitochondrial metabolism in the following two distinct evolutive forms of T. cruzi: the insect stage epimastigote and the freshly isolated bloodstream trypomastigote. We observed that in comparison to epimastigotes, bloodstream trypomastigotes facilitate the entry of electrons into the electron transport chain by increasing complex II-III activity. Interestingly, cytochrome c oxidase (CCO) activity and the expression of CCO subunit IV were reduced in bloodstream forms, creating an "electron bottleneck" that favored an increase in electron leakage and H(2)O(2) formation. We propose that the oxidative preconditioning provided by this mechanism confers protection to bloodstream trypomastigotes against the host immune system. In this scenario, mitochondrial remodeling during the T. cruzi life cycle may represent a key metabolic adaptation for parasite survival in different hosts.
Collapse
Affiliation(s)
- Renata L S Gonçalves
- Laboratório de Bioquímica de Resposta ao Estresse, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Creek DJ, Anderson J, McConville MJ, Barrett MP. Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 2011; 181:73-84. [PMID: 22027026 DOI: 10.1016/j.molbiopara.2011.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/05/2023]
Abstract
Metabolomics aims to measure all low molecular weight chemicals within a given system in a manner analogous to transcriptomics, proteomics and genomics. In this review we highlight metabolomics approaches that are currently being applied to the kinetoplastid parasites, Trypanosoma brucei and Leishmania spp. The use of untargeted metabolomics approaches, made possible through advances in mass spectrometry and informatics, and stable isotope labelling has increased our understanding of the metabolism in these organisms beyond the views established using classical biochemical approaches. Set within the context of metabolic networks, predicted using genome-wide reconstructions of metabolism, new hypotheses on how to target aspects of metabolism to design new drugs against these protozoa are emerging.
Collapse
Affiliation(s)
- Darren J Creek
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
39
|
Saunders EC, Ng WW, Chambers JM, Ng M, Naderer T, Krömer JO, Likic VA, McConville MJ. Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth. J Biol Chem 2011; 286:27706-17. [PMID: 21636575 DOI: 10.1074/jbc.m110.213553] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
41
|
Alfonzo JD, Lukeš J. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors. Trends Parasitol 2011; 27:235-8. [PMID: 21419700 DOI: 10.1016/j.pt.2011.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.
Collapse
Affiliation(s)
- Juan D Alfonzo
- Department of Microbiology and OSU Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
42
|
Ebikeme C, Hubert J, Biran M, Gouspillou G, Morand P, Plazolles N, Guegan F, Diolez P, Franconi JM, Portais JC, Bringaud F. Ablation of succinate production from glucose metabolism in the procyclic trypanosomes induces metabolic switches to the glycerol 3-phosphate/dihydroxyacetone phosphate shuttle and to proline metabolism. J Biol Chem 2010; 285:32312-24. [PMID: 20702405 DOI: 10.1074/jbc.m110.124917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma brucei is a parasitic protist that undergoes a complex life cycle during transmission from its mammalian host (bloodstream forms) to the midgut of its insect vector (procyclic form). In both parasitic forms, most glycolytic steps take place within specialized peroxisomes, called glycosomes. Here, we studied metabolic adaptations in procyclic trypanosome mutants affected in their maintenance of the glycosomal redox balance. T. brucei can theoretically use three strategies to maintain the glycosomal NAD(+)/NADH balance as follows: (i) the glycosomal succinic fermentation branch; (ii) the glycerol 3-phosphate (Gly-3-P)/dihydroxyacetone phosphate (DHAP) shuttle that transfers reducing equivalents to the mitochondrion; and (iii) the glycosomal glycerol production pathway. We showed a hierarchy in the use of these glycosomal NADH-consuming pathways by determining metabolic perturbations and adaptations in single and double mutant cell lines using a combination of NMR, ion chromatography-MS/MS, and HPLC approaches. Although functional, the Gly-3-P/DHAP shuttle is primarily used when the preferred succinate fermentation pathway is abolished in the Δpepck knock-out mutant cell line. In the absence of these two pathways (Δpepck/(RNAi)FAD-GPDH.i mutant), glycerol production is used but with a 16-fold reduced glycolytic flux. In addition, the Δpepck mutant cell line shows a 3.3-fold reduced glycolytic flux compensated by an increase of proline metabolism. The inability of the Δpepck mutant to maintain a high glycolytic flux demonstrates that the Gly-3-P/DHAP shuttle is not adapted to the procyclic trypanosome context. In contrast, this shuttle was shown earlier to be the only way used by the bloodstream forms of T. brucei to sustain their high glycolytic flux.
Collapse
Affiliation(s)
- Charles Ebikeme
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Natesan SK, Peacock L, Leung KF, Gibson W, Field MC. Evidence that low endocytic activity is not directly responsible for human serum resistance in the insect form of African trypanosomes. BMC Res Notes 2010; 3:63. [PMID: 20205710 PMCID: PMC2848055 DOI: 10.1186/1756-0500-3-63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 03/05/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In Trypanosoma brucei, the African trypanosome, endocytosis is developmentally regulated and substantially more active in all known mammalian infective stages. In both mammalian and insect stages endocytic activity is likely required for nutrient acquisition, but in bloodstream forms increased endocytosis is involved in recycling the variant surface glycoprotein and removing host immune factors from the surface. However, a rationale for low endocytic activity in insect stages has not been explored. Here we asked if endocytic down-regulation in the procyclic form was associated with resistance to innate trypanolytic immune factors in the blood meal or tsetse fly midgut. FINDINGS Using a well-characterized procyclic parasite with augmented endocytic flux mediated via TbRab5A overexpression, we found that insect stage parasites were able to grow both in the presence of trypanosome lytic factor (TLF) provided in human serum, and also in tsetse flies. Additionally, by placing blood stage parasites in restricted glucose medium, we observed that enlargement of the flagellar pocket, a key morphology associated with defective endocytosis, manifests in parallel with loss of cellular ATP levels. CONCLUSIONS These observations suggest that a high rate of endocytosis per se is insufficient to render insect form parasites sensitive to TLF or tsetse-derived trypanocidal factors. However, the data do suggest that endocytosis is energetically burdensome, as endocytic activity is rapidly compromised on energy depletion in bloodstream stages. Hence an important aspect of endocytic modulation in the nutrient-poor tsetse midgut is likely energetic conservation.
Collapse
Affiliation(s)
- Senthil Ka Natesan
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QP, UK.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Iron is almost ubiquitous in living organisms due to the utility of its redox chemistry. It is also dangerous as it can catalyse the formation of reactive free radicals - a classical double-edged sword. In this review, we examine the uptake and usage of iron by trypanosomatids and discuss how modulation of host iron metabolism plays an important role in the protective response. Trypanosomatids require iron for crucial processes including DNA replication, antioxidant defence, mitochondrial respiration, synthesis of the modified base J and, in African trypanosomes, the alternative oxidase. The source of iron varies between species. Bloodstream-form African trypanosomes acquire iron from their host by uptake of transferrin, and Leishmania amazonensis expresses a ZIP family cation transporter in the plasma membrane. In other trypanosomatids, iron uptake has been poorly characterized. Iron-withholding responses by the host can be a major determinant of disease outcome. Their role in trypanosomatid infections is becoming apparent. For example, the cytosolic sequestration properties of NRAMP1, confer resistance against leishmaniasis. Conversely, cytoplasmic sequestration of iron may be favourable rather than detrimental to Trypanosoma cruzi. The central role of iron in both parasite metabolism and the host response is attracting interest as a possible point of therapeutic intervention.
Collapse
|
45
|
Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 2009; 137:1315-31. [PMID: 20028611 DOI: 10.1017/s0031182009991843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parasites that often grow anaerobically in their hosts have adopted a fermentative strategy relying on the production of partially oxidized end products, including lactate, glycerol, ethanol, succinate and acetate. This review focuses on recent progress in understanding acetate production in protist parasites, such as amoebae, diplomonads, trichomonads, trypanosomatids and in the metazoan parasites helminths, as well as the succinate production pathway(s) present in some of them. We also describe the unconventional organisation of the tricarboxylic acid cycle associated with the fermentative strategy adopted by the procyclic trypanosomes, which may resemble the probable structure of the primordial TCA cycle in prokaryotes.
Collapse
|
46
|
Spitznagel D, Ebikeme C, Biran M, Nic a' Bháird N, Bringaud F, Henehan GTM, Nolan DP. Alanine aminotransferase of Trypanosoma brucei--a key role in proline metabolism in procyclic life forms. FEBS J 2009; 276:7187-99. [PMID: 19895576 DOI: 10.1111/j.1742-4658.2009.07432.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
African trypanosomes possess high levels of alanine aminotransferase (EC 2.6.1.2), although the function of their activity remains enigmatic, especially in slender bloodstream forms where the metabolism of ketoacids does not occur. Therefore, the gene for alanine aminotransferase enzyme in Trypanosoma brucei (TbAAT) was characterized and its function assessed using a combination of RNA interference and gene knockout approaches. Surprisingly, as much as 95% or more of the activity appears to be unnecessary for growth of either bloodstream or procyclic forms respiring on glucose. A combination of RNA interference and NMR spectroscopy revealed an important role for the activity in procyclic forms respiring on proline. Under these conditions, the major end product of proline metabolism is alanine, and a reduction in TbAAT activity led to a proportionate decrease in the amount of alanine excreted along with an increase in the doubling time of the cells. These results provide evidence of a role for alanine aminotransferase in the metabolism of proline in African trypanosomes by linking glutamate produced by the initial oxidative steps of the pathway with pyruvate produced by the final oxidative step of the pathway. This step appears to be essential when proline is the primary carbon source, which is likely to be the physiological situation in the tsetse fly vector.
Collapse
Affiliation(s)
- Diana Spitznagel
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
47
|
Roberts SB, Robichaux JL, Chavali AK, Manque PA, Lee V, Lara AM, Papin JA, Buck GA. Proteomic and network analysis characterize stage-specific metabolism in Trypanosoma cruzi. BMC SYSTEMS BIOLOGY 2009; 3:52. [PMID: 19445715 PMCID: PMC2701929 DOI: 10.1186/1752-0509-3-52] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/16/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trypanosoma cruzi is a Kinetoplastid parasite of humans and is the cause of Chagas disease, a potentially lethal condition affecting the cardiovascular, gastrointestinal, and nervous systems of the human host. Constraint-based modeling has emerged in the last decade as a useful approach to integrating genomic and other high-throughput data sets with more traditional, experimental data acquired through decades of research and published in the literature. RESULTS We present a validated, constraint-based model of the core metabolism of Trypanosoma cruzi strain CL Brener. The model includes four compartments (extracellular space, cytosol, mitochondrion, glycosome), 51 transport reactions, and 93 metabolic reactions covering carbohydrate, amino acid, and energy metabolism. In addition, we make use of several replicate high-throughput proteomic data sets to specifically examine metabolism of the morphological form of T. cruzi in the insect gut (epimastigote stage). CONCLUSION This work demonstrates the utility of constraint-based models for integrating various sources of data (e.g., genomics, primary biochemical literature, proteomics) to generate testable hypotheses. This model represents an approach for the systematic study of T. cruzi metabolism under a wide range of conditions and perturbations, and should eventually aid in the identification of urgently needed novel chemotherapeutic targets.
Collapse
Affiliation(s)
- Seth B Roberts
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Jennifer L Robichaux
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Arvind K Chavali
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Patricio A Manque
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ana M Lara
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
48
|
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 2009; 5:e1000436. [PMID: 19436713 PMCID: PMC2674945 DOI: 10.1371/journal.ppat.1000436] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought. African trypanosomes (Trypanosoma brucei and related subspecies) are unicellular parasites that cause the devastating disease of African sleeping sickness in man and nagana in livestock. Both of these diseases are lethal, killing thousands of people each year and causing major economical complications in the developing world, thus affecting the lives of millions. Furthermore, available drugs are obsolete, difficult to administer and have many undesirable side-effects. Therefore, there is a reinvigorated effort to design new drugs against these parasites. From the pharmacological perspective, unique metabolic processes and protein complexes with singular structure, composition and essential function are of particular interest. One such remarkable protein complex is the mitochondrial F0F1-ATP synthase/ATPase. Here we show that F0F1-ATP synthase complex is essential for viability of procyclic T. brucei cells and it possesses unique and novel subunits. The three F0F1-ATP synthase subunits that were tested were shown to be crucial for the structural integrity of the F0F1-ATP synthase complex and its activities. The compositional and functional characterization of the F0F1-ATP synthase in T. brucei represents a major step towards deciphering the unique and essential properties of the respiratory chain of both an early diverged eukaryote and a lethal human parasite.
Collapse
Affiliation(s)
- Alena Zíková
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Aswini K. Panigrahi
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Jensen RE, Simpson L, Englund PT. What happens when Trypanosoma brucei leaves Africa. Trends Parasitol 2008; 24:428-31. [PMID: 18715829 PMCID: PMC2725760 DOI: 10.1016/j.pt.2008.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
Julius Lukes and co-workers evaluated the evolutionary origin of Trypanosoma equiperdum and Trypanosoma evansi, parasites that cause horse and camel diseases. Although similar to T. brucei, the sleeping-sickness parasite, these trypanosomes do not cycle through the tsetse fly and have been able to spread beyond Africa. Transmission occurs sexually, or via blood-sucking flies or vampire bats. They concluded that these parasites, which resemble yeast petite mutants, are T. brucei sub-species, which have evolved recently through changes in mitochondrial DNA.
Collapse
Affiliation(s)
- Robert E Jensen
- Department of Cell Biology, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
50
|
A biochemical and genetic study of Leishmania donovani pyruvate kinase. Gene 2008; 424:25-32. [PMID: 18725273 DOI: 10.1016/j.gene.2008.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/20/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
Abstract
Here we present a biochemical and molecular biology study of the enzyme pyruvate kinase (PYK) from the parasitic protozoa Leishmania donovani. The PYK gene was cloned, mutagenised and over expressed and its kinetic parameters determined. Like in other kinetoplastids, L. donovani PYK is allosterically stimulated by the effector fructose 2,6 biphosphate and not by fructose 1,6 biphosphate. When the putative effector binding site of L. donovani PYK was mutagenised, we obtained two mutants with extreme kinetic behavior: Lys453Leu, which retained a sigmoidal kinetics and was little affected by the effector; and His480Gln, which deployed a hyperbolic kinetics that was not changed by the addition of the effector. Molecular Dynamics (MD) studies revealed that the mutations not only altered the effector binding site of L. donovani PYK but also changed the folding of its domain C.
Collapse
|