1
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
2
|
Li H, Zhao A, Li M, Shi L, Han Q, Hou Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front Immunol 2022; 13:1046755. [PMID: 36569893 PMCID: PMC9768337 DOI: 10.3389/fimmu.2022.1046755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown promising therapeutic effects in the treatment of advanced solid cancers, but their overall response rate is still very low for certain tumor subtypes, limiting their clinical scope. Moreover, the high incidence of drug resistance (including primary and acquired) and adverse effects pose significant challenges to the utilization of these therapies in the clinic. ICIs enhance T cell activation and reverse T cell exhaustion, which is a complex and multifactorial process suggesting that the regulatory mechanisms of ICI therapy are highly heterogeneous. Recently, metabolic reprogramming has emerged as a novel means of reversing T-cell exhaustion in the tumor microenvironment; there is increasing evidence that T cell metabolic disruption limits the therapeutic effect of ICIs. This review focuses on the crosstalk between T-cell metabolic reprogramming and ICI therapeutic efficacy, and summarizes recent strategies to improve drug tolerance and enhance anti-tumor effects by targeting T-cell metabolism alongside ICI therapy. The identification of potential targets for altering T-cell metabolism can significantly contribute to the development of methods to predict therapeutic responsiveness in patients receiving ICI therapy, which are currently unknown but would be of great clinical significance.
Collapse
Affiliation(s)
- Haohao Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Alison Zhao
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve School of Medicine, Cleveland, OH, United States
| | - Menghua Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lizhi Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China,*Correspondence: Qiuju Han, ; Zhaohua Hou,
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States,*Correspondence: Qiuju Han, ; Zhaohua Hou,
| |
Collapse
|
3
|
The calcium signaling enzyme CD38 - a paradigm for membrane topology defining distinct protein functions. Cell Calcium 2021; 101:102514. [PMID: 34896700 DOI: 10.1016/j.ceca.2021.102514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
CD38 is a single-pass transmembrane enzyme catalyzing the synthesis of two nucleotide second messengers, cyclic ADP-ribose (cADPR) from NAD and nicotinic acid adenine dinucleotide phosphate (NAADP) from NADP. The former mediates the mobilization of the endoplasmic Ca2+-stores in response to a wide range of stimuli, while NAADP targets the endo-lysosomal stores. CD38 not only possesses multiple enzymatic activities, it also exists in two opposite membrane orientations. Type III CD38 has the catalytic domain facing the cytosol and is responsible for producing cellular cADPR. The type II CD38 has an opposite orientation and is serving as a surface receptor mediating extracellular functions such as cell adhesion and lymphocyte activation. Its ecto-NADase activity also contributes to the recycling of external NAD released by apoptosis. Endocytosis can deliver surface type II CD38 to endo-lysosomes, which acidic environment favors the production of NAADP. This article reviews the rationale and evidence that have led to CD38 as a paradigm for membrane topology defining distinct functions of proteins. Also described is the recent discovery of a hitherto unknown cADPR-synthesizing enzyme, SARM1, ushering in a new frontier in cADPR-mediated Ca2+-signaling.
Collapse
|
4
|
CD38 Correlates with an Immunosuppressive Treg Phenotype in Lupus-Prone Mice. Int J Mol Sci 2021; 22:ijms222111977. [PMID: 34769406 PMCID: PMC8584421 DOI: 10.3390/ijms222111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38− regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells.
Collapse
|
5
|
Expression of CD38 in Mast Cells: Cytological and Histotopographic Features. Cells 2021; 10:cells10102511. [PMID: 34685490 PMCID: PMC8534017 DOI: 10.3390/cells10102511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 01/26/2023] Open
Abstract
The biological significance of the CD38 molecule goes beyond metabolic, enzymatic, and proliferative functions. CD38 possesses the functions of an exoenzyme and receptor, and is actively involved in the mechanisms of adhesion, migration, intercellular signaling, formation of immune synapses, and modulation of the activity of a wide range of immune and non-immune cells. The aim of this study was the immunohistochemical assessment of the cytological and histotopographic characteristics of CD38 expression in mast cells. CD38 expression was found in a minority of the mast cell population. It is characterized by wide variability from low to high levels. The intensity of CD38 expression in mast cells has organ-specific features and depends on the development of pathological processes in a specific tissue microenvironment. The mechanisms of intercellular interaction between mast cells and CD38+ cells foster new understanding of the protumorigenic or antitumor potential of tryptase.
Collapse
|
6
|
Single-cell RNA-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood 2021; 137:2463-2480. [PMID: 33227818 DOI: 10.1182/blood.2019004547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.
Collapse
|
7
|
Lu L, Wang J, Yang Q, Xie X, Huang Y. The role of CD38 in HIV infection. AIDS Res Ther 2021; 18:11. [PMID: 33820568 PMCID: PMC8021004 DOI: 10.1186/s12981-021-00330-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/06/2021] [Indexed: 11/24/2022] Open
Abstract
The widely-expressed molecule CD38 is a single-stranded type II transmembrane glycoprotein that is mainly involved in regulating the differentiation and activation state of the cell. CD38 has broad and complex functions, including enzymatic activity, intercellular signal transduction, cell activation, cytokine production, receptor function and adhesion activity, and it plays an important role in the physiological and pathological processes of many diseases. Many studies have shown that CD38 is related to the occurrence and development of HIV infection, and CD38 may regulate its progression through different mechanisms. Therefore, investigating the role of CD38 in HIV infection and the potential signaling pathways that are involved may provide a new perspective on potential treatments for HIV infection. In the present review, the current understanding of the roles CD38 plays in HIV infection are summarized. In addition, the specific role of CD38 in the process of HIV infection of human CD4+ T lymphocytes is also discussed.
Collapse
|
8
|
Zhou X, Rasche L, Kortüm KM, Danhof S, Hudecek M, Einsele H. Toxicities of Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma: An Overview of Experience From Clinical Trials, Pathophysiology, and Management Strategies. Front Immunol 2021; 11:620312. [PMID: 33424871 PMCID: PMC7793717 DOI: 10.3389/fimmu.2020.620312] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, monoclonal antibodies (mAbs) such as elotuzumab and daratutumab have brought the treatment of multiple myeloma (MM) into the new era of immunotherapy. More recently, chimeric antigen receptor (CAR) modified T cell, a novel cellular immunotherapy, has been developed for treatment of relapsed/refractory (RR) MM, and early phase clinical trials have shown promising efficacy of CAR T cell therapy. Many patients with end stage RRMM regard CAR T cell therapy as their “last chance” and a “hope of cure”. However, severe adverse events (AEs) and even toxic death related to CAR T cell therapy have been observed. The management of AEs related to CAR T cell therapy represents a new challenge, as the pathophysiology is not fully understood and there is still no well-established standard of management. With regard to CAR T cell associated toxicities in MM, in this review, we will provide an overview of experience from clinical trials, pathophysiology, and management strategies.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
11
|
García-Guerrero E, Sierro-Martínez B, Pérez-Simón JA. Overcoming Chimeric Antigen Receptor (CAR) Modified T-Cell Therapy Limitations in Multiple Myeloma. Front Immunol 2020; 11:1128. [PMID: 32582204 PMCID: PMC7290012 DOI: 10.3389/fimmu.2020.01128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease regardless of recent advances in the field. Therefore, a substantial unmet need exists to treat patients with relapsed/refractory myeloma. The use of novel agents such as daratumumab, elotuzumab, carfilzomib, or pomalidomide, among others, usually cannot completely eradicate myeloma cells. Although these new drugs have had a significant impact on the prognosis of MM patients, the vast majority ultimately become refractory or can no longer be treated due to toxicity of prior treatment, and thus succumb to the disease. Cellular therapies represent a novel approach with a unique mechanism of action against myeloma with the potential to defeat drug resistance and achieve long-term remissions. Genetic modification of cells to express a novel receptor with tumor antigen specificity is currently being explored in myeloma. Chimeric antigen receptor gene-modified T-cells (CAR T-cells) have shown to be the most promising approach so far. CAR T-cells have shown to induce durable complete remissions in other advanced hematologic malignancies like acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). With this background, significant efforts are underway to develop CAR-based therapies for MM. Currently, several antigen targets, including CD138, CD19, immunoglobulin kappa (Ig-Kappa) and B-cell maturation antigen (BCMA), are being used in clinical trials to treat myeloma patients. Some of these trials have shown promising results, especially in terms of response rates. However, the absence of a plateau is observed in most studies which correlates with the absence of durable remissions. Therefore, several potential limitations such as lack of effectiveness, off-tumor toxicities, and antigen loss or interference with soluble proteins could hamper the efficacy of CAR T-cells in myeloma. In this review, we will focus on clinical outcomes reported with CAR T-cells in myeloma, as well as on CAR T-cell limitations and how to overcome them with next generation of CAR T-cells.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells 2019; 9:cells9010052. [PMID: 31878283 PMCID: PMC7016859 DOI: 10.3390/cells9010052] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The regulation of the immune microenvironment within solid tumors has received increasing attention with the development and clinical success of immune checkpoint blockade therapies, such as those that target the PD-1/PD-L1 axis. The metabolic microenvironment within solid tumors has proven to be an important regulator of both the natural suppression of immune cell functionality and the de novo or acquired resistance to immunotherapy. Enzymatic proteins that generate immunosuppressive metabolites like adenosine are thus attractive targets to couple with immunotherapies to improve clinical efficacy. CD38 is one such enzyme. While the role of CD38 in hematological malignancies has been extensively studied, the impact of CD38 expression within solid tumors is largely unknown, though most current data indicate an immunosuppressive role for CD38. However, CD38 is far from a simple enzyme, and there are several remaining questions that require further study. To effectively treat solid tumors, we must learn as much about this multifaceted protein as possible—i.e., which infiltrating immune cell types express CD38 for functional activities, the most effective CD38 inhibitor(s) to employ, and the influence of other similarly functioning enzymes that may also contribute towards an immunosuppressive microenvironment. Gathering knowledge such as this will allow for intelligent targeting of CD38, the reinvigoration of immune functionality and, ultimately, tumor elimination.
Collapse
|
13
|
Chatterjee S, Chakraborty P, Mehrotra S. CD38-NAD +-Sirt1 axis in T cell immunotherapy. Aging (Albany NY) 2019; 11:8743-8744. [PMID: 31645480 PMCID: PMC6834422 DOI: 10.18632/aging.102385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Shilpak Chatterjee
- Indian Institute of Chemical Biology, TRUE Campus, Kolkata 700091, India
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Rodríguez-Alba JC, Abrego-Peredo A, Gallardo-Hernández C, Pérez-Lara J, Santiago-Cruz JW, Jiang JW, Espinosa E. HIV Disease Progression: Overexpression of the Ectoenzyme CD38 as a Contributory Factor? Bioessays 2019; 41:e1800128. [PMID: 30537007 PMCID: PMC6545924 DOI: 10.1002/bies.201800128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Despite abundant evidence associating CD38 overexpression and CD4 T cell depletion in HIV infection, no causal relation has been investigated. To address this issue, a series of mechanisms are proposed, supported by evidence from different fields, by which CD38 overexpression can facilitate CD4 T cell depletion in HIV infection. According to this model, increased catalytic activity of CD38 may reduce CD4 T cells' cytoplasmic nicotin-amide adenine dinucleotide (NAD), leading to a chronic Warburg effect. This will reduce mitochondrial function. Simultaneously, CD38's catalytic products ADPR and cADPR may be transported to the cytoplasm, where they can activate calcium channels and increase cytoplasmic Ca2+ concentrations, further altering mitochondrial integrity. These mechanisms will decrease the viability and regenerative capacity of CD4 T cells. These hypotheses can be tested experimentally, and might reveal novel therapeutic targets. Also see the video abstract here https://youtu.be/k1LTyiTKPKs.
Collapse
Affiliation(s)
- J. C. Rodríguez-Alba
- Flow Cytometry Core Facility, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - A. Abrego-Peredo
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - C. Gallardo-Hernández
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. Pérez-Lara
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. W. Santiago-Cruz
- Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J., W. Jiang
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - E. Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| |
Collapse
|
15
|
Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma 2017; 59:2056-2067. [PMID: 29105517 DOI: 10.1080/10428194.2017.1393668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While recent progress has been made in the management of multiple myeloma, it remains a highly fatal malignancy especially among patients with relapsed-refractory disease. Immunotherapy with adoptive T cells targeting myeloma-associated antigens are at various stages of development and have brought about a new hope for cure. This is a review on the emerging field of adoptively transferred engineered T cell based approaches, with an in-depth focus on chimeric antigen receptors (CAR) targeting multiple myeloma. The recent results from CAR T cells targeting B cell maturation antigen are encouraging but eventual resistance to the CAR T cell therapies remain problematic. With newer approaches in therapies for multiple myeloma, the role of transplantation is evolved to form a platform for T cell therapies.
Collapse
Affiliation(s)
- Arnab Ghosh
- a Hematology/Oncology/BMT Fellowship Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sham Mailankody
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sergio A Giralt
- c Adult BMT Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - C Ola Landgren
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Eric L Smith
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Renier J Brentjens
- d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,e Leukemia Service, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
16
|
Bacchelli C, Moretti FA, Carmo M, Adams S, Stanescu HC, Pearce K, Madkaikar M, Gilmour KC, Nicholas AK, Woods CG, Kleta R, Beales PL, Qasim W, Gaspar HB. Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 2016; 139:634-642.e5. [PMID: 27522155 DOI: 10.1016/j.jaci.2016.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.
Collapse
Affiliation(s)
- Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Federico A Moretti
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Marlene Carmo
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Bone Marrow Transplantation, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Horia C Stanescu
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Kerra Pearce
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Manisha Madkaikar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohematology, ICMR, Mumbai, India
| | - Kimberly C Gilmour
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adeline K Nicholas
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - C Geoffrey Woods
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert Kleta
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Phil L Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom.
| |
Collapse
|
17
|
Trubiani O, Guarnieri S, Orciani M, Salvolini E, Di Primio R. Sphingolipid Microdomains Mediate CD38 Internalization: Topography of the Endocytosis. Int J Immunopathol Pharmacol 2016; 17:293-300. [PMID: 15461863 DOI: 10.1177/039463200401700309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma membranes of several cell types contain specialized microdomains (or lipid rafts) enriched in sphingolipids, cholesterol, sphingomyelin, and glycosyl-phosphatidylinositol-anchored proteins. These membrane domains are characterized by detergent insolubility at low temperatures and low buoyant density. Human CD38 is the prototype of a gene family encoding surface molecules endowed with multiple functional activities. The endocytosis of the human CD38 molecule has been investigated in normal lymphocytes and in a number of leukemia- and lymphoma-derived cell lines demonstrating that internalization after CD38 ligation is a reproducible event involving only a fraction of the whole amount of the surface molecule. This study reports the results obtained by conventional, confocal, and electron microscopy on the effects induced by the engagement of the molecule with agonistic mAb, reproducing the signals mediated by its natural ligand. The results demonstrate that the endocytosis induced as consequence of CD38 ligation is preceded by a thorough rearrangement of the cell surface with formation of glycosphingolipid- and cholesterol-rich plasma membrane microdomains. These data suggest that specialized raft microdomains might be the plasma membrane structure through which CD38 translocates at intracellular level. The CD38/lipid interactions during the coated pit formation trigger a process that generate membrane curvature, considered as the first step of CD38 endocytosis. Moreover, ultrastructural studies show that early CD38+ endosomes are pleiomorphic and contain cisternal and vesicular regions. Late endosomes exhibit a complex organisation, containing uncoupled CD38-ligand multivesicular- or multilamellar-regions.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, University of Chieti, Italy
| | | | | | | | | |
Collapse
|
18
|
Romero-Ramírez H, Morales-Guadarrama MT, Pelayo R, López-Santiago R, Santos-Argumedo L. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology 2015; 144:271-81. [PMID: 25155483 DOI: 10.1111/imm.12370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 01/06/2023] Open
Abstract
CD38 is a 45,000 molecular weight transmembrane protein that is expressed in immature and mature lymphocytes. However, the expression and function of CD38 during B-cell differentiation in mice is poorly understood. Here, we report that CD38 is expressed from the earliest stages of B-cell development. Pre-pro-B, pro-B, pre-B and immature B cells from murine bone marrow all stained positive for CD38. Interestingly, CD38 expression increases with B-cell maturation. To assess the role of CD38 during B-cell maturation, CD38-deficient mice were analysed. CD38(-/-) mice showed a significant increase in both the frequency of B-lineage cells and the absolute numbers of pre-pro-B cells in bone marrow; however, no other differences were observed at later stages. CD38 cross-linking in Ba/F3 cells promoted apoptosis and marked extracellular signal-regulated kinase (ERK) phosphorylation, and these effects were reduced by treatment with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and similar effects were observed in B-cell precursors from bone marrow. These data demonstrate that B-cell precursors in mouse bone marrow express functional CD38 and implicate the early ligation of CD38 in the ERK-associated regulation of the B-lineage differentiation pathway.
Collapse
Affiliation(s)
- Héctor Romero-Ramírez
- Department of Molecular Biomedicine, Centre for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico; Department of Immunology, National School of Biological Sciences, IPN, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
19
|
Chen Q, Ross AC. All-trans-retinoic acid and CD38 ligation differentially regulate CD1d expression and α-galactosylceramide-induced immune responses. Immunobiology 2014; 220:32-41. [PMID: 25248321 DOI: 10.1016/j.imbio.2014.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
The MHC class-I like molecule CD1d presents glycolipid antigens and thereby activates invariant natural killer-T (NKT) cells. However, little is understood regarding the regulation of its expression. All-trans-retinoic acid (RA) and CD38, which is itself a target of RA, both independently regulate the differentiation of antigen presenting cells. In the current study, we treated human THP-1 cells and murine splenic cells with RA, with and without antibody-mediated ligation of cell-surface CD38. Whereas a physiological concentration (20 nM) of RA alone rapidly and markedly increased CD1d protein in THP-1 cells, there was a marked synergy between RA and ligation of CD38 with antibody to CD38. Moreover, RA and CD38 ligation differentially regulated CD1d protein distribution between the cell surface and intracellular compartments, as, whereas RA mainly increased intracellular CD1d protein, ligation of CD38 increased CD1d protein both at the cell surface and intracellularly. By confocal microscopy, CD1d was located close to the plasma membrane but only partially overlapped with LAMP1, a late endosomes/lysosomal marker. Furthermore, RA and/or CD38 ligation increased splenocyte proliferation and differentiation after treatment with the CD1 ligand α-galactosylceramide (αGalCer), evidenced by an increase in the number of splenic dendritic cells, NKT cells, and germinal center plasmacytes. RA also differentially regulated αGalCer-induced cytokine expression, increasing IL-4 and decreasing IFNγ production by total spleen cells and the NKT cell population. Our results indicate a previously unknown mechanism in which RA and CD38 differentially yet cooperatively regulate CD1d expression and antigen-presenting function, which could be important for the enhancement of immunity.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, United States; Center for Immunology and Infectious Diseases, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
20
|
Contribution of NADPH oxidase to membrane CD38 internalization and activation in coronary arterial myocytes. PLoS One 2013; 8:e71212. [PMID: 23940720 PMCID: PMC3737089 DOI: 10.1371/journal.pone.0071212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
The CD38-ADP-ribosylcyclase-mediated Ca2+ signaling pathway importantly contributes to the vasomotor response in different arteries. Although there is evidence indicating that the activation of CD38-ADP-ribosylcyclase is associated with CD38 internalization, the molecular mechanism mediating CD38 internalization and consequent activation in response to a variety of physiological and pathological stimuli remains poorly understood. Recent studies have shown that CD38 may sense redox signals and is thereby activated to produce cellular response and that the NADPH oxidase isoform, NOX1, is a major resource to produce superoxide (O2·−) in coronary arterial myocytes (CAMs) in response to muscarinic receptor agonist, which uses CD38-ADP-ribosylcyclase signaling pathway to exert its action in these CAMs. These findings led us hypothesize that NOX1-derived O2·− serves in an autocrine fashion to enhance CD38 internalization, leading to redox activation of CD38-ADP-ribosylcyclase activity in mouse CAMs. To test this hypothesis, confocal microscopy, flow cytometry and a membrane protein biotinylation assay were used in the present study. We first demonstrated that CD38 internalization induced by endothelin-1 (ET-1) was inhibited by silencing of NOX1 gene, but not NOX4 gene. Correspondingly, NOX1 gene silencing abolished ET-1-induced O2·− production and increased CD38-ADP-ribosylcyclase activity in CAMs, while activation of NOX1 by overexpression of Rac1 or Vav2 or administration of exogenous O2·− significantly increased CD38 internalization in CAMs. Lastly, ET-1 was found to markedly increase membrane raft clustering as shown by increased colocalization of cholera toxin-B with CD38 and NOX1. Taken together, these results provide direct evidence that Rac1-NOX1-dependent O2·− production mediates CD38 internalization in CAMs, which may represent an important mechanism linking receptor activation with CD38 activity in these cells.
Collapse
|
21
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
22
|
Bahri R, Bollinger A, Bollinger T, Orinska Z, Bulfone-Paus S. Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-γ-mediated suppressor activities. PLoS One 2012; 7:e45234. [PMID: 23028866 PMCID: PMC3444472 DOI: 10.1371/journal.pone.0045234] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023] Open
Abstract
Regulatory CD8(+) T cells are critical for self-tolerance and restricting excessive immune responses. The variety of immune functions they fulfill, the heterogeneity of their phenotype, and the mechanism of action are still poorly understood. Here we describe that regulatory CD8(+) T cells exhibiting immunosuppressive actions in vitro and in vivo are recognized as CD38(high) T cells and present in naive mice. CD38 is a glycosylated membrane protein with ectonucleotidase properties. CD8(+)CD38(high) (CD44(+)CD122(+)CD62L(high)) lymphocytes suppress CD4(+) effector T-cell proliferation in an antigen-non specific manner via IFN-γ. While direct cell-to-cell contact is needed for this suppressor activity, it is independent of membrane-bound TGF-β and granzyme B release. IL-15 potentiates the suppressive activity of CD8(+)CD38(high) T cells and controls their survival and expansion. In humans CD8(+)CD38(high) T cells inhibit CD4(+) effector T cell proliferation. In vivo, CD8(+)CD38(high), but not CD8(+)CD38(-) T cells mitigate murine experimental autoimmune encephalomyelitis (EAE) by reducing the clinical score and delaying disease occurrence. EAE suppression is enhanced by pre-treatment of CD8(+)CD38(high) T cells with IL-15. These findings add evidence that the expression of ectoenzyme receptor family members positively correlates with suppressor functions and identifies CD8(+)CD38(high) T cells as potential inhibitors of excessive immune responses.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/immunology
- ADP-ribosyl Cyclase 1/metabolism
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Communication/immunology
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Flow Cytometry
- Immunologic Memory
- Immunophenotyping
- Interferon-gamma/immunology
- Interleukin-15/immunology
- Lymphocyte Activation
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Nucleotidases/immunology
- Nucleotidases/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Rajia Bahri
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | - Annalena Bollinger
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | - Thomas Bollinger
- Institut für Medizinische Mikrobiologie und Hygiene, University of Lübeck, Lübeck, Germany
| | - Zane Orinska
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | - Silvia Bulfone-Paus
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis. PLoS One 2012; 7:e33534. [PMID: 22438945 PMCID: PMC3306406 DOI: 10.1371/journal.pone.0033534] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/10/2012] [Indexed: 12/16/2022] Open
Abstract
CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.
Collapse
|
24
|
Viegas MS, Silva T, Monteiro MM, do Carmo A, Martins TC. Knocking out of CD38 accelerates development of a lupus-like disease in lpr mice. Rheumatology (Oxford) 2011; 50:1569-77. [DOI: 10.1093/rheumatology/ker178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Vaisitti T, Audrito V, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S. NAD+-metabolizing ecto-enzymes shape tumor-host interactions: the chronic lymphocytic leukemia model. FEBS Lett 2011; 585:1514-20. [PMID: 21514298 DOI: 10.1016/j.febslet.2011.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD(+) may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide-nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD(+), generating Ca(2+)-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Lo Buono N, Parrotta R, Morone S, Bovino P, Nacci G, Ortolan E, Horenstein AL, Inzhutova A, Ferrero E, Funaro A. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes. J Biol Chem 2011; 286:18681-91. [PMID: 21478153 DOI: 10.1074/jbc.m111.227876] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.
Collapse
Affiliation(s)
- Nicola Lo Buono
- Laboratory of Immunogenetics, Department of Genetics, University of Torino Medical School, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Patton DT, Wilson MD, Rowan WC, Soond DR, Okkenhaug K. The PI3K p110δ regulates expression of CD38 on regulatory T cells. PLoS One 2011; 6:e17359. [PMID: 21390257 PMCID: PMC3046981 DOI: 10.1371/journal.pone.0017359] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/27/2011] [Indexed: 12/03/2022] Open
Abstract
The PI3K pathway has emerged as a key regulator of regulatory T cell (Treg) development and homeostasis and is required for full Treg-mediated suppression. To identify new genes involved in PI3K-dependent suppression, we compared the transcriptome of WT and p110δD910A Tregs. Among the genes that were differentially expressed was the gene for the transmembrane cyclic ADP ribose hydrolase CD38. Here we show that CD38 is expressed mainly by a subset of Foxp3+CD25+CD4+ T cells originating in the thymus and on Tregs in the spleen. CD38high WT Tregs showed superior suppressive activity to CD38low Tregs, which failed to upregulate CD73, a surface protein which is important for suppression. However, Tregs from heterozygous CD38+/− mice were unimpaired despite lower levels of CD38 expression. Therefore, CD38 can be used as a marker for Tregs with high suppressive activity and the impaired Treg function in p110δD910A mice can in part be explained by the failure of CD38high cells to develop.
Collapse
Affiliation(s)
- Daniel T. Patton
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Marcus D. Wilson
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Wendy C. Rowan
- Tool Monoclonal Antibody Group, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | - Dalya R. Soond
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells. Immunol Cell Biol 2011; 89:650-8. [PMID: 21221125 DOI: 10.1038/icb.2010.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) maturation and antigen presentation are regulated by activation of protein kinase A (PKA) signaling pathways, through unknown mechanisms. We have recently shown that interfering with PKA signaling through the use of anchoring inhibitor peptides hinders antigen presentation and DC maturation. These experiments provide evidence that DC maturation and antigen presentation are regulated by A-kinase anchoring proteins (AKAPs). Herein, we determine that the presence of AKAPs and PKA in lipid rafts regulates antigen presentation. Using a combination of western blotting and immuno-cytochemistry, we illustrate the presence of AKAP149, AKAP79, Ezrin and the regulatory subunits of PKA in DC lipid rafts. Incubation of DCs with the type II anchoring inhibitor, AKAP-in silico (AKAP-IS), removes Ezrin and RII from the lipid raft without disrupting raft formation. Addition of a lipid raft disruptor, methyl-β-cyclodextrin, blocks the efficacy of AKAP-IS, suggesting that the lipid raft must be intact for AKAP-IS to inhibit antigen presentation. Ezrin and AKAP79 are present in the lipid raft of stimulated KG1 cells, but Ezrin is not present in the lipid raft of unstimulated KG1 cells and AKAP79 levels are greatly diminished, suggesting that Ezrin and AKAP79 may be the key AKAPs responsible for regulating antigen presentation.
Collapse
|
29
|
Congleton J, Jiang H, Malavasi F, Lin H, Yen A. ATRA-induced HL-60 myeloid leukemia cell differentiation depends on the CD38 cytosolic tail needed for membrane localization, but CD38 enzymatic activity is unnecessary. Exp Cell Res 2010; 317:910-9. [PMID: 21156171 DOI: 10.1016/j.yexcr.2010.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/19/2010] [Accepted: 12/02/2010] [Indexed: 01/13/2023]
Abstract
Leukocyte antigen CD38 expression is an early marker of all-trans retinoic acid (ATRA) stimulated differentiation in the leukemic cell line HL-60. It promotes induced myeloid maturation when overexpressed, whereas knocking it down is inhibitory. It is a type II membrane protein with an extracellular C-terminal enzymatic domain with NADase/NADPase and ADPR cyclase activity and a short cytoplasmic N-terminal tail. Here we determined whether CD38 enzymatic activity or the cytoplasmic tail is required for ATRA-induced differentiation. Neither a specific CD38 ectoenzyme inhibitor nor a point mutation that cripples enzymatic activity (CD38 E226Q) diminishes ATRA-induced differentiation or G1/0 arrest. In contrast a cytosolic deletion mutation (CD38 Δ11-20) prevents membrane expression and inhibits differentiation and G1/0 arrest. These results may be consistent with disrupting the function of critical molecules necessary for membrane-expressed CD38 signal transduction. One candidate molecule is the Src family kinase Fgr, which failed to undergo ATRA-induced upregulation in CD38 Δ11-20 expressing cells. Another is Vav1, which also showed only basal expression after ATRA treatment in CD38 Δ11-20 expressing cells. Therefore, the ability of CD38 to propel ATRA-induced myeloid differentiation and G1/0 arrest is unimpaired by loss of its ectoenzyme activity. However a cytosolic tail deletion mutation disrupted membrane localization and inhibited differentiation. ATRA-induced differentiation thus does not require the CD38 ectoenzyme function, but is dependent on a membrane receptor function.
Collapse
Affiliation(s)
- Johanna Congleton
- Department of Biomedical Sciences, Veterinary Research Tower, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
30
|
Zumaquero E, Muñoz P, Cobo M, Lucena G, Pavón EJ, Martín A, Navarro P, García-Pérez A, Ariza-Veguillas A, Malavasi F, Sancho J, Zubiaur M. Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Exp Cell Res 2010; 316:2692-706. [DOI: 10.1016/j.yexcr.2010.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 12/14/2022]
|
31
|
Owen DM, Gaus K, Magee AI, Cebecauer M. Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methods. Immunology 2010; 131:1-8. [PMID: 20646076 DOI: 10.1111/j.1365-2567.2010.03319.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Lipids and lipid domains are suggested to play an essential role in the heterogeneous organization of the plasma membrane in eukaryotic cells, including cells of the immune system. We summarize the results of advanced imaging and physical studies of membrane organization with special focus on the plasma membrane of lymphocytes. We provide a comprehensive up-to-date view on the existence of membrane lipid and protein clusters such as lipid rafts and suggest research directions to better understand these highly dynamic entities on the surface of immune cells.
Collapse
Affiliation(s)
- Dylan M Owen
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
32
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Vollbrecht T, Brackmann H, Henrich N, Roeling J, Seybold U, Bogner JR, Goebel FD, Draenert R. Impact of changes in antigen level on CD38/PD-1 co-expression on HIV-specific CD8 T cells in chronic, untreated HIV-1 infection. J Med Virol 2010; 82:358-70. [PMID: 20087935 DOI: 10.1002/jmv.21723] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excessive immune activation is a hallmark of chronic uncontrolled HIV infection. During the past years, growing evidence suggests that immune inhibitory signals also play an important role in progressive disease. However, the relationship between positive and negative immune signals on HIV-specific CD8 T cells has not been studied in detail so far in chronic HIV-1 infection. In this study, the expression of markers of positive (CD38) and negative (PD-1) immune signals on virus-specific CD8 T cells in chronic, untreated HIV-1 infection was evaluated using intracellular cytokine staining. Viral escape mutations were assessed by autologous virus sequence analysis and subsequent peptide titration assays. Single-epitope CD8 T-cell responses toward Gag, Pol, and Nef were compared in 12 HIV-1 controllers (viral load <5,000 cp/ml) and 12 HIV-1 progressors (viral load >50,000 cp/ml) and a highly significant increase of CD38/PD-1 co-expression on virus-specific CD8 T cells in progressors was found (P < 0.0001). The level of CD38/PD-1 co-expression was independent of epitope specificity. Longitudinal follow-up revealed a clear drop in CD38/PD-1 co-expression on virus-specific CD8 T cells after the suppression of antigen following either viral escape mutation or the initiation of HAART (P = 0.004). Antigen persistence with a fluctuating viral load revealed stable levels of CD38/PD-1 co-expression whereas significant rises in viral load were accompanied or even preceded by substantial increases in CD38/PD-1 co-expression. The CD38/PD-1 phenotype clearly distinguishes HIV-specific CD8 T-cell responses between controllers and progressors. Whether it plays a causative role in disease progression remains debatable. J. Med. Virol. 82:358-370, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
|
34
|
Receptors and ligands implicated in human T cell costimulatory processes. Immunol Lett 2009; 128:89-97. [PMID: 19941899 DOI: 10.1016/j.imlet.2009.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/17/2022]
Abstract
It is well established that full activation of T cells that recognize antigens requires additional signals. These second signals are generated by the interaction of costimulatory ligands expressed on antigen presenting cells with their receptors on T cells. In addition, T cell activation processes are negatively regulated by inhibitory costimulatory pathways. Interaction of members of the B7 and the TNF superfamilies with members of the CD28 and TNF-R-superfamilies plays major roles in costimulatory processes. However, a large number of molecules that do not belong to these families have been reported to be involved in the generation of T cell costimulatory signals. In addition to well-defined costimulatory pathways, where both receptors and ligands are known, there are many T cell surface molecules that have been described to generate a second signal under certain experimental conditions, f.i. when ligated with antibodies. Furthermore there are several ligands that have been shown to positively or negatively modulate T cell activation by interacting with as of yet unknown T cell receptors. Here we give a comprehensive overview of molecules that have been implicated in human T cell activation processes and propose criteria that define genuine T cell costimulatory pathways.
Collapse
|
35
|
Jiang H, Congleton J, Liu Q, Merchant P, Malavasi F, Lee HC, Hao Q, Yen A, Lin H. Mechanism-based small molecule probes for labeling CD38 on live cells. J Am Chem Soc 2009; 131:1658-9. [PMID: 19191692 DOI: 10.1021/ja808387g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD38 is a type II transmembrane glycoprotein with multiple functions. It acts as an ecto-enzyme as well as a receptor. The enzymatic activity catalyzes the formation of two potent Ca(2+) releasing agents: cyclic adenosine diphosphate ribose (cADPR) from nicotinamide adenine dinucleotide (NAD) and nicotinic acid adenine dinucleotide phosphate (NAADP) from NAD phosphate (NADP). The receptor function of CD38 leads to the phosphorylation of intracellular signaling proteins and the up-regulation of cytokine production in immune cells. These two functions of CD38 underlie its involvement in various biological processes, such as hormone secretion, immune cell differentiation, and immune responses. Clinically, CD38 is used as a negative prognosis marker for chronic lymphatic leukemia (CLL). However, a clear molecular understanding of CD38's role in physiology and pathology is still lacking. To facilitate the study of CD38 at cellular and molecular levels, here we report a mechanism-based method for fluorescently labeling CD38 on live cells. This labeling method does not interfere with the receptor function of CD38 and the downstream signaling. The labeling method is thus a useful tool to study the receptor function of CD38 in live cells. In addition, since the mechanism-based labeling also inhibits the enzymatic activity of CD38, it should be useful for dissecting the receptor function of CD38 without interference from its enzyme function in complicated biological processes.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fiegl M, Samudio I, Clise-Dwyer K, Burks JK, Mnjoyan Z, Andreeff M. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 2009; 113:1504-12. [PMID: 18957686 PMCID: PMC2644078 DOI: 10.1182/blood-2008-06-161539] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/18/2008] [Indexed: 12/26/2022] Open
Abstract
The CXCR4/SDF-1 axis has been studied extensively because of its role in development and hematopoiesis. In acute myeloid leukemia (AML), elevated expression of CXCR4 has been shown to correlate with shortened survival. Hy-poxia increases CXCR4 in several tumor models, but the impact of reduced O(2) partial pressure (pO(2)) on expression and biologic function of CXCR4 in AML is unknown. We determined pO(2) in bone marrows of AML patients as 6.1% (+/-1.7%). At this pO(2), CXCR4 surface and total expression were up-regulated within 10 hours in leukemic cell lines and patient samples as shown by Western blotting, fluorescence-activated cell sorting, and microscopy. Interestingly, hypoxic cells failed to internalize CXCR4 in response to SDF-1, and upon reoxygenation at 21% O(2), surface and total expression of CXCR4 rapidly decreased independent of adenosine triphosphate or proteasome activity. Instead, increased pO(2) led to alteration of lipid rafts by cholesterol depletion and structural changes and was associated with increased shedding of CXCR4-positive microparticles, suggesting a novel mechanism of CXCR4 regulation. Given the importance of CXCR4 in cell signaling, survival, and adhesion in leukemia, the results suggest that pO(2) be considered a critical variable in conducting and interpreting studies of CXCR4 expression and regulation in leukemias.
Collapse
Affiliation(s)
- Michael Fiegl
- Department of Molecular Hematology & Therapy and Stem Cell Transplantation & Cellular Therapy and Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
37
|
Grimm MJ, Zynda ER, Repasky EA. Temperature Matters: Cellular Targets of Hyperthermia in Cancer Biology and Immunology. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Inzhutova AI, Salmina AB, Petrova MM, Larionov AA. Role of CD38 in cell-cell interactions under conditions of endothelial dysfunction. Bull Exp Biol Med 2008; 145:703-6. [PMID: 19110555 DOI: 10.1007/s10517-008-0170-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the role of receptor/ectoenzyme CD38 in the formation of endothelial damage and pathogenesis of endothelial dysfunction. CD38 was located in sites of protrusion of the outer cytoplasmic membrane. The majority of CD38+ accumulation sites coincided with the protrusion pole, while in some cells expression of CD38 was spread along the entire cell membrane surface or located on the pole opposite to the protrusion. We hypothesized that these states reflect the processes of rafting and clustering of the receptor, which are essential for cell-cell interactions in the pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
- A I Inzhutova
- Department of Biochemistry with Course of Medical, Pharmaceutical, and Toxicological Chemistry, Russia.
| | | | | | | |
Collapse
|
39
|
Baillat G, Siret C, Delamarre E, Luis J. Early adhesion induces interaction of FAK and Fyn in lipid domains and activates raft-dependent Akt signaling in SW480 colon cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2323-31. [DOI: 10.1016/j.bbamcr.2008.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/25/2008] [Accepted: 08/12/2008] [Indexed: 11/29/2022]
|
40
|
Striatal-enriched protein tyrosine phosphatase regulates dopaminergic neuronal development via extracellular signal-regulated kinase signaling. Exp Neurol 2008; 214:69-77. [DOI: 10.1016/j.expneurol.2008.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 07/04/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022]
|
41
|
Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88:841-86. [PMID: 18626062 DOI: 10.1152/physrev.00035.2007] [Citation(s) in RCA: 646] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The membrane proteins CD38 and CD157 belong to an evolutionarily conserved family of enzymes that play crucial roles in human physiology. Expressed in distinct patterns in most tissues, CD38 (and CD157) cleaves NAD(+) and NADP(+), generating cyclic ADP ribose (cADPR), NAADP, and ADPR. These reaction products are essential for the regulation of intracellular Ca(2+), the most ancient and universal cell signaling system. The entire family of enzymes controls complex processes, including egg fertilization, cell activation and proliferation, muscle contraction, hormone secretion, and immune responses. Over the course of evolution, the molecules have developed the ability to interact laterally and frontally with other surface proteins and have acquired receptor-like features. As detailed in this review, the loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications in mice. CD38 is a powerful disease marker for human leukemias and myelomas, is directly involved in the pathogenesis and outcome of human immunodeficiency virus infection and chronic lymphocytic leukemia, and controls insulin release and the development of diabetes. Here, the data concerning diseases are examined in view of potential clinical applications in diagnosis, prognosis, and therapy. The concluding remarks try to frame all of the currently available information within a unified working model that takes into account both the enzymatic and receptorial functions of the molecules.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Genetics, Biology, and Biochemistry and Centro di Ricerca in Medicina Sperimentale, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jia SJ, Jin S, Zhang F, Yi F, Dewey WL, Li PL. Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H1743-52. [PMID: 18723763 DOI: 10.1152/ajpheart.00617.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD38 contains an ADP ribosylcyclase domain that mediates intracellular Ca(2+) signaling by the production of cyclic ADP-ribose (cADPR), but the mechanisms by which the agonists activate this enzyme remain unclear. The present study tested a hypothesis that a special lipid-raft (LR) form, ceramide-enriched lipid platform, contributes to CD38 activation to produce cADPR in response to muscarinic type 1 (M(1)) receptor stimulation in bovine coronary arterial myocytes (CAMs). By confocal microscopic analysis, oxotremorine (Oxo), an M(1) receptor agonist, was found to increase LR clustering on the membrane with the formation of a complex of CD38 and LR components such as GM(1), acid sphingomyelinase (ASMase), and ceramide, a typical ceramide-enriched macrodomain. At 80 microM, Oxo increased LR clustering by 78.8%, which was abolished by LR disruptors, methyl-beta-cyclodextrin (MCD), or filipin. With the use of a fluorescence resonance energy transfer (FRET) technique, 15.5+/-1.9% energy transfer rate (vs. 5.3+/-0.9% of control) between CD38 and LR component, ganglioside M(1) was detected, further confirming the proximity of both molecules. In the presence of MCD or filipin, there were no FRET signals detected. In floated detergent-resistant membrane fractions, CD38 significantly increased in LR fractions of CAMs treated by Oxo. Moreover, MCD or filipin attenuated Oxo-induced production of cADPR via CD38. Functionally, Oxo-induced intracellular Ca(2+) release and coronary artery constriction via cADPR were also blocked by LR disruption or ASMase inhibition. These results provide the first evidence that the formation of ceramide-enriched lipid macrodomains is crucial for Oxo-induced activation of CD38 to produce cADPR in CAMs, and these lipid macrodomains mediate transmembrane signaling of M(1) receptor activation to produce second messenger cADPR.
Collapse
Affiliation(s)
- Su-Jie Jia
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
43
|
Deaglio S, Aydin S, Vaisitti T, Bergui L, Malavasi F. CD38 at the junction between prognostic marker and therapeutic target. Trends Mol Med 2008; 14:210-8. [DOI: 10.1016/j.molmed.2008.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/25/2008] [Accepted: 02/27/2008] [Indexed: 02/08/2023]
|
44
|
Abstract
CD38 is a surface receptor able to induce activation, proliferation, and survival of human and mouse lymphocytes; this molecule is expressed on the surface of both mature and immature B cells. In this work, the function of CD38 in the maturation of murine B lymphocytes in the spleen was analyzed. The results showed that CD38 is highly expressed on Transitional 2 (T2) B lymphocytes with an intermediate expression on Transitional 1 (T1) and mature follicular B cells (M). Correlating with a high expression of CD38, T2 cells are also larger and more granular than T1 or M B cells. T2 cells also showed high levels of other molecules, which indicate an activated phenotype. CD38 crosslinking induced proliferation and maturation of T2 B lymphocytes; in contrast, T1 subset died by apoptosis. Finally, CD38 stimulation of T2 B lymphocytes obtained from Btk-, Lyn-, or Fyn-deficient mice showed a defective differentiation; similarly, drugs interfering with PI3K or ERK decreased the proliferation or differentiation of this subset. This suggests that these molecules participate in the CD38 signaling pathway. As a whole, the results indicate that CD38 plays an important role in the regulation of B-cell maturation in the spleen.
Collapse
|
45
|
Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 2008; 111:3653-64. [PMID: 18212246 DOI: 10.1182/blood-2007-07-101600] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During immunologic synapse (IS) formation, human CD38 redistributes to the contact area of T cell-antigen-presenting cell (APC) conjugates in an antigen-dependent manner. Confocal microscopy showed that CD38 preferentially accumulated along the contact zone, whereas CD3-zeta redistributed toward the central zone of the IS. APC conjugates with human T cells or B cells transiently expressing CD38-green fluorescent protein revealed the presence of 2 distinct pools of CD38, one localized at the cell membrane and the other in recycling endosomes. Both pools were recruited to the T/APC contact sites and required antigen-pulsed APCs. The process appeared more efficient in T cells than in APCs. CD38 was actively recruited at the IS of T cells by means of Lck-mediated signals. Overexpression of CD38 in T cells increased the levels of antigen-induced intracellular calcium release. Opposite results were obtained by down-regulating surface CD38 expression by means of CD38 siRNA. CD38 blockade in influenza HA-specific T cells inhibited IL-2 and IFN-gamma production, PKC phosphorylation at Thr538, and PKC recruitment to the IS induced by antigen-pulsed APCs. These results reveal a new role for CD38 in modulating antigen-mediated T-cell responses during IS formation.
Collapse
|
46
|
Lund FE. Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. Mol Med 2007. [PMID: 17380200 DOI: 10.2119/2006-00099.lund] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5th international CD38 meeting, held in Torino, Italy, spanned a range of topics from the role of CD38 as a signaling receptor in lymphocytic tumors to the importance of CD38-derived metabolites in NAD(+) metabolism, calcium signaling, and immune function. This meeting was particularly exciting as data were presented demonstrating that collaborative experiments between enzymologists, biochemists, cell biologists, immunologists, and clinicians have started to unravel the secrets of CD38 biology. It is now clear that all of the products of the CD38 enzyme reaction regulate calcium signal transduction in cell types as diverse as sea urchin oocytes and mammalian lymphocytes. It is also apparent that CD38 plays important immunomodulatory role(s), however there is still much debate on how CD38 mediates its immunoregulatory functions and whether the enzymatic products generated by CD38 are important for immunity. The data presented at this meeting have begun to resolve some of these controversies. First, CD38 regulates the function of leukocytes by enzyme-dependent and enzyme-independent mechanisms. Second, CD38 regulates inflammatory responses by modulating the activity of the responding leukocytes and by altering the activity of non-hematopoietic cells in the inflamed tissue. Finally, crosstalk between CD38 and other NAD(+) utilizing enzymes such as ART2, SIRT1, and PARP-1 impacts NAD(+) homeostasis, inflammation, and immunity. Thus, immunity is regulated by CD38 in multiple and unexpected ways and the new research challenge will be to determine whether we can exploit the complex biology of CD38 to therapeutically regulate the immune system.
Collapse
Affiliation(s)
- Frances E Lund
- Trudeau Institute, 154 Algonquin Ave., Saranac Lake, NY 12983, USA.
| |
Collapse
|
47
|
Malavasi F, Deaglio S, Ferrero E, Funaro A, Sancho J, Ausiello CM, Ortolan E, Vaisitti T, Zubiaur M, Fedele G, Aydin S, Tibaldi EV, Durelli I, Lusso R, Cozno F, Horenstein AL. CD38 and CD157 as receptors of the immune system: a bridge between innate and adaptive immunity. Mol Med 2007. [PMID: 17380201 DOI: 10.2119/2006-00094.malavasi] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper reviews some of the results and the speculations presented at the Torino CD38 Meeting in June, 2006 and focused on CD38 and CD157 seen as a family of molecules acting as surface receptors of immune cells. This partisan view was adopted in the attempt to combine the enzymatic functions with what the immunologists consider key functions in different cell models. At the moment, it is unclear whether the two functions are correlated, indifferent, or independent. Here we present conclusions inferred exclusively on human cell models, namely T and B lymphocytes, dendritic cells, and granulocytes. As an extra analytical tool, we try to follow in the history of life when the enzymatic and receptorial functions were generated, mixing ontogeny, membrane localization, and cell anchorage.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lund FE. Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 12:328-33. [PMID: 17380200 PMCID: PMC1829203 DOI: 10.2119/2006–00099.lund] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/07/2006] [Indexed: 11/06/2022]
Abstract
The 5th international CD38 meeting, held in Torino, Italy, spanned a range of topics from the role of CD38 as a signaling receptor in lymphocytic tumors to the importance of CD38-derived metabolites in NAD(+) metabolism, calcium signaling, and immune function. This meeting was particularly exciting as data were presented demonstrating that collaborative experiments between enzymologists, biochemists, cell biologists, immunologists, and clinicians have started to unravel the secrets of CD38 biology. It is now clear that all of the products of the CD38 enzyme reaction regulate calcium signal transduction in cell types as diverse as sea urchin oocytes and mammalian lymphocytes. It is also apparent that CD38 plays important immunomodulatory role(s), however there is still much debate on how CD38 mediates its immunoregulatory functions and whether the enzymatic products generated by CD38 are important for immunity. The data presented at this meeting have begun to resolve some of these controversies. First, CD38 regulates the function of leukocytes by enzyme-dependent and enzyme-independent mechanisms. Second, CD38 regulates inflammatory responses by modulating the activity of the responding leukocytes and by altering the activity of non-hematopoietic cells in the inflamed tissue. Finally, crosstalk between CD38 and other NAD(+) utilizing enzymes such as ART2, SIRT1, and PARP-1 impacts NAD(+) homeostasis, inflammation, and immunity. Thus, immunity is regulated by CD38 in multiple and unexpected ways and the new research challenge will be to determine whether we can exploit the complex biology of CD38 to therapeutically regulate the immune system.
Collapse
Affiliation(s)
- Frances E Lund
- Trudeau Institute, 154 Algonquin Ave., Saranac Lake, NY 12983, USA.
| |
Collapse
|
49
|
Malavasi F, Deaglio S, Ferrero E, Funaro A, Sancho J, Ausiello CM, Ortolan E, Vaisitti T, Zubiaur M, Fedele G, Aydin S, Tibaldi EV, Durelli I, Lusso R, Cozno F, Horenstein AL. CD38 and CD157 as receptors of the immune system: a bridge between innate and adaptive immunity. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 12:334-41. [PMID: 17380201 PMCID: PMC1829205 DOI: 10.2119/2006–00094.malavasi] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 12/07/2006] [Indexed: 11/06/2022]
Abstract
This paper reviews some of the results and the speculations presented at the Torino CD38 Meeting in June, 2006 and focused on CD38 and CD157 seen as a family of molecules acting as surface receptors of immune cells. This partisan view was adopted in the attempt to combine the enzymatic functions with what the immunologists consider key functions in different cell models. At the moment, it is unclear whether the two functions are correlated, indifferent, or independent. Here we present conclusions inferred exclusively on human cell models, namely T and B lymphocytes, dendritic cells, and granulocytes. As an extra analytical tool, we try to follow in the history of life when the enzymatic and receptorial functions were generated, mixing ontogeny, membrane localization, and cell anchorage.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, University of Torino Medical School, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barbat C, Trucy M, Sorice M, Garofalo T, Manganelli V, Fischer A, Mazerolles F. p56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4-p56lck association-dependent manner. Biochem J 2007; 402:471-81. [PMID: 17123354 PMCID: PMC1863576 DOI: 10.1042/bj20061061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
We previously showed that the association of CD4 and G(M3) ganglioside induced by CD4 ligand binding was required for the down-regulation of adhesion and that aggregation of ganglioside-enriched domains was accompanied by transient co-localization of LFA-1 (lymphocyte function-associated antigen-1), PI3K (phosphoinositide 3-kinase) and CD4. We also showed that these proteins co-localized with the G(M1) ganglioside that partially co-localized with G(M3) in these domains. In the present study, we show that CD4-p56(lck) association in CD4 signalling is required for the redistribution of p56(lck), PI3K and LFA-1 in ganglioside-enriched domains, since ganglioside aggregation and recruitment of these proteins were not observed in a T-cell line (A201) expressing the mutant form of CD4 that does not bind p56(lck). In addition, we show that although these proteins associated in different ways with G(M1) and G(M3), all of the associations were dependent on CD4-p56(lck) association. Gangliosides could associate with these proteins that differ in affinity binding and could be modified following CD4 signalling. Our results suggest that through these associations, gangliosides transiently sequestrate these proteins and consequently inhibit LFA-1-dependent adhesion. Furthermore, while structural diversity of gangliosides may allow association with distinct proteins, we show that the tyrosine phosphatase SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), also required for the down-regulation of LFA-1-dependent adhesion, transiently and partially co-localized with PI3K and p56(lck) in detergent-insoluble membranes without association with G(M1) or G(M3). We propose that CD4 ligation and binding with p56(lck) and their interaction with G(M3) and/or G(M1) gangliosides induce recruitment of distinct proteins important for CD4 signalling to form a multimolecular signalling complex.
Collapse
Key Words
- adhesion molecule
- cd4 t-cell
- ganglioside
- lymphocyte function-associated antigen-1 (lfa-1)
- phosphoinositide 3-kinase (pi3k)
- raft
- ab, antibody
- au, arbitrary units
- ctxb, cholera toxin
- drm, detergent-resistant membrane
- gamig, goat anti-mouse ig
- hla, human leucocyte antigen
- hptlc, high-performance tlc
- hrp, horseradish peroxidase
- lfa-1, lymphocyte function-associated antigen-1
- mab, monoclonal ab
- pi3k, phosphoinositide 3-kinase
- pdk1, phosphoinositide-dependent kinase-1
- pns, post-nuclear supernatant
- rn, relative number
- shp-2, src homology 2 domain-containing protein tyrosine phosphatase 2
- tcr, t-cell receptor
- tritc, tetramethylrhodamine β-isothiocyanate
Collapse
Affiliation(s)
- Christiane Barbat
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maylis Trucy
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maurizio Sorice
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tina Garofalo
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Valeria Manganelli
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alain Fischer
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
- §Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | - Fabienne Mazerolles
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| |
Collapse
|