1
|
Pernet V, Joly S, Spiegel S, Meli I, Idriss S, Maigler F, Mdzomba JB, Roenneke AK, Franceschini A, Silvestri L, Pavone FS, Calamai M, Schindowski K, Chan A. Nogo-A antibody delivery through the olfactory mucosa mitigates experimental autoimmune encephalomyelitis in the mouse CNS. Cell Death Discov 2023; 9:290. [PMID: 37558696 PMCID: PMC10412545 DOI: 10.1038/s41420-023-01588-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Systemic administration of Nogo-A-neutralizing antibody ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, the blood-brain barrier (BBB) is a major obstacle limiting the passage of systemically applied antibody to the CNS. To bypass the BBB, in the present study we tested the intranasal route of administration by targeting the olfactory mucosa with the Nogo-A-blocking antibody 11C7 mAb in myelin oligodendrocyte glycoprotein-induced EAE. Antibodies were specifically administered onto the olfactory mucosa using a microcatheter. Antibody distribution was examined in the CNS by ELISA and light-sheet microscopy. The effects of 11C7 mAb on Nogo-A signaling were assessed by Western blotting. EAE-induced deficits were monitored daily. Demyelination was observed on spinal cord histological sections. Gene expression changes were followed by trancriptomic analyses. A sensitive capture ELISA revealed a rapid and widespread distribution of 11C7 mAb in the CNS, including the olfactory bulb, the cerebellum and the lumbar spinal cord, but not in the CSF. Light-sheet microscopy allowed to observe antibody accumulation in the parenchyma, thus demonstrating nose-to-brain transfer of IgG. At the functional level, the widespread penetration of 11C7 mAb in the CNS, including the thoracolumbar spinal cord, resulted in the improvement of motor symptoms and in the preservation of myelin in the spinal cord of EAE mice. This was accompanied by Nogo-A signaling downregulation, as reflected by the decreased level of phosphorylated cofilin observed by Western blotting in the cerebellum. In the brain of EAE score-matched animals, 11C7 modified the expression of genes that can influence neurotransmission and cognitive functions, independently of the demyelination phenotype in the spinal cord. In conclusion, our data show the feasibility of olfactory mucosa-directed administration for the delivery of therapeutic antibodies targeting CNS antigens in EAE mice.
Collapse
Affiliation(s)
- Vincent Pernet
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland.
- Centre de recherche du CHU de Québec-Université Laval and Department of Molecular Medicine, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| | - Sandrine Joly
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Spiegel
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, Biberach, Germany
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ivo Meli
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sherif Idriss
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
| | - Frank Maigler
- Institute of Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, Biberach, Germany
| | - Julius Baya Mdzomba
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anna K Roenneke
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alessandra Franceschini
- LENS- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto-Fiorentino (Firenze), Italy
| | - Ludovico Silvestri
- LENS- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto-Fiorentino (Firenze), Italy
| | - Francesco S Pavone
- LENS- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto-Fiorentino (Firenze), Italy
| | - Martino Calamai
- LENS- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto-Fiorentino (Firenze), Italy
- National Institute of Optics - National Research Council (CNR-INO), Sesto Fiorentino, Italy
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Science, Hubertus-Liebrecht-Strasse 35, Biberach, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Xia M, Yan R, Kim MH, Xu X. Tet Enzyme-Mediated Response in Environmental Stress and Stress-Related Psychiatric Diseases. Mol Neurobiol 2023; 60:1594-1608. [PMID: 36534335 DOI: 10.1007/s12035-022-03168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Mental disorders caused by stress have become a worldwide public health problem. These mental disorders are often the results of a combination of genes and environment, in which epigenetic modifications play a crucial role. At present, the genetic and epigenetic mechanisms of mental disorders such as posttraumatic stress disorder or depression caused by environmental stress are not entirely clear. Although many epigenetic modifications affect gene regulation, the most well-known modification in eukaryotic cells is the DNA methylation of CpG islands. Stress causes changes in DNA methylation in the brain to participate in the neuronal function or mood-modulating behaviors, and these epigenetic modifications can be passed on to offspring. Ten-eleven translocation (Tet) enzymes are the 5-methylcytosine (5mC) hydroxylases of DNA, which recognize 5mC on the DNA sequence and oxidize it to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Tet regulates gene expression at the transcriptional level through the demethylation of DNA. This review will elaborate on the molecular mechanism and the functions of Tet enzymes in environmental stress-related disorders and discuss future research directions.
Collapse
Affiliation(s)
- Meiling Xia
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China.,Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea.
| | - Xingshun Xu
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China. .,Institute of Neuroscience, Soochow University, Suzhou City, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou City, China.
| |
Collapse
|
3
|
Mechanisms and Regulation of Neuronal GABA B Receptor-Dependent Signaling. Curr Top Behav Neurosci 2020; 52:39-79. [PMID: 32808092 DOI: 10.1007/7854_2020_129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.
Collapse
|
4
|
Lasser M, Tiber J, Lowery LA. The Role of the Microtubule Cytoskeleton in Neurodevelopmental Disorders. Front Cell Neurosci 2018; 12:165. [PMID: 29962938 PMCID: PMC6010848 DOI: 10.3389/fncel.2018.00165] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022] Open
Abstract
Neurons depend on the highly dynamic microtubule (MT) cytoskeleton for many different processes during early embryonic development including cell division and migration, intracellular trafficking and signal transduction, as well as proper axon guidance and synapse formation. The coordination and support from MTs is crucial for newly formed neurons to migrate appropriately in order to establish neural connections. Once connections are made, MTs provide structural integrity and support to maintain neural connectivity throughout development. Abnormalities in neural migration and connectivity due to genetic mutations of MT-associated proteins can lead to detrimental developmental defects. Growing evidence suggests that these mutations are associated with many different neurodevelopmental disorders, including intellectual disabilities (ID) and autism spectrum disorders (ASD). In this review article, we highlight the crucial role of the MT cytoskeleton in the context of neurodevelopment and summarize genetic mutations of various MT related proteins that may underlie or contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Jessica Tiber
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
5
|
Chen M, Wang J, Wang Y, Wu Y, Fu J, Liu JF. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet 2018; 19:31. [PMID: 29776331 PMCID: PMC5960162 DOI: 10.1186/s12863-018-0622-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Currently, genome-wide scans for positive selection signatures in commercial breed have been investigated. However, few studies have focused on selection footprints of indigenous breeds. Laiwu pig is an invaluable Chinese indigenous pig breed with extremely high proportion of intramuscular fat (IMF), and an excellent model to detect footprint as the result of natural and artificial selection for fat deposition in muscle. Result In this study, based on GeneSeek Genomic profiler Porcine HD data, three complementary methods, FST, iHS (integrated haplotype homozygosity score) and CLR (composite likelihood ratio), were implemented to detect selection signatures in the whole genome of Laiwu pigs. Totally, 175 candidate selected regions were obtained by at least two of the three methods, which covered 43.75 Mb genomic regions and corresponded to 1.79% of the genome sequence. Gene annotation of the selected regions revealed a list of functionally important genes for feed intake and fat deposition, reproduction, and immune response. Especially, in accordance to the phenotypic features of Laiwu pigs, among the candidate genes, we identified several genes, NPY1R, NPY5R, PIK3R1 and JAKMIP1, involved in the actions of two sets of neurons, which are central regulators in maintaining the balance between food intake and energy expenditure. Conclusions Our results identified a number of regions showing signatures of selection, as well as a list of functionally candidate genes with potential effect on phenotypic traits, especially fat deposition in muscle. Our findings provide insights into the mechanisms of artificial selection of fat deposition and further facilitate follow-up functional studies. Electronic supplementary material The online version of this article (10.1186/s12863-018-0622-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minhui Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ying Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinluan Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Jian-Feng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Cervera-Juanes R, Wilhelm LJ, Park B, Grant KA, Ferguson B. Alcohol-dose-dependent DNA methylation and expression in the nucleus accumbens identifies coordinated regulation of synaptic genes. Transl Psychiatry 2017; 7:e994. [PMID: 28072409 PMCID: PMC5545731 DOI: 10.1038/tp.2016.266] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 12/20/2022] Open
Abstract
Alterations in DNA methylation have been associated with alcohol exposure and proposed to contribute to continued alcohol use; however, the molecular mechanisms involved remain obscure. We investigated the escalating effects of alcohol use on DNA methylation, gene expression and predicted neural effects in the nucleus accumbens of rhesus macaques that self-administered 4% alcohol for over 12 months. Using an exploratory approach to identify CpG-rich regions, followed by bisulfite sequencing, the methylation levels of 2.7 million CpGs were compared between seven low-binge drinkers and nine heavy-very heavy drinking subjects. We identified 17 significant differential methylation regions (DMRs), including 14 with methylation levels that were correlated with average daily alcohol consumption. The size of the DMRs ranged from 29 to 158 bp (mean=63.7), included 4-19 CpGs per DMR (mean=8.06) and spanned a range of average methylation values from 5 to 34%. Eight of the DMRs mapped to genes implicated in modulating synaptic plasticity. Six of the synaptic genes have not previously been linked to alcohol use. Validation studies of these eight DMRs using bisulfite amplicon sequencing and an expanded set of 30 subjects confirmed the significant alcohol-dose-associated methylation of the DMRs. Expression analysis of three of the DMR-associated genes, LRP5, GPR39 and JAKMIP1, revealed significant correlations between DMR methylation and whole-gene or alternative transcript expression, supporting a functional role in regulating gene expression. Together, these studies suggest that alcohol-associated synaptic remodeling may be regulated and coordinated at the level of DNA methylation.
Collapse
Affiliation(s)
- R Cervera-Juanes
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - L J Wilhelm
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - B Park
- Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR, USA
| | - K A Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - B Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA,Department of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA. E-mail:
| |
Collapse
|
8
|
Nashed MG, Linher-Melville K, Frey BN, Singh G. RNA-sequencing profiles hippocampal gene expression in a validated model of cancer-induced depression. GENES BRAIN AND BEHAVIOR 2016; 15:711-721. [DOI: 10.1111/gbb.12323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/30/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023]
Affiliation(s)
- M. G. Nashed
- Department of Pathology & Molecular Medicine; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
- Michael G. DeGroote Institute for Pain Research and Care; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
| | - K. Linher-Melville
- Department of Pathology & Molecular Medicine; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
- Michael G. DeGroote Institute for Pain Research and Care; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
| | - B. N. Frey
- Department of Psychiatry and Behavioural Neurosciences; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
- Mood Disorders Program and Women's Health Concerns Clinic; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
| | - G. Singh
- Department of Pathology & Molecular Medicine; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
- Michael G. DeGroote Institute for Pain Research and Care; St. Joseph's Healthcare Hamilton; Hamilton ON L8N 3K7 Canada
| |
Collapse
|
9
|
Abstract
In this issue of Neuron, Berg et al. (2015) uncover multifaceted roles for janus kinase and microtubule-interacting protein 1 (JAKMIP1) in regulating neuronal mRNA translation and establish JAKMIP1 knockout mice as an important model to study autism spectrum disorder-associated phenotypes.
Collapse
Affiliation(s)
- Jay Penney
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Berg JM, Lee C, Chen L, Galvan L, Cepeda C, Chen JY, Peñagarikano O, Stein JL, Li A, Oguro-Ando A, Miller JA, Vashisht AA, Starks ME, Kite EP, Tam E, Gdalyahu A, Al-Sharif NB, Burkett ZD, White SA, Fears SC, Levine MS, Wohlschlegel JA, Geschwind DH. JAKMIP1, a Novel Regulator of Neuronal Translation, Modulates Synaptic Function and Autistic-like Behaviors in Mouse. Neuron 2015; 88:1173-1191. [PMID: 26627310 DOI: 10.1016/j.neuron.2015.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/02/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heritable, common neurodevelopmental disorder with diverse genetic causes. Several studies have implicated protein synthesis as one among several of its potential convergent mechanisms. We originally identified Janus kinase and microtubule-interacting protein 1 (JAKMIP1) as differentially expressed in patients with distinct syndromic forms of ASD, fragile X syndrome, and 15q duplication syndrome. Here, we provide multiple lines of evidence that JAKMIP1 is a component of polyribosomes and an RNP translational regulatory complex that includes fragile X mental retardation protein, DEAD box helicase 5, and the poly(A) binding protein cytoplasmic 1. JAKMIP1 loss dysregulates neuronal translation during synaptic development, affecting glutamatergic NMDAR signaling, and results in social deficits, stereotyped activity, abnormal postnatal vocalizations, and other autistic-like behaviors in the mouse. These findings define an important and novel role for JAKMIP1 in neural development and further highlight pathways regulating mRNA translation during synaptogenesis in the genesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jamee M Berg
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Changhoon Lee
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie Chen
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurie Galvan
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jane Y Chen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olga Peñagarikano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alvin Li
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Asami Oguro-Ando
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy A Miller
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mary E Starks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elyse P Kite
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Tam
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amos Gdalyahu
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noor B Al-Sharif
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary D Burkett
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Zhang Z, Zhang W, Huang S, Sun Q, Wang Y, Hu Y, Sun N, Zhang Y, Jiang Z, Minato N, Pin JP, Su L, Liu J. GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. J Cell Sci 2015; 128:2302-13. [DOI: 10.1242/jcs.167056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
G-protein-coupled receptors (GPCRs) are key players in cell signaling, and their cell surface expression is tightly regulated. For many GPCRs such as β2-AR (β2-adrenergic receptor), receptor activation leads to downregulation of receptor surface expression, a phenomenon that has been extensively characterized. By contrast, some other GPCRs, such as GABAB receptor, remain relatively stable at the cell surface even after prolonged agonist treatment; however, the underlying mechanisms are unclear. Here, we identify the small GTPase Rap1 as a key regulator for promoting GABAB receptor surface expression. Agonist stimulation of GABAB receptor signals through Gαi/o to inhibit Rap1GAPII (also known as Rap1GAP1b, an isoform of Rap1GAP1), thereby activating Rap1 (which has two isoforms, Rap1a and Rap1b) in cultured cerebellar granule neurons (CGNs). The active form of Rap1 is then recruited to GABAB receptor through physical interactions in CGNs. This Rap1-dependent signaling cascade promotes GABAB receptor surface expression by stimulating receptor recycling. Our results uncover a new mechanism regulating GPCR surface expression and also provide a potential explanation for the slow, long-lasting inhibitory action of GABA neurotransmitter.
Collapse
Affiliation(s)
- Zongyong Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siluo Huang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Sun
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunyun Wang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongjian Hu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ninghua Sun
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihua Jiang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université Montpellier 1 et 2, Montpellier cedex 5 34094, France
| | - Li Su
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Okai I, Wang L, Gong L, Arko-Boham B, Hao L, Zhou X, Qi X, Hu J, Shao S. Overexpression of JAKMIP1 associates with Wnt/beta-catenin pathway activation and promotes cancer cell proliferation in vitro. Biomed Pharmacother 2013; 67:228-34. [DOI: 10.1016/j.biopha.2013.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022] Open
|
13
|
Chang YF, Chou HJ, Yen YC, Chang HW, Hong YR, Huang HW, Tseng CN. Agrin induces association of Chrna1 mRNA and nicotinic acetylcholine receptor in C2C12 myotubes. FEBS Lett 2012; 586:3111-6. [PMID: 22884571 DOI: 10.1016/j.febslet.2012.07.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/05/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
Abstract
In the mammalian central nervous system transcripts of certain synaptic components are localized near the synapse, allowing for rapid regulation of protein levels. Here we test whether an mRNA localization mechanism also exists in the postsynaptic specialization induced by agrin in C2C12 myotubes. RT-PCR showed that Chrna1 was co-purified with nicotinic acetylcholine receptor (AChR) isolated by affinity column or by ultracentrifugation. In addition, Stau1 was found to interact with Chrna1 mRNA, and knocking down of Stau1 by RNAi resulted in defective AChR clustering. These results suggest that mRNA localization also participates in the formation of mammalian neuromuscular junction (NMJ).
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Vidal RL, Fuentes P, Valenzuela JI, Alvarado-Diaz CP, Ramírez OA, Kukuljan M, Couve A. RNA interference of Marlin-1/Jakmip1 results in abnormal morphogenesis and migration of cortical pyramidal neurons. Mol Cell Neurosci 2012; 51:1-11. [DOI: 10.1016/j.mcn.2012.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/04/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022] Open
|
15
|
Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 2012; 13:R43. [PMID: 22703893 PMCID: PMC3446315 DOI: 10.1186/gb-2012-13-6-r43] [Citation(s) in RCA: 503] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/21/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023] Open
Abstract
Background Dynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors. Results Distinct tissue-specific patterns of DNA methylation were identified, with a highly significant over-representation of tissue-specific differentially methylated regions (TS-DMRs) observed at intragenic CpG islands and low CG density promoters. A large proportion of TS-DMRs were located near genes that are differentially expressed across brain regions. TS-DMRs were significantly enriched near genes involved in functional pathways related to neurodevelopment and neuronal differentiation, including BDNF, BMP4, CACNA1A, CACA1AF, EOMES, NGFR, NUMBL, PCDH9, SLIT1, SLITRK1 and SHANK3. Although between-tissue variation in DNA methylation was found to greatly exceed between-individual differences within any one tissue, we found that some inter-individual variation was reflected across brain and blood, indicating that peripheral tissues may have some utility in epidemiological studies of complex neurobiological phenotypes. Conclusions This study reinforces the importance of DNA methylation in regulating cellular phenotype across tissues, and highlights genomic patterns of epigenetic variation across functionally distinct regions of the brain, providing a resource for the epigenetics and neuroscience research communities.
Collapse
Affiliation(s)
- Matthew N Davies
- Institute of Psychiatry, King's College London, De Crespigny Park, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hedges DJ, Hamilton-Nelson KL, Sacharow SJ, Nations L, Beecham GW, Kozhekbaeva ZM, Butler BL, Cukier HN, Whitehead PL, Ma D, Jaworski JM, Nathanson L, Lee JM, Hauser SL, Oksenberg JR, Cuccaro ML, Haines JL, Gilbert JR, Pericak-Vance MA. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. Mol Autism 2012; 3:2. [PMID: 22472195 PMCID: PMC3352055 DOI: 10.1186/2040-2392-3-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/02/2012] [Indexed: 01/11/2023] Open
Abstract
Background Autism spectrum disorders (ASD) represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR). Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism. Methods As copy number variations (CNVs), particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry) to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH) arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members. Results Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several loci, including GABBR2 and NRXN3. Overall, statistically significant enrichment in affected vs. unaffected individuals was observed for NRXN1 deletions. Conclusions These results provide additional support for the role of rare structural variation in ASD.
Collapse
Affiliation(s)
- Dale J Hedges
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, M-860, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang C, Zelenak C, Völkl J, Eichenmüller M, Regel I, Fröhlich H, Kempe D, Jimenez L, Le Bellego L, Vergne S, Lang F. Hydration-sensitive gene expression in brain. Cell Physiol Biochem 2011; 27:757-68. [PMID: 21691093 DOI: 10.1159/000330084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Dehydration has a profound influence on neuroexcitability. The mechanisms remained, however, incompletely understood. The present study addressed the effect of water deprivation on gene expression in the brain. To this end, animals were exposed to a 24 hours deprivation of drinking water and neuronal gene expression was determined by microarray technology with subsequent confirmation by RT-PCR. As a result, water deprivation was followed by significant upregulation of clathrin (light polypeptide Lcb), serum/glucocorticoid-regulated kinase (SGK) 1, and protein kinase A (PRKA) anchor protein 8-like. Water deprivation led to downregulation of janus kinase and microtubule interacting protein 1, neuronal PAS domain protein 4, thrombomodulin, purinergic receptor P2Y - G-protein coupled 13 gene, gap junction protein beta 1, neurotrophin 3, hyaluronan and proteoglycan link protein 1, G protein-coupled receptor 19, CD93 antigen, forkhead box P1, suppressor of cytokine signaling 3, apelin, immunity-related GTPase family M, serine (or cysteine) peptidase inhibitor clade B member 1a, serine (or cysteine) peptidase inhibitor clade H member 1, glutathion peroxidase 8 (putative), discs large (Drosophila) homolog-associated protein 1, zinc finger and BTB domain containing 3, and H2A histone family member V. Western blotting revealed the downregulation of forkhead box P1, serine (or cysteine) peptidase inhibitor clade H member 1, and gap junction protein beta 1 protein abundance paralleling the respective alterations of transcript levels. In conclusion, water deprivation influences the transcription of a wide variety of genes in the brain, which may participate in the orchestration of brain responses to water deprivation.
Collapse
Affiliation(s)
- Cai Tang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. ADVANCES IN PHARMACOLOGY 2010; 58:123-47. [PMID: 20655481 DOI: 10.1016/s1054-3589(10)58006-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
GABA(B) receptors have been found to play a key role in regulating membrane excitability and synaptic transmission in the brain. The GABA(B) receptor is a G-protein coupled receptor (GPCR) that associates with a subset of G-proteins (pertussis toxin sensitive Gi/o family), that in turn regulate specific ion channels and trigger cAMP cascades. In this review, we describe the relationships between the GABA(B) receptor, its effectors and associated proteins that mediate GABA(B) receptor function within the brain. We discuss a unique feature of the GABA(B) receptor, the requirement for heterodimerization to produce functional receptors, as well as an increasing body of evidence that suggests GABA(B) receptors comprise a macromolecular signaling heterocomplex, critical for efficient targeting and function of the receptors. Within this complex, GABA(B) receptors associate specifically with Gi/o G-proteins that regulate voltage-gated Ca(2+) (Ca(V)) channels, G-protein activated inwardly rectifying K(+) (GIRK) channels, and adenylyl cyclase. Numerous studies have revealed that lipid rafts, scaffold proteins, targeting motifs in the receptor, and regulators of G-protein signaling (RGS) proteins also contribute to the function of GABA(B) receptors and affect cellular processes such as receptor trafficking and activity-dependent desensitization. This complex regulation of GABA(B) receptors in the brain may provide opportunities for new ways to regulate GABA-dependent inhibition in normal and diseased states of the nervous system.
Collapse
Affiliation(s)
- Claire L Padgett
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
19
|
Zunner D, Deschermeier C, Kornau HC. GABA(B) receptor subunit 1 binds to proteins affected in 22q11 deletion syndrome. Biochem Biophys Res Commun 2010; 393:185-9. [PMID: 20036641 DOI: 10.1016/j.bbrc.2009.12.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/20/2009] [Indexed: 01/08/2023]
Abstract
GABA(B) receptors mediate slow inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABA(B1) and GABA(B2), which are linked through a coiled-coil interaction. The ligand-binding subunit GABA(B1) is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABA(B2). Here, we report that GABA(B1), via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABA(B1)-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABA(B2) interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABA(B1). Thus, sequential coiled-coil interactions may direct GABA(B1) into functional receptors.
Collapse
Affiliation(s)
- Dagmar Zunner
- Center for Molecular Neurobiology, University of Hamburg, Germany
| | | | | |
Collapse
|
20
|
Transcriptome analysis of nicotine-exposed cells from the brainstem of neonate spontaneously hypertensive and Wistar Kyoto rats. THE PHARMACOGENOMICS JOURNAL 2009; 10:134-60. [DOI: 10.1038/tpj.2009.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Malagón MM, Cruz-García D, Díaz-Ruiz A, Peinado JR, Pulido MR, Araújo J, Garcia-Navarro S, Gracia-Navarro F, Castaño JP, Vázquez-Martínez R. Identification of novel genes involved in the plasticity of pituitary melanotropes in amphibians. Ann N Y Acad Sci 2009; 1163:233-40. [PMID: 19456344 DOI: 10.1111/j.1749-6632.2008.03654.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanotrope cells from the amphibian intermediate lobe are composed of two subpopulations that exhibit opposite secretory behavior: hypersecretory and hormone-storage hyposecretory melanotropes. Isolation of these subpopulations allowed a comparison of their gene expression profiles by differential display, leading to the identification of a number of genes differentially expressed in hypersecretory or hyposecretory melanotropes. Among them, we chose two (preferentially expressed in hyposecretory cells) of unknown function but structurally related to proteins involved in the secretory process: Rab18 and KIAA0555. We demonstrate that, upon activation of the regulated secretory pathway, Rab18 associates with secretory granules, inhibits their mobilization, and, consequently, reduces the secretory capacity of neuroendocrine cells. The other gene, KIAA0555, was predicted by in silico analysis to encode a protein with a long coiled-coil domain, a structural feature also shared by different proteins related to intracellular membrane traffic (i.e., golgins), and a hydrophobic C-terminal domain that could function as a transmembrane domain. A database search unveiled the existence of a KIAA0555 paralogue, KIAA4091, displaying a long coiled-coil region highly similar to that of KIAA0555 and an identical C-terminal transmembrane domain. Both KIAA0555 and KIAA4091 were found to be predominantly expressed in tissues containing cells with regulated secretory pathway, that is, endocrine and neural tissues. Moreover, when exogenously expressed in HEK293 cells, both proteins showed a yuxtanuclear distribution, which partially overlaps with that of a Golgi complex marker, thus suggesting a possible role of these two proteins in the control of the secretory process.
Collapse
Affiliation(s)
- M M Malagón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vidal RL, Valenzuela JI, Luján R, Couve A. Cellular and subcellular localization of Marlin-1 in the brain. BMC Neurosci 2009; 10:37. [PMID: 19386132 PMCID: PMC2685396 DOI: 10.1186/1471-2202-10-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 04/22/2009] [Indexed: 02/07/2023] Open
Abstract
Background Marlin-1 is a microtubule binding protein that associates specifically with the GABAB1 subunit in neurons and with members of the Janus kinase family in lymphoid cells. In addition, it binds the molecular motor kinesin-I and nucleic acids, preferentially single stranded RNA. Marlin-1 is expressed mainly in the central nervous system but little is known regarding its cellular and subcellular distribution in the brain. Results Here we have studied the localization of Marlin-1 in the rodent brain and cultured neurons combining immunohistochemistry, immunofluorescence and pre-embedding electron microscopy. We demonstrate that Marlin-1 is enriched in restricted areas of the brain including olfactory bulb, cerebral cortex, hippocampus and cerebellum. Marlin-1 is abundant in dendrites and axons of GABAergic and non-GABAergic hippocampal neurons. At the ultrastructural level, Marlin-1 is present in the cytoplasm and the nucleus of CA1 neurons in the hippocampus. In the cytoplasm it associates to microtubules in the dendritic shaft and occasionally with the Golgi apparatus, the endoplasmic reticulum (ER) and dendritic spines. In the nucleus, clusters of Marlin-1 associate to euchromatin. Conclusion Our results demonstrate that Marlin-1 is expressed in discrete areas of the brain. They also confirm the microtubule association at the ultrastructural level in neurons. Together with the abundance of the protein in dendrites and axons they are consistent with the emerging role of Marlin-1 as an intracellular protein linking the cytoskeleton and transport. Our study constitutes the first detailed description of the cellular and subcellular distribution of Marlin-1 in the brain. As such, it will set the basis for future studies on the functional implications of Marlin-1 in protein trafficking.
Collapse
Affiliation(s)
- René L Vidal
- Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| | | | | | | |
Collapse
|
23
|
Libri V, Schulte D, van Stijn A, Ragimbeau J, Rogge L, Pellegrini S. Jakmip1 is expressed upon T cell differentiation and has an inhibitory function in cytotoxic T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2009; 181:5847-56. [PMID: 18941173 DOI: 10.4049/jimmunol.181.9.5847] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Jakmip1 belongs to a family of three related genes encoding proteins rich in coiled-coils. Jakmip1 is expressed predominantly in neuronal and lymphoid cells and colocalizes with microtubules. We have studied the expression of Jakmip1 mRNA and protein in distinct subsets of human primary lymphocytes. Jakmip1 is absent in naive CD8(+) and CD4(+) T lymphocytes from peripheral blood but is highly expressed in Ag-experienced T cells. In cord blood T lymphocytes, induction of Jakmip1 occurs upon TCR/CD28 stimulation and parallels induction of effector proteins, such as granzyme B and perforin. Further analysis of CD8(+) and CD4(+) T cell subsets showed a higher expression of Jakmip1 in the effector CCR7(-) and CD27(-) T cell subpopulations. In a gene expression follow-up of the development of CMV-specific CD8(+) response, Jakmip1 emerged as one of the most highly up-regulated genes from primary infection to latent stage. To investigate the relationship between Jakmip1 and effector function, we monitored cytotoxicity of primary CD8(+) T cells silenced for Jakmip1 or transduced with the full-length protein or the N-terminal region. Our findings point to Jakmip1 being a novel effector memory gene restraining T cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Valentina Libri
- Cytokine Signaling Unit, Department of Immunology, Centre National de la Recherche Scientifique Unité de Recherche Associée 1961, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | |
Collapse
|
24
|
Vidal RL, Ramírez A, Castro M, Concha II, Couve A. Marlin-1 is expressed in testis and associates to the cytoskeleton and GABAB receptors. J Cell Biochem 2008; 103:886-95. [PMID: 17668444 DOI: 10.1002/jcb.21456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marlin-1 is a GABA(B) receptor and Jak tyrosine kinase-binding protein that also associates with RNA and microtubules. In humans and rodents, expression of Marlin-1 is predominantly restricted to the brain, but expression in lymphoid cells has also been reported. Here, we have studied the distribution of Marlin-1 in testis and spermatozoa. Our results indicate that Marlin-1 is highly expressed in testis. The protein is abundant in spermatogonia, spermatocytes, spermatozoa, and Sertoli cells. We also have studied the subcellular distribution in spermatozoa. Marlin-1 is present in the tail and to a lesser degree in the head of the sperm cell. Finally, we have explored two protein interactions. Our findings demonstrate that Marlin-1 associates with a microtubule fraction and with GABA(B) receptors in testis suggesting that the set of protein interactions of Marlin-1 are conserved in different tissues.
Collapse
Affiliation(s)
- René L Vidal
- Institute of Biochemistry, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | | | | | | | | |
Collapse
|
25
|
Saliba RS, Pangalos M, Moss SJ. The ubiquitin-like protein Plic-1 enhances the membrane insertion of GABAA receptors by increasing their stability within the endoplasmic reticulum. J Biol Chem 2008; 283:18538-44. [PMID: 18467327 DOI: 10.1074/jbc.m802077200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-aminobutyric acid receptors (GABA(A)R) are the major sites of fast inhibitory neurotransmission in the brain, and a critical determinant for the efficacy of neuronal inhibition is the number of these receptors that are expressed on the neuronal cell surface. GABA(A)Rs are heteropentamers that can be constructed from seven subunit classes with multiple members; alpha, beta, gamma(1-3), delta, epsilon(1-3), theta, and pi. Receptor assembly occurs within the endoplasmic reticulum, and it is evident that transport-competent combinations exiting this organelle can access the cell surface, whereas unassembled subunits are ubiquitinated and subject to proteasomal degradation. In a previous report the ubiquitin-like protein Plic-1 was shown to directly interact with GABA(A)Rs and promote their accumulation at the cell surface. In this study we explore the mechanisms by which Plic-1 regulates the membrane trafficking of GABA(A)Rs. Using both recombinant and neuronal preparations it was apparent that Plic-1 increased the stability of endoplasmic reticulum resident GABA(A)Rs together with an increase in the abundance of poly-ubiquitinated receptor subunits. Furthermore, Plic-1 elevated cell surface expression levels by selectively increasing their rates of membrane insertion. Thus, Plic-1 may play a significant role in regulating the strength of synaptic inhibition by increasing the stability of GABA(A)Rs within the secretory pathway and thereby promoting their insertion into the neuronal plasma membrane.
Collapse
Affiliation(s)
- Richard S Saliba
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
26
|
Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82:696-711. [PMID: 18319075 DOI: 10.1016/j.ajhg.2008.01.008] [Citation(s) in RCA: 559] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/12/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022] Open
Abstract
Epigenetic misregulation is consistent with various non-Mendelian features of schizophrenia and bipolar disorder. To date, however, few studies have investigated the role of DNA methylation in major psychosis, and none have taken a genome-wide epigenomic approach. In this study we used CpG-island microarrays to identify DNA-methylation changes in the frontal cortex and germline associated with schizophrenia and bipolar disorder. In the frontal cortex we find evidence for psychosis-associated DNA-methylation differences in numerous loci, including several involved in glutamatergic and GABAergic neurotransmission, brain development, and other processes functionally linked to disease etiology. DNA-methylation changes in a significant proportion of these loci correspond to reported changes of steady-state mRNA level associated with psychosis. Gene-ontology analysis highlighted epigenetic disruption to loci involved in mitochondrial function, brain development, and stress response. Methylome network analysis uncovered decreased epigenetic modularity in both the brain and the germline of affected individuals, suggesting that systemic epigenetic dysfunction may be associated with major psychosis. We also report evidence for a strong correlation between DNA methylation in the MEK1 gene promoter region and lifetime antipsychotic use in schizophrenia patients. Finally, we observe that frontal-cortex DNA methylation in the BDNF gene is correlated with genotype at a nearby nonsynonymous SNP that has been previously associated with major psychosis. Our data are consistent with the epigenetic theory of major psychosis and suggest that DNA-methylation changes are important to the etiology of schizophrenia and bipolar disorder.
Collapse
|
27
|
The clustering of GABA(A) receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor alpha 2 subunits to gephyrin. J Neurosci 2008; 28:1356-65. [PMID: 18256255 DOI: 10.1523/jneurosci.5050-07.2008] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical benzodiazepine sensitive GABA(A) receptor subtypes, the major mediators of fast synaptic inhibition in the brain are heteropentamers that can be assembled from alpha1-3/5, beta1-3, and gamma2 subunits, but how neurons orchestrate their selective accumulation at synapses remains obscure. We have identified a 10 amino acid hydrophobic motif within the intracellular domain of the alpha2 subunit that regulates the accumulation of GABA(A) receptors at inhibitory synaptic sites on both axon initial segments and dendrites in a mechanism dependent on the inhibitory scaffold protein gephyrin. This motif was sufficient to target CD4 (cluster of differentiation molecule 4) molecules to inhibitory synapses, and was also critical in regulating the direct binding of alpha2 subunits to gephyrin in vitro. Our results thus reveal that the specific accumulation of GABA(A) receptor subtypes containing alpha2 subunits at inhibitory synapses is dependent on their ability to bind gephyrin.
Collapse
|
28
|
Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites. J Neurosci 2008; 27:13341-51. [PMID: 18045928 DOI: 10.1523/jneurosci.3277-07.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA(A) receptors (GABA(A)Rs) are the major mediators of fast synaptic inhibition in the brain. In neurons, these receptors undergo significant rates of endocytosis and exocytosis, processes that regulate both their accumulation at synaptic sites and the efficacy of synaptic inhibition. Here we have evaluated the role that neuronal activity plays in regulating the residence time of GABA(A)Rs on the plasma membrane and their targeting to synapses. Chronic blockade of neuronal activity dramatically increases the level of the GABA(A)R ubiquitination, decreasing their cell surface stability via a mechanism dependent on the activity of the proteasome. Coincident with this loss of cell surface expression levels, TTX treatment reduced both the amplitude and frequency of miniature inhibitory synaptic currents. Conversely, increasing the level of neuronal activity decreases GABA(A)R ubiquitination enhancing their stability on the plasma membrane. Activity-dependent ubiquitination primarily acts to reduce GABA(A)R stability within the endoplasmic reticulum and, thereby, their insertion into the plasma membrane and subsequent accumulation at synaptic sites. Thus, activity-dependent ubiquitination of GABA(A)Rs and their subsequent proteasomal degradation may represent a potent mechanism to regulate the efficacy of synaptic inhibition and may also contribute to homeostatic synaptic plasticity.
Collapse
|
29
|
Costa V, Conte I, Ziviello C, Casamassimi A, Alfano G, Banfi S, Ciccodicola A. Identification and expression analysis of novel Jakmip1 transcripts. Gene 2007; 402:1-8. [PMID: 17761393 DOI: 10.1016/j.gene.2007.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 05/31/2007] [Accepted: 07/02/2007] [Indexed: 11/20/2022]
Abstract
Janus kinase and microtubule interacting protein 1, (Jakmip1) conserved in vertebrates and predominantly expressed in neural tissues, was identified for its ability to bind Tyk2, a member of the Janus kinase (Jak) family of non-receptor tyrosine kinases. Recently Jakmip1 was also identified as an interacting partner of GABA(B)R1 and as a regulatory protein of GABA(B)R2 mRNA. We have confirmed that this gene is highly expressed in brain and retina tissues and it is also present at lower levels in other tissues. We have identified four new transcripts of 2975 bp, 1743 bp, 2189 bp and 2420 bp respectively, named Jakmip1B, Jakmip1C, Jakmip1D and Jakmip1E. The involvement of the Janus kinase pathway in the development of mouse retina and in the control of survival and proliferation of human retinal ganglion cells, together with the restricted Jakmip1 gene expression pattern, may suggest this gene is a putative candidate for neuro-degenerative and retinal diseases. For this reason, a mutation analysis of the Jakmip1 gene in a panel of 50 unrelated patients with retinitis pigmentosa has been performed, revealing no pathogenic mutations.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, Steindler C, Pellegrini S, Schanen NC, Warren ST, Geschwind DH. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 2007; 16:1682-1698. [PMID: 17519220 DOI: 10.1093/hmg/ddm116] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autism is a heterogeneous condition that is likely to result from the combined effects of multiple genetic factors interacting with environmental factors. Given its complexity, the study of autism associated with Mendelian single gene disorders or known chromosomal etiologies provides an important perspective. We used microarray analysis to compare the mRNA expression profile in lymphoblastoid cells from males with autism due to a fragile X mutation (FMR1-FM), or a 15q11-q13 duplication (dup(15q)), and non-autistic controls. Gene expression profiles clearly distinguished autism from controls and separated individuals with autism based on their genetic etiology. We identified 68 genes that were dysregulated in common between autism with FMR1-FM and dup(15q). We also identified a potential molecular link between FMR1-FM and dup(15q), the cytoplasmic FMR1 interacting protein 1 (CYFIP1), which was up-regulated in dup(15q) patients. We were able to confirm this link in vitro by showing common regulation of two other dysregulated genes, JAKMIP1 and GPR155, downstream of FMR1 or CYFIP1. We also confirmed the reduction of the Jakmip1 protein in Fmr1 knock-out mice, demonstrating in vivo relevance. Finally, we showed independent confirmation of roles for JAKMIP1 and GPR155 in autism spectrum disorders (ASDs) by showing their differential expression in male sib pairs discordant for idiopathic ASD. These results provide evidence that blood derived lymphoblastoid cells gene expression is likely to be useful for identifying etiological subsets of autism and exploring its pathophysiology.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cruz-Garcia D, Vazquez-Martinez R, Peinado JR, Anouar Y, Tonon MC, Vaudry H, Castaño JP, Malagon MM. Identification and characterization of two novel (neuro)endocrine long coiled-coil proteins. FEBS Lett 2007; 581:3149-56. [PMID: 17572408 DOI: 10.1016/j.febslet.2007.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 11/17/2022]
Abstract
We have identified a novel vertebrate-specific gene by applying a Differential Display method on two distinct subtypes of pituitary melanotropes showing divergent secretory phenotypes of hypo- and hypersecretion. A paralogue of this gene was also identified. The existence of a long coiled-coil domain and a C-terminal transmembrane domain in the sequences, together with the Golgi distribution of the proteins in transfected cells, suggest that they can be considered as new members of the golgin family of proteins. Both genes were primarily expressed in (neuro)endocrine tissues in vertebrates thus supporting a role for these proteins in the regulated secretory pathway.
Collapse
Affiliation(s)
- D Cruz-Garcia
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Vidal RL, Ramírez OA, Sandoval L, Koenig-Robert R, Härtel S, Couve A. Marlin-1 and conventional kinesin link GABAB receptors to the cytoskeleton and regulate receptor transport. Mol Cell Neurosci 2007; 35:501-12. [PMID: 17532644 DOI: 10.1016/j.mcn.2007.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/10/2007] [Accepted: 04/25/2007] [Indexed: 01/22/2023] Open
Abstract
The cytoskeleton and cytoskeletal motors play a fundamental role in neurotransmitter receptor trafficking, but proteins that link GABA(B) receptors (GABA(B)Rs) to the cytoskeleton have not been described. We recently identified Marlin-1, a protein that interacts with GABA(B)R1. Here, we explore the association of GABA(B)Rs and Marlin-1 to the cytoskeleton using a combination of biochemistry, microscopy and live cell imaging. Our results indicate that Marlin-1 is associated to microtubules and the molecular motor kinesin-I. We demonstrate that a fraction of Marlin-1 is mobile in dendrites of cultured hippocampal neurons and that mobility is microtubule-dependent. We also show that GABA(B)Rs interact robustly with kinesin-I and that intracellular membranes containing GABA(B)Rs are sensitive to treatments that disrupt a protein complex containing Marlin-1, kinesin-I and tubulin. Finally, we report that a kinesin-I mutant severely impairs receptor transport. We conclude that Marlin-1 and kinesin-1 link GABA(B)Rs to the tubulin cytoskeleton in neurons.
Collapse
Affiliation(s)
- René L Vidal
- Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile Independencia 1027, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
33
|
Laffray S, Tan K, Dulluc J, Bouali-Benazzouz R, Calver AR, Nagy F, Landry M. Dissociation and trafficking of rat GABAB receptor heterodimer upon chronic capsaicin stimulation. Eur J Neurosci 2007; 25:1402-16. [PMID: 17425567 DOI: 10.1111/j.1460-9568.2007.05398.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma-aminobutyric acid type B receptors (GABAB) are G-protein-coupled receptors that mediate GABAergic inhibition in the brain. Their functional expression is dependent upon the formation of heterodimers between GABAB1 and GABAB2 subunits, a process that occurs within the endoplasmic reticulum. However, the mechanisms that regulate GABAB receptor oligomerization at the plasma membrane remain largely unknown. We first characterized the functional cytoarchitecture of an organotypic co-culture model of rat dorsal root ganglia and spinal cord. Subsequently, we studied the interactions between GABAB subunits after chronic stimulation of sensory fibres with capsaicin. Surface labelling of recombinant proteins showed a decrease in subunit co-localization and GABAB2 labelling, after capsaicin treatment. In these conditions, fluorescence lifetime imaging measurements further demonstrated a loss of interactions between green fluorescent protein-GABAB1b and t-dimer discosoma sp red fluorescent protein-GABAB2 subunits. Finally, we established that the GABAB receptor undergoes clathrin-dependent internalization and rapid recycling to the plasma membrane following activation with baclofen, a GABAB agonist. However, in cultures chronically stimulated with capsaicin, the agonist-induced endocytosis was decreased, reflecting changes in the dimeric state of the receptor. Taken together, our results indicate that the chronic stimulation of sensory fibres can dissociate the GABAB heterodimer and alters its responsiveness to the endogenous ligand. Chronic stimulation thus modulates receptor oligomerization, providing additional levels of control of signalling.
Collapse
Affiliation(s)
- Sophie Laffray
- INSERM U 862, Institut François Magendie, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol 2007; 292:L704-15. [PMID: 17098806 DOI: 10.1152/ajplung.00383.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P ≤ 0.05. Our results demonstrated that 793 genes were expressed less and that 568 genes were expressed more in the A/J strain vs. the DBA/2J strain. Analysis of individual genes indicates that genes encoding ion channels are differentially expressed between the two strains. Genes related to neurotransmitter metabolism, synaptic vesicles, and the development of neural crest-derived cells are expressed less in the A/J CB vs. the DBA/2J CB. Through pathway analysis, we have constructed a model that shows gene interactions and offers a roadmap to investigate CB development and hypoxic chemosensing/chemotransduction processes. Particularly, Gdnf, Bmp2, Kcnmb2, Tph1, Hif1a, and Arnt2 may contribute to the functional differences in the CB between the two strains. Bmp2, Phox2b, Dlx2, and Msx2 may be important for the morphological differences.
Collapse
Affiliation(s)
- Alexander Balbir
- Division of Physiology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, E7610, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kuramoto N, Wilkins ME, Fairfax BP, Revilla-Sanchez R, Terunuma M, Tamaki K, Iemata M, Warren N, Couve A, Calver A, Horvath Z, Freeman K, Carling D, Huang L, Gonzales C, Cooper E, Smart TG, Pangalos MN, Moss SJ. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron 2007; 53:233-47. [PMID: 17224405 PMCID: PMC2570046 DOI: 10.1016/j.neuron.2006.12.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 11/02/2006] [Accepted: 12/14/2006] [Indexed: 12/15/2022]
Abstract
GABA(B) receptors are heterodimeric G protein-coupled receptors composed of R1 and R2 subunits that mediate slow synaptic inhibition in the brain by activating inwardly rectifying K(+) channels (GIRKs) and inhibiting Ca(2+) channels. We demonstrate here that GABA(B) receptors are intimately associated with 5'AMP-dependent protein kinase (AMPK). AMPK acts as a metabolic sensor that is potently activated by increases in 5'AMP concentration that are caused by enhanced metabolic activity, anoxia, or ischemia. AMPK binds the R1 subunit and directly phosphorylates S783 in the R2 subunit to enhance GABA(B) receptor activation of GIRKs. Phosphorylation of S783 is evident in many brain regions, and is increased dramatically after ischemic injury. Finally, we also reveal that S783 plays a critical role in enhancing neuronal survival after ischemia. Together our results provide evidence of a neuroprotective mechanism, which, under conditions of metabolic stress or after ischemia, increases GABA(B) receptor function to reduce excitotoxicity and thereby promotes neuronal survival.
Collapse
Affiliation(s)
- Nobuyuki Kuramoto
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Binet V, Duthey B, Lecaillon J, Vol C, Quoyer J, Labesse G, Pin JP, Prézeau L. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. J Biol Chem 2007; 282:12154-63. [PMID: 17310064 PMCID: PMC2565688 DOI: 10.1074/jbc.m611071200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.
Collapse
Affiliation(s)
- Virginie Binet
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
- Centre Hospitalo-Universitaire de Montpellier
CHUI MontpellierFR
| | - Béatrice Duthey
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Jennifer Lecaillon
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Claire Vol
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Julie Quoyer
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Gilles Labesse
- CBS, Centre de biochimie structurale
CNRS : UMR5048INSERM : U554IFR3Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc29 rue de Navacelles
34090 MONTPELLIER,FR
| | - Jean-Philippe Pin
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
| | - Laurent Prézeau
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille
34094 MONTPELLIER CEDEX 5,FR
- * Correspondence should be adressed to: Laurent Prézeau
| |
Collapse
|
37
|
Balasubramanian S, Fam SR, Hall RA. GABAB receptor association with the PDZ scaffold Mupp1 alters receptor stability and function. J Biol Chem 2006; 282:4162-71. [PMID: 17145756 DOI: 10.1074/jbc.m607695200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Aminobutyric acid, type B (GABA(B)) receptors are heterodimeric G protein-coupled receptors that mediate slow inhibitory synaptic transmission in the central nervous system. To identify novel interacting partners that might regulate GABA(B) receptor (GABA(B)R) functionality, we screened the GABA(B)R2 carboxyl terminus against a recently created proteomic array of 96 distinct PDZ (PSD-95/Dlg/ZO-1 homology) domains. The screen identified three specific PDZ domains that exhibit interactions with GABA(B)R2: Mupp1 PDZ13, PAPIN PDZ1, and Erbin PDZ. Biochemical analysis confirmed that full-length Mupp1 and PAPIN interact with GABA(B)R2 in cells. Disruption of the GABA(B)R2 interaction with PDZ scaffolds by a point mutation to the carboxyl terminus of the receptor dramatically decreased receptor stability and attenuated the duration of GABA(B) receptor signaling. The effects of mutating the GABA(B)R2 carboxyl terminus on receptor stability and signaling were mimicked by small interference RNA knockdown of endogenous Mupp1. These findings reveal that GABA(B) receptor stability and signaling can be modulated via GABA(B)R2 interactions with the PDZ scaffold protein Mupp1, which may contribute to cell-specific regulation of GABA(B) receptors in the central nervous system.
Collapse
|
38
|
Kornau HC. GABAB receptors and synaptic modulation. Cell Tissue Res 2006; 326:517-33. [PMID: 16932937 DOI: 10.1007/s00441-006-0264-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 05/31/2006] [Indexed: 12/18/2022]
Abstract
GABA(B) receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABA(B) receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABA(B) receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABA(B) receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hans-Christian Kornau
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
39
|
Pontier SM, Lahaie N, Ginham R, St-Gelais F, Bonin H, Bell DJ, Flynn H, Trudeau LE, McIlhinney J, White JH, Bouvier M. Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO J 2006; 25:2698-709. [PMID: 16724110 PMCID: PMC1500845 DOI: 10.1038/sj.emboj.7601157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 04/27/2006] [Indexed: 01/27/2023] Open
Abstract
The obligatory heterodimerization of the GABAB receptor (GBR) raises fundamental questions about molecular mechanisms controlling its signaling efficacy. Here, we show that NEM sensitive fusion (NSF) protein interacts directly with the GBR heterodimer both in rat brain synaptosomes and in CHO cells, forming a ternary complex that can be regulated by agonist stimulation. Inhibition of NSF binding with a peptide derived from GBR2 (TAT-Pep-27) did not affect basal signaling activity but almost completely abolished agonist-promoted GBR desensitization in both CHO cells and hippocampal slices. Taken with the role of PKC in the desensitization process, our observation that TAT-Pep-27 prevented both agonist-promoted recruitment of PKC and receptor phosphorylation suggests that NSF is a priming factor required for GBR desensitization. Given that GBR desensitization does not involve receptor internalization, the NSF/PKC coordinated action revealed herein suggests that NSF can regulate GPCR signalling efficacy independently of its role in membrane trafficking. The functional interaction between three bona fide regulators of neurotransmitter release, such as GBR, NSF and PKC, could shed new light on the modulation of presynaptic GBR action.
Collapse
Affiliation(s)
- Stéphanie M Pontier
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| | - Nicolas Lahaie
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| | - Rachel Ginham
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, UK
| | - Fannie St-Gelais
- Département de Pharmacologie, Faculté de médecine, Université de Montréal, Montréal, Qc, Canada
| | - Hélène Bonin
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
| | - David J Bell
- Pathway Discovery, Genomics and Proteomic Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Helen Flynn
- Pathway Discovery, Genomics and Proteomic Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Louis-Eric Trudeau
- Département de Pharmacologie, Faculté de médecine, Université de Montréal, Montréal, Qc, Canada
| | | | - Julia H White
- Pathway Discovery, Genomics and Proteomic Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Michel Bouvier
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada
- Département de Biochimie and Groupe de Recherche Universitaire sur le Médicament, Institut de recherche en immunologie et Cancérologie, Université de Montréal, Montréal, Qc, Canada H3C 3J7. Tel.: +1 514 343 6319; Fax: +1 514 343 2210; E-mail:
| |
Collapse
|
40
|
Bettler B, Tiao JYH. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006; 110:533-43. [PMID: 16644017 DOI: 10.1016/j.pharmthera.2006.03.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/23/2006] [Indexed: 12/14/2022]
Abstract
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). While native studies predicted pharmacologically distinct GABAB receptor subtypes, molecular studies failed to identify the expected receptor varieties. Mouse genetic experiments therefore addressed whether the cloned receptors can account for the classical electrophysiological, biochemical and behavioral GABAB responses or whether additional receptors exist. Among G-protein coupled receptors, GABAB receptors are unique in that they require 2 distinct subunits for functioning. This atypical receptor structure triggered a large body of work that investigated the regulation of receptor assembly and trafficking. With the availability of molecular tools, substantial progress was also made in the analysis of the receptor protein distribution in neuronal compartments. Here, we review recent studies that shed light on the molecular diversity, the subcellular distribution and the cell surface dynamics of GABAB receptors.
Collapse
Affiliation(s)
- Bernhard Bettler
- Institute of Physiology, Department of Clinical-Biological Sciences, Pharmazentrum, Klingelbergstrasse 50-70, University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
41
|
Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 2005; 123:105-18. [PMID: 16213216 DOI: 10.1016/j.cell.2005.07.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 07/03/2005] [Accepted: 07/28/2005] [Indexed: 01/22/2023]
Abstract
Synaptic plasticity, the cellular correlate for learning and memory, involves signaling cascades in the dendritic spine. Extensive studies have shown that long-term potentiation (LTP) of the excitatory postsynaptic current (EPSC) through glutamate receptors is induced by activation of N-methyl-D-asparate receptor (NMDA-R)--the coincidence detector--and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Here we report that the same signaling pathway in the postsynaptic CA1 pyramidal neuron also causes LTP of the slow inhibitory postsynaptic current (sIPSC) mediated by metabotropic GABA(B) receptors (GABA(B)-Rs) and G protein-activated inwardly rectifying K(+) (GIRK) channels, both residing in dendritic spines as well as shafts. Indicative of intriguing differences in the regulatory mechanisms for excitatory and inhibitory synaptic plasticity, LTP of sIPSC but not EPSC was abolished in mice lacking Nova-2, a neuronal-specific RNA binding protein that is an autoimmune target in paraneoplastic opsoclonus myoclonus ataxia (POMA) patients with latent cancer, reduced inhibitory control of movements, and dementia.
Collapse
Affiliation(s)
- Cindy Shen Huang
- Howard Hughes Medical Institute and Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss SJ, Hirata M. Direct interaction of N-ethylmaleimide-sensitive factor with GABAA receptor β subunits. Mol Cell Neurosci 2005; 30:197-206. [PMID: 16095914 DOI: 10.1016/j.mcn.2005.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/30/2005] [Accepted: 07/14/2005] [Indexed: 11/16/2022] Open
Abstract
GABA(A) receptors mediate most of the fast inhibitory neurotransmission in the brain, and are believed to be composed mainly of alpha, beta, and gamma subunits. It has been shown that GABA(A) receptors interact with a number of binding partners that act to regulate both receptor function and cell surface stability. Here, we reveal that GABA(A) receptors interact directly with N-ethylmaleimide-sensitive factor (NSF), a critical regulator of vesicular dependent protein trafficking, as measured by in vitro protein binding and co-immunoprecipitation assays. In addition, we established that NSF interacts with residues 395-415 of the receptor beta subunits and co-localizes with GABA(A) receptors in hippocampal neurons. We also established that NSF can regulate GABA(A) receptor cell surface expression depending upon residues 395-415 in the beta3 subunit. Together, our results suggest an important role for NSF activity in regulating the cell surface stability of GABA(A) receptors.
Collapse
Affiliation(s)
- Hidefumi Goto
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Sauter K, Grampp T, Fritschy JM, Kaupmann K, Bettler B, Mohler H, Benke D. Subtype-selective Interaction with the Transcription Factor CCAAT/Enhancer-binding Protein (C/EBP) Homologous Protein (CHOP) Regulates Cell Surface Expression of GABAB Receptors. J Biol Chem 2005; 280:33566-72. [PMID: 16081421 DOI: 10.1074/jbc.m503482200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic gamma-aminobutyric acid, type B (GABA(B)) receptors mediate the slow component of GABAergic transmission in the brain. Functional GABA(B) receptors are heterodimers of the two subunits GABA(B1) and GABA(B2), of which GABA(B1) exists in two main isoforms, GABA(B1a) and GABA(B1b). The significance of the structural heterogeneity of GABA(B) receptors, the mechanism leading to their differential targeting in neurons as well as the regulation of cell surface numbers of GABA(B) receptors, is poorly understood. To gain insights into these processes, we searched for proteins interacting with the C-terminal domain of GABA(B2). Here, we showed that the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) directly interacts with GABA(B) receptors in a subtype-selective manner to regulate cell surface expression of GABA(B1a)/GABA(B2) receptors upon co-expression in HEK 293 cells. The interaction of CHOP with GABA(B1a)/GABA(B2) receptors resulted in their intracellular accumulation and in a reduced number of cell surface receptors. This regulation required the interaction of CHOP via two distinct domains with the heterodimeric receptor; its C-terminal leucine zipper associates with the leucine zipper present in the C-terminal domain of GABA(B2), and its N-terminal domain associates with an as yet unidentified site on GABA(B1a). In conclusion, the data indicated a subtype-selective regulation of cell surface receptors by interaction with the transcription factor CHOP.
Collapse
Affiliation(s)
- Kathrin Sauter
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Swtizerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Couve A, Calver AR, Fairfax B, Moss SJ, Pangalos MN. Unravelling the unusual signalling properties of the GABA(B) receptor. Biochem Pharmacol 2005; 68:1527-36. [PMID: 15451395 DOI: 10.1016/j.bcp.2004.06.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 06/08/2004] [Indexed: 12/13/2022]
Abstract
GABA(B) receptors are the cornerstone receptors in the modulation of inhibitory signalling in the central nervous system and continue to be targets for the amelioration of a number of neuropsychiatric and neurological disorders. Unravelling the molecular identity of this receptor has spurred much research over the past five or so years and generated a renewed interest and excitement in the field. Many questions are being answered and lessons learnt, not only about GABA(B) receptor function but also about general mechanisms of G-protein-coupled receptor signalling. However, as questions are being answered as many new questions are being raised and many GABA(B)-related conundrums continue to remain unanswered. In this report, we review some of the most recent work in the area of GABA(B) receptor research. In particular, we focus our attentions on the emerging mechanisms thought to be important in GABA(B) receptor signalling and the growing complex of associated proteins that we consider to be part of the GABA(B) receptor "signalosome."
Collapse
Affiliation(s)
- Andrés Couve
- Department of Biophysics and Molecular Physiology, Centro de Estudios Científicos, Avda. Arturo Prat 514, Casilla 1469, Valdivia, Chile
| | | | | | | | | |
Collapse
|
45
|
Abstract
Long-term potentiation and long-term depression are processes that have been widely studied to understand the molecular basis of information storage in the brain. Glutamate receptors are required for the induction and expression of these forms of plasticity, and GABA (gamma-aminobutyric acid) receptors are involved in their modulation. Recent insights into how these receptors are rapidly moved into and out of synaptic membranes has profound implications for our understanding of the mechanisms of long-term potentiation and long-term depression.
Collapse
Affiliation(s)
- Graham L Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
46
|
Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A 2004; 101:12736-41. [PMID: 15310851 PMCID: PMC515122 DOI: 10.1073/pnas.0401860101] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the major sites of fast synaptic inhibition in the brain. An essential determinant for the efficacy of synaptic inhibition is the regulation of GABA(A)R cell surface stability. Here, we have examined the regulation of GABA(A)R endocytic sorting, a critical regulator of cell surface receptor number. In neurons, rapid constitutive endocytosis of GABA(A)Rs was evident. Internalized receptors were then either rapidly recycled back to the cell surface, or on a slower time scale, targeted for lysosomal degradation. This sorting decision was regulated by a direct interaction of GABA(A)Rs with Huntingtin-associated protein 1 (HAP1). HAP1 modulated synaptic GABA(A)R number by inhibiting receptor degradation and facilitating receptor recycling. Together these observations have identified a role for HAP1 in regulating GABA(A)R sorting, suggesting an important role for this protein in the construction and maintenance of inhibitory synapses.
Collapse
Affiliation(s)
- Josef T Kittler
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Steindler C, Li Z, Algarté M, Alcover A, Libri V, Ragimbeau J, Pellegrini S. Jamip1 (marlin-1) defines a family of proteins interacting with janus kinases and microtubules. J Biol Chem 2004; 279:43168-77. [PMID: 15277531 DOI: 10.1074/jbc.m401915200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Jamip1 (Jak and microtubule interacting protein), an alias of Marlin-1, was identified for its ability to bind to the FERM (band 4.1 ezrin/radixin/moesin) homology domain of Tyk2, a member of the Janus kinase (Jak) family of non-receptor tyrosine kinases that are central elements of cytokine signaling cascades. Jamip1 belongs to a family of three genes conserved in vertebrates and is predominantly expressed in neural tissues and lymphoid organs. Jamip proteins lack known domains and are extremely rich in predicted coiled coils that mediate dimerization. In our initial characterization of Jamip1 (73 kDa), we found that it comprises an N-terminal region that targets the protein to microtubule polymers and, when overexpressed in fibroblasts, profoundly perturbs the microtubule network, inducing the formation of tight and stable bundles. Jamip1 was shown to associate with two Jak family members, Tyk2 and Jak1, in Jurkat T cells via its C-terminal region. The restricted expression of Jamip1 and its ability to associate to and modify microtubule polymers suggest a specialized function of these proteins in dynamic processes, e.g. cell polarization, segregation of signaling complexes, and vesicle traffic, some of which may involve Jak tyrosine kinases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Blotting, Northern
- Cell Line
- Cloning, Molecular
- Databases as Topic
- Detergents/pharmacology
- Dimerization
- Fibroblasts/metabolism
- Genes, Reporter
- Glutathione Transferase/metabolism
- Humans
- Immunoprecipitation
- Janus Kinase 1
- Jurkat Cells
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microtubules/chemistry
- Microtubules/metabolism
- Molecular Sequence Data
- Multigene Family
- Phosphorylation
- Plasmids/metabolism
- Poly A/chemistry
- Polymers/chemistry
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/metabolism
- RNA/chemistry
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Sequence Homology, Amino Acid
- Signal Transduction
- TYK2 Kinase
- Time Factors
- Tissue Distribution
- Transcription, Genetic
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Corinna Steindler
- Unité de Signalisation des Cytokines, CNRS URA 1961, Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Arginine plays an important role in many physiologic and biologic processes beyond its role as a protein-incorporated amino acid. Dietary supplementation of arginine can enhance wound healing, regulate endocrine activity and potentiate immune activity. Under normal unstressed conditions the arginine requirement of adult humans is fulfilled by endogenous sources, however this is compromised during times of stress, especially in critical illness. These finding have led to use of arginine supplementation as part of an immune-enhancing dietary regimen to help combat the immune suppression seen in such patients. Though the results from studies examining the use of this type of immunonutrition in critically ill patients are far from definitive, they are promising that this mode of therapy may be of some advantage. A better understanding of the in vivo biology of arginine and its metabolism is necessary to truly define a benefit from arginine supplementation.
Collapse
Affiliation(s)
- D Efron
- Department of Surgery, Sinai Hospital of Baltimore, MD 21215, USA
| | | |
Collapse
|