1
|
Wang X, Zhang S, Xu B. Characterization of the Serine Protease TlSP1 from Trichoderma longibrachiatum T6 and Its Function in the Control of Heterodera avenae in Wheat. J Fungi (Basel) 2024; 10:569. [PMID: 39194895 DOI: 10.3390/jof10080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Serine protease is an extracellular protease secreted by biocontrol fungi that can effectively control nematode diseases by degrading nematode eggshells and enhancing plant resistance. Trichoderma longibrachiatum T6, an important biocontrol fungus, has been demonstrated to effectively parasitize and degrade Heterodera avenae cysts, eggs, and second-stage juveniles (J2s). However, the genes that encoding serine protease and their functions in T. longibrachiatum T6 have not been thoroughly investigated. In this study, we successfully cloned and sequenced the serine protease gene TlSP1 in T. longibrachiatum T6. Our results revealed that the expression level of the TlSP1 gene was induced and significantly increased in T. longibrachiatum T6 after inoculation with H. avenae cysts. The full-length sequence of the coding region (CDS) of TlSP1 gene was 1230 bp and encoded a protein consisting of 409 amino acids. Upon the transformation of the TlSP1 gene into Pichia pastoris X33, the purified recombinant TlSP1 protein exhibited optimal activity at a temperature of 50 °C and pH 8.0. Following 4-10-day of treatment with the purified recombinant TlSP1 protein, the eggshells and content were dissolved and exuded. The number of nematodes invading wheat roots was reduced by 38.43% in the group treated with both TlSP1 and eggs on one side (P1+N) compared to the control group, while the number of nematodes invading wheat roots was reduced by 30.4% in the TlSP1 and eggs two-sided treatment group (P1/N). Furthermore, both the P1+N and P1/N treatments significantly upregulated genes associated with defense enzymes (TaPAL, TaCAT, TaSOD, and TaPOD), genes involved in the lignin synthesis pathway (TaC4H, Ta4CL2, TaCAD1, and TaCAD12), and salicylic acid (SA)-responsive genes (TaNPR1, TaPR1, and TaPR2) and led to the high expression of jasmonic acid (JA)-responsive genes (TaPR4, TaOPR3, and TaAOS2). This study has highlighted the significant role of the TlSP1 gene in facilitating H. avenae eggshells' dissolution, preventing nematode invasion in the host plant, and boosting plant resistance in wheat.
Collapse
Affiliation(s)
- Xiujuan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Pękacz M, Basałaj K, Młocicki D, Kamaszewski M, Carretón E, Morchón R, Wiśniewski M, Zawistowska-Deniziak A. Molecular insights and antibody response to Dr20/22 in dogs naturally infected with Dirofilaria repens. Sci Rep 2024; 14:12979. [PMID: 38839868 PMCID: PMC11153217 DOI: 10.1038/s41598-024-63523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Subcutaneous dirofilariasis, caused by the parasitic nematode Dirofilaria repens, is a growing concern in Europe, affecting both dogs and humans. This study focused on D. repens Dr20/22, a protein encoded by an alt (abundant larval transcript) gene family. While well-documented in L3 larvae of other filariae species, this gene family had not been explored in dirofilariasis. The research involved cloning Dr20/22 cDNA, molecular characterization, and evaluating its potential application in the diagnosis of dirofilariasis. Although Real-Time analysis revealed mRNA expression in both adult worms and microfilariae, the native protein remained undetected in lysates from both developmental stages. This suggests the protein's specificity for L3 larvae and may be related to a process called SLTS (spliced leader trans-splicing), contributing to stage-specific gene expression. The specificity of the antigen for invasive larvae positions it as a promising early marker for dirofilariasis. However, ELISA tests using sera from infected and uninfected dogs indicated limited diagnostic utility. While further research is required, our findings contribute to a deeper understanding of the molecular and immunological aspects of host-parasite interactions and could offer insights into the parasite's strategies for evading the immune system.
Collapse
Affiliation(s)
- Mateusz Pękacz
- Division of Parasitology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Katarzyna Basałaj
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-818, Warsaw, Poland
| | - Daniel Młocicki
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004, Warsaw, Poland
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Elena Carretón
- Internal Medicine, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Campus Arucas, Arucas, 35413, Las Palmas, Spain
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, Campus Miguel Unamuno, 37007, Salamanca, Spain
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-095, Warsaw, Poland.
| |
Collapse
|
3
|
Hernández G, Vazquez-Pianzola P. eIF4E as a molecular wildcard in metazoans RNA metabolism. Biol Rev Camb Philos Soc 2023; 98:2284-2306. [PMID: 37553111 DOI: 10.1111/brv.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, Mexico City, 14080, Mexico
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Berne, 3012, Switzerland
| |
Collapse
|
4
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
5
|
Song B, Li H, Jiang M, Gao Z, Wang S, Gao L, Chen Y, Li W. slORFfinder: a tool to detect open reading frames resulting from trans-splicing of spliced leader sequences. Brief Bioinform 2023; 24:6972299. [PMID: 36611257 PMCID: PMC9851317 DOI: 10.1093/bib/bbac610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Trans-splicing of a spliced leader (SL) to the 5' ends of mRNAs is used to produce mature mRNAs in several phyla of great importance to human health and the marine ecosystem. One of the consequences of the addition of SL sequences is the change or disruption of the open reading frames (ORFs) in the recipient transcripts. Given that most SL sequences have one or more of the trinucleotide NUG, including AUG in flatworms, trans-splicing of SL sequences can potentially supply a start codon to create new ORFs, which we refer to as slORFs, in the recipient mRNAs. Due to the lack of a tool to precisely detect them, slORFs were usually neglected in previous studies. In this work, we present the tool slORFfinder, which automatically links the SL sequences to the recipient mRNAs at the trans-splicing sites identified from SL-containing reads of RNA-Seq and predicts slORFs according to the distribution of ribosome-protected footprints (RPFs) on the trans-spliced transcripts. By applying this tool to the analyses of nematodes, ascidians and euglena, whose RPFs are publicly available, we find wide existence of slORFs in these taxa. Furthermore, we find that slORFs are generally translated at higher levels than the annotated ORFs in the genomes, suggesting they might have important functions. Overall, this study provides a tool, slORFfinder (https://github.com/songbo446/slORFfinder), to identify slORFs, which can enhance our understanding of ORFs in taxa with SL machinery.
Collapse
Affiliation(s)
| | | | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhongtian Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Suikang Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yunsheng Chen
- Corresponding authors: Yunsheng Chen, Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China, E-mail: ; Wujiao Li, Department of Laboratory Medicine, Shenzhen Childrens' Hospital, Shenzhen 518038, China, E-mail:
| | - Wujiao Li
- Corresponding authors: Yunsheng Chen, Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China, E-mail: ; Wujiao Li, Department of Laboratory Medicine, Shenzhen Childrens' Hospital, Shenzhen 518038, China, E-mail:
| |
Collapse
|
6
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
8
|
Barnes SN, Masonbrink RE, Maier TR, Seetharam A, Sindhu AS, Severin AJ, Baum TJ. Heterodera glycines utilizes promiscuous spliced leaders and demonstrates a unique preference for a species-specific spliced leader over C. elegans SL1. Sci Rep 2019; 9:1356. [PMID: 30718603 PMCID: PMC6362198 DOI: 10.1038/s41598-018-37857-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.
Collapse
Affiliation(s)
- Stacey N Barnes
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA
| | - Arun Seetharam
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew J Severin
- Office of Biotechnology, Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Lin J, Ye R, Thekke-Veetil T, Staton ME, Arelli PR, Bernard EC, Hewezi T, Domier LL, Hajimorad MR. A novel picornavirus-like genome from transcriptome sequencing of sugar beet cyst nematode represents a new putative genus. J Gen Virol 2018; 99:1418-1424. [PMID: 30156527 DOI: 10.1099/jgv.0.001139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.
Collapse
Affiliation(s)
- Jingyu Lin
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rongjian Ye
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.,†Present address: Life Science and Technology Center, China National Seed Group Company Limited, Wuhan 430075, PR China
| | | | - Margaret E Staton
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Prakash R Arelli
- 3Crop Genetics Research Unit, USDA-ARS, 605 Airways Blvd., Jackson, TN 38301, USA
| | - Ernest C Bernard
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tarek Hewezi
- 4Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Leslie L Domier
- 2Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.,5Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - M R Hajimorad
- 1Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
10
|
Matsuo M, Katahata A, Satoh S, Matsuzaki M, Nomura M, Ishida KI, Inagaki Y, Obokata J. Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer. PLoS One 2018; 13:e0200961. [PMID: 30024971 PMCID: PMC6053224 DOI: 10.1371/journal.pone.0200961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5′ end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5′ end sequence of 28–33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.
Collapse
Affiliation(s)
- Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Atsushi Katahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mami Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichiro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
11
|
Yang YF, Zhang X, Ma X, Zhao T, Sun Q, Huan Q, Wu S, Du Z, Qian W. Trans-splicing enhances translational efficiency in C. elegans. Genome Res 2017; 27:1525-1535. [PMID: 28684554 PMCID: PMC5580712 DOI: 10.1101/gr.202150.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/22/2017] [Indexed: 11/24/2022]
Abstract
Translational efficiency is subject to extensive regulation. However, the factors influencing such regulation are poorly understood. In Caenorhabditis elegans, 62% of genes are trans-spliced to a specific spliced leader (SL1), which replaces part of the native 5' untranslated region (5' UTR). Given the pivotal role the 5' UTR plays in the regulation of translational efficiency, we hypothesized that SL1 trans-splicing functions to regulate translational efficiency. With genome-wide analysis on Ribo-seq data, polysome profiling experiments, and CRISPR-Cas9-based genetic manipulation of trans-splicing sites, we found four lines of evidence in support of this hypothesis. First, SL1 trans-spliced genes have higher translational efficiencies than non-trans-spliced genes. Second, SL1 trans-spliced genes have higher translational efficiencies than non-trans-spliced orthologous genes in other nematode species. Third, an SL1 trans-spliced isoform has higher translational efficiency than the non-trans-spliced isoform of the same gene. Fourth, deletion of trans-splicing sites of endogenous genes leads to reduced translational efficiency. Importantly, we demonstrated that SL1 trans-splicing plays a key role in enhancing translational efficiencies of essential genes. We further discovered that SL1 trans-splicing likely enhances translational efficiency by shortening the native 5' UTRs, hence reducing the presence of upstream start codons (uAUG) and weakening mRNA secondary structures. Taken together, our study elucidates the global function of trans-splicing in enhancing translational efficiency in nematodes, paving the way for further understanding the genomic mechanisms of translational regulation.
Collapse
Affiliation(s)
- Yu-Fei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehua Ma
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Taolan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiushi Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Abstract
Preparing nuclei is necessary in a variety of experimental paradigms to study nuclear processes. In this protocol, we describe a method for rapid preparation of large number of relatively pure nuclei from Ascaris embryos or tissues that are ready to be used for further experiments such as chromatin isolation and ChIP-seq, nuclear RNA analyses, or preparation of nuclear extracts (Kang et al., 2016; Wang et al., 2016).
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| |
Collapse
|
13
|
Rhoads RE. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences. Methods Mol Biol 2016; 1428:3-27. [PMID: 27236789 DOI: 10.1007/978-1-4939-3625-0_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances have made it possible to synthesize mRNA in vitro that is relatively stable when introduced into mammalian cells, has a diminished ability to activate the innate immune response against exogenous (virus-like) RNA, and can be efficiently translated into protein. Synthetic methods have also been developed to produce mRNA with unique investigational properties such as photo-cross-linking, fluorescence emission, and attachment of ligands through click chemistry. Synthetic mRNA has been proven effective in numerous applications beneficial for human health such as immunizing patients against cancer and infections diseases, alleviating diseases by restoring deficient proteins, converting somatic cells to pluripotent stem cells to use in regenerative medicine therapies, and engineering the genome by making specific alterations in DNA. This introductory chapter provides background information relevant to the following 20 chapters of this volume that present protocols for these applications of synthetic mRNA.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| |
Collapse
|
14
|
Ward JD. Rendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes. Genetics 2015; 201:1279-94. [PMID: 26644478 PMCID: PMC4676526 DOI: 10.1534/genetics.115.182717] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host-parasite and parasite-vector interactions, and the genetic basis of parasitism.
Collapse
Affiliation(s)
- Jordan D Ward
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| |
Collapse
|
15
|
Piecyk K, Niedzwiecka A, Ferenc-Mrozek A, Lukaszewicz M, Darzynkiewicz E, Jankowska-Anyszka M. How to find the optimal partner--studies of snurportin 1 interactions with U snRNA 5' TMG-cap analogues containing modified 2-amino group of 7-methylguanosine. Bioorg Med Chem 2015; 23:4660-4668. [PMID: 26118337 DOI: 10.1016/j.bmc.2015.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Snurportin 1 is an adaptor protein that mediates the active nuclear import of uridine-rich small nuclear RNAs (U snRNA) by the importin-β receptor pathway. Its cellular activity influences the overall transport yield of small ribonucleoprotein complexes containing N(2),N(2),7-trimethylguanosine (TMG) capped U snRNA. So far little is still known about structural requirements related to molecular recognition of the trimethylguanosine moiety by snurportin in solution. Since these interactions are of a great biomedical importance, we synthesized a series of new 7-methylguanosine cap analogues with extended substituents at the exocyclic 2-amino group to gain a deeper insight into how the TMG-cap is adapted into the snurportin cap-binding pocket. Prepared chemical tools were applied in binding assays using emission spectroscopy. Surprisingly, our results revealed strict selectivity of snurportin towards the TMG-cap structure that relied mainly on its structural stiffness and compactness.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Anna Niedzwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, 32/46 Lotników Ave., 02-668 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Żwirki I Wigury St., 02-089 Warsaw, Poland
| | | | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Żwirki I Wigury St., 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Żwirki I Wigury St., 02-089 Warsaw, Poland; Centre of New Technologies, University of Warsaw, 2C Banacha St., 02-097 Warsaw, Poland
| | - Marzena Jankowska-Anyszka
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland; Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 101 Zwirki & Wigury Str., 02-089 Warsaw, Poland.
| |
Collapse
|
16
|
Sinha A, Langnick C, Sommer RJ, Dieterich C. Genome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons. RNA (NEW YORK, N.Y.) 2014; 20:1386-1397. [PMID: 25015138 PMCID: PMC4138322 DOI: 10.1261/rna.041954.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Discovery of trans-splicing in multiple metazoan lineages led to the identification of operon-like gene organization in diverse organisms, including trypanosomes, tunicates, and nematodes, but the functional significance of such operons is not completely understood. To see whether the content or organization of operons serves similar roles across species, we experimentally defined operons in the nematode model Pristionchus pacificus. We performed affinity capture experiments on mRNA pools to specifically enrich for transcripts that are trans-spliced to either the SL1- or SL2-spliced leader, using spliced leader-specific probes. We obtained distinct trans-splicing patterns from the analysis of three mRNA pools (total mRNA, SL1 and SL2 fraction) by RNA-seq. This information was combined with a genome-wide analysis of gene orientation and spacing. We could confirm 2219 operons by RNA-seq data out of 6709 candidate operons, which were predicted by sequence information alone. Our gene order comparison of the Caenorhabditis elegans and P. pacificus genomes shows major changes in operon organization in the two species. Notably, only 128 out of 1288 operons in C. elegans are conserved in P. pacificus. However, analysis of gene-expression profiles identified conserved functions such as an enrichment of germline-expressed genes and higher expression levels of operonic genes during recovery from dauer arrest in both species. These results provide support for the model that a necessity for increased transcriptional efficiency in the context of certain developmental processes could be a selective constraint for operon evolution in metazoans. Our method is generally applicable to other metazoans to see if similar functional constraints regulate gene organization into operons.
Collapse
Affiliation(s)
- Amit Sinha
- Max Planck Institute for Developmental Biology, Department for Evolutionary Biology, 72076 Tübingen, Germany
| | - Claudia Langnick
- Berlin Institute for Medical Systems Biology (BIMSB) at the Max Delbrück Center for Molecular Medicine Berlin, 13125 Berlin, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department for Evolutionary Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
17
|
Graham BJ, Hay D, Hughes J, Higgs D. The worm has turned: unexpected similarities between the transcription of enhancers and promoters in the worm and mammalian genomes. Bioessays 2013; 36:157-62. [PMID: 24323941 DOI: 10.1002/bies.201300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our understanding of biological processes in humans is often based on examination of analogous processes in other organisms. The nematode worm Caenorhabditis elegans has been a particularly valuable model, leading to Nobel prize winning discoveries in development and genetics. Until recently, however, the worm has not been widely used as a model to study transcription due to the lack of a comprehensive catalogue of its RNA transcripts. A recent study by Chen et al. uses next-generation sequencing to address this issue, mapping the transcription initiation sites in C. elegans and finding many unexpected similarities between the transcription of enhancers and promoters in the worm and mammalian genomes. As well as providing a valuable resource for researchers in the C. elegans community, these findings raise the possibility of using the worm as a model to investigate some key, current questions about transcriptional regulation that remain technically challenging in more complex organisms.
Collapse
Affiliation(s)
- Bryony J Graham
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
18
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
19
|
eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Proc Natl Acad Sci U S A 2013; 110:3877-82. [PMID: 23431134 DOI: 10.1073/pnas.1216862110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition of the methyl-7-guanosine (m(7)G) cap structure on mRNA is an essential feature of mRNA metabolism and thus gene expression. Eukaryotic translation initiation factor 4E (eIF4E) promotes translation, mRNA export, proliferation, and oncogenic transformation dependent on this cap-binding activity. eIF4E-cap recognition is mediated via complementary charge interactions of the positively charged m(7)G cap between the negative π-electron clouds from two aromatic residues. Here, we demonstrate that a variant subfamily, eIF4E3, specifically binds the m(7)G cap in the absence of an aromatic sandwich, using instead a different spatial arrangement of residues to provide the necessary electrostatic and van der Waals contacts. Contacts are much more extensive between eIF4E3-cap than other family members. Structural analyses of other cap-binding proteins indicate this recognition mode is atypical. We demonstrate that eIF4E3 relies on this cap-binding activity to act as a tumor suppressor, competing with the growth-promoting functions of eIF4E. In fact, reduced eIF4E3 in high eIF4E cancers suggests that eIF4E3 underlies a clinically relevant inhibitory mechanism that is lost in some malignancies. Taken together, there is more structural plasticity in cap recognition than previously thought, and this is physiologically relevant.
Collapse
|
20
|
Piecyk K, Davis RE, Jankowska-Anyszka M. Synthesis of N²-modified 7-methylguanosine 5'-monophosphates as nematode translation inhibitors. Bioorg Med Chem 2012; 20:4781-9. [PMID: 22748379 PMCID: PMC3636719 DOI: 10.1016/j.bmc.2012.05.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Preparative scale synthesis of 14 new N(2)-modified mononucleotide 5' mRNA cap analogues was achieved. The key step involved use of an S(N)Ar reaction with protected 2-fluoro inosine and various primary and secondary amines. The derivatives were tested in a parasitic nematode, Ascaris suum, cell-free system as translation inhibitors. The most effective compound with IC(50) ∼0.9μM was a N(2)-p-metoxybenzyl-7-methylguanosine-5'-monophosphate 35.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
21
|
Sun W, Song X, Yan R, Xu L, Li X. Cloning and characterization of a selenium-independent glutathione peroxidase (HC29) from adult Haemonchus contortus. J Vet Sci 2012; 13:49-58. [PMID: 22437536 PMCID: PMC3317457 DOI: 10.4142/jvs.2012.13.1.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete coding sequence of Haemonchus (H.) contortus HC29 cDNA was generated by rapid amplification of cDNA ends in combination with PCR using primers targeting the 5'- and 3'-ends of the partial mRNA sequence. The cloned HC29 cDNA was shown to be 1,113 bp in size with an open reading frame of 507 bp, encoding a protein of 168 amino acid with a calculated molecular mass of 18.9 kDa. Amino acid sequence analysis revealed that the cloned HC29 cDNA contained the conserved catalytic triad and dimer interface of selenium-independent glutathione peroxidase (GPX). Alignment of the predicted amino acid sequences demonstrated that the protein shared 44.7~80.4% similarity with GPX homologues in the thioredoxin-like family. Phylogenetic analysis revealed close evolutionary proximity of the GPX sequence to the counterpart sequences. These results suggest that HC29 cDNA is a GPX, a member of the thioredoxin-like family. Alignment of the nucleic acid and amino acid sequences of HC29 with those of the reported selenium-independent GPX of H. contortus showed that HC29 contained different types of spliced leader sequences as well as dimer interface sites, although the active sites of both were identical. Enzymatic analysis of recombinant prokaryotic HC29 protein showed activity for the hydrolysis of H2O2. These findings indicate that HC29 is a selenium-independent GPX of H. contortus.
Collapse
Affiliation(s)
- Wei Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | | | | | | | | |
Collapse
|
22
|
Piecyk K, Davis RE, Jankowska-Anyszka M. 5'-Terminal chemical capping of spliced leader RNAs. Tetrahedron Lett 2012; 53:4843-4847. [PMID: 23175583 DOI: 10.1016/j.tetlet.2012.06.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spliced leader (SL) RNA trans-splicing adds a 2,2,7-trimethylguanosine cap (TMG) and a 22-nucleotide sequence, the SL, to the 5' end of mRNAs. Both non-trans-spliced with a monomethylguanosine cap (MMG) and trans-spliced mRNAs co-exist in trans-splicing metazoan cells. Efficient translation of TMG-capped mRNAs in nematodes requires a defined core of nucleotides within the SL sequence. Here we present a chemical procedure for the preparation and purification of 5'-terminal capped MMG and TMG wild-type, and mutant 22 nt spliced leader RNAs (GGU/ACUUAAUUACCCAAGUUUGAG) with or without a 3' biotin tag.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | | | | |
Collapse
|
23
|
Piecyk K, Davis RE, Jankowska-Anyszka M. Synthesis of ¹³C- and ¹⁴C-labeled dinucleotide mRNA cap analogues for structural and biochemical studies. Bioorg Med Chem Lett 2012; 22:4391-5. [PMID: 22658555 PMCID: PMC3652009 DOI: 10.1016/j.bmcl.2012.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 12/13/2022]
Abstract
Herein we describe the first simple and short method for specific labeling of mono- and trimethylated dinucleotide mRNA cap analogues with (13)C and (14)C isotopes. The labels were introduced within the cap structures either at the N7 for monomethylguanosine cap or N7 and N2 position for trimethylguanosine cap. The compounds designed for structural and biochemical studies will be useful tools for better understanding the role of the mRNA cap structures in pre-mRNA splicing, nucleocytoplasmic transport, translation initiation and mRNA degradation.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
24
|
Abstract
Thousands of long noncoding RNAs (lncRNAs) have been found in vertebrate animals, a few of which have known biological roles. To better understand the genomics and features of lncRNAs in invertebrates, we used available RNA-seq, poly(A)-site, and ribosome-mapping data to identify lncRNAs of Caenorhabditis elegans. We found 170 long intervening ncRNAs (lincRNAs), which had single- or multiexonic structures that did not overlap protein-coding transcripts, and about sixty antisense lncRNAs (ancRNAs), which were complementary to protein-coding transcripts. Compared to protein-coding genes, the lncRNA genes tended to be expressed in a stage-dependent manner. Approximately 25% of the newly identified lincRNAs showed little signal for sequence conservation and mapped antisense to clusters of endogenous siRNAs, as would be expected if they serve as templates and targets for these siRNAs. The other 75% tended to be more conserved and included lincRNAs with intriguing expression and sequence features associating them with processes such as dauer formation, male identity, sperm formation, and interaction with sperm-specific mRNAs. Our study provides a glimpse into the lncRNA content of a nonvertebrate animal and a resource for future studies of lncRNA function.
Collapse
Affiliation(s)
- Jin-Wu Nam
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
25
|
Hernández G, Proud CG, Preiss T, Parsyan A. On the Diversification of the Translation Apparatus across Eukaryotes. Comp Funct Genomics 2012; 2012:256848. [PMID: 22666084 PMCID: PMC3359775 DOI: 10.1155/2012/256848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 03/07/2012] [Indexed: 11/21/2022] Open
Abstract
Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.
Collapse
Affiliation(s)
- Greco Hernández
- Division of Basic Research, National Institute for Cancer (INCan), Avenida San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 Mexico City, Mexico
| | - Christopher G. Proud
- Centre for Biological Sciences, University of Southampton, Life Sciences Building (B85), Southampton SO17 1BJ, UK
| | - Thomas Preiss
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Acton, Canberra, ACT 0200, Australia
| | - Armen Parsyan
- Goodman Cancer Centre and Department of Biochemistry, Faculty of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, Canada H3A 1A3
- Division of General Surgery, Department of Surgery, Faculty of Medicine, McGill University Health Centre, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
26
|
Conserved Motifs and Prediction of Regulatory Modules in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2012; 2:469-81. [PMID: 22540038 PMCID: PMC3337475 DOI: 10.1534/g3.111.001081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/06/2012] [Indexed: 01/30/2023]
Abstract
Transcriptional regulation, a primary mechanism for controlling the development of multicellular organisms, is carried out by transcription factors (TFs) that recognize and bind to their cognate binding sites. In Caenorhabditis elegans, our knowledge of which genes are regulated by which TFs, through binding to specific sites, is still very limited. To expand our knowledge about the C. elegans regulatory network, we performed a comprehensive analysis of the C. elegans, Caenorhabditis briggsae, and Caenorhabditis remanei genomes to identify regulatory elements that are conserved in all genomes. Our analysis identified 4959 elements that are significantly conserved across the genomes and that each occur multiple times within each genome, both hallmarks of functional regulatory sites. Our motifs show significant matches to known core promoter elements, TF binding sites, splice sites, and poly-A signals as well as many putative regulatory sites. Many of the motifs are significantly correlated with various types of experimental data, including gene expression patterns, tissue-specific expression patterns, and binding site location analysis as well as enrichment in specific functional classes of genes. Many can also be significantly associated with specific TFs. Combinations of motif occurrences allow us to predict the location of cis-regulatory modules and we show that many of them significantly overlap experimentally determined enhancers. We provide access to the predicted binding sites, their associated motifs, and the predicted cis-regulatory modules across the whole genome through a web-accessible database and as tracks for genome browsers.
Collapse
|
27
|
Liu W, Jankowska-Anyszka M, Piecyk K, Dickson L, Wallace A, Niedzwiecka A, Stepinski J, Stolarski R, Darzynkiewicz E, Kieft J, Zhao R, Jones DNM, Davis RE. Structural basis for nematode eIF4E binding an m(2,2,7)G-Cap and its implications for translation initiation. Nucleic Acids Res 2011; 39:8820-32. [PMID: 21965542 PMCID: PMC3203607 DOI: 10.1093/nar/gkr650] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Metazoan spliced leader (SL) trans-splicing generates mRNAs with an m2,2,7G-cap and a common downstream SL RNA sequence. The mechanism for eIF4E binding an m2,2,7G-cap is unknown. Here, we describe the first structure of an eIF4E with an m2,2,7G-cap and compare it to the cognate m7G-eIF4E complex. These structures and Nuclear Magnetic Resonance (NMR) data indicate that the nematode Ascaris suum eIF4E binds the two different caps in a similar manner except for the loss of a single hydrogen bond on binding the m2,2,7G-cap. Nematode and mammalian eIF4E both have a low affinity for m2,2,7G-cap compared with the m7G-cap. Nematode eIF4E binding to the m7G-cap, m2,2,7G-cap and the m2,2,7G-SL 22-nt RNA leads to distinct eIF4E conformational changes. Additional interactions occur between Ascaris eIF4E and the SL on binding the m2,2,7G-SL. We propose interactions between Ascaris eIF4E and the SL impact eIF4G and contribute to translation initiation, whereas these interactions do not occur when only the m2,2,7G-cap is present. These data have implications for the contribution of 5′-UTRs in mRNA translation and the function of different eIF4E isoforms.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jankowska-Anyszka M, Piecyk K, Šamonina-Kosicka J. Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5' end of mRNA. Org Biomol Chem 2011; 9:5564-72. [PMID: 21701749 DOI: 10.1039/c1ob05425b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
mRNAs of primitive eukaryotes such as Caenorhabditis elegans and Ascaris summ possess two different caps at their 5' terminus. They have either a typical cap which consists of 7-methylguanosine linked via a 5',5'-triphosphate bridge to the first transcribed nucleotide (MMG cap) or an atypical hypermethylated form with two additional methyl groups at the N2 position (TMG cap). Studies on interaction between the 5' end of mRNA and proteins that specifically recognize its structure have been carried out for several years and they often require chemically modified cap analogues. Here, we present the synthesis of five novel dinucleotide MMG and TMG cap analogues designed for binding studies using biophysical methods such as electron spin resonance (ESR) and surface plasmon resonance (SPR). New analogues were prepared by derivatization of the 2',3'-cis diol of the second nucleotide in the cap structure with levulinic acid, and coupling of the obtained acetal through its carboxylic group with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino TEMPO), ethylenediamine (EDA) or (+)-biotinyl-3,6,9-trioxaundecanediamine (amine-PEO(3)-biotin).
Collapse
|
29
|
Kiraga-Motoszko K, Niedzwiecka A, Modrak-Wojcik A, Stepinski J, Darzynkiewicz E, Stolarski R. Thermodynamics of molecular recognition of mRNA 5' cap by yeast eukaryotic initiation factor 4E. J Phys Chem B 2011; 115:8746-54. [PMID: 21650456 DOI: 10.1021/jp2012039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular mechanisms underlying the recognition of the mRNA 5' terminal structure called "cap" by the eukaryotic initiation factor 4E (eIF4E) are crucial for cap-dependent translation. To gain a deeper insight into how the yeast eIF4E interacts with the cap structure, isothermal titration calorimetry and the van't Hoff analysis based on intrinsic protein fluorescence quenching upon titration with a series of chemical cap analogs were performed, providing a consistent thermodynamic description of the binding process in solution. Equilibrium association constants together with thermodynamic parameters revealed similarities and differences between yeast and mammalian eIF4Es. The yeast eIF4E complex formation was enthalpy-driven and entropy-opposed for each cap analog at 293 K. A nontrivial isothermal enthalpy–entropy compensation was found, described by a compensation temperature, T(c) = 411 ± 18 K. For a low affinity analog, 7-methylguanosine monophosphate, a heat capacity change was detected, ΔC(p)° = +5.2 ± 1.3 kJ·mol(-1)·K(-1). The charge-related interactions involving the 5′-5′ triphosphate bridge of the cap and basic amino acid side chains at the yeast eIF4E cap-binding site were significantly weaker (by ΔΔH°(vH) of about +10 kJ·mol(-1)) than those for the mammalian homologues, suggesting their optimization during the evolution.
Collapse
Affiliation(s)
- Katarzyna Kiraga-Motoszko
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Trans-splicing is the joining together of portions of two separate pre-mRNA molecules. The two distinct categories of spliceosomal trans-splicing are genic trans-splicing, which joins exons of different pre-mRNA transcripts, and spliced leader (SL) trans-splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis-splicing. Genic trans-splicing events producing protein-coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans-splicing can be associated with cancers and translocations. SL trans-splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans-splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans-splicing, as operon resolution can only account for a small proportion of the total amount of SL trans-splicing.
Collapse
Affiliation(s)
- Erika L Lasda
- University of Colorado Denver, Department of Biochemistry and Molecular Genetics; University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology
| | | |
Collapse
|
31
|
Harrison N, Kalbfleisch A, Connolly B, Pettitt J, Müller B. SL2-like spliced leader RNAs in the basal nematode Prionchulus punctatus: New insight into the evolution of nematode SL2 RNAs. RNA (NEW YORK, N.Y.) 2010; 16:1500-7. [PMID: 20566669 PMCID: PMC2905750 DOI: 10.1261/rna.2155010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spliced-leader (SL) trans-splicing has been found in all molecularly characterized nematode species to date, and it is likely to be a nematode synapomorphy. Most information regarding SL trans-splicing has come from the study of nematodes from a single monophyletic group, the Rhabditida, all of which employ SL RNAs that are identical to, or variants of, the SL1 RNA first characterized in Caenorhabditis elegans. In contrast, the more distantly related Trichinella spiralis, belonging to the subclass Dorylaimia, utilizes a distinct set of SL RNAs that display considerable sequence diversity. To investigate whether this is true of other members of the Dorylaimia, we have characterized SL RNAs from Prionchulus punctatus. Surprisingly, this revealed the presence of a set of SLs that show clear sequence similarity to the SL2 family of spliced leaders, which have previously only been found within the rhabditine group (which includes C. elegans). Expression of one of the P. punctatus SL RNAs in C. elegans reveals that it can compete specifically with the endogenous C. elegans SL2 spliced leaders, being spliced to the pre-mRNAs derived from downstream genes in operons, but does not compete with the SL1 spliced leaders. This discovery raises the possibility that SL2-like spliced leaders were present in the last common ancestor of the nematode phylum.
Collapse
Affiliation(s)
- Neale Harrison
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Abstract
Spliced leader trans-splicing occurs in many primitive eukaryotes including nematodes. Most of our knowledge of trans-splicing in nematodes stems from the model organism Caenorhabditis elegans and relatives, and from work with Ascaris. Our investigation of spliced leader trans-splicing in distantly related Dorylaimia nematodes indicates that spliced-leader trans-splicing arose before the nematode phylum and suggests that the spliced leader RNA gene complements in extant nematodes have evolved from a common ancestor with a diverse set of spliced leader RNA genes.
Collapse
|
33
|
Lasda EL, Allen MA, Blumenthal T. Polycistronic pre-mRNA processing in vitro: snRNP and pre-mRNA role reversal in trans-splicing. Genes Dev 2010; 24:1645-58. [PMID: 20624853 DOI: 10.1101/gad.1940010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spliced leader (SL) trans-splicing in Caenorhabditis elegans attaches a 22-nucleotide (nt) exon onto the 5' end of many mRNAs. A particular class of SL, SL2, splices mRNAs of downstream operon genes. Here we use an embryonic extract-based in vitro splicing system to show that SL2 specificity information is encoded within the polycistronic pre-mRNA, and that trans-splicing specificity is recapitulated in vitro. We define an RNA sequence required for SL2 trans-splicing, the U-rich (Ur) element, through mutational analysis and bioinformatics as a short stem-loop followed by a sequence motif, UAYYUU, located approximately 50 nt upstream of the trans-splice site. Furthermore, this element is predicted in intercistronic regions of numerous operons of C. elegans and other species that use SL2 trans-splicing. We propose that the UAYYUU motif hybridizes with the 5' splice site on the SL2 RNA to recruit the SL to the pre-mRNA. In this way, the UAYYUU motif in the pre-mRNA would serve an analogous function to the similar sequence in the U1 snRNA, which binds to the 5' splice site of introns, effectively reversing the roles of snRNP and pre-mRNA in trans-splicing.
Collapse
Affiliation(s)
- Erika L Lasda
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
34
|
Ruszczyńska-Bartnik K, Maciejczyk M, Stolarski R. Dynamical insight into Caenorhabditis elegans eIF4E recognition specificity for mono-and trimethylated structures of mRNA 5' cap. J Mol Model 2010; 17:727-37. [PMID: 20535623 PMCID: PMC3076583 DOI: 10.1007/s00894-010-0773-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/06/2010] [Indexed: 12/01/2022]
Abstract
Specific recognition and binding of the ribonucleic acid 5′ termini (mRNA 5′ cap) by the eukaryotic translation initiation factor 4E (eIF4E) is a key, rate limiting step in translation initiation. Contrary to mammalian and yeast eIF4Es that discriminate in favor of 7-methylguanosine cap, three out of five eIF4E isoforms from the nematode Caenorhabditis elegans as well as eIF4Es from the parasites Schistosome mansoni and Ascaris suum, exhibit dual binding specificity for both 7-methylguanosine-and N2,N2,7-trimethylguanosine cap. To address the problem of the differences in the mechanism of the cap recognition by those highly homologic proteins, we carried out molecular dynamics simulations in water of three factors, IFE-3 and IFE-5 isoforms from C. elegans and murine eIF4E, in the apo form as well as in the complexes with 7-methyl-GDP and N2,N2,7-trimethyl-GDP. The results clearly pointed to a dynamical mechanism of discrimination between each type of the cap, viz. differences in mobility of the loops located at the entrance into the protein binding pockets during the cap association and dissociation. Additionally, our data showed that the hydrogen bond involving the N2-amino group of 7-methylguanosine and the carboxylate of glutamic acid was not stable. The dynamic mechanism proposed here differs from a typical, static one in that the differences in the protein-ligand binding specificity cannot be ascribed to formation and/or disruption of well defined stabilizing contacts.
Collapse
Affiliation(s)
- Katarzyna Ruszczyńska-Bartnik
- Nuclear Magnetic Resonance Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
35
|
Wypijewska A, Bojarska E, Stepinski J, Jankowska-Anyszka M, Jemielity J, Davis RE, Darzynkiewicz E. Structural requirements for Caenorhabditis elegans DcpS substrates based on fluorescence and HPLC enzyme kinetic studies. FEBS J 2010; 277:3003-13. [PMID: 20546305 DOI: 10.1111/j.1742-4658.2010.07709.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of the Caenorhabditis elegans scavenger decapping enzyme (DcpS) on its natural substrates and dinucleotide cap analogs, modified with regard to the nucleoside base or ribose moiety, has been examined. All tested dinucleotides were specifically cleaved between beta- and gamma-phosphate groups in the triphosphate chain. The kinetic parameters of enzymatic hydrolysis (K(m), V(max)) were determined using fluorescence and HPLC methods, as complementary approaches for the kinetic studies of C. elegans DcpS. From the kinetic data, we determined which parts of the cap structure are crucial for DcpS binding and hydrolysis. We showed that m(3)(2,2,7)GpppG and m(3)(2,2,7)GpppA are cleaved with higher rates than their monomethylated counterparts. However, the higher specificity of C. elegans DcpS for monomethylguanosine caps is illustrated by the lower K(m) values. Modifications of the first transcribed nucleotide did not affect the activity, regardless of the type of purine base. Our findings suggest C. elegans DcpS flexibility in the first transcribed nucleoside-binding pocket. Moreover, although C. elegans DcpS accommodates bulkier groups in the N7 position (ethyl or benzyl) of the cap, both 2'-O- and 3'-O-methylations of 7-methylguanosine result in a reduction in hydrolysis by two orders of magnitude.
Collapse
Affiliation(s)
- Anna Wypijewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
36
|
Derelle R, Momose T, Manuel M, Da Silva C, Wincker P, Houliston E. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. RNA (NEW YORK, N.Y.) 2010; 16:696-707. [PMID: 20142326 PMCID: PMC2844618 DOI: 10.1261/rna.1975210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/23/2009] [Indexed: 05/20/2023]
Abstract
Replacement of mRNA 5' UTR sequences by short sequences trans-spliced from specialized, noncoding, spliced leader (SL) RNAs is an enigmatic phenomenon, occurring in a set of distantly related animal groups including urochordates, nematodes, flatworms, and hydra, as well as in Euglenozoa and dinoflagellates. Whether SL trans-splicing has a common evolutionary origin and biological function among different organisms remains unclear. We have undertaken a systematic identification of SL exons in cDNA sequence data sets from non-bilaterian metazoan species and their closest unicellular relatives. SL exons were identified in ctenophores and in hydrozoan cnidarians, but not in other cnidarians, placozoans, or sponges, or in animal unicellular relatives. Mapping of SL absence/presence obtained from this and previous studies onto current phylogenetic trees favors an evolutionary scenario involving multiple origins for SLs during eumetazoan evolution rather than loss from a common ancestor. In both ctenophore and hydrozoan species, multiple SL sequences were identified, showing high sequence diversity. Detailed analysis of a large data set generated for the hydrozoan Clytia hemisphaerica revealed trans-splicing of given mRNAs by multiple alternative SLs. No evidence was found for a common identity of trans-spliced mRNAs between different hydrozoans. One feature found specifically to characterize SL-spliced mRNAs in hydrozoans, however, was a marked adenosine enrichment immediately 3' of the SL acceptor splice site. Our findings of high sequence divergence and apparently indiscriminate use of SLs in hydrozoans, along with recent findings in other taxa, indicate that SL genes have evolved rapidly in parallel in diverse animal groups, with constraint on SL exon sequence evolution being apparently rare.
Collapse
Affiliation(s)
- Romain Derelle
- Biologie du Développement (UMR 7138) Observatoire Océanologique, Université Pierre et Marie Curie (UPMC-Univ Paris 06) and Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-mer, France
| | | | | | | | | | | |
Collapse
|
37
|
The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs. Mol Cell Biol 2010; 30:1958-70. [PMID: 20154140 DOI: 10.1128/mcb.01437-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5' end through the eIF4F initiation complex binding to the 5' m(7)G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5' end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m(7)G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5' untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.
Collapse
|
38
|
Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction. Parasitology 2009; 137:537-55. [PMID: 19961652 DOI: 10.1017/s0031182009991727] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Totipotent somatic stem cells (neoblasts) are key players in the biology of flatworms and account for their amazing regenerative capability and developmental plasticity. During recent years, considerable progress has been made in elucidating molecular features of neoblasts from free-living flatworms, whereas their role in parasitic species has so far merely been addressed by descriptive studies. Very recently, however, significant advances have been made in the in vitro culture of neoblasts from the cestode Echinococcus multilocularis. The isolated cells proved capable of generating mature metacestode vesicles under laboratory conditions in a manner that closely resembles the oncosphere-metacestode transition during natural infections. Using the established neoblast cultivation protocols, combined with targeted manipulation of Echinococcus genes by RNA-interference, several fundamental questions of host-dependent parasite development can now be addressed. Here, I give an overview of current cultivation techniques for E. multilocularis neoblasts and present experimental approaches to study their function. Furthermore, I introduce the E. multilocularis genome sequencing project that is presently in an advanced stage. The combined input of data from the E. multilocularis sequencing project, stem cell cultivation, and recently initiated attempts to genetically manipulate Echinococcus will provide an ideal platform for hypothesis-driven research into cestode development in the next years.
Collapse
|
39
|
Douris V, Telford MJ, Averof M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol Biol Evol 2009; 27:684-93. [PMID: 19942614 DOI: 10.1093/molbev/msp286] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In contrast to conventional splicing, which joins exons from a single primary transcript, trans-splicing links stretches of RNA from separate transcripts, derived from distinct regions of the genome. Spliced leader (SL) trans-splicing is particularly well known in trypanosomes, nematodes, and flatworms, where it provides messenger RNAs with a leader sequence and cap that allow them to be translated efficiently. One of the largest puzzles regarding SL trans-splicing is its evolutionary origin. Until now SL trans-splicing has been found in a small and disparate set of organisms (including trypanosomes, dinoflagellates, cnidarians, rotifers, nematodes, flatworms, and urochordates) but not in most other eukaryotic lineages, including well-studied groups such as fungi, plants, arthropods, and vertebrates. This patchy distribution could either suggest that trans-splicing was present in early eukaryotes/metazoans and subsequently lost in multiple lineages or that it evolved several times independently. Starting from the serendipitous discovery of SL trans-splicing in an arthropod, we undertook a comprehensive survey of this process in the animal kingdom. By surveying expressed sequence tag data from more than 70 metazoan species, we show that SL trans-splicing also occurs in at least two groups of arthropods (amphipod and copepod crustaceans), in ctenophores, and in hexactinellid sponges. However, we find no evidence for SL trans-splicing in other groups of arthropods and sponges or in 15 other phyla that we have surveyed. Although the presence of SL trans-splicing in hydrozoan cnidarians, hexactinellid sponges, and ctenophores might suggest that it was present at the base of the Metazoa, the patchy distribution that is evident at higher resolution suggests that SL trans-splicing has evolved repeatedly among metazoan lineages. In agreement with this scenario, we discuss evidence that SL precursor RNAs can readily evolve from ubiquitous small nuclear RNAs that are used for conventional splicing.
Collapse
Affiliation(s)
- Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Iraklio, Crete, Greece
| | | | | |
Collapse
|
40
|
Liu W, Zhao R, McFarland C, Kieft J, Niedzwiecka A, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Jones DNM, Davis RE. Structural insights into parasite eIF4E binding specificity for m7G and m2,2,7G mRNA caps. J Biol Chem 2009; 284:31336-49. [PMID: 19710013 PMCID: PMC2781531 DOI: 10.1074/jbc.m109.049858] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/19/2009] [Indexed: 01/02/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E recognizes the mRNA cap, a key step in translation initiation. Here we have characterized eIF4E from the human parasite Schistosoma mansoni. Schistosome mRNAs have either the typical monomethylguanosine (m(7)G) or a trimethylguanosine (m(2,2,7)G) cap derived from spliced leader trans-splicing. Quantitative fluorescence titration analyses demonstrated that schistosome eIF4E has similar binding specificity for both caps. We present the first crystal structure of an eIF4E with similar binding specificity for m(7)G and m(2,2,7)G caps. The eIF4E.m(7)GpppG structure demonstrates that the schistosome protein binds monomethyl cap in a manner similar to that of single specificity eIF4Es and exhibits a structure similar to other known eIF4Es. The structure suggests an alternate orientation of a conserved, key Glu-90 in the cap-binding pocket that may contribute to dual binding specificity and a position for mRNA bound to eIF4E consistent with biochemical data. Comparison of NMR chemical shift perturbations in schistosome eIF4E on binding m(7)GpppG and m(2,2,7)GpppG identified key differences between the two complexes. Isothermal titration calorimetry demonstrated significant thermodynamics differences for the binding process with the two caps (m(7)G versus m(2,2,7)G). Overall the NMR and isothermal titration calorimetry data suggest the importance of intrinsic conformational flexibility in the schistosome eIF4E that enables binding to m(2,2,7)G cap.
Collapse
Affiliation(s)
- Weizhi Liu
- From the Departments of Biochemistry and Molecular Genetics and
| | - Rui Zhao
- From the Departments of Biochemistry and Molecular Genetics and
| | - Craig McFarland
- From the Departments of Biochemistry and Molecular Genetics and
| | - Jeffrey Kieft
- From the Departments of Biochemistry and Molecular Genetics and
| | - Anna Niedzwiecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Biological Physics Group, Institute of Physics, Polish Academy of Sciences, 32/46 Lotnikow Avenue, 02-668 Warsaw, Poland
| | | | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - David N. M. Jones
- **Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | |
Collapse
|
41
|
Abstract
Eukaryotes using trans-splicing for transcript processing incorporate a taxon-specific sequence tag (the spliced leader, SL) to a proportion (either all or a fraction) of their mRNAs. This feature may be exploited for the preparation of full-length-enriched cDNA libraries from these organisms (a diverse group including euglenozoa and dinoflagellates, as well as members from five metazoan phyla: Cnidaria, Rotifera, Nematoda, Platyhelminths and Chordata). The strategy has indeed been widely used to construct cDNA libraries for the generation of ESTs, mainly from parasitic euglenozoa and helminths.We describe a set of optimised protocols to prepare directional SL-cDNA libraries; the method involves PCR-amplification of SL-cDNA and its subsequent cloning in a plasmid vector under a specific orientation. It uses small amounts of total RNA as starting material and may be applied to a variety of samples. The approach permits the selective cloning of mRNAs tagged with a particular SL from mixtures including large amounts of non-trans-spliced mRNAs. Thus, it allows exclusion of host contamination when isolating SL-cDNAs from parasitic organisms, and has other potential applications, such as the characterisation of the trans-spliced transcriptome from organisms in mixed pools of species.
Collapse
Affiliation(s)
- Cecilia Fernández
- Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
42
|
Sierro N, Li S, Suzuki Y, Yamashita R, Nakai K. Spatial and temporal preferences for trans-splicing in Ciona intestinalis revealed by EST-based gene expression analysis. Gene 2008; 430:44-9. [PMID: 18996449 DOI: 10.1016/j.gene.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/04/2008] [Accepted: 10/08/2008] [Indexed: 11/19/2022]
Abstract
Ciona intestinalis is a useful model organism to analyze chordate development and genetics. However, unlike vertebrates, it shares a unique mechanism called trans-splicing with lower eukaryotes. In the computational analysis of trans-splicing in C. intestinalis we report here, we discovered that although the amount of non-trans-spliced and trans-spliced genes is usually equivalent, the expression ratio between the two groups varies significantly with tissues and developmental stages. Among the seven tissues studied, the observed ratios ranged from 2.53 in "gonad" to 19.53 in "endostyle", and during development they increased from 1.68 at the "egg" stage to 7.55 at the "juvenile" stage. We further hypothesize that this enrichment in trans-spliced mRNAs in early developmental stages might be related to the abundance of trans-spliced mRNAs in "gonad". Our analysis indicates that in C. intestinalis, although there may not exist strong fundamental requirements for genes to be trans-spliced, the populations of non-trans-spliced and trans-spliced genes are likely to be spatially and temporally regulated differently.
Collapse
Affiliation(s)
- Nicolas Sierro
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
43
|
Pettitt J, Müller B, Stansfield I, Connolly B. Spliced leader trans-splicing in the nematode Trichinella spiralis uses highly polymorphic, noncanonical spliced leaders. RNA (NEW YORK, N.Y.) 2008; 14:760-70. [PMID: 18256244 PMCID: PMC2271357 DOI: 10.1261/rna.948008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/19/2007] [Indexed: 05/20/2023]
Abstract
The trans-splicing of short spliced leader (SL) RNAs onto the 5' ends of mRNAs occurs in a diverse range of taxa. In nematodes, all species so far characterized utilize a characteristic, conserved spliced leader, SL1, as well as variants that are employed in the resolution of operons. Here we report the identification of spliced leader trans-splicing in the basal nematode Trichinella spiralis, and show that this nematode does not possess a canonical SL1, but rather has at least 15 distinct spliced leaders, encoded by at least 19 SL RNA genes. The individual spliced leaders vary in both size and primary sequence, showing a much higher degree of diversity compared to other known trans-spliced leaders. In a survey of T. spiralis mRNAs, individual mRNAs were found to be trans-spliced to a number of different spliced leader sequences. These data provide the first indication that the last common ancestor of the phylum Nematoda utilized spliced leader trans-splicing and that the canonical spliced leader, SL1, found in Caenorhabditis elegans, evolved after the divergence of the major nematode clades. This discovery sheds important light on the nature and evolution of mRNA processing in the Nematoda.
Collapse
Affiliation(s)
- Jonathan Pettitt
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Lok JB, Artis D. Transgenesis and neuronal ablation in parasitic nematodes: revolutionary new tools to dissect host-parasite interactions. Parasite Immunol 2008; 30:203-14. [PMID: 18324923 DOI: 10.1111/j.1365-3024.2008.01006.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ease of experimental gene transfer into viral and prokaryotic pathogens has made transgenesis a powerful tool for investigating the interactions of these pathogens with the host immune system. Recent advances have made this approach feasible for more complex protozoan parasites. By contrast, the lack of a system for heritable transgenesis in parasitic nematodes has hampered progress toward understanding the development of nematode-specific cellular responses. Recently, however, significant strides towards such a system have been made in several parasitic nematodes, and the possible applications of these in immunological research should now be contemplated. In addition, methods for targeted cell ablation have been successfully adapted from Caenorhabditis elegans methodology and applied to studies of neurobiology and behaviour in Strongyloides stercoralis. Together, these new technical developments offer exciting new tools to interrogate multiple aspects of the host-parasite interaction following nematode infection.
Collapse
Affiliation(s)
- J B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6008, USA.
| | | |
Collapse
|
45
|
Rutkowska-Wlodarczyk I, Stepinski J, Dadlez M, Darzynkiewicz E, Stolarski R, Niedzwiecka A. Structural changes of eIF4E upon binding to the mRNA 5' monomethylguanosine and trimethylguanosine Cap. Biochemistry 2008; 47:2710-20. [PMID: 18220364 DOI: 10.1021/bi701168z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.
Collapse
|
46
|
Rhoads RE, Dinkova TD, Jagus R. Approaches for analyzing the differential activities and functions of eIF4E family members. Methods Enzymol 2007; 429:261-97. [PMID: 17913628 DOI: 10.1016/s0076-6879(07)29013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The translational initiation factor eIF4E binds to the m(7)G-containing cap of mRNA and participates in recruitment of mRNA to ribosomes for protein synthesis. eIF4E also functions in nucleocytoplasmic transport of mRNA, sequestration of mRNA in a nontranslatable state, and stabilization of mRNA against decay in the cytosol. Multiple eIF4E family members have been identified in a wide range of organisms that includes plants, flies, mammals, frogs, birds, nematodes, fish, and various protists. This chapter reviews methods that have been applied to learn the biochemical properties and physiological functions that differentiate eIF4E family members within a given organism. Much has been learned to date about approaches to discover new eIF4E family members, their in vitro properties (cap binding, stimulation of cell-free translation systems), tissue and developmental expression patterns, protein-binding partners, and their effects on the translation or repression of specific subsets of mRNA. Despite these advances, new eIF4E family members continue to be found and new physiological roles discovered.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | |
Collapse
|
47
|
Junio AB, Li X, Massey HC, Nolan TJ, Todd Lamitina S, Sundaram MV, Lok JB. Strongyloides stercoralis: cell- and tissue-specific transgene expression and co-transformation with vector constructs incorporating a common multifunctional 3' UTR. Exp Parasitol 2007; 118:253-65. [PMID: 17945217 DOI: 10.1016/j.exppara.2007.08.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/21/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022]
Abstract
Transgenesis is a valuable methodology for studying gene expression patterns and gene function. It has recently become available for research on some parasitic nematodes, including Strongyloides stercoralis. Previously, we described a vector construct, comprising the promoter and 3' UTR of the S. stercoralis gene Ss era-1 that gives expression of GFP in intestinal cells of developing F1 progeny. In the present study, we identified three new S. stercoralis promoters, which, in combination with the Ss era-1 3' UTR, can drive expression of GFP or the red fluorescent protein, mRFPmars, in tissue-specific fashion. These include Ss act-2, which drives expression in body wall muscle cells, Ss gpa-3, which drives expression in amphidial and phasmidial neurons and Ss rps-21, which drives ubiquitous expression in F1 transformants and in the gonads of microinjected P0 female worms. Concomitant microinjection of vectors containing GFP and mRFPmars gave dually transformed F1 progeny, suggesting that these constructs could be used as co-injection markers for other transgenes of interest. We have developed a vector "toolkit" for S. stercoralis including constructs with the Ss era-1 3' UTR and each of the promoters described above.
Collapse
Affiliation(s)
- Ariel B Junio
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu C, de Oliveira A, Higazi TB, Ghedin E, DePasse J, Unnasch TR. Sequences necessary for trans-splicing in transiently transfected Brugia malayi. Mol Biochem Parasitol 2007; 156:62-73. [PMID: 17727976 PMCID: PMC2039923 DOI: 10.1016/j.molbiopara.2007.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Many genes in parasitic nematodes are both cis- and trans-spliced. Previous studies have demonstrated that a 7nt element encoded in the first intron of the Brugia malayi 70kDa heat shock protein (BmHSP70) gene was necessary to permit trans-splicing of transgenic mRNAs in embryos transfected with constructs encoding portions of the BmHSP70 gene. Here we demonstrate that this element (the B. malayi HSP70 trans-splicing motif, or BmHSP70 TSM) is necessary and sufficient to direct trans-splicing of transgenic mRNAs derived from two genes naturally containing this motif. Mutations introduced into any position of the BmHSP70 TSM abrogated its ability to direct trans-splicing. Transgenic mRNAs derived from embryos transfected with constructs containing promoters and associated downstream domains from two normally trans-spliced genes that lack a BmHSP70 TSM homologue (the B. malayi 12kDa small subunit ribosomal protein (BmRPS12) gene and the B. malayi RNA-binding protein (BmRBP1) gene), were not trans-spliced. Transfer of the BmHSP70 TSM into the first intron of the BmRPS12 gene rendered it competent for trans-splicing. Insertion of the BmHSP70 TSM into the single intron of the BmRBP1 gene did not render it trans-splicing competent. However, tagged constructs of the full-length BmRBP1 gene were trans-splicing competent. An analysis of the first exons and introns of over 200 trans-spliced B. malayi genes found homologues for the BmHSP70 TSM in roughly 25%. Thus, while the BmHSP70 TSM is necessary and sufficient to direct trans-splicing in some genomic contexts, independent trans-splicing signals are employed by other genes.
Collapse
Affiliation(s)
- Canhui Liu
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| | - Ana de Oliveira
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| | - Tarig B. Higazi
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| | - Elodie Ghedin
- Division of Infectious Diseases University of Pittsburgh School of Medicine Pittsburgh, PA 15261
| | - Jay DePasse
- Division of Infectious Diseases University of Pittsburgh School of Medicine Pittsburgh, PA 15261
| | - Thomas R. Unnasch
- Gorgas Center for Geographic Medicine, Division of Infectious, Diseases University of Alabama at Birmingham, Birmingham, Al 35294
| |
Collapse
|
49
|
Cheng G, Cohen L, Mikhli C, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Davis RE. In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Mol Biochem Parasitol 2007; 153:95-106. [PMID: 17391777 PMCID: PMC3650844 DOI: 10.1016/j.molbiopara.2007.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/23/2022]
Abstract
Spliced leader trans-splicing adds a short exon, the spliced leader (SL), to pre-mRNAs to generate 5' ends of mRNAs. Addition of the SL in metazoa also adds a new cap to the mRNA, a trimethylguanosine (m(3)(2,2,7)GpppN) (TMG) that replaces the typical eukaryotic monomethylguanosine (m7GpppN)(m7G) cap. Both trans-spliced (m3(2,2,7)GpppN-SL-RNA) and not trans-spliced (m7GpppN-RNA) mRNAs are present in the same cells. Previous studies using cell-free systems to compare the overall translation of trans-spliced versus non-trans-spliced RNAs led to different conclusions. Here, we examine the contribution of m3(2,2,7)GpppG-cap and SL sequence and other RNA elements to in vivo mRNA translation and stability in nematode embryos. Although 70-90% of all nematode mRNAs have a TMG-cap, the TMG cap does not support translation as well as an m7G-cap. However, when the TMG cap and SL are present together, they synergistically interact and translation is enhanced, indicating both trans-spliced elements are necessary to promote efficient translation. The SL by itself does not act as a cap-independent enhancer of translation. The poly(A)-tail synergistically interacts with the mRNA cap enhancing translation and plays a greater role in facilitating translation of TMG-SL mRNAs. In general, recipient mRNA sequences between the SL and AUG and the 3' UTR do not significantly contribute to the translation of trans-spliced mRNAs. Overall, the combination of TMG cap and SL contribute to mRNA translation and stability in a manner typical of a eukaryotic m7G-cap and 5' UTRs, but they do not differentially enhance mRNA translation or stability compared to RNAs without the trans-spliced elements.
Collapse
Affiliation(s)
- Guofeng Cheng
- Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Leah Cohen
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| | - Claudette Mikhli
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| | | | - Janusz Stepinski
- Departments of Biophysics, University of Warsaw, 02-089 Warsaw, Poland
| | | | - Richard E. Davis
- Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| |
Collapse
|
50
|
MacMorris M, Kumar M, Lasda E, Larsen A, Kraemer B, Blumenthal T. A novel family of C. elegans snRNPs contains proteins associated with trans-splicing. RNA (NEW YORK, N.Y.) 2007; 13:511-20. [PMID: 17283210 PMCID: PMC1831854 DOI: 10.1261/rna.426707] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 01/02/2007] [Indexed: 05/13/2023]
Abstract
In many Caenorhabditis elegans pre-mRNAs, the RNA sequence between the 5' cap and the first 3' splice site is replaced by trans-splicing a short spliced leader (SL) from the Sm snRNP, SL1. C. elegans also utilizes a similar Sm snRNP, SL2, to trans-splice at sites between genes in polycistronic pre-mRNAs from operons. How do SL1 and SL2 snRNPs function in different contexts? Here we show that the SL1 snRNP contains a complex of SL75p and SL21p, which are homologs of novel proteins previously reported in the Ascaris SL snRNP. Interestingly, we show that the SL2 snRNP does not contain these proteins. However, SL75p and SL26p, a paralog of SL21p, are components of another Sm snRNP that contains a novel snRNA species, Sm Y. Knockdown of SL75p is lethal. However, knockdown of either SL21p or SL26p alone leads to cold-sensitive sterility, whereas knockdown of both SL21p and SL26p is lethal. This suggests that these two proteins have overlapping functions even though they are associated with different classes of snRNP. These phenotypic relationships, along with the association of SL26p with SL75p, imply that, like the SL1 RNA/Sm/SL75p/SL21p complex, the Sm Y/Sm/SL75p/SL26p complex is associated with trans-splicing.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Caenorhabditis elegans/genetics
- Genes, Helminth
- Molecular Sequence Data
- Operon
- RNA Splicing
- RNA, Helminth/chemistry
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Spliced Leader/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/classification
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Sequence Homology, Amino Acid
- Trans-Splicing
Collapse
Affiliation(s)
- Margaret MacMorris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|