1
|
Sun X, Nagahama Y, Singh SK, Kozakai Y, Nabeshima H, Fukushima K, Tanaka H, Motooka D, Fukui E, Vivier E, Diez D, Akira S. Deletion of the mRNA endonuclease Regnase-1 promotes NK cell anti-tumor activity via OCT2-dependent transcription of Ifng. Immunity 2024; 57:1360-1377.e13. [PMID: 38821052 DOI: 10.1016/j.immuni.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/31/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Limited infiltration and activity of natural killer (NK) and T cells within the tumor microenvironment (TME) correlate with poor immunotherapy responses. Here, we examined the role of the endonuclease Regnase-1 on NK cell anti-tumor activity. NK cell-specific deletion of Regnase-1 (Reg1ΔNK) augmented cytolytic activity and interferon-gamma (IFN-γ) production in vitro and increased intra-tumoral accumulation of Reg1ΔNK-NK cells in vivo, reducing tumor growth dependent on IFN-γ. Transcriptional changes in Reg1ΔNK-NK cells included elevated IFN-γ expression, cytolytic effectors, and the chemokine receptor CXCR6. IFN-γ induced expression of the CXCR6 ligand CXCL16 on myeloid cells, promoting further recruitment of Reg1ΔNK-NK cells. Mechanistically, Regnase-1 deletion increased its targets, the transcriptional regulators OCT2 and IκBζ, following interleukin (IL)-12 and IL-18 stimulation, and the resulting OCT2-IκBζ-NF-κB complex induced Ifng transcription. Silencing Regnase-1 in human NK cells increased the expression of IFNG and POU2F2. Our findings highlight NK cell dysfunction in the TME and propose that targeting Regnase-1 could augment active NK cell persistence for cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Sun
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Quantitative Immunology Unit, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Host Defense Laboratory, Immunology Unit, Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., 5-1-35 Saito-aokita, Minoh, Osaka 562-0029, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuuki Kozakai
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nabeshima
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Host Defense Laboratory, Immunology Unit, Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., 5-1-35 Saito-aokita, Minoh, Osaka 562-0029, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kiyoharu Fukushima
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroki Tanaka
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- NGS Core Facility of the Genome Information Research Center, RIMD, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Innate Pharma Research Laboratories, Marseille, France; APHM, Hôpital de la Timone, Marseille-Immunopole, Marseille, France
| | - Diego Diez
- Quantitative Immunology Unit, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and Drug Delivery System (CAMaD), Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Liu S, Cao Y, Cui K, Ren G, Zhao T, Wang X, Wei D, Chen Z, Gurram RK, Liu C, Wu C, Zhu J, Zhao K. Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction. Immunity 2024; 57:987-1004.e5. [PMID: 38614090 PMCID: PMC11096031 DOI: 10.1016/j.immuni.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Small Molecule Inhibitors Targeting Nuclear Factor κB Activation Markedly Reduce Expression of Interleukin-2, but Not Interferon-γ, Induced by Phorbol Esters and Calcium Ionophores. Int J Mol Sci 2021; 22:ijms222313098. [PMID: 34884902 PMCID: PMC8658103 DOI: 10.3390/ijms222313098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
Abstract
The T-box transcription factor Eomesodermin (Eomes) promotes the expression of interferon-γ (IFN-γ). We recently reported that the small molecule inhibitors, TPCA-1 and IKK-16, which target nuclear factor κB (NF-κB) activation, moderately reduced Eomes-dependent IFN-γ expression in mouse lymphoma BW5147 cells stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In the present study, we investigated the direct effects of NF-κB on IFN-γ expression in mouse lymphoma EL4 cells and primary effector T cells. Eomes strongly promoted IFN-γ expression and the binding of RelA and NFATc2 to the IFN-γ promoter when EL4 cells were stimulated with PMA and IM. Neither TPCA-1 nor IKK-16 reduced IFN-γ expression; however, they markedly decreased interleukin (IL)-2 expression in Eomes-transfected EL4 cells. Moreover, TPCA-1 markedly inhibited the binding of RelA, but not that of Eomes or NFATc2 to the IFN-γ promoter. In effector CD4+ and CD8+ T cells activated with anti-CD3 and anti-CD28 antibodies, IFN-γ expression induced by PMA and A23187 was not markedly decreased by TPCA-1 or IKK-16 under conditions where IL-2 expression was markedly reduced. Therefore, the present results revealed that NF-κB is dispensable for IFN-γ expression induced by PMA and calcium ionophores in EL4 cells expressing Eomes and primary effector T cells.
Collapse
|
5
|
Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021; 12:684240. [PMID: 34335585 PMCID: PMC8320845 DOI: 10.3389/fimmu.2021.684240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of peptide-major histocompatibility complex (pMHC) class II-based nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells trigger the formation of complex regulatory cell networks that can effectively suppress organ-specific autoimmunity without impairing normal immunity. In this review, we summarize our current understanding of the transcriptional, phenotypic and functional make up of TR1-like cells as described in the literature. The true identity and direct precursors of these cells remain unclear, in particular whether TR1-like cells comprise a single terminally-differentiated lymphocyte population with distinct transcriptional and epigenetic features, or a collection of phenotypically different subsets sharing key regulatory properties. We propose that detailed transcriptional and epigenetic characterization of homogeneous pools of TR1-like cells will unravel this conundrum.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nat Commun 2021; 12:1446. [PMID: 33664261 PMCID: PMC7933435 DOI: 10.1038/s41467-021-21574-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) differentiate into thymic and peripheral NKT1, NKT2 and NKT17 subsets. Here we use RNA-seq and ATAC-seq analyses and show iNKT subsets are similar, regardless of tissue location. Lung iNKT cell subsets possess the most distinct location-specific features, shared with other innate lymphocytes in the lung, possibly consistent with increased activation. Following antigenic stimulation, iNKT cells undergo chromatin and transcriptional changes delineating two populations: one similar to follicular helper T cells and the other NK or effector like. Phenotypic analysis indicates these changes are observed long-term, suggesting that iNKT cells gene programs are not fixed, but they are capable of chromatin remodeling after antigen to give rise to additional subsets. Invariant natural killer T cells are known to be composed of a number of phenotypic and functionally distinct populations. Here the authors use transcriptomic and epigenomic analysis to further characterize the peripheral iNKT compartment before and after antigenic stimulation.
Collapse
|
7
|
Protein kinase 2 (CK2) controls CD4 + T cell effector function in the pathogenesis of colitis. Mucosal Immunol 2020; 13:788-798. [PMID: 31988467 PMCID: PMC7382987 DOI: 10.1038/s41385-020-0258-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/04/2023]
Abstract
Crohn's disease (CD), one of the major forms of inflammatory bowel disease (IBD), is characterized by chronic inflammation of the gastrointestinal tract and associated with aberrant CD4+ T-helper type 1 (Th1) and Th17 responses. Protein kinase 2 (CK2) is a conserved serine-threonine kinase involved in signal transduction pathways, which regulate immune responses. CK2 promotes Th17 cell differentiation and suppresses the generation of Foxp3+ regulatory T cells. The function of CK2 in CD4+ T cells during the pathogenesis of CD is unknown. We utilized the T cell-induced colitis model, transferring CD45RBhi-naive CD4+ T cells from CK2αfl/fl controls and CK2αfl/fldLck-Cre mice into Rag1-/- mice. CD4+ T cells from CK2αfl/fldLck-Cre mice failed to induce wasting disease and significant intestinal inflammation, which was associated with decreased interleukin-17A-positive (IL-17A+), interferon-γ-positive (IFN-γ+), and double-positive IL-17A+IFN-γ+ CD4+ T cells in the spleen and colon. We determined that CK2α regulates CD4+ T cell proliferation through a cell-intrinsic manner. CK2α is also important in controlling CD4+ T cell responses by regulating NFAT2, which is vital for T cell activation and proliferation. Our findings indicate that CK2α contributes to the pathogenesis of colitis by promoting CD4+ T cell proliferation and Th1 and Th17 responses, and that targeting CK2 may be a novel therapeutic treatment for patients with CD.
Collapse
|
8
|
Eomesodermin promotes interaction of RelA and NFATc2 with the Ifng promoter and multiple conserved noncoding sequences across the Ifng locus in mouse lymphoma BW5147 cells. Immunol Lett 2020; 225:33-43. [DOI: 10.1016/j.imlet.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
|
9
|
Wei X, Li H, Zhang Y, Li C, Li K, Ai K, Yang J. Ca2+–Calcineurin Axis–Controlled NFAT Nuclear Translocation Is Crucial for Optimal T Cell Immunity in an Early Vertebrate. THE JOURNAL OF IMMUNOLOGY 2019; 204:569-585. [DOI: 10.4049/jimmunol.1901065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
|
10
|
Lee HG, Kim LK, Choi JM. NFAT-Specific Inhibition by dNP2-VIVITAmeliorates Autoimmune Encephalomyelitisby Regulation of Th1 and Th17. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:32-41. [PMID: 31737742 PMCID: PMC6849366 DOI: 10.1016/j.omtm.2019.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Nuclear factor of activated T cells (NFATs) is an important transcription factor for T cell activation and proliferation. Recent studies have highlighted the role of NFATs in regulating the differentiation of effector CD4 T helper (Th) subsets including Th1 and Th17 cells. Because controlling the effector T cell function is important for the treatment of autoimmune diseases, regulation of NFAT functions in T cells would be an important strategy to control the pathogenesis of autoimmune diseases. Here, we demonstrated that an NFAT inhibitory peptide, VIVIT conjugated to dNP2 (dNP2-VIVIT), a blood-brain barrier-permeable peptide, ameliorated experimental autoimmune encephalomyelitis (EAE) by inhibiting Th1 and Th17 cells, but not regulatory T (Treg) cells. dNP2-VIVIT negatively regulated spinal cord-infiltrating interleukin-17A (IL-17A) and interferon (IFN)-γ-producing CD4+ T cells without affecting the number of Foxp3+ CD4+ Treg cells, whereas dNP2-VEET or 11R-VIVIT could not significantly inhibit EAE. In comparison with cyclosporin A (CsA), dNP2-VIVIT selectively inhibited Th1 and Th17 differentiation, whereas CsA inhibited the differentiation of all T cell subsets including that of Th2 and Treg cells. Collectively, this study demonstrated the role of dNP2-VIVIT as a novel agent for the treatment of autoimmune diseases such as multiple sclerosis by regulating the functions of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Dulson SJ, Watkins EE, Crossman DK, Harrington LE. STAT4 Directs a Protective Innate Lymphoid Cell Response to Gastrointestinal Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2472-2484. [PMID: 31562212 DOI: 10.4049/jimmunol.1900719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Innate lymphoid cells (ILCs) are strategically positioned at mucosal barrier surfaces where they respond quickly to infection or injury. Therefore, we hypothesized that ILCs are key contributors to the early immune response in the intestine against Listeria monocytogenes Using a modified strain of L. monocytogenes that mimics human gastrointestinal listeriosis in mice, we find ILCs to be essential for control of early replication of L. monocytogenes in the intestine as well as for restricted dissemination of bacteria to peripheral tissues. Specifically, group 1 ILCs (ILC1s) and group 3 ILCs (ILC3s) respond to infection with proliferation and IFN-γ and IL-22 production. Mechanistically, we show that the transcription factor STAT4 is required for the proliferative and IFN-γ effector response by ILC1s and ILC3s, and loss of STAT4 signaling in the innate immune compartment results in an inability to control bacterial growth and dissemination. Interestingly, STAT4 acts acutely as a transcription factor to promote IFN-γ production. Together, these data illustrate a critical role for ILCs in the early responses to gastrointestinal infection with L. monocytogenes and identify STAT4 as a central modulator of ILC-mediated protection.
Collapse
Affiliation(s)
- Sarah J Dulson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Emily E Watkins
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294; and.,Heflin Center for Genomic Science, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laurie E Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
12
|
Hashimoto H, Watanabe M, Inoue N, Hirai N, Haga E, Kinoshita R, Hidaka Y, Iwatani Y. Association of IFNG gene methylation in peripheral blood cells with the development and prognosis of autoimmune thyroid diseases. Cytokine 2019; 123:154770. [PMID: 31279175 DOI: 10.1016/j.cyto.2019.154770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022]
Abstract
The intractability of Graves' disease (GD) and the severity of Hashimoto's disease (HD) vary among patients. Both genetic and environmental factors may be associated with their prognoses. To clarify the role of methylation of the IFNG gene in the pathogenesis and prognosis of (AITDs), we examined interferon gamma (IFNG) methylation levels at various CpG sites and genotyped IFNG +874 A/T and +2109 C/T polymorphisms. We analyzed methylation 59 patients with HD, 57 patients with GD and 26 healthy volunteers by pyrosequencing. We genotyped IFNG gene polymorphisms from 207 patients with GD, 208 patients with HD, and 102 healthy controls. The methylation levels of IFNG -54 CpG were higher in patients with intractable GD than in those with GD in remission, but there was no difference between patients with severe and mild HD. In carriers of IFNG +2109 T (CT + TT) (85.5% in controls), the -54 CpG methylation levels were significantly higher in patients with intractable GD than in those with GD in remission. On the other hand, in carriers of IFNG +2109 CC, the -4293 CpG methylation levels were higher in intractable GD patients. The methylation levels of IFNG -54 CpG and -4293 CpG were negatively correlated with the age in HD, especially severe HD, patients and GD patients, respectively. There was no circadian variation but considerable daily variation in the methylation levels of IFNG -54 CpG. In conclusion, both the methylation levels of CpG sites and the functional polymorphisms in the IFNG gene were associated with the pathogenesis and prognosis of AITD, especially with GD intractability.
Collapse
Affiliation(s)
- Hidemi Hashimoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Mikio Watanabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan.
| | - Naoya Inoue
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Yamadaoka 2-15, Suita, Osaka 565-0871, Japan.
| | - Nachi Hirai
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Emi Haga
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Riku Kinoshita
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan.
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Yamadaoka 2-15, Suita, Osaka 565-0871, Japan.
| | - Yoshinori Iwatani
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
14
|
Holder KA, Comeau EM, Grant MD. Origins of natural killer cell memory: special creation or adaptive evolution. Immunology 2018; 154:38-49. [PMID: 29355919 DOI: 10.1111/imm.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/13/2022] Open
Abstract
The few initial formative studies describing non-specific and apparently spontaneous activity of natural killer (NK) cells have since multiplied into thousands of scientific reports defining their unique capacities and means of regulation. Characterization of the array of receptors that govern NK cell education and activation revealed an unexpected relationship with the major histocompatibility molecules that NK cells originally became well known for ignoring. Proceeding true to form, NK cells continue to up-end archetypal understanding of their ever-expanding capabilities. Discovery that the NK cell repertoire is extremely diverse and can be reshaped by particular viruses into unique subsets of adaptive NK cells challenges, or at least broadens, the definition of immunological memory. This review provides an overview of studies identifying adaptive NK cells, addressing the origins of NK cell memory and introducing the heretical concept of NK cells with extensive antigenic specificity. Whether these newly apparent properties reflect adaptive utilization of known NK cell attributes and receptors or a specially creative allocation from an undefined receptor array remains to be fully determined.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Emilie M Comeau
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
15
|
14-3-3z sequesters cytosolic T-bet, upregulating IL-13 levels in T C2 and CD8 + lymphocytes from patients with scleroderma. J Allergy Clin Immunol 2017; 142:109-119.e6. [PMID: 29155097 DOI: 10.1016/j.jaci.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/27/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13-producing CD8+ T cells have been implicated in the pathogenesis of type 2-driven inflammatory human conditions. We have shown that CD8+IL-13+ cells play a critical role in cutaneous fibrosis, the most characteristic feature of systemic sclerosis (SSc; scleroderma). However, the molecular mechanisms underlying production of IL-13 and other type 2 cytokines by CD8+ T cells remain unclear. OBJECTIVE We sought to establish the molecular basis of IL-13 overproduction by CD8+ T cells from patients with SSc, focusing on T-bet modulation of GATA-3 activity, which we showed to underlie IL-13 overproduction in CD8+IL-13+ cells from patients with SSc. METHODS Biochemical and biophysical methods were used to determine the expression and association of T-bet, GATA-3, and regulatory factors in CD8+ T cells isolated from the blood and lesional skin of patients with SSc with severe skin thickening. Chromatin immunoprecipitation analysis determined GATA-3 binding to the IL-13 promoter. ImageStream analysis and confocal microscopy visualized the subcellular localization of T-bet and GATA-3. Transcript levels were decreased by small interfering RNAs. RESULTS Interaction of T-bet with the adaptor protein 14-3-3z in the cytosol of CD8+ T cells from patients with SSc reduces T-bet translocation into the nucleus and its ability to associate with GATA-3, allowing more GATA-3 to bind to the IL-13 promoter and inducing IL-13 upregulation. Strikingly, we show that this mechanism is also found during type 2 polarization of CD8+ T cells (TC2) from healthy donors. CONCLUSIONS We identified a novel molecular mechanism underlying type 2 cytokine production by CD8+ T cells, revealing a more complete picture of the complex pathway leading to SSc disease pathogenesis.
Collapse
|
16
|
|
17
|
Roles of SMC Complexes During T Lymphocyte Development and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:17-42. [DOI: 10.1016/bs.apcsb.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Abstract
Viral infections continuously challenge and shape our immune system. Due to their fine antigen recognition ability, adaptive lymphocytes protect against pathogen reencounter by generating specific immunological memory. Innate cells such as macrophages also adapt to pathogen challenge and mount resistance to reinfection, a phenomenon termed trained immunity. As part of the innate immunity, natural killer (NK) cells can display rapid effector functions and play a crucial role in the control of viral infections, especially by the β-herpesvirus cytomegalovirus (CMV). CMV activates the NK-cell pool by inducing proinflammatory signals, which prime NK cells, paralleling macrophage training. In addition, CMV dramatically shapes the NK-cell repertoire due to its ability to trigger specific NK cell-activating receptors, and enables the expansion and persistence of a specific NK-cell subset displaying adaptive and memory features. In this chapter, we will discuss how different signals during CMV infection contribute to NK-cell training and acquisition of classical memory properties and how these events can impact on reinfection and cross-resistance.
Collapse
|
19
|
Crystal structure of the DNA binding domain of the transcription factor T-bet suggests simultaneous recognition of distant genome sites. Proc Natl Acad Sci U S A 2016; 113:E6572-E6581. [PMID: 27791029 DOI: 10.1073/pnas.1613914113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.
Collapse
|
20
|
Ni J, Hölsken O, Miller M, Hammer Q, Luetke-Eversloh M, Romagnani C, Cerwenka A. Adoptively transferred natural killer cells maintain long-term antitumor activity by epigenetic imprinting and CD4 + T cell help. Oncoimmunology 2016; 5:e1219009. [PMID: 27757318 DOI: 10.1080/2162402x.2016.1219009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cell infusions can induce remissions in subsets of patients with different types of cancer. The optimal strategies for NK cell activation prior to infusion are still under debate. There is recent evidence that NK cells can acquire long-term functional competence by preactivation with the cytokines IL-12/15/18. The mechanisms supporting the maintenance of long-term NK cell antitumor activity are incompletely under-stood. Here, we show that NK cells preactivated in vitro with IL-12/15/18, but not with IL-15 alone, maintained high antitumor activity even 1 mo after transfer into lymphopenic RAG-2-/-γc-/- mice. The NK cell intrinsic ability for IFNγ production coincided with demethylation of the conserved non-coding sequence (CNS) 1 in the Ifng locus, previously shown to enhance transcription of Ifng. In a xenograft melanoma mouse model, human IL-12/15/18-preactivated NK cells rejected tumors more efficiently. In RAG-2-/-γc-/- mice, co-transfer of CD4+ T cells further improved the long-term competence of NK cells for IFNγ production that was dependent on IL-2. CD4+ T cell activation during homeostatic proliferation required macrophages and further promoted the long-term NK cell antitumor activity. Thus, NK cells can "remember" a previous exposure to cytokines by epigenetic imprinting resulting in a remarkable stability of the IFNγ-producing phenotype after adoptive transfer. In addition, our results support combination of cytokine-preactivated NK cells with CD4+ T cell activation upon lymphopenic conditioning to achieve long-term NK cell effector function for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Ni
- German Cancer Research Center (DKFZ), Research Group Innate Immunity , Heidelberg, Germany
| | - Oliver Hölsken
- German Cancer Research Center (DKFZ), Research Group Innate Immunity , Heidelberg, Germany
| | - Matthias Miller
- German Cancer Research Center (DKFZ), Research Group Innate Immunity , Heidelberg, Germany
| | - Quirin Hammer
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute , Berlin, Germany
| | - Merlin Luetke-Eversloh
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute , Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute , Berlin, Germany
| | - Adelheid Cerwenka
- German Cancer Research Center (DKFZ), Research Group Innate Immunity , Heidelberg, Germany
| |
Collapse
|
21
|
Fukuoka N, Harada M, Nishida A, Ito Y, Shiota H, Kataoka T. Eomesodermin promotes interferon-γ expression and binds to multiple conserved noncoding sequences across the Ifng locus in mouse thymoma cell lines. Genes Cells 2016; 21:146-62. [PMID: 26749212 DOI: 10.1111/gtc.12328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 11/23/2015] [Indexed: 01/03/2023]
Abstract
The T-box transcription factors T-bet and eomesodermin (Eomes) have been shown to regulate the lineage-specific expression of interferon-γ (IFN-γ). However, in contrast to T-bet, the role of Eomes in the expression of IFN-γ remains unclear. In this study, we investigated the Eomes-dependent expression of IFN-γ in the mouse thymoma BW5147 and EL4 cells, which do not express T-bet or Eomes. The ectopic expression of Eomes induced BW5147 and EL4 cells to produce IFN-γ in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In BW5147 cells, Eomes augmented luciferase activity driven by the Ifng promoter encoding from -2500 to +113 bp; however, it was not increased by a stimulation with PMA and IM. A chromatin immunoprecipitation assay showed that Eomes bound to the Ifng promoter and conserved noncoding sequence (CNS) -22 kb across the Ifng locus with high efficacy in BW5147 cells. Moreover, Eomes increased permissive histone modifications in the Ifng promoter and multiple CNSs. The stimulation with PMA and IM greatly augmented Eomes binding to CNS-54, CNS-34, CNS+19 and CNS+30, which was inhibited by FK506. These results indicated that Eomes bound to the Ifng promoter and multiple CNSs in stimulation-dependent and stimulation-independent manners.
Collapse
Affiliation(s)
- Natsuki Fukuoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Misuzu Harada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ai Nishida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuko Ito
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Shiota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
22
|
MaruYama T, Kobayashi S, Ogasawara K, Yoshimura A, Chen W, Muta T. Control of IFN-γ production and regulatory function by the inducible nuclear protein IκB-ζ in T cells. J Leukoc Biol 2015; 98:385-93. [PMID: 26019294 DOI: 10.1189/jlb.2a0814-384r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/30/2015] [Indexed: 01/12/2023] Open
Abstract
The transcriptional regulator IκB-ζ is important for the control of apoptosis in keratinocytes. Thus, IκB-ζ-deficient mice develop autoimmune diseases, such as Sjögren's syndrome. However, T cells also play a pivotal role in Sjögren's syndrome. To study the role of IκB-ζ in T cells, we generated T cell-specific, IκB-ζ-deficient mice. We observed increased numbers of peripheral effector/memory CD4(+) cells and IFN-γ-producing CD4(+) cells in 3-week-old mice. We found that IκB-ζ can be up-regulated by TGF-β1 in naïve CD4(+) T cells and that it negatively regulates IFN-γ expression. In addition, we generated Treg-specific, IκB-ζ deficient mice and found that IκB-ζ is dispensable for the plasticity and stability of Tregs. However, Tregs from T cell-specific, IκB-ζ-deficient mice have reduced immunoregulatory function. Thus, our data reveal a previously unappreciated role for IκB-ζ in IFN-γ production in T cells and the immunoregulatory function of Tregs.
Collapse
Affiliation(s)
- Takashi MaruYama
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuhei Kobayashi
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kouetsu Ogasawara
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Akihiko Yoshimura
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatsushi Muta
- *Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, and Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; School of Medicine, Gifu University, Gifu, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan; and Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Desvignes L, Weidinger C, Shaw P, Vaeth M, Ribierre T, Liu M, Fergus T, Kozhaya L, McVoy L, Unutmaz D, Ernst JD, Feske S. STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection. J Clin Invest 2015; 125:2347-62. [PMID: 25938788 DOI: 10.1172/jci80273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/02/2015] [Indexed: 01/28/2023] Open
Abstract
Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.
Collapse
MESH Headings
- Animals
- Calcium Channels/genetics
- Calcium Channels/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chronic Disease
- Cytokines/genetics
- Cytokines/immunology
- Immunity, Cellular
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/microbiology
- Inflammation/pathology
- Mice
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Stromal Interaction Molecule 1
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/pathology
Collapse
|
24
|
Epigenetic control of interferon-gamma expression in CD8 T cells. J Immunol Res 2015; 2015:849573. [PMID: 25973438 PMCID: PMC4418004 DOI: 10.1155/2015/849573] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Interferon- (IFN-) γ is an essential cytokine for immunity against intracellular pathogens and cancer. IFN-γ expression by CD4 T lymphocytes is observed only after T helper (Th) 1 differentiation and there are several studies about the molecular mechanisms that control Ifng expression in these cells. However, naïve CD8 T lymphocytes do not produce large amounts of IFN-γ, but after TCR stimulation there is a progressive acquisition of IFN-γ expression during differentiation into cytotoxic T lymphocytes (CTL) and memory cells, which are capable of producing high levels of this cytokine. Differential gene expression can be regulated from the selective action of transcriptional factors and also from epigenetic mechanisms, such as DNA CpG methylation or posttranslational histone modifications. Recently it has been recognized that epigenetic modification is an integral part of CD8 lymphocyte differentiation. This review will focus on the chromatin status of Ifng promoter in CD8 T cells and possible influences of epigenetic modifications in Ifng gene and conserved noncoding sequences (CNSs) in regulation of IFN-γ production by CD8 T lymphocytes.
Collapse
|
25
|
Fodil N, Langlais D, Moussa P, Boivin GA, Di Pietrantonio T, Radovanovic I, Dumaine A, Blanchette M, Schurr E, Gros P, Vidal SM. Specific dysregulation of IFNγ production by natural killer cells confers susceptibility to viral infection. PLoS Pathog 2014; 10:e1004511. [PMID: 25473962 PMCID: PMC4256466 DOI: 10.1371/journal.ppat.1004511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Natural Killer (NK) cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H+ NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease. Cytomegalovirus (CMV) is a ubiquitous herpesvirus that largely infects the human population leading to a significant cause of disease and death in the immunocompromised and elderly. The study of CMV in animal models has helped understand the pathogenic consequences of CMV infection and adds substantial understanding of the complex interplay of host and virus in living systems. Natural Killer (NK) cells have emerged as an important player during CMV infection trough their specific recognition of viral particles determinants and subsequent secretion of cytokines and cytolytic granules. In the present study, we have generated different mouse models to specifically investigate quantify viral recognition and cytokine expression by NK cells during CMV infection as a measure of NK cell function. We found that even after proper recognition of infected cells by NK cells, the adequate production of IFNγ is crucial to restrain viral infection. Moreover, we demonstrated that IFNγ production by NK cells is genetically determined and directly linked to the IFNγ locus. Hence, we provide the first evidence for of a unique mechanism of IFNγ production by NK cells which regulates susceptibility to viral infection.
Collapse
Affiliation(s)
- Nassima Fodil
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
- * E-mail: (NF); (SMV)
| | - David Langlais
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Peter Moussa
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
| | - Gregory Allan Boivin
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
| | - Tania Di Pietrantonio
- Research Institute of the McGill University Health Centre, McGill Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Irena Radovanovic
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Anne Dumaine
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada
| | - Erwin Schurr
- Research Institute of the McGill University Health Centre, McGill Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montréal, Québec, Canada
| | - Silvia Marina Vidal
- Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Life Sciences Complex, Montreal, Quebec, Canada
- * E-mail: (NF); (SMV)
| |
Collapse
|
26
|
Chang HK, Hou WS. Retinoic acid modulates interferon-γ production by hepatic natural killer T cells via phosphatase 2A and the extracellular signal-regulated kinase pathway. J Interferon Cytokine Res 2014; 35:200-12. [PMID: 25343668 DOI: 10.1089/jir.2014.0098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells.
Collapse
Affiliation(s)
- Heng-Kwei Chang
- 1 Genomics Research Center , Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
27
|
Luetke-Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, Hamann A, Walter J, Chang HD, Dong J, Romagnani C. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 2014; 10:e1004441. [PMID: 25329659 PMCID: PMC4199780 DOI: 10.1371/journal.ppat.1004441] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022] Open
Abstract
Memory type 1 T helper (T(H)1) cells are characterized by the stable expression of interferon (IFN)-γ as well as by the epigenetic imprinting of the IFNG locus. Among innate cells, NK cells play a crucial role in the defense against cytomegalovirus (CMV) and represent the main source of IFN-γ. Recently, it was shown that memory-like features can be observed in NK cell subsets after CMV infection. However, the molecular mechanisms underlying NK cell adaptive properties have not been completely defined. In the present study, we demonstrated that only NKG2Chi NK cells expanded in human CMV (HCMV) seropositive individuals underwent epigenetic remodeling of the IFNG conserved non-coding sequence (CNS) 1, similar to memory CD8(+) T cells or T(H)1 cells. The accessibility of the CNS1 was required to enhance IFN-γ transcriptional activity in response to NKG2C and 2B4 engagement, which led to consistent IFN-γ production in NKG2C(hi) NK cells. Thus, our data identify epigenetic imprinting of the IFNG locus as selective hallmark and crucial mechanism driving strong and stable IFN-γ expression in HCMV-specific NK cell expansions, providing a molecular basis for the regulation of adaptive features in innate cells.
Collapse
Affiliation(s)
- Merlin Luetke-Eversloh
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Quirin Hammer
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
- Cell Biology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Karl Nordström
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Matthias Pink
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Hyun-Dong Chang
- Cell Biology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum - A Leibniz Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
28
|
Pieper J, Johansson S, Snir O, Linton L, Rieck M, Buckner JH, Winqvist O, van Vollenhoven R, Malmström V. Peripheral and site-specific CD4(+) CD28(null) T cells from rheumatoid arthritis patients show distinct characteristics. Scand J Immunol 2014; 79:149-55. [PMID: 24313359 DOI: 10.1111/sji.12139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/19/2013] [Indexed: 12/28/2022]
Abstract
Proinflammatory CD4(+) CD28(null) T cells are frequently found in the circulation of patients with rheumatoid arthritis (RA), but are less common in the rheumatic joint. In the present study, we sought to identify functional differences between CD4(+) CD28(null) T cells from blood and synovial fluid in comparison with conventional CD28-expressing CD4(+) T cells. Forty-four patients with RA, displaying a distinct CD4(+) CD28(null) T cell population in blood, were recruited for this study; the methylation status of the IFNG locus was examined in isolated T cell subsets, and intracellular cytokine production (IFN-γ, TNF, IL-17) and chemokine receptor expression (CXCR3, CCR6 and CCR7) were assessed by flow cytometry on T cells from the two compartments. Circulating CD4(+) CD28(null) T cells were significantly more hypomethylated in the CNS-1 region of the IFNG locus than conventional CD4(+) CD28(+) T cells and produced higher levels of both IFN-γ and TNF after TCR cross-linking. CD4(+) CD28(null) T cells from the site of inflammation expressed significantly more CXCR3 and CCR6 compared to their counterparts in blood. While IL-17A production could hardly be detected in CD4(+) CD28(null) cells from the blood, a significant production was observed in CD4(+) CD28(null) T cells from synovial fluid. CD4(+) CD28(null) T cells were not only found to differ from conventional CD4(+) CD28(+) T cells in the circulation, but we could also demonstrate that synovial CD4(+) CD28(null) T cells showed additional effector functions (IL-17 coproduction) as compared to the same subset in peripheral blood, suggesting an active role for these cells in the perpetuation of inflammation in the subset of patients having a CD28(null) population.
Collapse
Affiliation(s)
- J Pieper
- Rheumatology Unit, Department of Medicine at Karolinska University Hospital, Karolinska Institute, Solna, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In higher eukaryotic organisms epigenetic modifications are crucial for proper chromatin folding and thereby proper regulation of gene expression. In the last years the involvement of aberrant epigenetic modifications in inflammatory and autoimmune diseases has been recognized and attracted significant interest. However, the epigenetic mechanisms underlying the different disease phenotypes are still poorly understood. As autoimmune and inflammatory diseases are at least partly T cell mediated, we will provide in this chapter an introduction to the epigenetics of T cell differentiation followed by a summary of the current knowledge on aberrant epigenetic modifications that dysfunctional T cells display in various diseases such as type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, and asthma.
Collapse
|
30
|
Balasubramani A, Winstead CJ, Turner H, Janowski KM, Harbour SN, Shibata Y, Crawford GE, Hatton RD, Weaver CT. Deletion of a conserved cis-element in the Ifng locus highlights the role of acute histone acetylation in modulating inducible gene transcription. PLoS Genet 2014; 10:e1003969. [PMID: 24415943 PMCID: PMC3886902 DOI: 10.1371/journal.pgen.1003969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
Differentiation-dependent regulation of the Ifng cytokine gene locus in T helper (Th) cells has emerged as an excellent model for functional study of distal elements that control lineage-specific gene expression. We previously identified a cis-regulatory element located 22 kb upstream of the Ifng gene (Conserved Non-coding Sequence -22, or CNS-22) that is a site for recruitment of the transcription factors T-bet, Runx3, NF-κB and STAT4, which act to regulate transcription of the Ifng gene in Th1 cells. Here, we report the generation of mice with a conditional deletion of CNS-22 that has enabled us to define the epigenetic and functional consequences of its absence. Deletion of CNS-22 led to a defect in induction of Ifng by the cytokines IL-12 and IL-18, with a more modest effect on induction via T-cell receptor activation. To better understand how CNS-22 and other Ifng CNSs regulated Ifng transcription in response to these distinct stimuli, we examined activation-dependent changes in epigenetic modifications across the extended Ifng locus in CNS-22-deficient T cells. We demonstrate that in response to both cytokine and TCR driven activation signals, CNS-22 and other Ifng CNSs recruit increased activity of histone acetyl transferases (HATs) that transiently enhance levels of histones H3 and H4 acetylation across the extended Ifng locus. We also demonstrate that activation-responsive increases in histone acetylation levels are directly linked to the ability of Ifng CNSs to acutely enhance Pol II recruitment to the Ifng promoter. Finally, we show that impairment in IL-12+IL-18 dependent induction of Ifng stems from the importance of CNS-22 in coordinating locus-wide levels of histone acetylation in response to these cytokines. These findings identify a role for acute histone acetylation in the enhancer function of distal conserved cis-elements that regulate of Ifng gene expression.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colleen J. Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Henrietta Turner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen M. Janowski
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stacey N. Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yoichiro Shibata
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Gregory E. Crawford
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Robin D. Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (RDH); (CTW)
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (RDH); (CTW)
| |
Collapse
|
31
|
Shebzukhov YV, Horn K, Brazhnik KI, Drutskaya MS, Kuchmiy AA, Kuprash DV, Nedospasov SA. Dynamic changes in chromatin conformation at the TNF transcription start site in T helper lymphocyte subsets. Eur J Immunol 2013; 44:251-64. [PMID: 24009130 DOI: 10.1002/eji.201243297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF) is one of the key primary response genes in the immune system that can be activated by a variety of stimuli. Previous analysis of chromatin accessibility to DNaseI demonstrated open chromatin conformation of the TNF proximal promoter in T cells. Here, using chromatin probing with restriction enzyme EcoNI and micrococcal nuclease we show that in contrast to the proximal promoter, the TNF transcription start site remains in a closed chromatin configuration in primary T helper (Th) cells, but acquires an open state after activation or polarization under Th1 and Th17 conditions. We further demonstrate that transcription factor c-Jun plays a pivotal role in the maintenance of open chromatin conformation at the transcription start site of the TNF gene.
Collapse
Affiliation(s)
- Yury V Shebzukhov
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
33
|
Dong J, Chang HD, Ivascu C, Qian Y, Rezai S, Okhrimenko A, Cosmi L, Maggi L, Eckhardt F, Wu P, Sieper J, Alexander T, Annunziato F, Gossen M, Li J, Radbruch A, Thiel A. Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-γ memory in human CD4(+) T lymphocytes. Eur J Immunol 2013; 43:793-804. [PMID: 23255246 DOI: 10.1002/eji.201242858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis. Using an IFN-γ capture assay, we found early IFN-γ-producing cells from 2-day differentiating cultures acquired "permissive" levels of demethylation and developed into effector/memory Th1 cells undergoing progressive demethylation at the IFNG promoter and CNS-1 when induced by IL-12. Methylation levels of these regions in effector/memory Th1 cells of peripheral blood from rheumatoid arthritis patients correlated inversely with reduced frequencies of IFN-γ-producers, coincident with recruitment of effector/memory Th1 cells to the site of inflammation. Thus, after termination of TCR stimulation, IL-12 signaling potentiates the stable functional IFN-γ memory in effector/memory Th1 cells characterized by hypomethylation at the IFNG promoter and CNS-1.
Collapse
Affiliation(s)
- Jun Dong
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang X, Bishop KA, Hegde S, Rodenkirch LA, Pike JW, Gumperz JE. Human invariant natural killer T cells acquire transient innate responsiveness via histone H4 acetylation induced by weak TCR stimulation. ACTA ACUST UNITED AC 2012; 209:987-1000. [PMID: 22508835 PMCID: PMC3348100 DOI: 10.1084/jem.20111024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Weak TCR stimulation of iNKT cells, such as that resulting from self-antigen recognition, induces histone modifications at the IFNG locus that allow the iNKT cells to subsequently produce IFN-γ in response to proinflammatory cytokines alone. Invariant NKT cells (iNKT cells) are innate T lymphocytes that are thought to play an important role in producing an early burst of IFN-γ that promotes successful tumor immunosurveillance and antimicrobial immunity. The cellular activation processes underlying innate IFN-γ production remain poorly understood. We show here that weak T cell receptor (TCR) stimulation that does not directly activate iNKT cell IFN-γ messenger RNA transcription nevertheless induces histone H4 acetylation at specific regions near the IFNG gene locus. This renders the iNKT cells able to produce IFN-γ in an innate manner (i.e., not requiring concurrent TCR stimulation) upon exposure to IL-12 and IL-18. The iNKT cells retain the capacity for innate activation for hours to days after the initial weak TCR stimulation, although their innate responsiveness gradually declines as a function of histone deacetylation. These results explain how iNKT cells are able to mediate rapid innate IFN-γ secretion in a manner that does not require them to undergo permanent TH1 differentiation. Moreover, our results also indicate that iNKT cell motility is maintained during activation by IL-12 and IL-18. Therefore, iNKT cells activated through this pathway can continue to migrate and may thus disseminate the IFN-γ that they produce, which may amplify its impact.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
35
|
Collins PL, Henderson MA, Aune TM. Diverse functions of distal regulatory elements at the IFNG locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:1726-33. [PMID: 22246629 DOI: 10.4049/jimmunol.1102879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies have identified multiple conserved noncoding sequences (CNS) at the mouse Ifng locus sufficient for enhancer activity in cell-based assays. These studies do not directly address biology of the human IFNG locus in a genomic setting. IFNG enhancers may be functionally redundant or each may be functionally unique. We test the hypothesis that each IFNG enhancer has a unique necessary function using a bacterial artificial chromosome transgenic model. We find that CNS-30, CNS-4, and CNS+20 are required at distinct stages of Th1 differentiation, whereas CNS-16 has a repressive role in Th1 and Th2 cells. CNS+20 is required for IFN-γ expression by memory Th1 cells and NKT cells. CNS-4 is required for IFN-γ expression by effector Th1 cells. In contrast, CNS-16, CNS-4, and CNS+20 are each partially required for human IFN-γ expression by NK cells. Thus, IFNG CNS enhancers have redundant necessary functions in NK cells but unique necessary functions in Th cells. These results also demonstrate that distinct CNSs are required to transcribe IFNG at each stage of the Th1 differentiation pathway.
Collapse
Affiliation(s)
- Patrick L Collins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
36
|
Kanhere A, Hertweck A, Bhatia U, Gökmen MR, Perucha E, Jackson I, Lord GM, Jenner RG. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun 2012; 3:1268. [PMID: 23232398 PMCID: PMC3535338 DOI: 10.1038/ncomms2260] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
T-bet and GATA3 regulate the CD4+ T cell Th1/Th2 cell fate decision but little is known about the interplay between these factors outside of the murine Ifng and Il4/Il5/Il13 loci. Here we show that T-bet and GATA3 bind to multiple distal sites at immune regulatory genes in human effector T cells. These sites display markers of functional elements, act as enhancers in reporter assays and are associated with a requirement for T-bet and GATA3. Furthermore, we demonstrate that both factors bind distal sites at Tbx21 and that T-bet directly activates its own expression. We also show that in Th1 cells, GATA3 is distributed away from Th2 genes, instead occupying T-bet binding sites at Th1 genes, and that T-bet is sufficient to induce GATA3 binding at these sites. We propose these aspects of T-bet and GATA3 function are important for Th1/Th2 differentiation and for understanding transcription factor interactions in other T cell lineage decisions.
Collapse
Affiliation(s)
- Aditi Kanhere
- Division of Infection and Immunity and UCL Cancer Institute, University College London, London WC1E 6BT, UK
- These authors contributed equally to this work
- Present address: School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Arnulf Hertweck
- Department of Experimental Immunobiology and NIHR Biomedical Research Centre, Guy’s and St Thomas’ Hospital and King’s College London, London SE1 9RT, UK
- These authors contributed equally to this work
| | - Urvashi Bhatia
- Department of Experimental Immunobiology and NIHR Biomedical Research Centre, Guy’s and St Thomas’ Hospital and King’s College London, London SE1 9RT, UK
| | - M. Refik Gökmen
- Department of Experimental Immunobiology and NIHR Biomedical Research Centre, Guy’s and St Thomas’ Hospital and King’s College London, London SE1 9RT, UK
| | - Esperanza Perucha
- Department of Experimental Immunobiology and NIHR Biomedical Research Centre, Guy’s and St Thomas’ Hospital and King’s College London, London SE1 9RT, UK
| | - Ian Jackson
- Department of Experimental Immunobiology and NIHR Biomedical Research Centre, Guy’s and St Thomas’ Hospital and King’s College London, London SE1 9RT, UK
| | - Graham M. Lord
- Department of Experimental Immunobiology and NIHR Biomedical Research Centre, Guy’s and St Thomas’ Hospital and King’s College London, London SE1 9RT, UK
| | - Richard G. Jenner
- Division of Infection and Immunity and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
37
|
Navarro-Partida J, Martinez-Rizo AB, Gonzalez-Cuevas J, Arrevillaga-Boni G, Ortiz-Navarrete V, Armendariz-Borunda J. Pirfenidone restricts Th2 differentiation in vitro and limits Th2 response in experimental liver fibrosis. Eur J Pharmacol 2011; 678:71-7. [PMID: 22222821 DOI: 10.1016/j.ejphar.2011.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 02/06/2023]
Abstract
Polarized T helper type 2 (Th2) response is linked with fibrosis. Here, we evaluated the effect of the anti-fibrotic agent pirfenidone on Th type 1 (Th1) and Th2 responses. For in vivo testing; Wistar rats were made cirrhotic by intraperitoneal administration of thioacetamide. Once hepatic damage was established, pirfenidone was administered intragastrically on a daily basis during three weeks. Gene expression of Th marks was evaluated by RT-PCR and Western blot assays from liver homogenates. Pirfenidone therapy induced down-regulation of Th2 transcripts and proteins (GATA3 and IL-4), without affecting significantly Th1 genes expression (T-bet and IFN-γ). We found that the activated form of p38 MAPK (identified by Western blot) was reduced by pirfenidone treatment, which is consistent with the anti-Th2 activity observed. Pirfenidone reduced GATA3 nuclear localization without modifying its DNA binding activity (evaluated by electrophoretic mobility shift assay). For in vitro testing; human naive CD4+ T cells were cultured in either Th1 or Th2 polarizing conditions in the presence of pirfenidone and flow cytometric analysis of intracellular synthesis of IFN-γ and IL-4 was conducted. Pirfenidone impaired development of Th2 subpopulation. In conclusion, pirfenidone is capable of impairing Th2 differentiation and limits Th2 profibrogenic response. The mechanism involves p38 inhibition and regulation of GATA3 expression and translocation.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Institute for Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, CUCS, University of Guadalajara, Mexico.
| | | | | | | | | | | |
Collapse
|
38
|
Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res 2011; 21:1564-77. [PMID: 21606955 DOI: 10.1038/cr.2011.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by chromatin modifiers, transcription factors and proteins that modulate DNA architecture. Among the latter, AT-hook transcription factors have emerged as multifaceted regulators that can activate or repress broad A/T-rich gene networks. Thus, alterations of AT-hook genes could affect the transcription of multiple genes causing global cell dysfunction. Here we report that targeted deletions of mouse AKNA, a hypothetical AT-hook-like transcription factor, sensitize mice to pathogen-induced inflammation and cause sudden neonatal death. Compared with wild-type littermates, AKNA KO mice appeared weak, failed to thrive and most died by postnatal day 10. Systemic inflammation, predominantly in the lungs, was accompanied by enhanced leukocyte infiltration and alveolar destruction. Cytologic, immunohistochemical and molecular analyses revealed CD11b(+)Gr1(+) neutrophils as major tissue infiltrators, neutrophilic granule protein, cathelin-related antimicrobial peptide and S100A8/9 as neutrophil-specific chemoattracting factors, interleukin-1β and interferon-γ as proinflammatory mediators, and matrix metalloprotease 9 as a plausible proteolytic trigger of alveolar damage. AKNA KO bone marrow transplants in wild-type recipients reproduced the severe pathogen-induced reactions and confirmed the involvement of neutrophils in acute inflammation. Moreover, promoter/reporter experiments showed that AKNA could act as a gene repressor. Our results support the concept of coordinated pathway-specific gene regulation functions modulating the intensity of inflammatory responses, reveal neutrophils as prominent mediators of acute inflammation and suggest mechanisms underlying the triggering of acute and potentially fatal immune reactions.
Collapse
|
39
|
Balasubramani A, Mukasa R, Hatton RD, Weaver CT. Regulation of the Ifng locus in the context of T-lineage specification and plasticity. Immunol Rev 2011; 238:216-32. [PMID: 20969595 DOI: 10.1111/j.1600-065x.2010.00961.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Study of the development of distinct CD4(+) T-cell subsets from naive precursors continues to provide excellent opportunities for dissection of mechanisms that control lineage-specific gene expression or repression. Whereas it had been thought that the induction of transcription networks that control T-lineage commitment were highly stable, reinforced by epigenetic processes that confer heritability of functional phenotypes by the progeny of mature T cells, recent findings support a more dynamic view of T-lineage commitment. Here, we highlight advances in the mapping and functional characterization of cis elements in the Ifng locus that have provided new insights into the control of the chromatin structure and transcriptional activity of this signature T-helper 1 cell gene. We also examine epigenetic features of the Ifng locus that have evolved to enable its reprogramming for expression by other T-cell subsets, particularly T-helper 17 cells, and contrast features of the Ifng locus with those of the Il17a-Il17f locus, which appears less promiscuous.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
40
|
Powell N, Canavan JB, MacDonald TT, Lord GM. Transcriptional regulation of the mucosal immune system mediated by T-bet. Mucosal Immunol 2010; 3:567-77. [PMID: 20844482 DOI: 10.1038/mi.2010.53] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immune system faces the arduous task of defending the mucosal surfaces from invading pathogens, but must simultaneously repress responses against commensal organisms and other inert antigens that are abundant in the external environment, as inappropriate immune activation might expose the host to increased risk of autoimmunity. The behavior of individual immune cells is governed by the expression of transcription factors that are responsible for switching immune response genes on and off. T-bet (T-box expressed in T cells) has emerged as one of the key transcription factors responsible for controlling the fate of both innate and adaptive immune cells, and its expression in different immune cells found at mucosal surfaces is capable of dictating the critical balance between permitting robust host immunity and limiting susceptibility to autoimmunity and allergy.
Collapse
Affiliation(s)
- N Powell
- National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, King's College London, London, UK
| | | | | | | |
Collapse
|
41
|
Abstract
CD4(+) T cells, also known as T-helper (Th) cells, play an important role in orchestrating adaptive immune responses to various infectious agents. They are also involved in the induction of autoimmune and allergic diseases. Upon T-cell receptor (TCR)-mediated cell activation, naive CD4(+) T cells can differentiate into at least four major lineages, Th1, Th2, Th17, and iTreg cells, that participate in different types of immune responses. Networks of cytokines and transcription factors are critical for determining CD4(+) T-cell fates and effector cytokine production. Here, we review collaboration and cross-regulation between various essential cytokines in the activation/induction of key transcription factors during the process of Th cell differentiation towards these distinct lineages. We also discuss the interactions of key transcription factors at both genetic and protein levels and the function of the resulting network(s) in regulating the expression of effector cytokines.
Collapse
Affiliation(s)
- Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | | |
Collapse
|
42
|
Abstract
Significant strides in the understanding of the role of epigenetic regulation in asthma and allergy using both epidemiological approaches as well as experimental ones have been made. This review focuses on new research within the last 2 years. These include advances in determining how environmental agents implicated in airway disease can induce epigenetic changes, how epigenetic regulation can influence T helper cell differentiation and T regulatory cell production, and new discoveries of epigenetic regulation associated with clinical outcomes.
Collapse
Affiliation(s)
- J S Kuriakose
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
43
|
Collins PL, Chang S, Henderson M, Soutto M, Davis GM, McLoed AG, Townsend MJ, Glimcher LH, Mortlock DP, Aune TM. Distal regions of the human IFNG locus direct cell type-specific expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1492-501. [PMID: 20574006 PMCID: PMC2923829 DOI: 10.4049/jimmunol.1000124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, such as IFNG, which are expressed in multiple cell lineages of the immune system, may employ a common set of regulatory elements to direct transcription in multiple cell types or individual regulatory elements to direct expression in individual cell lineages. By employing a bacterial artificial chromosome transgenic system, we demonstrate that IFNG employs unique regulatory elements to achieve lineage-specific transcriptional control. Specifically, a one 1-kb element 30 kb upstream of IFNG activates transcription in T cells and NKT cells but not in NK cells. This distal regulatory element is a Runx3 binding site in Th1 cells and is needed for RNA polymerase II recruitment to IFNG, but it is not absolutely required for histone acetylation of the IFNG locus. These results support a model whereby IFNG uses cis-regulatory elements with cell type-restricted function.
Collapse
Affiliation(s)
- Patrick L. Collins
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melodie Henderson
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mohammed Soutto
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Georgia M. Davis
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Allyson G. McLoed
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michael J. Townsend
- Department of Immunology and Infectious Diseases, Harvard School of Public Health and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M. Aune
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
44
|
Balasubramani A, Shibata Y, Crawford GE, Baldwin AS, Hatton RD, Weaver CT. Modular utilization of distal cis-regulatory elements controls Ifng gene expression in T cells activated by distinct stimuli. Immunity 2010; 33:35-47. [PMID: 20643337 PMCID: PMC2994316 DOI: 10.1016/j.immuni.2010.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/20/2010] [Accepted: 05/11/2010] [Indexed: 01/09/2023]
Abstract
Distal cis-regulatory elements play essential roles in the T lineage-specific expression of cytokine genes. We have mapped interactions of three trans-acting factors-NF-kappaB, STAT4, and T-bet-with cis elements in the Ifng locus. We find that RelA is critical for optimal Ifng expression and is differentially recruited to multiple elements contingent upon T cell receptor (TCR) or interleukin-12 (IL-12) plus IL-18 signaling. RelA recruitment to at least four elements is dependent on T-bet-dependent remodeling of the Ifng locus and corecruitment of STAT4. STAT4 and NF-kappaB therefore cooperate at multiple cis elements to enable NF-kappaB-dependent enhancement of Ifng expression. RelA recruitment to distal elements was similar in T helper 1 (Th1) and effector CD8(+) T (Tc1) cells, although T-bet was dispensable in CD8 effectors. These results support a model of Ifng regulation in which distal cis-regulatory elements differentially recruit key transcription factors in a modular fashion to initiate gene transcription induced by distinct activation signals.
Collapse
Affiliation(s)
- Anand Balasubramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, Crawford GE, Hatton RD, Weaver CT. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 2010; 32:616-27. [PMID: 20471290 PMCID: PMC3129685 DOI: 10.1016/j.immuni.2010.04.016] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/28/2010] [Accepted: 03/23/2010] [Indexed: 01/29/2023]
Abstract
Phenotypic plasticity of T helper 17 (Th17) cells suggests instability of chromatin structure of key genes of this lineage. We identified epigenetic modifications across the clustered Il17a and Il17f and the Ifng loci before and after differential IL-12 or TGF-beta cytokine signaling, which induce divergent fates of Th17 cell precursors. We found that Th17 cell precursors had substantial remodeling of the Ifng locus, but underwent critical additional modifications to enable high expression when stimulated by IL-12. Permissive modifications across the Il17a-Il17f locus were amplified by TGF-beta signaling in Th17 cells, but were rapidly reversed downstream of IL-12-induced silencing of the Rorc gene by the transcription factors STAT4 and T-bet. These findings reveal substantial chromatin instability of key transcription factor and cytokine genes of Th17 cells and support a model of Th17 cell lineage plasticity in which cell-extrinsic factors modulate Th17 cell fates through differential effects on the epigenetic status of Th17 cell lineage factors.
Collapse
Affiliation(s)
- Ryuta Mukasa
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Collapse
Affiliation(s)
- Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - Hidehiro Yamane
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| |
Collapse
|
47
|
Jenner RG, Townsend MJ, Jackson I, Sun K, Bouwman RD, Young RA, Glimcher LH, Lord GM. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 2009; 106:17876-81. [PMID: 19805038 PMCID: PMC2764903 DOI: 10.1073/pnas.0909357106] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Indexed: 01/05/2023] Open
Abstract
Upon detection of antigen, CD4(+) T helper (Th) cells can differentiate into a number of effector types that tailor the immune response to different pathogens. Alternative Th1 and Th2 cell fates are specified by the transcription factors T-bet and GATA-3, respectively. Only a handful of target genes are known for these two factors and because of this, the mechanism through which T-bet and GATA-3 induce differentiation toward alternative cell fates is not fully understood. Here, we provide a genomic map of T-bet and GATA-3 binding in primary human T cells and identify their target genes, most of which are previously unknown. In Th1 cells, T-bet associates with genes of diverse function, including those with roles in transcriptional regulation, chemotaxis and adhesion. GATA-3 occupies genes in both Th1 and Th2 cells and, unexpectedly, shares a large proportion of targets with T-bet. Re-complementation of T-bet alters the expression of these genes in a manner that mirrors their differential expression between Th1 and Th2 lineages. These data show that the choice between Th1 and Th2 lineage commitment is the result of the opposing action of T-bet and GATA-3 at a shared set of target genes and may provide a general paradigm for the interaction of lineage-specifying transcription factors.
Collapse
Affiliation(s)
- Richard G. Jenner
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Michael J. Townsend
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA, 02115
| | - Ian Jackson
- Department of Nephrology and Transplantation and Medical Research Council Centre for Transplantation and
| | - Kaiming Sun
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Russell D. Bouwman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02141; and
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA, 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Graham M. Lord
- Department of Nephrology and Transplantation and Medical Research Council Centre for Transplantation and
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
48
|
Sekimata M, Pérez-Melgosa M, Miller SA, Weinmann AS, Sabo PJ, Sandstrom R, Dorschner MO, Stamatoyannopoulos JA, Wilson CB. CCCTC-binding factor and the transcription factor T-bet orchestrate T helper 1 cell-specific structure and function at the interferon-gamma locus. Immunity 2009; 31:551-64. [PMID: 19818655 PMCID: PMC2810421 DOI: 10.1016/j.immuni.2009.08.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/20/2009] [Accepted: 08/17/2009] [Indexed: 12/17/2022]
Abstract
How cell type-specific differences in chromatin conformation are achieved and their contribution to gene expression are incompletely understood. Here we identify a cryptic upstream orchestrator of interferon-gamma (IFNG) transcription, which is embedded within the human IL26 gene, compromised of a single CCCTC-binding factor (CTCF) binding site and retained in all mammals, even surviving near-complete evolutionary deletion of the equivalent gene encoding IL-26 in rodents. CTCF and cohesins occupy this element in vivo in a cell type-nonspecific manner. This element is juxtaposed to two other sites located within the first intron and downstream of Ifng, where CTCF, cohesins, and the transcription factor T-bet bind in a T helper 1 (Th1) cell-specific manner. These interactions, close proximity of other elements within the locus to each other and to the gene encoding interferon-gamma, and robust murine Ifng expression are dependent on CTCF and T-bet. The results demonstrate that cooperation between architectural (CTCF) and transcriptional enhancing (T-bet) factors and the elements to which they bind is required for proper Th1 cell-specific expression of Ifng.
Collapse
Affiliation(s)
- Masayuki Sekimata
- Department of Immunology, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Mercedes Pérez-Melgosa
- Department of Immunology, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Sara A. Miller
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Amy S. Weinmann
- Department of Immunology, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Peter J. Sabo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Michael O. Dorschner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - John A. Stamatoyannopoulos
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA, 98195 USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA, 98195 USA
| | - Christopher B. Wilson
- Department of Immunology, University of Washington School of Medicine, Seattle WA, 98195 USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle WA, 98195 USA
| |
Collapse
|
49
|
Choi D, Sharma SM, Pasadhika S, Kang Z, Harrington CA, Smith JR, Planck SR, Rosenbaum JT. Application of Biostatistics and Bioinformatics Tools to Identify Putative Transcription Factor-Gene Regulatory Network of Ankylosing Spondylitis and Sarcoidosis. COMMUN STAT-THEOR M 2009; 38:3326-3338. [PMID: 20037664 DOI: 10.1080/03610920902898472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transcription factors and corresponding cis-regulatory elements are considered key components in gene regulation. We combined biostatistics and bioinformatics tools to streamline identification of putative transcription factor-gene regulatory networks unique for two immune-mediated diseases, ankylosing spondylitis and sarcoidosis. After identifying differentially expressed genes from microarrays, we employed tightCluster to find tight clusters of potentially co-regulated genes. By subsequently applying bioinformatics tools to search for common cis-regulatory elements, putative transcription factor-gene regulatory networks were found. Recognition of these networks by applying this methodology could pave the way for new insights into disease pathogenesis.
Collapse
Affiliation(s)
- Dongseok Choi
- Division of Biostatistics, Department of Public Health & Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Placek K, Coffre M, Maiella S, Bianchi E, Rogge L. Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology 2009; 127:155-62. [PMID: 19476511 DOI: 10.1111/j.1365-2567.2009.03059.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Significant progress has been made during the past years in our understanding of the mechanisms that control the differentiation of naïve CD4(+) T cells into effector T-cell subsets with distinct functional properties. Previous work allowed the identification of key molecules involved in regulating this highly complex process, such as cytokines and their receptors, signal transducers and transcription factors. More recently, the emphasis of research in this field has been to elucidate how the multiplicity of signals is integrated to shape a T helper subset-specific gene-expression program controlling differentiation and effector functions. In this review we will highlight advances that have been made in unravelling the genetic and epigenetic networks controlling differentiation of naïve CD4(+) T cells into interferon-gamma(IFN-gamma)-secreting T helper type 1 (Th1) cells.
Collapse
|