1
|
Gamboa Marin OJ, Adda‐Bouchard Y, Sylla B, Verma N, Charpentier T, Huber M, Lopez G, Pichette A, Lamarre A, Gauthier C. Immunological and Toxicological Assessment of Triterpenoid Saponins Bearing Lewis-X- and QS-21-Based Trisaccharides. Chemistry 2025; 31:e202500994. [PMID: 40192644 PMCID: PMC12089902 DOI: 10.1002/chem.202500994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
The search for safer and more effective vaccine adjuvants has intensified in recent years, with triterpenoid saponins like QS-21 and its analogues emerging as promising candidates. We report the synthesis of a novel QS-21 analogue featuring betulinic acid as aglycone, a lupane-type triterpenoid with low toxicity derived from white birch bark. Two convergent synthetic routes, involving different protecting groups and glycosyl donors (bromide and trichloroacetimidate), were optimized to construct the QS-21-based linear trisaccharide motif critical for adjuvant activity. This strategy also enabled efficient preparation of the structurally similar echinocystic acid analogue reported by Gin. The immunological and toxicological profiles of these chimeric saponins, along with Lewis-X-containing and rhamnose-modified derivatives, were evaluated in C57BL/6 wild-type and hDC-SIGN transgenic mice. While the synthetic saponins exhibited low toxicity in vitro and in vivo, replacing echinocystic acid with betulinic acid reduced immunogenicity when tested with ovalbumin as a model antigen compared to alhydrogel and QS-21. These findings provide a foundation for developing saponin-based adjuvants and demonstrate the utility of advanced glycosylation strategies for synthesizing complex unnatural triterpenoid saponins.
Collapse
Affiliation(s)
- Oscar Javier Gamboa Marin
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
- Unité Mixte de Recherche (UMR) INRS‐UQACInstitut National de la Recherche Scientifique (INRS)ChicoutimiQuébecG7H 2B1Canada
| | - Yasmine Adda‐Bouchard
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Balla Sylla
- Laboratoire LASEVEDépartement des Sciences FondamentalesUniversité du Québec à Chicoutimi (UQAC)ChicoutimiQuébecG7H 2B1Canada
| | - Nitish Verma
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
- Unité Mixte de Recherche (UMR) INRS‐UQACInstitut National de la Recherche Scientifique (INRS)ChicoutimiQuébecG7H 2B1Canada
| | - Tania Charpentier
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Maya Huber
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Guillaume Lopez
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - André Pichette
- Laboratoire LASEVEDépartement des Sciences FondamentalesUniversité du Québec à Chicoutimi (UQAC)ChicoutimiQuébecG7H 2B1Canada
| | - Alain Lamarre
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Charles Gauthier
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)LavalQuébecH7V 1B7Canada
- Unité Mixte de Recherche (UMR) INRS‐UQACInstitut National de la Recherche Scientifique (INRS)ChicoutimiQuébecG7H 2B1Canada
- Laboratoire LASEVEDépartement des Sciences FondamentalesUniversité du Québec à Chicoutimi (UQAC)ChicoutimiQuébecG7H 2B1Canada
| |
Collapse
|
2
|
Martínez JD, Núñez-Franco R, Valverde P, Delgado S, Ardá A, Jiménez-Barbero J, Jiménez-Oses G, Cañada FJ. Glycans and Chirality: Stereoselectivity at the Core of DC-SIGN's Recognition. A Novel View of the Optimum Minimal Ligand Epitope. Chemistry 2025:e202501420. [PMID: 40342067 DOI: 10.1002/chem.202501420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Glycans exhibit an unparalleled density of stereochemical information, encoded at the monosaccharide level through multiple stereogenic centers, anomeric configurations, ring tautomerism, and conformational variability. Indeed, chiral recognition is fundamental to the interaction between glycans and proteins. Despite the theoretical risk posed by mirror-image molecules, the stereochemical diversity of the "glycan code" enables similar chiral motifs to arise from both D- and L-sugars. Herein, we present an in-depth investigation of the stereochemical features governing lectin-glycan recognition, using the well-characterized human C-type lectin Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) as a model. By combining experimental (STD-NMR) and computational approaches, we identified a minimal optimal binding epitope recognized by DC-SIGN. Key binding requirements include the correct chirality of the Ca2⁺-coordinating oxygens, an adjacent equatorial hydroxyl group for hydrogen bonding with Glu354, and hydrophobic contacts with Val351. Known ligands L-fucose and D-mannose fulfill these criteria. Our results further demonstrate that DC-SIGN also binds α/β-L-galactose, α/β-D-rhamnose, and myo-inositol. Among these, α/β-D-rhamnose exhibits higher affinity than α-OMe-D-mannose, while α/β-L-galactose binds more strongly than D-rhamnose and myo-inositol, although with lower affinity than α-OMe-L-fucose. STD-NMR experiments confirmed that all these ligands share the same core binding epitope.
Collapse
Affiliation(s)
- J Daniel Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Pablo Valverde
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV, Leioa, Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Gonzalo Jiménez-Oses
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
3
|
Miyake Y. Classification of C-Type Lectins and Recognition of Pathogens. Microbiol Immunol 2025; 69:257-269. [PMID: 40071890 DOI: 10.1111/1348-0421.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
C-type lectins are calcium-dependent glycan-binding proteins that play key roles in the innate immune response by recognizing pathogens. Soluble C-type lectins agglutinate and neutralize pathogens, activate the complement system, and promote pathogen clearance via opsonization. Membrane-bound C-type lectins, also known as C-type lectin receptors (CLRs), internalize pathogens and induce their degradation in lysosomes, presenting pathogen-derived antigens to MHC-II molecules to activate adaptive immunity. CLRs also have signaling capabilities. Some contain the immunoreceptor tyrosine-based activation motif (ITAM), which induces inflammatory responses by activating transcription factors, such as NF-κB and NFAT. Others contain the immunoreceptor tyrosine-based inhibitory motif (ITIM), which suppresses activating signals by activating phosphatases, such as SHP-1. This creates a balance between activation and inhibition. C-type lectins are classified into 17 groups based on their structural domains, with Groups II and V members being particularly important for pathogen recognition. In this review, we present the accumulated and recent information on pathogen recognition by C-type lectins, along with their classification and basic functions.
Collapse
Affiliation(s)
- Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
4
|
Gamboa Marin OJ, Ng K, Verma N, Flavien Yapi AG, Pantophlet R, Gauthier C. Lewis-X-Containing Triterpenoid Saponins Inhibit DC-SIGN- and L-SIGN-Mediated Transfer of HIV-1 Infection. Chemistry 2025:e202500993. [PMID: 40277287 DOI: 10.1002/chem.202500993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 04/26/2025]
Abstract
Blocking dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)- and liver/lymph node-specific intercellular adhesion molecule-3-grabbing integrin (L-SIGN)-mediated human immunodeficiency virus 1 (HIV-1) attachment to immune cells represents a promising strategy for developing antiretroviral agents effective during the early stages of sexual transmission. Although mannose- and fucose-based ligands have received considerable attention, Lewis-based inhibitors remain relatively underexplored. In this study, we report the first synthesis of Lewis-X-containing triterpenoid saponins featuring betulinic acid and echinocystic acid as aglycones. These saponins were stereoselectively and efficiently synthesized in six linear steps using a convergent approach that leveraged thioglycoside and trichloroacetimidate glycosylation chemistries. Notably, our findings demonstrate that these Lewis-X-containing triterpenoid saponins are among the most potent monovalent inhibitors reported to date of DC-SIGN- and L-SIGN-mediated transfer of HIV-1 infection to CD4-positive cells, with IC50 values in the low micromolar range (21-50 µM). This work lays a valuable foundation for the development of saponin-based antiviral agents targeting immune cells.
Collapse
Affiliation(s)
- Oscar Javier Gamboa Marin
- Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec, G7H 2B1 & H7V 1B7, Canada
| | - Kurtis Ng
- Faculty of Health Sciences and Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nitish Verma
- Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec, G7H 2B1 & H7V 1B7, Canada
| | - Assi Gérard Flavien Yapi
- Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec, G7H 2B1 & H7V 1B7, Canada
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Charles Gauthier
- Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec, G7H 2B1 & H7V 1B7, Canada
| |
Collapse
|
5
|
Krylov VB, Gómez-Redondo M, Solovev AS, Yashunsky DV, Brown AJ, Stappers MH, Gow NA, Ardá A, Jiménez-Barbero J, Nifantiev NE. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan. Cell Surf 2023; 10:100109. [PMID: 37520856 PMCID: PMC10382935 DOI: 10.1016/j.tcsw.2023.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune C-type lectin receptor that recognizes carbohydrate-based pathogen associated with molecular patterns of various bacteria, fungi, viruses and protozoa. Although a range of highly mannosylated glycoproteins have been shown to induce signaling via DC-SIGN, precise structure of the recognized oligosaccharide epitope is still unclear. Using the array of oligosaccharides related to selected fragments of main fungal antigenic polysaccharides we revealed a highly specific pentamannoside ligand of DC-SIGN, consisting of α-(1 → 2)-linked mannose chains with one inner α-(1 → 3)-linked unit. This structural motif is present in Candida albicans cell wall mannan and corresponds to its antigenic factors 4 and 13b. This epitope is not ubiquitous in other yeast species and may account for the species-specific nature of fungal recognition via DC-SIGN. The discovered highly specific oligosaccharide ligands of DC-SIGN are tractable tools for interdisciplinary investigations of mechanisms of fungal innate immunity and anti-Candida defense. Ligand- and receptor-based NMR data demonstrated the pentasaccharide-to-DC-SIGN interaction in solution and enabled the deciphering of the interaction topology.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Amraei R, Yin W, Napoleon MA, Suder EL, Berrigan J, Zhao Q, Olejnik J, Chandler KB, Xia C, Feldman J, Hauser BM, Caradonna TM, Schmidt AG, Gummuluru S, Mühlberger E, Chitalia V, Costello CE, Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS CENTRAL SCIENCE 2021; 7:1156-1165. [PMID: 34341769 PMCID: PMC8265543 DOI: 10.1021/acscentsci.0c01537] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 05/17/2023]
Abstract
As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor-binding domain (S-RBD) or S1 encompassing both N termal domain and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N-glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N-glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection, and interference with CD209L activity by a knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent and may have implications for antiviral drug development.
Collapse
Affiliation(s)
- Razie Amraei
- Department
of Pathology, School of Medicine, Boston
University Medical Campus, Boston, Massachusetts 02118, United States
| | - Wenqing Yin
- Renal
Section, Department of Medicine, Boston
University Medical Center, Boston, Massachusetts 02118, United States
| | - Marc A. Napoleon
- Renal
Section, Department of Medicine, Boston
University Medical Center, Boston, Massachusetts 02118, United States
| | - Ellen L. Suder
- Department
of Microbiology, Boston University School
of Medicine, Boston, Massachusetts 02118, United States
- National
Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts 02118, United States
| | - Jacob Berrigan
- Department
of Microbiology, Boston University School
of Medicine, Boston, Massachusetts 02118, United States
| | - Qing Zhao
- Department
of Pathology, School of Medicine, Boston
University Medical Campus, Boston, Massachusetts 02118, United States
| | - Judith Olejnik
- Department
of Microbiology, Boston University School
of Medicine, Boston, Massachusetts 02118, United States
- National
Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts 02118, United States
| | - Kevin Brown Chandler
- Center
for Biomedical Mass Spectrometry, Boston
University School of Medicine, Boston, Massachusetts 02118, United States
| | - Chaoshuang Xia
- Center
for Biomedical Mass Spectrometry, Boston
University School of Medicine, Boston, Massachusetts 02118, United States
| | - Jared Feldman
- Ragon Institute
of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Blake M. Hauser
- Ragon Institute
of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Caradonna
- Ragon Institute
of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Aaron G. Schmidt
- Ragon Institute
of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Suryaram Gummuluru
- Department
of Microbiology, Boston University School
of Medicine, Boston, Massachusetts 02118, United States
| | - Elke Mühlberger
- Department
of Microbiology, Boston University School
of Medicine, Boston, Massachusetts 02118, United States
- National
Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts 02118, United States
| | - Vipul Chitalia
- Renal
Section, Department of Medicine, Boston
University Medical Center, Boston, Massachusetts 02118, United States
| | - Catherine E. Costello
- Center
for Biomedical Mass Spectrometry, Boston
University School of Medicine, Boston, Massachusetts 02118, United States
| | - Nader Rahimi
- Department
of Pathology, School of Medicine, Boston
University Medical Campus, Boston, Massachusetts 02118, United States
| |
Collapse
|
7
|
Amraei R, Yin W, Napoleon MA, Suder EL, Berrigan J, Zhao Q, Olejnik J, Chandler KB, Xia C, Feldman J, Hauser BM, Caradonna TM, Schmidt AG, Gummuluru S, Muhlberger E, Chitalia V, Costello CE, Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.06.22.165803. [PMID: 32607506 PMCID: PMC7325172 DOI: 10.1101/2020.06.22.165803] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelium and endothelium. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor binding domain (S-RBD) or S1 encompassing both NTB and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N-glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N-glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection and interference with CD209L activity by knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent, and may have implications for antiviral drug development.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA
| | - Marc A. Napoleon
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA
| | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, MA
| | - Qing Zhao
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
| | - Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
| | - Blake M. Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
| | | | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA
| | - Elke Muhlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118
| |
Collapse
|
8
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
9
|
Alam MM, Jarvis CM, Hincapie R, McKay CS, Schimer J, Sanhueza-Chavez CA, Xu K, Diehl RC, Finn MG, Kiessling LL. Glycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responses. ACS NANO 2021; 15:309-321. [PMID: 32790346 PMCID: PMC8249087 DOI: 10.1021/acsnano.0c03023] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dendritic cells (DCs) are highly effective antigen-presenting cells that shape immune responses. Vaccines that deliver antigen to the DCs can harness their power. DC surface lectins recognize glycans not typically present on host tissue to facilitate antigen uptake and presentation. Vaccines that target these surface lectins should offer improved antigen delivery, but their efficacy will depend on how lectin targeting influences the T cell subtypes that result. We examined how antigen structure influences uptake and signaling from the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin or CD209). Virus-like particles (VLPs) were engineered from bacteriophage Qβ to present an array of mannoside ligands. The VLPs were taken up by DCs and efficiently trafficked to endosomes. The signaling that ensued depended on the ligand displayed on the VLP: only those particles densely functionalized with an aryl mannoside, Qβ-Man540, elicited DC maturation and induced the expression of the proinflammatory cytokines characteristic of a T helper type 1 (TH1)-like immune response. This effect was traced to differential binding to DC-SIGN at the acidic pH of the endosome. Mice immunized with a VLP bearing the aryl mannoside, and a peptide antigen (Qβ-Ova-Man540) had antigen-specific responses, including the production of CD4+ T cells producing the activating cytokines interferon-γ and tumor necrosis factor-α. A TH1 response is critical for intracellular pathogens (e.g., viruses) and cancer; thus, our data highlight the value of targeting DC lectins for antigen delivery and validate the utility of DC-targeted VLPs as vaccine vehicles that induce cellular immunity.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Cassie M. Jarvis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Robert Hincapie
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Craig S. McKay
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Jiri Schimer
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Carlos A Sanhueza-Chavez
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
- Current address: Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Pkwy. Queens, NY 11439, USA
| | - Ke Xu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Roger C Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - M. G. Finn
- School of Chemistry and Biochemistry and School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
- Corresponding Author: Laura L. Kiessling,
| |
Collapse
|
10
|
Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. BIOLOGY 2020; 10:1. [PMID: 33375175 PMCID: PMC7822156 DOI: 10.3390/biology10010001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
11
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
12
|
Pham J, Hernandez A, Cioce A, Achilli S, Goti G, Vivès C, Thepaut M, Bernardi A, Fieschi F, Reichardt NC. Chemo-Enzymatic Synthesis of S. mansoni O-Glycans and Their Evaluation as Ligands for C-Type Lectin Receptors MGL, DC-SIGN, and DC-SIGNR. Chemistry 2020; 26:12818-12830. [PMID: 32939912 DOI: 10.1002/chem.202000291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.
Collapse
Affiliation(s)
- Julie Pham
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Alvaro Hernandez
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,Asparia Glycomics S.L., Mikeletegi 83, 20009, San Sebastian, Spain
| | - Anna Cioce
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Silvia Achilli
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France.,Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Giulio Goti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Michel Thepaut
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,CIBER-BBN, Paseo Miramón 182, 20014, San Sebastian, Spain.,Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, San Sebastian, Spain
| |
Collapse
|
13
|
Geissner A, Reinhardt A, Rademacher C, Johannssen T, Monteiro J, Lepenies B, Thépaut M, Fieschi F, Mrázková J, Wimmerova M, Schuhmacher F, Götze S, Grünstein D, Guo X, Hahm HS, Kandasamy J, Leonori D, Martin CE, Parameswarappa SG, Pasari S, Schlegel MK, Tanaka H, Xiao G, Yang Y, Pereira CL, Anish C, Seeberger PH. Microbe-focused glycan array screening platform. Proc Natl Acad Sci U S A 2019; 116:1958-1967. [PMID: 30670663 PMCID: PMC6369816 DOI: 10.1073/pnas.1800853116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Reinhardt
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Timo Johannssen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - João Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michel Thépaut
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Jana Mrázková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Michaela Wimmerova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Frank Schuhmacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Götze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dan Grünstein
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Xiaoqiang Guo
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heung Sik Hahm
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jeyakumar Kandasamy
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Daniele Leonori
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christopher E Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Sandip Pasari
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark K Schlegel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Hidenori Tanaka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Guozhi Xiao
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - You Yang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
14
|
Figliuolo da Paz VR, Figueiredo-Vanzan D, dos Santos Pyrrho A. Interaction and involvement of cellular adhesion molecules in the pathogenesis of Schistosomiasis mansoni. Immunol Lett 2019; 206:11-18. [DOI: 10.1016/j.imlet.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
|
15
|
Kiran P, Kumari S, Dernedde J, Haag R, Bhatia S. Synthesis and comparison of linear and hyperbranched multivalent glycosides for C-type lectin binding. NEW J CHEM 2019. [DOI: 10.1039/c9nj02018g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched and linear polyglycerol-based mannoside and fucosyllactoside residues with different ligand densities showed nanomolar binding affinities for MBL and DC-SIGN proteins.
Collapse
Affiliation(s)
- Pallavi Kiran
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Shalini Kumari
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Jens Dernedde
- Charité-Universitäts Medizin Berlin
- Corporate Member of Freie Universität Berlin
- Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Institute of Laboratory Medicine
- Clinical Chemistry and Pathobiochemistry
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
16
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Rapoport EM, Khaidukov SV, Gaponov AM, Pazynina GV, Tsygankova SV, Ryzhov IM, Belyanchikov IM, Milona P, Bovin NV, McCullough KC. Glycan recognition by human blood mononuclear cells with an emphasis on dendritic cells. Glycoconj J 2018; 35:191-203. [PMID: 29388006 DOI: 10.1007/s10719-017-9811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) play crucial roles in innate and adaptive immune response, for which reason targeting antigen to these cells is an important strategy for improvement of vaccine development. To this end, we explored recognition of DCs lectins by glycans. For selection of the glycan "vector", a library of 229 fluorescent glycoprobes was employed to assess interaction with the CD14low/-CD16+CD83+ blood mononuclear cell population containing the DCs known for their importance in antigen presentation to T-lymphocytes. It was found that: 1) the glycan-binding profiles of this CD14low/-CD16+CD83+ subpopulation were similar but not identical to DCs of monocyte origin (moDCs); 2) the highest percentage of probe-positive cells in this CD14 low/-CD16+CD83+ subpopulation was observed for GalNAcα1-2Galβ (Adi), (Neu5Acα)3 and three mannose-reach glycans; 3) subpopulation of CD14low/-CD16+ cells preferentially bound 4'-O-Su-LacdiNAc. Considering the published data on specificity of DCs binding, the glycans showing particular selectivity for the CD14 low/-CD16+CD83+ cells are likely interacting with macrophage galactose binding lectin (MGL), siglec-7 and dectin-2. In contrast, DC-SIGN is not apparently involved, even in case of mannose-rich glycans. Taking into consideration potential in vivo competition between glycan "vectors" and glycans within glycocalyx, attempting to target vaccine to DCs glycan-binding receptors should focus on Adi and (Neu5Acα)3 as the most promising vectors.
Collapse
Affiliation(s)
- Eugenia M Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Sergey V Khaidukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Andrey M Gaponov
- D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Samora Machela str., 1, Moscow, Russia
| | - Galina V Pazynina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Svetlana V Tsygankova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Ivan M Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Ivan M Belyanchikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Panagiota Milona
- Institute of Virology and Immunology, Sensemattstrasse 293, CH-3147, Mittelhäusern, Switzerland
| | - Nicolai V Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia.
| | - Kenneth C McCullough
- Institute of Virology and Immunology, Sensemattstrasse 293, CH-3147, Mittelhäusern, Switzerland
| |
Collapse
|
18
|
van Die I, Cummings RD. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front Immunol 2017; 8:1677. [PMID: 29238348 PMCID: PMC5712593 DOI: 10.3389/fimmu.2017.01677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Sardar MYR, Krishnamurthy VR, Park S, Mandhapati AR, Wever WJ, Park D, Cummings RD, Chaikof EL. Synthesis of Lewis X-O-Core-1 threonine: A building block for O-linked Lewis X glycopeptides. Carbohydr Res 2017; 452:47-53. [PMID: 29065342 PMCID: PMC5682196 DOI: 10.1016/j.carres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
Abstract
LewisX (LeX) is a branched trisaccharide Galβ1→4(Fucα1→3)GlcNAc that is expressed on many cell surface glycoproteins and plays critical roles in innate and adaptive immune responses. However, efficient synthesis of glycopeptides bearing LeX remains a major limitation for structure-function studies of the LeX determinant. Here we report a total synthesis of a LeX pentasaccharide 1 using a regioselective 1-benzenesulfinyl piperidine/triflic anhydride promoted [3 + 2] glycosylation. The presence of an Fmoc-threonine amino acid facilitates incorporation of the pentasaccharide in solid phase peptide synthesis, providing a route to diverse O-linked LeX glycopeptides. The described approach is broadly applicable to the synthesis of a variety of complex glycopeptides containing O-linked LeX or sialyl LewisX (sLeX).
Collapse
Affiliation(s)
- Mohammed Y R Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Venkata R Krishnamurthy
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Walter J Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Dayoung Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, MA 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
21
|
Dos Santos Á, Hadjivasiliou A, Ossa F, Lim NK, Turgut A, Taylor ME, Drickamer K. Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences. Protein Sci 2016; 26:306-316. [PMID: 27859859 PMCID: PMC5275740 DOI: 10.1002/pro.3083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 11/05/2022]
Abstract
Human dendritic cell-specific intercellular adhesion molecule-1 grabbing nonintegrin, DC-SIGN, and the sinusoidal endothelial cell receptor DC-SIGNR or L-SIGN, are closely related sugar-binding receptors. DC-SIGN acts both as a pathogen-binding endocytic receptor and as a cell adhesion molecule, while DC-SIGNR has only the pathogen-binding function. In addition to differences in the sugar-binding properties of the carbohydrate-recognition domains in the two receptors, there are sequence differences in the adjacent neck domains, which are coiled-coil tetramerization domains comprised largely of 23-amino acid repeat units. A series of model polypeptides consisting of uniform repeat units have been characterized by gel filtration, differential scanning calorimetry and circular dichroism. The results demonstrate that two features characterize repeat units which form more stable tetramers: a leucine reside in the first position of the heptad pattern of hydrophobic residues that pack on the inside of the coiled coil and an arginine residue on the surface of the coiled coil that forms a salt bridge with a glutamic acid residue in the same polypeptide chain. In DC-SIGNR from all primates, very stable repeat units predominate, so the carbohydrate-recognition domains must be held relatively closely together. In contrast, stable repeat units are found only near the membrane in DC-SIGN. The presence of residues that disrupt tetramer formation in repeat units near the carbohydrate-recognition domains of DC-SIGN would allow these domains to splay further apart. Thus, the neck domains of DC-SIGN and DC-SIGNR can contribute to the different functions of these receptors by presenting the sugar-binding sites in different contexts.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | | | - Felipe Ossa
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Novandy K Lim
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Aylin Turgut
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Ponichtera HE, Stadecker MJ. Dendritic cell expression of the C-type lectin receptor CD209a: A novel innate parasite-sensing mechanism inducing Th17 cells that drive severe immunopathology in murine schistosome infection. Exp Parasitol 2015; 158:42-7. [PMID: 25913088 DOI: 10.1016/j.exppara.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
Following infection with the trematode helminth Schistosoma mansoni, CBA mice develop severe parasite egg-induced hepatic granulomatous inflammation as well as prominent CD4(+) T helper 17 (Th17) cell responses driven by dendritic cell (DC)-derived IL-1β and IL-23. By comparison, C57BL/6 mice develop mild hepatic immunopathology, egg stimulation of DCs does not result in IL-1β and IL-23 production, and Th17 cells fail to develop. To investigate the reasons for strain-specific differences in antigen presenting cell (APC) reactivity to eggs, we performed a comparative gene profiling analysis of normal bone marrow-derived DCs (BMDCs) and found that CBA DCs display markedly elevated expression of C-type lectin receptors (CLRs). In particular, expression of CD209a, a murine homologue of human DC-specific ICAM-3-grabbing non-integrin (DC-SIGN, CD209), was strikingly higher in CBA than BL/6 DCs. High CD209a surface expression was observed in various CBA splenic and granuloma APC subpopulations; however, only DCs, and not macrophages, B cells or neutrophils, were able to induce Th17 cell differentiation in response to schistosome eggs. Lentiviral gene silencing in CBA DCs, and over-expression in BL/6 DCs, demonstrated CD209a to be critical for egg-induced DC IL-1β and IL-23 production necessary for Th17 cell differentiation and expansion. These findings reveal a novel innate parasite-sensing mechanism promoting CD4(+) Th17 cells that mediate severe immunopathology in schistosomiasis.
Collapse
Affiliation(s)
- Holly E Ponichtera
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Miguel J Stadecker
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA.
| |
Collapse
|
23
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
24
|
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014; 4:145. [PMID: 25353009 PMCID: PMC4196476 DOI: 10.3389/fcimb.2014.00145] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides such as α- and β-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Unidade de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Ponichtera HE, Shainheit MG, Liu BC, Raychowdhury R, Larkin BM, Russo JM, Salantes DB, Lai CQ, Parnell LD, Yun TJ, Cheong C, Bunnell SC, Hacohen N, Stadecker MJ. CD209a expression on dendritic cells is critical for the development of pathogenic Th17 cell responses in murine schistosomiasis. THE JOURNAL OF IMMUNOLOGY 2014; 192:4655-65. [PMID: 24729611 DOI: 10.4049/jimmunol.1400121] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In murine schistosomiasis, immunopathology and cytokine production in response to parasite eggs are uneven and strain dependent. CBA/J (CBA) mice develop severe hepatic granulomatous inflammation associated with prominent Th17 cell responses driven by dendritic cell (DC)-derived IL-1β and IL-23. Such Th17 cells fail to develop in low-pathology C57BL/6 (BL/6) mice, and the reasons for these strain-specific differences in APC reactivity to eggs remain unclear. We show by gene profiling that CBA DCs display an 18-fold higher expression of the C-type lectin receptor CD209a, a murine homolog of human DC-specific ICAM-3-grabbing nonintegrin, compared with BL/6 DCs. Higher CD209a expression was observed in CBA splenic and granuloma APC subpopulations, but only DCs induced Th17 cell differentiation in response to schistosome eggs. Gene silencing in CBA DCs and overexpression in BL/6 DCs demonstrated that CD209a is essential for egg-elicited IL-1β and IL-23 production and subsequent Th17 cell development, which is associated with SRC, RAF-1, and ERK1/2 activation. These findings reveal a novel mechanism controlling the development of Th17 cell-mediated severe immunopathology in helminthic disease.
Collapse
Affiliation(s)
- Holly E Ponichtera
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Topin J, Arnaud J, Sarkar A, Audfray A, Gillon E, Perez S, Jamet H, Varrot A, Imberty A, Thomas A. Deciphering the glycan preference of bacterial lectins by glycan array and molecular docking with validation by microcalorimetry and crystallography. PLoS One 2013; 8:e71149. [PMID: 23976992 PMCID: PMC3747263 DOI: 10.1371/journal.pone.0071149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Recent advances in glycobiology revealed the essential role of lectins for deciphering the glycocode by specific recognition of carbohydrates. Integrated multiscale approaches are needed for characterizing lectin specificity: combining on one hand high-throughput analysis by glycan array experiments and systematic molecular docking of oligosaccharide libraries and on the other hand detailed analysis of the lectin/oligosaccharide interaction by x-ray crystallography, microcalorimetry and free energy calculations. The lectins LecB from Pseudomonas aeruginosa and BambL from Burkholderia ambifaria are part of the virulence factors used by the pathogenic bacteria to invade the targeted host. These two lectins are not related but both recognize fucosylated oligosaccharides such as the histo-blood group oligosaccharides of the ABH(O) and Lewis epitopes. The specificities were characterized using semi-quantitative data from glycan array and analyzed by molecular docking with the Glide software. Reliable prediction of protein/oligosaccharide structures could be obtained as validated by existing crystal structures of complexes. Additionally, the crystal structure of BambL/Lewis x was determined at 1.6 Å resolution, which confirms that Lewis x has to adopt a high-energy conformation so as to bind to this lectin. Free energies of binding were calculated using a procedure combining the Glide docking protocol followed by free energy rescoring with the Prime/Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method. The calculated data were in reasonable agreement with experimental free energies of binding obtained by titration microcalorimetry. The established predictive protocol is proposed to rationalize large sets of data such as glycan arrays and to help in lead discovery projects based on such high throughput technology.
Collapse
Affiliation(s)
- Jeremie Topin
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
- Département de Chimie Moléculaire, UMR- Centre national de la recherche scientifique 5250 & ICMG FR 2607, Université Joseph Fourier, BP 53, 38041 Grenoble, France
| | - Julie Arnaud
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Anita Sarkar
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Aymeric Audfray
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Emilie Gillon
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Serge Perez
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Helene Jamet
- Département de Chimie Moléculaire, UMR- Centre national de la recherche scientifique 5250 & ICMG FR 2607, Université Joseph Fourier, BP 53, 38041 Grenoble, France
| | - Annabelle Varrot
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| | - Anne Imberty
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
- * E-mail:
| | - Aline Thomas
- CERMAV- Centre national de la recherche scientifique UPR5301 (affiliated to Université Joseph Fourier and ICMG), BP53, 38041 Grenoble, France
| |
Collapse
|
27
|
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 2013; 4:39. [PMID: 23429492 PMCID: PMC3576626 DOI: 10.3389/fimmu.2013.00039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Training Program in Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Internal Medicine-Rheumatology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
Parasitic infections: a role for C-type lectins receptors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:456352. [PMID: 23509724 PMCID: PMC3581113 DOI: 10.1155/2013/456352] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023]
Abstract
Antigen-presenting cells (APCs) sense the microenvironment through several types of receptors that recognize pathogen-associated molecular patterns. In particular, C-type lectins receptors (CLRs), which are expressed by distinct subsets of dendritic cells (DCs) and macrophages (MØs), recognize and internalize specific carbohydrate antigens in a Ca2+-dependent manner. The targeting of these receptors is becoming an efficient strategy for parasite recognition. However, relatively little is known about how CLRs are involved in both pathogen recognition and the internalization of parasites. The role of CLRs in parasite infections is an area of considerable interest because this research will impact our understanding of the initiation of innate immune responses, which influences the outcome of specific immune responses. This paper attempts to summarize our understanding of the effects of parasites' interactions with CLRs.
Collapse
|
29
|
Peón AN, Espinoza-Jiménez A, Terrazas LI. Immunoregulation by Taenia crassiceps and its antigens. BIOMED RESEARCH INTERNATIONAL 2012; 2013:498583. [PMID: 23484125 PMCID: PMC3591211 DOI: 10.1155/2013/498583] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/07/2012] [Accepted: 11/14/2012] [Indexed: 12/15/2022]
Abstract
Taenia crassiceps is a cestode parasite of rodents (in its larval stage) and canids (in its adult stage) that can also parasitize immunocompromised humans. We have studied the immune response elicited by this helminth and its antigens in mice and human cells, and have discovered that they have a strong capacity to induce chronic Th2-type responses that are primarily characterized by high levels of Th2 cytokines, low proliferative responses in lymphocytes, an immature and LPS-tolerogenic profile in dendritic cells, the recruitment of myeloid-derived suppressor cells and, specially, alternatively activated macrophages. We also have utilized the immunoregulatory capabilities of this helminth to successfully modulate autoimmune responses and the outcome of other infectious diseases. In the present paper, we review the work of others and ourselves with regard to the immune response induced by T. crassiceps and its antigens, and we compare the advances in our understanding of this parasitic infection model with the knowledge that has been obtained from other selected models.
Collapse
Affiliation(s)
- Alberto N. Peón
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida De los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Arlett Espinoza-Jiménez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida De los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Luis I. Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida De los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| |
Collapse
|
30
|
Tundup S, Srivastava L, Harn Jr. DA. Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 2012; 1253:E1-E13. [DOI: 10.1111/j.1749-6632.2012.06618.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 2012; 422:590-5. [PMID: 22595457 PMCID: PMC7124250 DOI: 10.1016/j.bbrc.2012.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/08/2012] [Indexed: 01/30/2023]
Abstract
It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI > 9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca2+-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.
Collapse
|
32
|
Stax MJ, Kootstra NA, van 't Wout AB, Tanck MWT, Bakker M, Pollakis G, Paxton WA. HIV-1 disease progression is associated with bile-salt stimulated lipase (BSSL) gene polymorphism. PLoS One 2012; 7:e32534. [PMID: 22412885 PMCID: PMC3295759 DOI: 10.1371/journal.pone.0032534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/01/2012] [Indexed: 01/25/2023] Open
Abstract
Background DC-SIGN expressed by dendritic cells captures HIV-1 resulting in trans-infection of CD4+ T-lymphocytes. However, BSSL (bile-salt stimulated lipase) binding to DC-SIGN interferes with HIV-1 capture. DC-SIGN binding properties of BSSL associate with the polymorphic repeated motif of BSSL exon 11. Furthermore, BSSL binds to HIV-1 co-receptor CXCR4. We hypothesized that BSSL modulates HIV-1 disease progression and emergence of CXCR4 using HIV-1 (X4) variants. Results The relation between BSSL genotype and HIV-1 disease progression and emergence of X4 variants was studied using Kaplan Meier and multivariate Cox proportional hazard analysis in a cohort of HIV-1 infected men having sex with men (n = 334, with n = 130 seroconverters). We analyzed the association of BSSL genotype with set-point viral load and CD4 cell count, both pre-infection and post-infection at viral set-point. The number of repeats in BSSL exon 11 were highly variable ranging from 10 to 18 in seropositive individuals and from 5–17 in HRSN with 16 repeats being dominant (>80% carry at least one allele with 16 repeats). We defined 16 to 18 repeats as high (H) and less than 16 repeats as low (L) repeat numbers. Homozygosity for the high (H) repeat number BSSL genotype (HH) correlated with high CD4 cell numbers prior to infection (p = 0.007). In HIV-1 patients, delayed disease progression was linked to the HH BSSL genotype (RH = 0.462 CI = 0.282–0.757, p = 0.002) as was delayed emergence of X4 variants (RH = 0.525, 95% CI = 0.290–0.953, p = 0.034). The LH BSSL genotype, previously found to be associated with enhanced DC-SIGN binding of human milk, was identified to correlate with accelerated disease progression in our cohort of HIV-1 infected MSM (RH = 0.517, 95% CI = 0.328–0.818, p = 0.005). Conclusion We identify BSSL as a marker for HIV-1 disease progression and emergence of X4 variants. Additionally, we identified a relation between BSSL genotype and CD4 cell counts prior to infection.
Collapse
Affiliation(s)
- Martijn J. Stax
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and CINIMA at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Angélique B. van 't Wout
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and CINIMA at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W. T. Tanck
- Department Clinical Epidemiology, Biostatistics and Bioinformatics (KEBB), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
Abstract
The C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) can serve as a docking site for pathogens on the surface of dendritic cells. Pathogen binding to DC-SIGN can have diverse consequences for the host. DC-SIGN can facilitate HIV-1 dissemination, but the interaction of Mycobacterium tuberculosis with DC-SIGN is important for host immunity. The ability of pathogens to target DC-SIGN provides impetus to identify ligands that can perturb these interactions. Here, we describe the first stable small molecule inhibitors of DC-SIGN. These inhibitors were derived from a collection of quinoxalinones, which were assembled using a tandem cross metathesis-hydrogenation sequence. To assess the ability of these small molecules to block DC-SIGN-mediated glycan adhesion and internalization, we developed a sensitive flow cytometry assay. Our results reveal that the quinoxalinones are effective inhibitors of DC-SIGN-glycan interactions. These compounds block both glycan binding to cells and glycan internalization. We anticipate that these non-carbohydrate inhibitors can be used to elucidate the role of DC-SIGN in pathogenesis and immune function.
Collapse
Affiliation(s)
- Shane L. Mangold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lynne R. Prost
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
35
|
Koh G, Low A, Poh D, Yao Y, Ng SK, Wong VVT, Vagenende V, Lam KP, Lee DY. Integrative analysis workflow for the structural and functional classification of C-type lectins. BMC Bioinformatics 2011; 12 Suppl 14:S5. [PMID: 22372988 PMCID: PMC3287470 DOI: 10.1186/1471-2105-12-s14-s5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background It is important to understand the roles of C-type lectins in the immune system due to their ubiquity and diverse range of functions in animal cells. It has been observed that currently confirmed C-type lectins share a highly conserved domain known as the C-type carbohydrate recognition domain (CRD). Using the sequence profile of the CRD, an increasing number of putative C-type lectins have been identified. Hence, it is highly needed to develop a systematic framework that enables us to elucidate their carbohydrate (glycan) recognition function, and discover their physiological and pathological roles. Results Presented herein is an integrated workflow for characterizing the sequence and structural features of novel C-type lectins. Our workflow utilizes web-based queries and available software suites to annotate features that can be found on the C-type lectin, given its amino acid sequence. At the same time, it incorporates modeling and analysis of glycans - a major class of ligands that interact with C-type lectins. Thereafter, the results are analyzed together with context-specific knowledge to filter off unlikely predictions. This allows researchers to design their subsequent experiments to confirm the functions of the C-type lectins in a systematic manner. Conclusions The efficacy and usefulness of our proposed immunoinformatics workflow was demonstrated by applying our integrated workflow to a novel C-type lectin -CLEC17A - and we report some of its possible functions that warrants further validation through wet-lab experiments.
Collapse
Affiliation(s)
- Geoffrey Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hall SW, Cooke A. Autoimmunity and inflammation: murine models and translational studies. Mamm Genome 2011; 22:377-89. [PMID: 21688192 DOI: 10.1007/s00335-011-9338-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/26/2022]
Abstract
Autoimmune and inflammatory diseases, including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis, constitute an important and growing public health burden. However, in many cases our understanding of disease biology is limited and available therapies vary greatly in their efficacy and safety. Animal models of autoimmune and inflammatory diseases have provided valuable tools to researchers investigating their aetiology, pathology, and novel therapeutic strategies. Although such models vary in the degree to which they reflect human autoimmune and inflammatory diseases and caution is required in the extrapolation of animal data to the clinical setting, therapeutic approaches first evaluated in established animal models, including collagen-induced arthritis, experimental autoimmune encephalomyelitis, and the nonobese diabetic mouse, have successfully progressed to clinical investigation and practice. Similarly, these models have proven useful in providing support for basic hypotheses regarding the underlying causes and pathology of autoimmune and inflammatory diseases. Here we review selected murine models of autoimmunity and inflammation and efforts to translate findings from these models into both basic insights into disease biology and novel therapeutic strategies.
Collapse
Affiliation(s)
- Samuel W Hall
- Department of Pathology, University of Cambridge, UK.
| | | |
Collapse
|
37
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
38
|
Andreini M, Doknic D, Sutkeviciute I, Reina JJ, Duan J, Chabrol E, Thepaut M, Moroni E, Doro F, Belvisi L, Weiser J, Rojo J, Fieschi F, Bernardi A. Second generation of fucose-based DC-SIGN ligands : affinity improvement and specificity versus Langerin. Org Biomol Chem 2011; 9:5778-86. [DOI: 10.1039/c1ob05573a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
de Jong MAWP, Geijtenbeek TBH. Langerhans cells in innate defense against pathogens. Trends Immunol 2010; 31:452-9. [PMID: 21030306 DOI: 10.1016/j.it.2010.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/05/2010] [Accepted: 08/11/2010] [Indexed: 11/18/2022]
Abstract
Langerhans cells (LCs) are at the frontline in defense against mucosal infections because they line the mucosal tissues and are ideally situated to intercept pathogens. Recent data suggest that LCs have an innate anti-HIV-1 function. LCs express the LC-specific C-type lectin Langerin that efficiently captures HIV-1, which prevents HIV-1 transmission. However, immune activation of LCs changes these protective cells into HIV-1-transmitting cells, which indicates that the antiviral function of LCs depends on several factors including co-infections. In this review, we discuss the dual role of LCs in innate defense against pathogens, with a focus on HIV-1 dissemination.
Collapse
Affiliation(s)
- Marein A W P de Jong
- Center of Infection and Immunity Amsterdam and Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
Yabe R, Tateno H, Hirabayashi J. Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J 2010; 277:4010-26. [PMID: 20840590 PMCID: PMC7163941 DOI: 10.1111/j.1742-4658.2010.07792.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cell‐specific intracellular adhesion molecule‐3‐grabbing nonintegrin (DC‐SIGN) is a member of the C‐type lectin family selectively expressed on immune‐related cells. In the present study, we performed a systematic interaction analysis of DC‐SIGN and its related receptors, DC‐SIGN‐related protein (DC‐SIGNR) and liver and lymph node sinusoidal endothelial cell C‐type lectin (LSECtin) using frontal affinity chromatography (FAC). Carbohydrate‐recognition domains of the lectins, expressed as Fc–fusion chimeras, were immobilized to Protein A–Sepharose and subjected to quantitative FAC analysis using 157 pyridylaminated glycans. Both DC‐SIGN–Fc and DC‐SIGNR–Fc showed similar specificities for glycans containing terminal mannose and fucose, but great difference in affinity under the given experimental conditions. By contrast, LSECtin–Fc showed no affinity to these glycans. As a common feature, the DC‐SIGN‐related lectin–Fc chimeras, including LSECtin, exhibited binding affinity to mono‐ and/or bi‐antennary agalactosylated N‐glycans. The detailed FAC analysis further implied that the presence of terminal GlcNAc at the N‐acetylglucosaminyltransferase I position is a key determinant for the binding of these lectins to agalactosylated N‐glycans. By contrast, none of the lectins showed significant affinity to highly branched agalactosylated N‐glycans. All of the lectins expressed on the cells were able to mediate cellular adhesion to agalactosylated cells and endocytosis of a model glycoprotein, agalactosylated α1‐acid glycoprotein. In this context, we also identified three agalactosylated serum glycoproteins recognized by DC‐SIGN‐Fc (i.e. α‐2‐macroglobulin, serotransferrin and IgG heavy chain), by lectin blotting and MS analysis. Hence, we propose that ‘agalactosylated N‐glycans’ are candidate ligands common to these lectins.
Collapse
Affiliation(s)
- Rikio Yabe
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
41
|
Burton OT, Gibbs S, Miller N, Jones FM, Wen L, Dunne DW, Cooke A, Zaccone P. Importance of TLR2 in the direct response of T lymphocytes to Schistosoma mansoni antigens. Eur J Immunol 2010; 40:2221-9. [PMID: 20480503 DOI: 10.1002/eji.200939998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
The immunomodulatory effect of Schistosoma mansoni antigens has often been attributed to interaction with PRR expressed on APC. Our previous work has shown that S. mansoni-soluble egg antigen (SEA) can induce, together with a Th2 response, TGF-β-dependent Foxp3 expression in naïve CD4(+) T cells from NOD mice. We found that SEA can directly upregulate the expression of surface-bound TGF-β in purified CD4(+) T cells in the absence of accessory cell interactions. In this study, we show that the C-type lectin receptors DEC-205 and galectin-3 were involved in the direct interaction between S. mansoni antigens and CD4(+) T cells. SEA was able to enhance CD4(+) T-cell secretion of bioactive TGF-β in response to TLR2 ligand stimulation, in the absence of APC. We also show that TLR2 expressed on CD4(+) T cells was important for the Foxp3 expression induced by SEA.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Helminth/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/parasitology
- CD4-Positive T-Lymphocytes/pathology
- Cells, Cultured
- Female
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Galectin 3/immunology
- Galectin 3/metabolism
- Helminth Proteins/immunology
- Host-Pathogen Interactions
- Immunomodulation
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Minor Histocompatibility Antigens
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Schistosoma mansoni/immunology
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Toll-Like Receptor 2/metabolism
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kuijk LM, van Die I. Worms to the rescue: can worm glycans protect from autoimmune diseases? IUBMB Life 2010; 62:303-12. [PMID: 20101628 DOI: 10.1002/iub.304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoimmune and autoinflammatory diseases represent a significant health burden, especially in Western societies. For the majority of these diseases, no cure exists. Recently, research on parasitic worms (helminths) has demonstrated great potential for whole worms, their eggs or their excretory/secretory proteins in down-regulating inflammatory responses both in vitro and in vivo, in various disease models and, in some cases, even in clinical trials. The worms are thought to induce Th2 and regulatory T cells, interfere with Toll-like receptor (TLR) signaling and to down-regulate Th17 and Th1 responses. The molecular mechanisms underlying the worms' ability to modulate the host immune response are not well understood, and many hypotheses have been proposed to explain the observed immune modulation. Increasing evidence suggests that carbohydrate structures (glycans), for example, phosphorylcholine-modified glycans or Galbeta1-4(Fucalpha1-3)GlcNAc- (Lewis X, Le(X)) containing glycans, expressed by the worms contribute to these modulating properties by their interaction with antigen presenting cells. Helminths express a broad variety of protein- and lipid-linked glycans on their surface and on secretory products. These glycans differ in amount and composition and several of these structures are species specific. However, worms also express glycan antigens that are found in a wide variety of different species. Some of these "common" worm glycans are particularly interesting with regard to regulating host responses, because they have the potential to interact with C-type lectins on dendritic cells and thereby may interfere with T-cell polarization. Helminths and helminth-derived molecules form a novel and promising group of therapeutics for autoinflammatory diseases. However, much has to be learned about the molecular mechanisms behind the helminth-mediated antiinflammatory properties. This review will describe some of the emerging evidence in selected disease areas as well as discuss the putative role of glycans in helminth-mediated immunosuppression.
Collapse
Affiliation(s)
- Loes M Kuijk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
43
|
Harnett W, Harnett MM. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat Rev Immunol 2010; 10:278-84. [PMID: 20224568 DOI: 10.1038/nri2730] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helminths may protect humans against allergic and autoimmune diseases and, indeed, defined helminth-derived products have recently been shown to prevent the development of such inflammatory diseases in mouse models. Here, we propose that helminth-derived products not only have therapeutic potential but can also be used as unique tools for defining key molecular events in the induction of an anti-inflammatory response and, therefore, for defining new therapeutic targets.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
44
|
Immune modulation by Schistosoma mansoni antigens in NOD mice: effects on both innate and adaptive immune systems. J Biomed Biotechnol 2010; 2010:795210. [PMID: 20204176 PMCID: PMC2830582 DOI: 10.1155/2010/795210] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/10/2009] [Indexed: 12/27/2022] Open
Abstract
We have shown that Schistosoma mansoni egg soluble antigen (SEA) prevents diabetes in the nonobese diabetic (NOD) mouse inducing functional changes in antigen presenting cells (APCs) and expanding T helper (Th) 2 and regulatory T cell (Treg) responses. A Th2 response to S. mansoni infection or its antigens is key to both the establishment of tolerance and successfully reproduction in the host. More recently we demonstrated that SEA treatment upregulates bioactive TGFβ on T cells with consequent expansion of Foxp3+ Tregs, and these cells might be important in SEA-mediated diabetes prevention together with Th2 cells. In this study we profile further the phenotypic changes that SEA induces on APCs, with particular attention to cytokine expression and markers of macrophage alternative activation. Our studies suggest that TGFβ from T cells is important not just for Treg expansion but also for the successful Th2 response to SEA, and therefore, for diabetes prevention in the NOD mouse.
Collapse
|
45
|
Bartosch B, Dubuisson J. Recent advances in hepatitis C virus cell entry. Viruses 2010; 2:692-709. [PMID: 21994653 PMCID: PMC3185649 DOI: 10.3390/v2030692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 12/15/2022] Open
Abstract
More than 170 million patients worldwide are chronically infected with hepatitis C virus (HCV). Prevalence rates range from 0.5% in Northern European countries to 28% in some areas of Egypt. HCV is hepatotropic, and in many countries chronic hepatitis C is a leading cause of liver disease including fibrosis, cirrhosis and hepatocellular carcinoma. HCV persists in 50-85% of infected patients, and once chronic infection is established, spontaneous clearance is rare. HCV is a member of the Flaviviridae family, in which it forms its own genus. Many lines of evidence suggest that the HCV life cycle displays many differences to that of other Flaviviridae family members. Some of these differences may be due to the close interaction of HCV with its host's lipid and particular triglyceride metabolism in the liver, which may explain why the virus can be found in association with lipoproteins in serum of infected patients. This review focuses on the molecular events underlying the HCV cell entry process and the respective roles of cellular co-factors that have been implied in these events. These include, among others, the lipoprotein receptors low density lipoprotein receptor and scavenger receptor BI, the tight junction factors occludin and claudin-1 as well as the tetraspanin CD81. We discuss the roles of these cellular factors in HCV cell entry and how association of HCV with lipoproteins may modulate the cell entry process.
Collapse
Affiliation(s)
- Birke Bartosch
- INSERM, U871, 69003 Lyon, France
- Université Lyon 1, IFR62 Lyon-Est, 69008 Lyon, France
- Hospices Civils de Lyon, Hôtel Dieu, Service d’hépatologie et de gastroentérologie, 69002 Lyon, France
| | - Jean Dubuisson
- Université Lille Nord de France, F-59000 Lille, France; E-Mail: (J.D.)
- CNRS, Institut de Biologie de Lille (UMR8161), F-59021 Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
| |
Collapse
|
46
|
|
47
|
Abstract
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). DC-SIGN is a C-type lectin receptor that recognizes N-linked high-mannose oligosaccharides and branched fucosylated structures. It is now clear that the biological role of DC-SIGN is two-fold. It is primarily expressed by dendritic cells and mediates important functions necessary for the induction of successful immune responses that are essential for the clearance of microbial infections, such as the capture, destruction, and presentation of microbial pathogens to induce successful immune responses. Yet, on the other hand, pathogens may also exploit DC-SIGN to modulate DC functioning thereby skewing the immune response and promoting their own survival. This chapter presents an overview of the structure of DC-SIGN and its expression pattern among immune cells. The current state of knowledge of DC-SIGN-carbohydrate interactions is discussed and how these interactions influence dendritic cell functioning is examined. The molecular aspects that underlie the selectivity of DC-SIGN for mannose-and fucose-containing carbohydrates are detailed. Furthermore, the chapter discusses the role of DC-SIGN in dendritic cell biology and how certain bacterial pathogens exploit DC-SIGN to escape immune surveillance.
Collapse
|
48
|
Wang Y, Da'Dara AA, Thomas PG, Harn DA. Dendritic cells activated by an anti-inflammatory agent induce CD4(+) T helper type 2 responses without impairing CD8(+) memory and effector cytotoxic T-lymphocyte responses. Immunology 2009; 129:406-17. [PMID: 19922421 DOI: 10.1111/j.1365-2567.2009.03193.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prevalence of pro-inflammatory diseases is rising in developed country populations. The increase in these diseases has fuelled the search for new, immune suppressive, anti-inflammatory therapies, which do not impact, or minimally impact, CD4(+) and/or CD8(+) T-cell-mediated immunity. The goal of this study was to determine if antigen-presenting cells (APCs) activated by the anti-inflammatory oligosaccharide, lacto-N-fucopentaose III (LNFPIII), would have an impaired ability to drive CD4(+) T helper (Th) or CD8(+) memory and effector T-cell responses. To investigate this we activated splenic dendritic cells (SDCs) with LNFPIII and examined their ability to drive antigen-specific CD4(+) Th, and CD8(+) memory and cytotoxic T-cell (CTL) responses compared with lipopolysaccharide (LPS) -stimulated SDCs. The LNFPIII-activated SDCs had altered co-stimulatory molecule expression compared with LPS-stimulated SDCs, while the levels of SDC chemokines following activation by either compound were similar. LNFPIII-activated SDCs produced significantly lower levels of interleukin-12 but surprisingly higher levels of interleukin-6 than LPS-activated SDCs. Similar to previous studies using bone-marrow-derived DCs, LNFPIII-activated SDCs induced strong Th2 responses in vivo and ex vivo. LNFPIII activation of APCs was independent of the Toll-interleukin-1 receptor adaptor myeloid differentiating factor 88. Importantly, LNFPIII-matured DCs induced CD8(+) memory and effector CTL responses similar to those driven by LPS-matured DCs, including the frequency of interferon-gamma-producing CD8(+) T cells and induction of CTL effectors. Treatment of APCs by the anti-inflammatory glycan LNFPIII did not impair their ability to drive CD8(+) effector and memory cell-mediated immunity.
Collapse
Affiliation(s)
- Yang Wang
- School of Biochemistry & Molecular Biology, Australian National University, Linnaeus Way, Canberra, Australia
| | | | | | | |
Collapse
|
49
|
Stax MJ, van Montfort T, Sprenger RR, Melchers M, Sanders RW, van Leeuwen E, Repping S, Pollakis G, Speijer D, Paxton WA. Mucin 6 in seminal plasma binds DC-SIGN and potently blocks dendritic cell mediated transfer of HIV-1 to CD4(+) T-lymphocytes. Virology 2009; 391:203-11. [PMID: 19682628 DOI: 10.1016/j.virol.2009.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/03/2009] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
Abstract
Many viruses transmitted via the genital or oral mucosa have the potential to interact with dendritic cell-specific intercellular adhesion molecule-3 grabbing non integrin (DC-SIGN) expressed on immature dendritic cells (iDCs) that lie below the mucosal surface. These cells have been postulated to capture and disseminate human immunodeficiency virus type-1 (HIV-1) to CD4(+) lymphocytes, potentially through breaches in the mucosal lining. We have previously described that BSSL (bile salt-stimulated lipase) in human milk can bind DC-SIGN and block transfer. Here we demonstrate that seminal plasma has similar DC-SIGN blocking properties as BSSL in human milk. Using comparative SDS-PAGE and Western blotting combined with mass spectrometry we identified mucin 6 as the DC-SIGN binding component in seminal plasma. Additionally, we demonstrate that purified mucin 6 binds DC-SIGN and successfully inhibits viral transfer. Mucin 6 in seminal plasma may therefore interfere with the sexual transmission of HIV-1 and other DC-SIGN co-opting viruses.
Collapse
Affiliation(s)
- Martijn J Stax
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Saunders SP, Walsh CM, Barlow JL, Mangan NE, Taylor PR, McKenzie ANJ, Smith P, Fallon PG. The C-type lectin SIGNR1 binds Schistosoma mansoni antigens in vitro, but SIGNR1-deficient mice have normal responses during schistosome infection. Infect Immun 2009; 77:399-404. [PMID: 18981244 PMCID: PMC2612259 DOI: 10.1128/iai.00762-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/29/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022] Open
Abstract
The de novo immune response to infectious organisms arises from the innate recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). As the generation of type 2 cytokine responses by the human trematode parasite Schistosoma mansoni is glycan mediated, there is a particular potential role for a C-type lectin receptor (CLR) to mediate the innate recognition of schistosome PAMPs. One such CLR, dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209), has been shown to recognize glycans expressed by S. mansoni eggs. We show that SIGNR1 (SIGN-related 1; CD209b), a murine homologue of DC-SIGN that is expressed on macrophages, also binds both schistosome-soluble egg antigens and worm antigens in vitro. The generation of schistosome egg-induced pulmonary egg granulomas was not altered in SIGNR1-deficient mice. Following S. mansoni infection, the SIGNR1-deficient mice had an unaltered phenotype with an intact immunological response and no difference in pathology. In this study we demonstrate that although SIGNR1 recognizes S. mansoni antigens in vitro, this CLR is redundant during infection. This study highlights the finding that although there was binding of SIGNR1 to immunogenic factors produced in the S. mansoni life cycle, this recognition does not translate to a functional in vivo role for the PRR during infection.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/metabolism
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Cytokines/metabolism
- Granuloma/parasitology
- Granuloma/pathology
- Lectins, C-Type/deficiency
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Leukocytes, Mononuclear/immunology
- Lung/parasitology
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Protein Binding
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Schistosoma mansoni/immunology
- Schistosomiasis mansoni/immunology
- Schistosomiasis mansoni/pathology
- Spleen/immunology
Collapse
Affiliation(s)
- Sean P Saunders
- Institute of Molecular Medicine, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | | | | | | | | |
Collapse
|