1
|
Lenting PJ, Denis CV, Christophe OD. How unique structural adaptations support and coordinate the complex function of von Willebrand factor. Blood 2024; 144:2174-2184. [PMID: 38968155 DOI: 10.1182/blood.2023023277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT von Willebrand factor (VWF) is a multimeric protein consisting of covalently linked monomers, which share an identical domain architecture. Although involved in processes such as inflammation, angiogenesis, and cancer metastasis, VWF is mostly known for its role in hemostasis, by acting as a chaperone protein for coagulation factor VIII (FVIII) and by contributing to the recruitment of platelets during thrombus formation. To serve its role in hemostasis, VWF needs to bind a variety of ligands, including FVIII, platelet-receptor glycoprotein Ib-α, VWF-cleaving protease ADAMTS13, subendothelial collagen, and integrin α-IIb/β-3. Importantly, interactions are differently regulated for each of these ligands. How are these binding events accomplished and coordinated? The basic structures of the domains that constitute the VWF protein are found in hundreds of other proteins of prokaryotic and eukaryotic organisms. However, the determination of the 3-dimensional structures of these domains within the VWF context and especially in complex with its ligands reveals that exclusive, VWF-specific structural adaptations have been incorporated in its domains. They provide an explanation of how VWF binds its ligands in a synchronized and timely fashion. In this review, we have focused on the domains that interact with the main ligands of VWF and discuss how elucidating the 3-dimensional structures of these domains has contributed to our understanding of how VWF function is controlled. We further detail how mutations in these domains that are associated with von Willebrand disease modulate the interaction between VWF and its ligands.
Collapse
Affiliation(s)
- Peter J Lenting
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Recktenwald CV, Karlsson G, Garcia-Bonete MJ, Katona G, Jensen M, Lymer R, Bäckström M, Johansson MEV, Hansson GC, Trillo-Muyo S. The structure of the second CysD domain of MUC2 and role in mucin organization by transglutaminase-based cross-linking. Cell Rep 2024; 43:114207. [PMID: 38733585 DOI: 10.1016/j.celrep.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The MUC2 mucin protects the colonic epithelium by a two-layered mucus with an inner attached bacteria-free layer and an outer layer harboring commensal bacteria. CysD domains are 100 amino-acid-long sequences containing 10 cysteines that separate highly O-glycosylated proline, threonine, serine (PTS) regions in mucins. The structure of the second CysD, CysD2, of MUC2 is now solved by nuclear magnetic resonance. CysD2 shows a stable stalk region predicted to be partly covered by adjacent O-glycans attached to neighboring PTS sequences, whereas the CysD2 tip with three flexible loops is suggested to be well exposed. It shows transient dimer interactions at acidic pH, weakened at physiological pH. This transient interaction can be stabilized in vitro and in vivo by transglutaminase 3-catalyzed isopeptide bonds, preferring a specific glutamine residue on one flexible loop. This covalent dimer is modeled suggesting that CysD domains act as connecting hubs for covalent stabilization of mucins to form a protective mucus.
Collapse
Affiliation(s)
- Christian V Recktenwald
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Göran Karlsson
- Swedish NMR Centre, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Lymer
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sergio Trillo-Muyo
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
4
|
Chen PC, Kutzki F, Mojzisch A, Simon B, Xu ER, Aponte-Santamaría C, Horny K, Jeffries C, Schneppenheim R, Wilmanns M, Brehm MA, Gräter F, Hennig J. Structure and dynamics of the von Willebrand Factor C6 domain. J Struct Biol 2022; 214:107923. [PMID: 36410652 DOI: 10.1016/j.jsb.2022.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Fabian Kutzki
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Angelika Mojzisch
- Dermatology and Venereology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emma-Ruoqi Xu
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Kai Horny
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Cy Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Reinhard Schneppenheim
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany; University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Maria A Brehm
- Department of Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Am Eichenhang 50, 57076 Siegen, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 305, 69120 Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
5
|
Qin Y, Luo Z, Zhao K, Nan X, Guo Y, Li W, Wang Q. A new SVWC protein functions as a pattern recognition protein in antibacterial responses in Chinese mitten crab (Eriocheirsinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1125-1135. [PMID: 36402266 DOI: 10.1016/j.fsi.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Because invertebrates lack acquired immunity, they rely primarily on the innate immune system to defend themselves against viral and bacterial infections. SVWC, also called Vago, is a class of small-molecule proteins characterized by a single von Willebrand factor C-domain and appears to be restricted to arthropods. It has been reported that SVWC is involved in antiviral immunity in invertebrates, but whether it is involved in antimicrobial immunity and the mechanism of its involvement in antimicrobial immunity remains unclear. In this study, we identified a novel SVWC gene in Eriocheir sinensis and named it EsSVWC. EsSVWC was found to respond positively to bacterial stimulation and to regulate the expression of related antimicrobial peptides (AMPs). The EsSVWC protein recognized and bound to a variety of pathogen-associated molecular patterns (PAMPs) but did not exhibit direct bactericidal effects. Thus, the EsSVWC protein in crabs helps resist bacterial infection and improve survival rates. In summary, EsSVWC may regulate the innate immune system of crabs in response to microbial invasion in an indirect manner.
Collapse
Affiliation(s)
- Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi Luo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Frampton SL, Sutcliffe C, Baldock C, Ashe HL. Modelling the structure of Short Gastrulation and generation of a toolkit for studying its function in Drosophila. Biol Open 2022; 11:275491. [PMID: 35603711 PMCID: PMC9194680 DOI: 10.1242/bio.059199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
A BMP gradient is essential for patterning the dorsal-ventral axis of invertebrate and vertebrate embryos. The extracellular BMP binding protein Short Gastrulation (Sog) in Drosophila plays a key role in BMP gradient formation. In this study, we combine genome editing, structural and developmental approaches to study Sog function in Drosophila. We generate a sog knockout fly stock, which allows simple reintegration of altered versions of the sog coding sequence. As proof-of-principle, we test the requirement for two cysteine residues that were previously identified as targets for palmitoylation, which has been proposed to enhance Sog secretion. However, we show that the sogC27,28S mutant is viable with only very mild phenotypes, indicating that these residues and their potential modification are not critical for Sog secretion in vivo. Additionally, we use experimental negative stain EM imaging and hydrodynamic data to validate the AlphaFold structure prediction for Sog. The model suggests a more compact shape than the vertebrate ortholog Chordin and conformational flexibility between the C-terminal von Willebrand C domains. We discuss how this altered compactness may contribute to mechanistic differences in Sog and Chordin function during BMP gradient formation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie L. Frampton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK,Authors for correspondence (, )
| | - Hilary L. Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK,Authors for correspondence (, )
| |
Collapse
|
7
|
Expanding the clinical spectrum of COL2A1 related disorders by a mass like phenotype. Sci Rep 2022; 12:4489. [PMID: 35296718 PMCID: PMC8927422 DOI: 10.1038/s41598-022-08476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
MASS phenotype is a connective tissue disorder clinically overlapping with Marfan syndrome and caused by pathogenic variants in FBN1. We report four patients from three families presenting with a MASS-like phenotype consisting of tall stature, arachnodactyly, spinal deformations, dural ectasia, pectus and/or feet deformations, osteoarthritis, and/or high arched palate. Gene panel sequencing was negative for FBN1 variants. However, it revealed likely pathogenic missense variants in three individuals [c.3936G > T p.(Lys1312Asn), c.193G > A p.(Asp65Asn)] and a missense variant of unknown significance in the fourth patient [c.4013G > A p.(Ser1338Asn)] in propeptide coding regions of COL2A1. Pathogenic COL2A1 variants are associated with type II collagenopathies comprising a remarkable clinical variablility. Main features include skeletal dysplasia, ocular anomalies, and auditory defects. A MASS-like phenotype has not been associated with COL2A1 variants before. Thus, the identification of likely pathogenic COL2A1 variants in our patients expands the phenotypic spectrum of type II collagenopathies and suggests that a MASS-like phenotype can be assigned to various hereditary disorders of connective tissue. We compare the phenotypes of our patients with related disorders of connective tissue and discuss possible pathomechanisms and genotype–phenotype correlations for the identified COL2A1 variants. Our data recommend COL2A1 sequencing in FBN1-negative patients suggestive for MASS/Marfan-like phenotype (without aortopathy).
Collapse
|
8
|
Liu X, Dong H, Gong Y, Wang L, Zhang R, Zheng T, Zheng Y, Shen S, Zheng C, Tian M, Liu N, Zhang X, Zheng QY. A Novel missense mutation of
COL2A1
gene in a large family with stickler syndrome type I. J Cell Mol Med 2022; 26:1530-1539. [PMID: 35064646 PMCID: PMC8899160 DOI: 10.1111/jcmm.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/27/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Stickler syndrome type I (STL1, MIM 108300) is characterized by ocular, auditory, skeletal and orofacial manifestations. Nonsyndromic ocular STL1 (MIM 609508) characterized by predominantly ocular features is a subgroup of STL1, and it is inherited in an autosomal dominant manner. In this study, a novel variant c.T100>C (p.Cys34Arg) in COL2A1 related to a large nonsyndromic ocular STL1 family was identified through Exome sequencing (ES). Bioinformatics analysis indicated that the variant site was highly conserved and the pathogenic mechanism of this variant may involve in affected structure of chordin‐like cysteine‐rich (CR) repeats of ColIIA. Minigene assay indicated that this variant did not change alternative splicing of exon2 of COL2A1. Moreover, the nonsyndromic ocular STL1 family with 16 affected members showed phenotype variability and certain male gender trend. None of the family members had hearing loss. Our findings would expand the knowledge of the COL2A1 mutation spectrum, and phenotype variability associated with nonsyndromic ocular STL1. Search for genetic modifiers and related molecular pathways leading to the phenotype variation warrants further studies.
Collapse
Affiliation(s)
- Xiuzhen Liu
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Hongliang Dong
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Yuerong Gong
- Department of Ophthalmology Binzhou Medical University Hospital Binzhou China
| | - Lianqing Wang
- Center of Translational Medicine Central Hospital of Zibo Zibo China
| | - Ruyi Zhang
- Department of Anesthesiology Binzhou Medical University Hospital Binzhou China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute College of Special Education Binzhou Medical University Yantai China
| | - Yuxi Zheng
- Department of Ophthalmology Duke University Durham North Carolina USA
| | - Shuang Shen
- Hearing and Speech Rehabilitation Institute College of Special Education Binzhou Medical University Yantai China
| | - Chelsea Zheng
- Department of Otolaryngology‐HNS Case Western Reserve University Cleveland USA
| | - Mingming Tian
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Naiguo Liu
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery Institute of Otolaryngology Binzhou Medical University Hospital Binzhou China
| | - Qing Yin Zheng
- Department of Otolaryngology‐HNS Case Western Reserve University Cleveland USA
| |
Collapse
|
9
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
10
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
11
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
13
|
Abstract
Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.
Collapse
Affiliation(s)
- Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, SE 405 30 Gothenburg, Sweden;
| |
Collapse
|
14
|
Xu ER, von Bülow S, Chen PC, Lenting PJ, Kolšek K, Aponte-Santamaría C, Simon B, Foot J, Obser T, Schneppenheim R, Gräter F, Denis CV, Wilmanns M, Hennig J. Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor. Blood 2019; 133:366-376. [PMID: 30305279 PMCID: PMC6450055 DOI: 10.1182/blood-2018-04-843615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Sören von Bülow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter J Lenting
- INSERM, UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Katra Kolšek
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Mathematikon, Heidelberg University, Heidelberg, Germany
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jaelle Foot
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; and
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; and
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Cécile V Denis
- INSERM, UMR_S 1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
15
|
Zou J, Wang W, Nie Y, Xu X, Ma N, Lendlein A. Microscale roughness regulates laminin-5 secretion of bone marrow mesenchymal stem cells. Clin Hemorheol Microcirc 2019; 73:237-247. [PMID: 31561334 DOI: 10.3233/ch-199205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Laminin-5 (Ln-5), an important extracellular matrix (ECM) protein, plays a critical role in regulating the growth and differentiation of mesodermal tissues, including bone. Ln-5 can be secreted by the mesenchymal stem cells (MSCs), and Ln-5 promotes MSCs osteogenic differentiation. It has been demonstrated that a substrate's surface topography could regulate MSC secretion and differentiation. A better understanding of the mechanism of how Ln-5 and surface roughness regulate MSC osteogenic differentiation would guide the design of surface topography and coatings of orthopedic implants and cell culture substrates. However, few studies have investigated the relationship between surface roughness and the secretion of Ln-5 in MSC osteogenic differentiation. Whether substrate surface topography regulates MSC differentiation via regulating Ln-5 secretion and how surface topography contributes to the secretion of Ln-5 are still not known. In this study, the influence of microscale roughness at different levels (R0, R1 and R2) on the secretion of Ln-5 of human bone marrow MSCs (hBMSCs) and subsequent osteogenic differentiation were examined. hBMSCs spreading, distribution and morphology were greatly affected by different roughness levels. A significantly higher level of Ln-5 secretion was detected on R2, which correlated to the local cell density regulated by the rough surface. Ln-5 binding integrins (α2 and α3) were strongly activated on R2. In addition, the results from hBMSCs on R0 inserts with different cell densities further confirmed that local cell density regulated Ln-5 secretion and cell surface integrin activation. In addition, the mineralization level of MSCs on R2 was remarkably higher than that on R0 and R1. These results suggest that hBMSC osteogenic differentiation level on R2 roughness was enhanced via increased Ln-5 secretion that was attributed to rough surface regulated local cell density. Thus, the microroughness could serve as effective topographical stimulus in cell culture devices and bone implant materials.
Collapse
Affiliation(s)
- Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
16
|
Maurizi E, Schiroli D, Atkinson SD, Mairs L, Courtney DG, O'Hagan B, McGilligan VE, Pagnamenta AT, Taylor JC, Vasquez JJD, Illanes-Velarde DE, Goldsmith D, Gouws P, Moore JE, Nesbit MA, Moore CBT. A novel role for CRIM1 in the corneal response to UV and pterygium development. Exp Eye Res 2018; 179:75-92. [PMID: 30365943 DOI: 10.1016/j.exer.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/21/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Abstract
Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.2: c.1235 A > C (H412P) through whole-exome sequencing and subsequent analysis. CRIM1 is expressed in the developing eye, adult cornea and conjunctiva, having a role in cell differentiation and migration but also in angiogenesis, all processes involved in pterygium formation. We demonstrate elevated CRIM1 expression in pterygium tissue from additional individual Northern Irish patients compared to unaffected conjunctival controls. UV irradiation of HCE-S cells resulted in an increase in ERK phosphorylation and CRIM1 expression, the latter further elevated by the addition of the MEK1/2 inhibitor, U0126. Conversely, siRNA knockdown of CRIM1 led to decreased UV-induced ERK phosphorylation and increased BCL2 expression. Transient expression of the mutant H412P CRIM1 in corneal epithelial HCE-S cells showed that, unlike wild-type CRIM1, it was unable to reduce the cell proliferation, increased ERK phosphorylation and apoptosis induced through a decrease of BCL2 expression levels. We propose here a series of intracellular events where CRIM1 regulation of the ERK pathway prevents UV-induced cell proliferation and may play an important role in the in the pathogenesis of pterygium.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Davide Schiroli
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Sarah D Atkinson
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C-TRIC Building Altnagelvin Area Hospital, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | - Laura Mairs
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - David G Courtney
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Barry O'Hagan
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Victoria E McGilligan
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C-TRIC Building Altnagelvin Area Hospital, Ulster University, Derry/Londonderry, BT47 6SB, UK
| | | | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Dave Goldsmith
- Andean Medical Mission, 42, Sherwood Road, Bognor Regis, West Sussex, PO22 9DR, UK
| | - Pieter Gouws
- Conquest Hospital, The Ridge, St Leonards-on-Sea, East Sussex, TN37 7RD, UK
| | - Jonathan E Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - C B Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
17
|
URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4060728. [PMID: 29955600 PMCID: PMC6000846 DOI: 10.1155/2018/4060728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022]
Abstract
Upregulated gene 11 (URG11), a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP), compared with human prostate epithelial cell line (RWPE-1). Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.
Collapse
|
18
|
|
19
|
Shekhar MS, Gomathi A, Dubey NK, Vinaya Kumar K, Vijayan KK. Effect of immune gene silencing in WSSV infected tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 70:252-259. [PMID: 28882801 DOI: 10.1016/j.fsi.2017.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
White spot syndrome virus, continues to cause huge economic loss to aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand the host pathogen interaction at the molecular level. Suppression subtractive hybridization (SSH) cDNA library was constructed which led to identification of several differentially expressed genes in response to WSSV infection in Penaeus monodon. The genes expressed in SSH cDNA library of shrimp gill and gut tissues belonged to a wide range of biological functions. The three differentially expressed genes, Single von Willebrand factor type C domain protein (pmSVC), P53 protein gene (pmP53) and ADP ribosylation factor (pmArf) were up-regulated against WSSV infection and were further characterized by gene silencing to study the role of these shrimp immune genes on WSSV multiplication. The sequence-specific knock down of pmSVC, pmP53 and pmArf using the dsRNA revealed that in pmSVC-dsRNA inoculated shrimps WSSV replication was more with increased viral copy numbers when compared with pmP53-dsRNA and pmArf -dsRNA inoculated shrimps. The varied response of immune genes to WSSV infection, indicated that host genes may either inhibit virus replication to some extent or might act as a target to facilitate viral pathogenesis.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India.
| | - A Gomathi
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - N K Dubey
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - K Vinaya Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - K K Vijayan
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| |
Collapse
|
20
|
Xu ER, Blythe EE, Fischer G, Hyvönen M. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2. J Biol Chem 2017; 292:12516-12527. [PMID: 28584056 DOI: 10.1074/jbc.m117.788992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Indexed: 01/10/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Emily E Blythe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
21
|
Liu ZL, Wu J, Wang LX, Yang JF, Xiao GM, Sun HP, Chen YJ. Knockdown of Upregulated Gene 11 (URG11) Inhibits Proliferation, Invasion, and β-Catenin Expression in Non-Small Cell Lung Cancer Cells. Oncol Res 2017; 24:197-204. [PMID: 27458101 PMCID: PMC7838721 DOI: 10.3727/096504016x14648701447850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Upregulated gene 11 (URG11), a new gene upregulated by hepatitis B virus X protein, was found to be involved in the development and progression of several tumors. However, the role of URG11 in human non-small cell lung cancer (NSCLC) has not yet been determined. Therefore, the aim of the present study was to explore the role of URG11 in human NSCLC. Our results found that URG11 was highly expressed in human NSCLC tissues compared with matched normal lung tissues, and higher levels were found in NSCLC cell lines in comparison to the normal lung cell line. Moreover, we also found that knockdown of URG11 significantly inhibited proliferation, migration/invasion of NSCLC cells, as well as suppressed tumor growth in vivo. Furthermore, knockdown of URG11 suppressed the expression of β-catenin, c-Myc, and cyclin D1 in NSCLC cells. Taken together, the study reported here provided evidence that URG11 downregulation suppresses proliferation, invasion, and β-catenin expression in NSCLC cells. Thus, URG11 may be a novel potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhe-Liang Liu
- The First Department of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, D-97082 Wuerzburg, Germany
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
- Department of Biological Chemistry and Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
23
|
Xuan N, Rajashekar B, Kasvandik S, Picimbon JF. Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Troilo H, Barrett AL, Zuk AV, Lockhart-Cairns MP, Wohl AP, Bayley CP, Dajani R, Tunnicliffe RB, Green L, Jowitt TA, Sengle G, Baldock C. Structural characterization of twisted gastrulation provides insights into opposing functions on the BMP signalling pathway. Matrix Biol 2016; 55:49-62. [PMID: 26829466 PMCID: PMC5080453 DOI: 10.1016/j.matbio.2016.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/21/2023]
Abstract
Twisted gastrulation (Tsg) and chordin are secreted glycoproteins that function together as BMP (bone morphogenetic protein) antagonists to regulate BMP growth factor signalling. Chordin binds to BMPs, preventing them from interacting with their receptors and Tsg is known to strengthen this inhibitory complex. Tsg also acts as a BMP agonist by promoting cleavage of chordin by tolloid-family proteinases. Here we explore the structural mechanism through which Tsg exerts this dual activity. We have characterized the nanoscale structure of human Tsg using in-solution biomolecular analysis and show that Tsg is a globular monomer with a flattened cross shape. Tsg has a high proportion of N-linked glycans, in relation to its molecular weight, which supports a role in solubilising BMPs. Tsg binds with high affinity to the C-terminal region of chordin and was also able to inhibit BMP-7 signalling directly but did not have an effect on BMP-4 signalling. Although both Tsg and mammalian tolloid are involved in chordin cleavage, no interaction could be detected between them using surface plasmon resonance. Together these data suggest that Tsg functions as a BMP-agonist by inducing conformational change in chordin making it more susceptible to tolloid cleavage and as a BMP-antagonist either independently or via a chordin-mediated mechanism. Following single cleavage of chordin by tolloids, Tsg continues to strengthen the inhibitory complex, supporting a role for partially cleaved chordin in BMP regulation.
Collapse
Affiliation(s)
- Helen Troilo
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Anne L Barrett
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK; Beamline B21, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Alexander P Wohl
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christopher P Bayley
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Rana Dajani
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Richard B Tunnicliffe
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Lewis Green
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M139PT, UK.
| |
Collapse
|
25
|
Abstract
Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin–BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.
Collapse
|
26
|
Abstract
Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29-31 modules - 12 type I, two type II and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to "beads on a string". There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins.
Collapse
Affiliation(s)
- Lisa M Maurer
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Wenjiang Ma
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| |
Collapse
|
27
|
Itoh N, Ohta H. Secreted bone morphogenetic protein antagonists of the Chordin family. Biomol Concepts 2015; 1:297-304. [PMID: 25962004 DOI: 10.1515/bmc.2010.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chordin, Chordin-like 1, and Chordin-like 2 are secreted bone morphogenetic protein (BMP) antagonists with highly conserved Chordin-like cysteine-rich domains. Recently, Brorin and Brorin-like have been identified as new Chordin-like BMP antagonists. A Chordin ortholog, Short gastrulation, has been identified in Drosophila, a protostome, but not other orthologs. By contrast, Chordin, Chordin-like 1, and Chordin-like 2 have been identified in Ciona intestinalis, the closest living relatives of the vertebrates, but Brorin and Brorin-like have not. However, all these genes have been identified in most vertebrates. These results indicate that Chordin, Chordin-like 1, and Chordin-like 2 were generated early in the metazoan lineage. Later on, Brorin and Brorin-like were potentially generated by a genome duplication event in early vertebrate evolution. All four cysteine-rich domains of Chordin are essential for the regulation of its action. However, Chordin-like 1, Chordin-like 2, Brorin, and Brorin-like contain only two or three cysteine-rich domains. Although their mechanisms of action remain unclear, they might be distinct from that of Chordin. The expression profiles of these genes in mice and zebrafish indicate unique roles at embryonic and postnatal stages. Mutant/knockdown mouse and zebrafish phenotypes indicate roles in morphogenesis during gastrulation, dorsoventral axis formation, ear, pharyngeal, and neural development, and venous and arterial patterning. Aberrant Chordin expression might result in hereditary diseases and cancer. In addition, altered serum Chordin and Chordin-like 1 levels are also observed in non-hereditary diseases. Together, these results indicate pathophysiological roles.
Collapse
|
28
|
Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae
and determination of its disulfide bonding pattern. J Pept Sci 2015; 21:636-43. [DOI: 10.1002/psc.2778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|
29
|
Kamachi S, Nagao J, Miyashita M, Nakagawa Y, Miyagawa H, Tada T. Crystallization and preliminary X-ray diffraction studies of La1 from Liocheles australasiae. Acta Crystallogr F Struct Biol Commun 2014; 70:915-7. [PMID: 25005088 PMCID: PMC4089531 DOI: 10.1107/s2053230x14010589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
A novel scorpion venom peptide, La1 from Liocheles australasiae, with a molecular weight of 7.8 kDa, is presumed to possess a single von Willebrand factor type C (VWC) domain, a common protein module, based on the position of eight Cys residues in its sequence. The biological function of La1 is still unknown. Deciphering its three-dimensional structure will be helpful in understanding its biological function. La1 was crystallized by the sitting-drop vapour-diffusion method using magnesium sulfate as a precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=63.0, b=30.2, c=32.3 Å, β=108.5°, and diffracted to 1.9 Å resolution. The calculated VM based on one molecule per asymmetric unit was 1.87 Å3 Da(-1). The solvent content was 34.1%.
Collapse
Affiliation(s)
- Saori Kamachi
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Junya Nagao
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiji Tada
- Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
30
|
Abstract
When blood vessels are cut, the forces in the bloodstream increase and change character. The dark side of these forces causes hemorrhage and death. However, von Willebrand factor (VWF), with help from our circulatory system and platelets, harnesses the same forces to form a hemostatic plug. Force and VWF function are so closely intertwined that, like members of the Jedi Order in the movie Star Wars who learn to use "the Force" to do good, VWF may be considered the Jedi knight of the bloodstream. The long length of VWF enables responsiveness to flow. The shape of VWF is predicted to alter from irregularly coiled to extended thread-like in the transition from shear to elongational flow at sites of hemostasis and thrombosis. Elongational force propagated through the length of VWF in its thread-like shape exposes its monomers for multimeric binding to platelets and subendothelium and likely also increases affinity of the A1 domain for platelets. Specialized domains concatenate and compact VWF during biosynthesis. A2 domain unfolding by hydrodynamic force enables postsecretion regulation of VWF length. Mutations in VWF in von Willebrand disease contribute to and are illuminated by VWF biology. I attempt to integrate classic studies on the physiology of hemostatic plug formation into modern molecular understanding, and point out what remains to be learned.
Collapse
|
31
|
Abstract
Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two other isoforms have been reported (IIC and IID) that also involve splicing of exon 2; these findings highlight the complexities involving regulation of COL2A1 expression. The biological significance of why different isoforms of COL2A1 exist within the context of skeletal development and maintenance is still not completely understood. This review will provide current knowledge on COL2A1 isoform expression during chondrocyte differentiation and what is known about some of the mechanisms that control exon 2 alternative splicing. Utilization of mouse models to address the biological significance of Col2a1 alternative splicing in vivo will also be discussed. From the knowledge acquired to date, some new questions and concepts are now being proposed on the importance of Col2a1 alternative splicing in regulating extracellular matrix assembly and how this may subsequently affect cartilage and endochondral bone quality and function.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|
32
|
Abstract
Although much of the function of von Willebrand factor (VWF) has been revealed, detailed insight into the molecular structure that enables VWF to orchestrate hemostatic processes, in particular factor VIII (FVIII) binding and stabilization in plasma, is lacking. Here, we present the high-resolution solution structure and structural dynamics of the D' region of VWF, which constitutes the major FVIII binding site. D' consists of 2 domains, trypsin-inhibitor-like (TIL') and E', of which the TIL' domain lacks extensive secondary structure, is strikingly dynamic and harbors a cluster of pathological mutations leading to decreased FVIII binding affinity (type 2N von Willebrand disease [VWD]). This indicates that the backbone malleability of TIL' is important for its biological activity. The principal FVIII binding site is localized to a flexible, positively charged region on TIL', which is supported by the rigid scaffold of the TIL' and E' domain β sheets. Furthermore, surface-charge mapping of the TIL'E' structure reveals a potential mechanism for the electrostatically guided, high-affinity VWF⋅FVIII interaction. Our findings provide novel insights into VWF⋅FVIII complex formation, leading to a greater understanding of the molecular basis of the bleeding diathesis type 2N VWD.
Collapse
|
33
|
Shapiro SE, Nowak AA, Wooding C, Birdsey G, Laffan MA, McKinnon TAJ. The von Willebrand factor predicted unpaired cysteines are essential for secretion. J Thromb Haemost 2014; 12:246-54. [PMID: 24283831 DOI: 10.1111/jth.12466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND von Willebrand factor (VWF) contains free thiols that mass spectroscopy has located to nine cysteines: two in the D3 domain (Cys889 and Cys898) and seven in the C domains (Cys2448, Cys2451, Cys2453, Cys2490, Cys2491, Cys2528, and Cys2533) (J Biol Chem, 7, 2007, 35604; Blood, 118, 5312). It has been suggested that these free thiols function to regulate the self-association of VWF through thiol-disulfide exchange (J Biol Chem, 7, 2007, 35604; Blood, 118, 5312). However, recent structural modeling has predicted that these cysteines are, in fact, disulfide-bonded (Blood, 118, 5312; Blood, 120, 449). OBJECTIVES To use mutation and expression analyses to investigate how these conflicting reports might be compatible with the synthesis and expression of VWF. METHODS AND RESULTS Both full-length VWF and VWF fragments with cysteine to alanine mutations of the nine cysteines and two predicted binding partners (Cys2431 and Cys2468) failed to secrete. Mutation of a cysteine pair, C2431A/C2453A, similarly resulted in a failure to secrete, indicating that this is not secondary to creation of an unpaired thiol. Deletion mutants containing seven of these cysteines, conforming to hypothesized domain boundaries, also failed to secrete: ∆C1C6 (2255-2720), ∆C3C4 (2429-2577), ∆C3 (2429-2496), and ∆C4 (2497-2577). Analysis of cell lysates and immunofluorescence confirmed that the mutants were retained within the endoplasmic reticulum (ER). Coexpression with wild-type VWF rescued secretion of some mutants to a limited extent. CONCLUSIONS These data suggest: first, that pairing of cysteines implicated in free thiol exchange is essential for correct folding of the VWF molecule, and unpairing must occur following exit from the ER or secretion from the cell; and second, that intact C domains are essential for efficient VWF secretion and must interact in the ER.
Collapse
Affiliation(s)
- S E Shapiro
- Department of Haematology, Faculty of Medicine, Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | |
Collapse
|
34
|
Fiebig JE, Weidauer SE, Qiu LY, Bauer M, Schmieder P, Beerbaum M, Zhang JL, Oschkinat H, Sebald W, Mueller TD. The clip-segment of the von Willebrand domain 1 of the BMP modulator protein Crossveinless 2 is preformed. Molecules 2013; 18:11658-82. [PMID: 24071977 PMCID: PMC6270503 DOI: 10.3390/molecules181011658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are secreted protein hormones that act as morphogens and exert essential roles during embryonic development of tissues and organs. Signaling by BMPs occurs via hetero-oligomerization of two types of serine/threonine kinase transmembrane receptors. Due to the small number of available receptors for a large number of BMP ligands ligand-receptor promiscuity presents an evident problem requiring additional regulatory mechanisms for ligand-specific signaling. Such additional regulation is achieved through a plethora of extracellular antagonists, among them members of the Chordin superfamily, that modulate BMP signaling activity by binding. The key-element in Chordin-related antagonists for interacting with BMPs is the von Willebrand type C (VWC) module, which is a small domain of about 50 to 60 residues occurring in many different proteins. Although a structure of the VWC domain of the Chordin-member Crossveinless 2 (CV2) bound to BMP-2 has been determined by X-ray crystallography, the molecular mechanism by which the VWC domain binds BMPs has remained unclear. Here we present the NMR structure of the Danio rerio CV2 VWC1 domain in its unbound state showing that the key features for high affinity binding to BMP-2 is a pre-oriented peptide loop.
Collapse
Affiliation(s)
- Juliane E. Fiebig
- Julius-von-Sachs Institut für Biowissenschaften der Universität Würzburg, Julius-von-Sachs Platz 2, Würzburg D-97082, Germany; E-Mails: (J.E.F.); (S.E.W.); (M.B.)
| | - Stella E. Weidauer
- Julius-von-Sachs Institut für Biowissenschaften der Universität Würzburg, Julius-von-Sachs Platz 2, Würzburg D-97082, Germany; E-Mails: (J.E.F.); (S.E.W.); (M.B.)
| | - Li-Yan Qiu
- Lehrstuhl für Physiologische Chemie II, Biozentrum der Universität Würzburg, Am Hubland, Würzburg D-97074, Germany; E-Mails: (L.-Y.Q.); (J.-L.Z.); (W.S.)
| | - Markus Bauer
- Julius-von-Sachs Institut für Biowissenschaften der Universität Würzburg, Julius-von-Sachs Platz 2, Würzburg D-97082, Germany; E-Mails: (J.E.F.); (S.E.W.); (M.B.)
| | - Peter Schmieder
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle Str. 10, Berlin D-13125, Germany; E-Mails: (P.S.); (M.B.); (H.O.)
| | - Monika Beerbaum
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle Str. 10, Berlin D-13125, Germany; E-Mails: (P.S.); (M.B.); (H.O.)
| | - Jin-Li Zhang
- Lehrstuhl für Physiologische Chemie II, Biozentrum der Universität Würzburg, Am Hubland, Würzburg D-97074, Germany; E-Mails: (L.-Y.Q.); (J.-L.Z.); (W.S.)
| | - Hartmut Oschkinat
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle Str. 10, Berlin D-13125, Germany; E-Mails: (P.S.); (M.B.); (H.O.)
| | - Walter Sebald
- Lehrstuhl für Physiologische Chemie II, Biozentrum der Universität Würzburg, Am Hubland, Würzburg D-97074, Germany; E-Mails: (L.-Y.Q.); (J.-L.Z.); (W.S.)
| | - Thomas D. Mueller
- Julius-von-Sachs Institut für Biowissenschaften der Universität Würzburg, Julius-von-Sachs Platz 2, Würzburg D-97082, Germany; E-Mails: (J.E.F.); (S.E.W.); (M.B.)
| |
Collapse
|
35
|
Choi J, Lin A, Shrier E, Lau LF, Grant MB, Chaqour B. Degradome products of the matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem 2013; 288:23075-89. [PMID: 23798676 DOI: 10.1074/jbc.m113.475418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CCN1 is a matricellular protein involved in normal vascular development and tissue repair. CCN1 exhibits cell- and context-dependent activities that are reflective of its tetramodular structure phylogenetically linked to four domains found in various matrix proteins. Here, we show that vitreal fluids from patients with proliferative diabetic retinopathy (PDR) were enriched with a two-module form of CCN1 comprising completely or partially the insulin-like growth factor-binding protein (IGFBP) and von Willebrand factor type C (vWC) domains. The two- and three-module forms comprising, in addition to IGFBP and vWC, the thrombospondin type 1 (TSP1) repeats are CCN1 degradome products by matrix metalloproteinase-2 and -14. The functional significance of CCN1 and its truncated variants was determined in the mouse model of oxygen-induced retinopathy, which simulates neovascular growth associated with PDR and assesses treatment outcomes. In this model, lentivirus-mediated expression of either CCN1 or the IGFBP-vWC-TSP1 form reduced ischemia-induced neovascularization, whereas ectopic expression of the IGFBP-vWC variant exacerbated pathological angiogenesis. The IGFBP-vWC form has potent proangiogenic properties promoting retinal endothelial cell growth, migration, and three-dimensional tubular structure formation, whereas the IGFBP-vWC-TSP1 variant suppressed cell growth and angiogenic gene expression. Both IGFBP-vWC and IGFBP-vWC-TSP1 forms exhibited predictable variations of their domain folding that enhanced their functional potential. These data provide new insights into the formation and activities of CCN1-truncated variants and raise the predictive value of the form containing completely or partially the IGFBP and vWC domains as a surrogate marker of CCN1 activity in PDR distinguishing pathological from physiological angiogenesis.
Collapse
Affiliation(s)
- Jinok Choi
- Department of Cell Biology, State University of New York Eye Institute, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
36
|
Soudi M, Zamocky M, Jakopitsch C, Furtmüller PG, Obinger C. Molecular evolution, structure, and function of peroxidasins. Chem Biodivers 2012; 9:1776-93. [PMID: 22976969 PMCID: PMC3533774 DOI: 10.1002/cbdv.201100438] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Indexed: 12/02/2022]
Abstract
Peroxidasins represent the subfamily 2 of the peroxidase-cyclooxygenase superfamily and are closely related to chordata peroxidases (subfamily 1) and peroxinectins (subfamily 3). They are multidomain proteins containing a heme peroxidase domain with high homology to human lactoperoxidase that mediates one- and two-electron oxidation reactions. Additional domains of the secreted and glycosylated metalloproteins are type C-like immunoglobulin domains, typical leucine-rich repeats, as well as a von Willebrand factor C module. These are typical motifs of extracellular proteins that mediate protein-protein interactions. We have reconstructed the phylogeny of this new family of oxidoreductases and show the presence of four invertebrate clades as well as one vertebrate clade that includes also two different human representatives. The variability of domain assembly in the various clades was analyzed, as was the occurrence of relevant catalytic residues in the peroxidase domain based on the knowledge of catalysis of the mammalian homologues. Finally, the few reports on expression, localization, enzymatic activity, and physiological roles in the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens are critically reviewed. Roles attributed to peroxidasins include antimicrobial defense, extracellular matrix formation, and consolidation at various developmental stages. Many research questions need to be solved in future, including detailed biochemical/physical studies and elucidation of the three dimensional structure of a model peroxidasin as well as the relation and interplay of the domains and the in vivo functions in various organisms including man.
Collapse
Affiliation(s)
- Monika Soudi
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology at BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna
| | | | | | | | | |
Collapse
|
37
|
Zhou YF, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood 2012; 120:449-58. [PMID: 22490677 PMCID: PMC3398765 DOI: 10.1182/blood-2012-01-405134] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/24/2012] [Indexed: 11/20/2022] Open
Abstract
In the present study, we re-annotated von Willebrand factor (VWF), assigned its entire sequence to specific modules, and related these modules to structure using electron microscopy (EM). The D domains are assemblies of smaller modules visible as lobes in EM. Modules in the D-domain assemblies include von Willebrand D, 8-cysteine, trypsin inhibitor-like, E or fibronectin type 1-like domains, and a unique D4N module in D4. The D1-D2 prodomain shows 2 large connected assemblies, each containing smaller lobes. The previous B and C regions of VWF are re-annotated as 6 tandem von Willebrand C (VWC) and VWC-like domains. These 6 VWC domains correspond to 6 elongated domains that associate in pairs at acidic pH in the stem region of VWF dimeric bouquets. This correspondence is demonstrated by binding of integrin α(IIb)β(3) to the fourth module seen in EM, VWC4, which bears the VWF Arg-Gly-Asp motif. The C-terminal cystine knot domain dimerizes end-to-end in a manner predicted by homology to TGF-β and orients approximately perpendicular to the VWC domains in dimeric bouquets. Homologies of domains in VWF to domains in other proteins allow many disulfide bonds to be tentatively assigned, which may have functional implications.
Collapse
Affiliation(s)
- Yan-Feng Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Immune Disease Institute and Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lewis R, Ravindran S, Wirthlin L, Traeger G, Fernandes RJ, McAlinden A. Disruption of the developmentally-regulated Col2a1 pre-mRNA alternative splicing switch in a transgenic knock-in mouse model. Matrix Biol 2012; 31:214-26. [PMID: 22248926 PMCID: PMC3295890 DOI: 10.1016/j.matbio.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/17/2022]
Abstract
The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. Another isoform, IIC, has also been identified that contains a truncated exon 2 and is not translated into protein. The biological significance of this IIA/IID to IIB splicing switch is not known. Utilizing a splice site targeting knock-in approach, a 4 nucleotide mutation was created to convert the 5' splice site of Col2a1 exon 2 from a weak, non-consensus sequence to a strong, consensus splice site. This resulted in apparent expression of only the IIA mRNA isoform, as confirmed in vitro by splicing of a type II procollagen mini-gene containing the 5' splice site mutation. To test the splice site targeting approach in vivo, homozygote mice engineered to retain IIA exon 2 (Col2a1(+ex2)) were generated. Chondrocytes from hindlimb epiphyseal cartilage of homozygote mice were shown to express only IIA mRNA and protein at all pre- and post-natal developmental stages analyzed (E12.5, E16.5, P0, P3, P7, P14, P28 and P70). As expected, type IIB procollagen was the major isoform produced in wild type cartilage at all post-natal time points. Col2a1(+ex2) homozygote mice are viable, appear healthy and display no overt phenotype to date. However, research is currently underway to investigate the biological consequence of persistent expression of the exon 2-encoded conserved cysteine-rich domain in post-natal skeletal tissues.
Collapse
Affiliation(s)
- Renate Lewis
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
| | - Geoffrey Traeger
- Department of Orthopaedic and Sports Medicine, University of Washington, Seattle, WA
| | - Russell J. Fernandes
- Department of Orthopaedic and Sports Medicine, University of Washington, Seattle, WA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
39
|
Lateral self-association of VWF involves the Cys2431-Cys2453 disulfide/dithiol in the C2 domain. Blood 2011; 118:5312-8. [DOI: 10.1182/blood-2011-06-360297] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
VWF is a plasma protein that binds platelets to an injured vascular wall during thrombosis. When exposed to the shear forces found in flowing blood, VWF molecules undergo lateral self-association that results in a meshwork of VWF fibers. Fiber formation has been shown to involve thiol/disulfide exchange between VWF molecules. A C-terminal fragment of VWF was expressed in mammalian cells and examined for unpaired cysteine thiols using tandem mass spectrometry (MS). The VWF C2 domain Cys2431-Cys2453 disulfide bond was shown to be reduced in approximately 75% of the molecules. Fragments containing all 3 C domains or just the C2 domain formed monomers, dimers, and higher-order oligomers when expressed in mammalian cells. Mutagenesis studies showed that both the Cys2431-Cys2453 and nearby Cys2451-Cys2468 disulfide bonds were involved in oligomer formation. Our present findings imply that lateral VWF dimers form when a Cys2431 thiolate anion attacks the Cys2431 sulfur atom of the Cys2431-Cys2453 disulfide bond of another VWF molecule, whereas the Cys2451-Cys2468 disulfide/dithiol mediates formation of trimers and higher-order oligomers. These observations provide the basis for exploring defects in lateral VWF association in patients with unexplained hemorrhage or thrombosis.
Collapse
|
40
|
Yan S, Zou G, Li S, Wang H, Liu H, Zhai G, Guo P, Song H, Yan C, Tao Y. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1173-81. [PMID: 21805338 DOI: 10.1007/s00122-011-1657-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/09/2011] [Indexed: 05/04/2023]
Abstract
Rice seed size is an important agronomic trait in determining the yield potential, and four seed size related genes (GS3, GW2, qSW5/GW5 and GIF1) have been cloned in rice so far. However, the relationship among these four genes is still unclear, which will impede the process of gene pyramiding breeding program to some extent. To shade light on the relationship of above four genes, gene expression analysis was performed with GS3-RNAi, GW2-RNAi lines and CSSL of qSW5 at the transcriptional level. The results clearly showed that qSW5 and GW2 positively regulate the expression of GS3. Meanwhile, qSW5 can be down-regulated by repression of GW2 transcription. Additionally, GIF1 expression was found to be positively regulated by qSW5 but negatively by GW2 and GS3. Moreover, the allelic effects of qSW5 and GS3 were detailedly characterized based on a natural population consisting of 180 rice cultivars. It was indicated that mutual interactions exist between the two genes, in which, qSW5 affecting seed length is masked by GS3 alleles, and GS3 affecting seed width is masked by qSW5 alleles. These findings provide more insights into the molecular mechanisms underlying seed size development in rice and are likely to be useful for improving rice grain yield.
Collapse
Affiliation(s)
- Song Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that undergo transient or longer-term interactions with other extracellular matrix components. They share properties with other matrix molecules, cytokines, adaptor proteins, and chaperones, modulate the organization of collagen fibrils, and bind and localize an array of growth factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and context-dependent pathways, mammalian thrombospondins contribute to wound healing and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis. We overview the domain organization and structure of thrombospondins, key features of their evolution, and their cell biology. We discuss their roles in vivo, associations with human disease, and ongoing translational applications. In many respects, we are only beginning to appreciate the important roles of these proteins in physiology and pathology.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
42
|
Galat A. Common structural traits for cystine knot domain of the TGFβ superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cell Mol Life Sci 2011; 68:3437-51. [PMID: 21369710 PMCID: PMC11114550 DOI: 10.1007/s00018-011-0643-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/08/2011] [Accepted: 02/15/2011] [Indexed: 01/22/2023]
Abstract
The transforming growth factor-β (TGFβ) superfamily of proteins and their receptors are crucial developmental factors for all metazoan organisms. Cystine-knot (CK) motif is a spatial feature of the TGFβ superfamily of proteins whereas the extra-cellular domains (ectodomains) of their respective receptors form three-fingered protein domain (TFPD), both stabilized by tight cystine networks. Analyses of multiple sequence alignments of these two domains encoded in various genomes revealed that the cystines forming the CK and TFPD folds are conserved, whereas the remaining polypeptide patches are diversified. Orthologues of the human TGFβs and their respective receptors expressed in diverse vertebrates retain high sequence conservation. Examination of 3D structures of various TGFβ factors bound to their receptors have revealed that the CK and TFPD domains display several similar spatial traits suggesting that these two different protein folds might have been acquired from a common ancestor.
Collapse
Affiliation(s)
- A Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
43
|
Li B, Qin Y, Duan H, Yin W, Xia X. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3765-79. [PMID: 21511902 PMCID: PMC3134338 DOI: 10.1093/jxb/err051] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. Populus euphratica is a typical abiotic stress-resistant woody species. This study presents an efficient method for genome-wide discovery of new drought stress responsive miRNAs in P. euphratica. High-throughput sequencing of P. euphratica leaves found 197 conserved miRNAs between P. euphratica and Populus trichocarpa. Meanwhile, 58 new miRNAs belonging to 38 families were identified, an increase in the number of P. euphratica miRNAs. Twenty-six new and 21 conserved miRNA targets were verified by degradome sequencing, and target annotation showed that these targets were involved in multiple biological processes, including transcriptional regulation and response to stimulus. Furthermore, comparison of high-throughput sequencing with miRNA microarray profiling data indicated that 104 miRNA sequences were up-regulated, whereas 27 were down-regulated under drought stress. This preliminary characterization provides a framework for future analysis of miRNA genes and their roles in key poplar traits such as stress resistance, and could be useful for plant breeding and environmental protection.
Collapse
Affiliation(s)
| | | | | | - Weilun Yin
- To whom correspondence should be addressed. E-mail: ;
| | - Xinli Xia
- To whom correspondence should be addressed. E-mail: ;
| |
Collapse
|
44
|
Progress on genetics of rice grain shape trait and its related gene mapping and cloning. YI CHUAN = HEREDITAS 2011; 33:314-21. [DOI: 10.3724/sp.j.1005.2011.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Holbourn KP, Malfois M, Acharya KR. First structural glimpse of CCN3 and CCN5 multifunctional signaling regulators elucidated by small angle x-ray scattering. J Biol Chem 2011; 286:22243-9. [PMID: 21543320 DOI: 10.1074/jbc.m111.225755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The CCN (cyr61, ctgf, nov) proteins (CCN1-6) are an important family of matricellular regulatory factors involved in internal and external cell signaling. They are central to essential biological processes such as adhesion, proliferation, angiogenesis, tumorigenesis, wound healing, and modulation of the extracellular matrix. They possess a highly conserved modular structure with four distinct modules that interact with a wide range of regulatory proteins and ligands. However, at the structural level, little is known although their biological function(s) seems to require cooperation between individual modules. Here we present for the first time structural determinants of two of the CCN family members, CCN3 and CCN5 (expressed in Escherichia coli), using small angle x-ray scattering. The results provide a description of the overall molecular shape and possible general three-dimensional modular arrangement for CCN proteins. These data unequivocally provide insight of the nature of CCN protein(s) in solution and thus important insight into their structure-function relationships.
Collapse
Affiliation(s)
- Kenneth P Holbourn
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
46
|
Hirst SJ, Alexander N, McHaourab HS, Meiler J. RosettaEPR: an integrated tool for protein structure determination from sparse EPR data. J Struct Biol 2011; 173:506-14. [PMID: 21029778 PMCID: PMC3040274 DOI: 10.1016/j.jsb.2010.10.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/17/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is often used for the structural characterization of proteins that elude other techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR). However, high-resolution structures are difficult to obtain due to uncertainty in the spin label location and sparseness of experimental data. Here, we introduce RosettaEPR, which has been designed to improve de novo high-resolution protein structure prediction using sparse SDSL-EPR distance data. The "motion-on-a-cone" spin label model is converted into a knowledge-based potential, which was implemented as a scoring term in Rosetta. RosettaEPR increased the fractions of correctly folded models ( [Formula: see text] <7.5Å) and models accurate at medium resolution ( [Formula: see text] <3.5Å) by 25%. The correlation of score and model quality increased from 0.42 when using no restraints to 0.51 when using bounded restraints and again to 0.62 when using RosettaEPR. This allowed for the selection of accurate models by score. After full-atom refinement, RosettaEPR yielded a 1.7Å model of T4-lysozyme, thus indicating that atomic detail models can be achieved by combining sparse EPR data with Rosetta. While these results indicate RosettaEPR's potential utility in high-resolution protein structure prediction, they are based on a single example. In order to affirm the method's general performance, it must be tested on a larger and more versatile dataset of proteins.
Collapse
Affiliation(s)
- Stephanie J Hirst
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
47
|
Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. FIBROGENESIS & TISSUE REPAIR 2011; 4:4. [PMID: 21284856 PMCID: PMC3042008 DOI: 10.1186/1755-1536-4-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
Background Connective tissue growth factor (CTGF) is widely thought to promote the development of fibrosis in collaboration with transforming growth factor (TGF)-β; however, most of the evidence for its involvement comes from correlative and culture-based studies. In this study, the importance of CTGF in tissue fibrosis was directly examined in three murine models of fibrotic disease: a novel model of multiorgan fibrosis induced by repeated intraperitoneal injections of CTGF and TGF-β2; the unilateral ureteral obstruction (UUO) renal fibrosis model; and an intratracheal bleomycin instillation model of pulmonary fibrosis. Results Intraperitoneal coadministration of CTGF and TGF-β2 elicited a profound fibrotic response that was inhibited by the human anti-CTGF antibody FG-3019, as indicated by the ability of FG-3019 to ameliorate the histologic signs of fibrosis and reduce the otherwise increased hydroxyproline:proline (Hyp:Pro) ratios by 25% in kidney (P < 0.05), 30% in liver (P < 0.01) and 63% in lung (P < 0.05). Moreover, administration of either cytokine alone failed to elicit a fibrotic response, thus demonstrating that CTGF is both necessary and sufficient to initiate fibrosis in the presence of TGF-β and vice versa. In keeping with this requirement for CTGF function in fibrosis, FG-3019 also reduced the renal Hyp:Pro response up to 20% after UUO (P < 0.05). In bleomycin-injured animals, a similar trend towards a FG-3019 treatment effect was observed (38% reduction in total lung Hyp, P = 0.056). Thus, FG-3019 antibody treatment consistently reduced excessive collagen deposition and the pathologic severity of fibrosis in all models. Conclusion Cooperative interactions between CTGF and TGF-β signaling are required to elicit overt tissue fibrosis. This interdependence and the observed anti-fibrotic effects of FG-3019 indicate that anti-CTGF therapy may provide therapeutic benefit in different forms of fibroproliferative disease.
Collapse
Affiliation(s)
- Qingjian Wang
- FibroGen Inc,, 409 Illinois St,, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barrero RA, Bellgard M, Zhang X. Diverse approaches to achieving grain yield in wheat. Funct Integr Genomics 2011; 11:37-48. [PMID: 21221697 DOI: 10.1007/s10142-010-0208-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/19/2010] [Indexed: 11/28/2022]
Abstract
Artificial selection (domestication and breeding) leaves a strong footprint in plant genomes. Second generation high throughput DNA sequencing technologies make it possible to sequence the gene complement of a plant genome within 3 to 5 months, and the costs of doing so are declining very quickly. This makes it practical to identify genomic regions that have undergone very strong selection. Available reference sequences of important crops such as rice, maize, and sorghum will promote the wide use of re-sequencing strategies in these crops. Marker/trait associations, especially haplotype (or haplotype block) association analyses, will help the precise mapping of important genomic regions and location of favored alleles or haplotypes for breeding. This mini-review examines a genomics approach to defining yield traits in wheat.
Collapse
Affiliation(s)
- Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | | | | |
Collapse
|
49
|
Azimi I, Wong JWH, Hogg PJ. Control of mature protein function by allosteric disulfide bonds. Antioxid Redox Signal 2011; 14:113-26. [PMID: 20831445 DOI: 10.1089/ars.2010.3620] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein disulfide bonds are the links between the sulfur atoms of two cysteine amino acids. All the known life forms appear to make this bond. Most disulfide bonds perform a structural role by stabilizing the tertiary and quaternary structures. Some perform a functional role and can be characterized as either catalytic or allosteric disulfides. Catalytic disulfides/dithiols transfer electrons between proteins, whereas the allosteric bonds control the function of the protein in which they reside when they undergo redox change. There are currently five clear examples of allosteric disulfide bonds and a number of potential allosteric disulfides at various stages of characterization. The features of these bonds and how they control the activity of the respective proteins are discussed. A common aspect of the allosteric disulfides identified to date is that they all link β-strands or β-loops.
Collapse
Affiliation(s)
- Iman Azimi
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
50
|
Krzywoszynska K, Rowinska-Zyrek M, Witkowska D, Potocki S, Luczkowski M, Kozlowski H. Polythiol binding to biologically relevant metal ions. Dalton Trans 2011; 40:10434-9. [DOI: 10.1039/c1dt10562k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|