1
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Tsai HW, Lin VY, Shupnik MA. Forskolin Stimulates Estrogen Receptor (ER) α Transcriptional Activity and Protects ER from Degradation by Distinct Mechanisms. Int J Endocrinol 2022; 2022:7690166. [PMID: 35586275 PMCID: PMC9110234 DOI: 10.1155/2022/7690166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Estradiol action is mediated by estrogen receptors (ERs), a and ß. Estradiol binding initiates ER-mediated transcription and ER degradation, the latter of which occurs via the ubiquitin-proteasome pathway. Inhibition of proteasome activity prevents estradiol-induced ERα degradation and transactivation. In ER-positive GH3 cells (a rat pituitary prolactinoma cell line), forskolin, acting via protein kinase A (PKA), stimulates ERα transcriptional activity without causing degradation, and proteasome inhibition does not block forskolin-stimulated transcription. Forskolin also protects liganded ERα from degradation. In the current study, we first examined ERα and ERβ transcriptional activity in ER-negative HT22 cells and found that forskolin stimulated ERα-, but not ERβ-dependent transcription, through the ligand-binding domain (LBD). We also identified four mutations (L396R, D431Y, Y542F, and K534E/M548V) on the ERα LBD that selectively obliterated the response to forskolin. In GH3 cells, transfected ERα mutants and ERβ were protected from degradation by forskolin. Ubiquitination of ERα and ERβ was increased by forskolin or estradiol. ERα ubiquitination was diminished by a mutated ubiquitin (K48R) that prevents elongation of polyubiquitin chains for targeting the proteasome. Increased ERα ubiquitination was not affected by the deletion of the A/B domain but significantly diminished in the F domain deletion mutant. Our results indicate distinct and novel mechanisms for forskolin stimulation of ERα transcriptional activity and protection from ligand-induced degradation. It also suggests a unique mechanism by which forskolin increases unliganded and liganded ERα and ERβ ubiquitination but uncouples them from proteasome-mediated degradation regardless of their transcriptional responses to forskolin.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vicky Y. Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Margaret A. Shupnik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Phasing the intranuclear organization of steroid hormone receptors. Biochem J 2021; 478:443-461. [DOI: 10.1042/bcj20200883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid–liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.
Collapse
|
4
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
5
|
Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci 2018; 19:3764. [PMID: 30486399 PMCID: PMC6320977 DOI: 10.3390/ijms19123764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart, the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart failure. A plethora of animal studies using cell type⁻specific targeting of the MR gene have established the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the primary hormone activating the MR. There is a considerable amount of evidence indicating that the effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of molecular co-regulators that either activate or suppress its transcriptional activity. Identification of these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological ramifications of the cardiac MR's actions, but also help design and develop novel better MR antagonist drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount of crosstalk between GPCRs and the MR, which can affect the latter's activity dramatically in the heart and in other cardiovascular tissues. This review summarizes the current experimental evidence for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation are also highlighted.
Collapse
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Jackson Memorial Hospital, Miami, FL 33136, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
6
|
Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat Commun 2017; 8:1739. [PMID: 29170386 PMCID: PMC5700924 DOI: 10.1038/s41467-017-01569-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) suppresses inflammation by activating anti-inflammatory and repressing pro-inflammatory genes. GR-interacting protein-1 (GRIP1) is a GR corepressor in macrophages, however, whether GRIP1 mediates GR-activated transcription, and what dictates its coactivator versus corepressor properties is unknown. Here we report that GRIP1 loss in macrophages attenuates glucocorticoid induction of several anti-inflammatory targets, and that GC treatment of quiescent macrophages globally directs GRIP1 toward GR binding sites dominated by palindromic GC response elements (GRE), suggesting a non-redundant GRIP1 function as a GR coactivator. Interestingly, GRIP1 is phosphorylated at an N-terminal serine cluster by cyclin-dependent kinase-9 (CDK9), which is recruited into GC-induced GR:GRIP1:CDK9 hetero-complexes, producing distinct GRE-specific GRIP1 phospho-isoforms. Phosphorylation potentiates GRIP1 coactivator but, remarkably, not its corepressor properties. Consistently, phospho-GRIP1 and CDK9 are not detected at GR transrepression sites near pro-inflammatory genes. Thus, GR restricts actions of its own coregulator via CDK9-mediated phosphorylation to a subset of anti-inflammatory genes. Glucocorticoid reduces inflammation by both inducing anti-inflammatory genes and suppressing pro-inflammatory genes, but how these two functions are dictated is unclear. Here the authors show that phosphorylated glucocorticoid receptor-interacting protein 1 (GRIP1) serves as a coactivator for this response in macrophage.
Collapse
|
7
|
Song A, Zhang Y, Han L, Yegutkin GG, Liu H, Sun K, D'Alessandro A, Li J, Karmouty-Quintana H, Iriyama T, Weng T, Zhao S, Wang W, Wu H, Nemkov T, Subudhi AW, Jameson-Van Houten S, Julian CG, Lovering AT, Hansen KC, Zhang H, Bogdanov M, Dowhan W, Jin J, Kellems RE, Eltzschig HK, Blackburn M, Roach RC, Xia Y. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nat Commun 2017; 8:14108. [PMID: 28169986 PMCID: PMC5309698 DOI: 10.1038/ncomms14108] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation. Humans that reach high altitude soon after the first ascent show faster adaptation to hypoxia. Song et al. show that this adaptive response relies on decreased red blood cell uptake of plasma adenosine due to reduced levels of nucleoside transporter ENT1 resulting from coordinated adenosine generation by ectonucleotidase CD73 and activation of A2B receptors.
Collapse
Affiliation(s)
- Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Kaiqi Sun
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado 80045, USA
| | - Jessica Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Takayuki Iriyama
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Shushan Zhao
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Hongyu Wu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Travis Nemkov
- Altitude Research Center, Department of Emergency Medicine University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrew W Subudhi
- Altitude Research Center, Department of Emergency Medicine University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Sonja Jameson-Van Houten
- Altitude Research Center, Department of Emergency Medicine University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Colleen G Julian
- Altitude Research Center, Department of Emergency Medicine University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrew T Lovering
- Altitude Research Center, Department of Emergency Medicine University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado 80045, USA
| | - Hong Zhang
- Department of Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Robert C Roach
- Altitude Research Center, Department of Emergency Medicine University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
8
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Audas TE, Hardy-Smith PW, Penney J, Taylor T, Lu R. Characterization of nuclear foci-targeting of Luman/CREB3 recruitment factor (LRF/CREBRF) and its potential role in inhibition of herpes simplex virus-1 replication. Eur J Cell Biol 2016; 95:611-622. [PMID: 28029379 DOI: 10.1016/j.ejcb.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023] Open
Abstract
The recently identified Luman/CREB3-binding partner LRF (Luman/CREB3 recruitment factor) was shown to localize to discrete sub-nuclear foci. Luman is implicated in herpes simplex virus-1 (HSV-1) latency/reactivation and the unfolded protein response (UPR) pathway; therefore, we sought to characterize the formation of the LRF nuclear foci in the context of cellular signaling and HSV-1 replication. Here, we mapped the nuclear foci-targeting sequence to the central region containing the first leucine zipper (a.a.415-519), and found that the integrity of the whole region appears essential for LRF foci formation. LRF foci integrity was unaffected by inhibition of cellular DNA replication and translation, however, disruption of transcription resulted in altered LRF localization. When compared to other cellular and viral foci LRF co-localized with the nuclear receptor co-activator GRIP1, while the HSV-1 gene products ICP4, ICP27 and VP13/14 disrupted foci formation to varying degrees. Interestingly, cells over-expressing LRF were resistant to productive HSV-1 infection and this resistance was dependent upon protein targeting and an N-terminal transactivation domain. When LRF knockdown cells were subjected to primary infection, HSV-1 gene expression and progeny virus yield were enhanced by ∼3 fold compared to wildtype cells. Taken together, these results indicate that LRF is a key regulator that may act direct or indirectly as a repressor of essential genes required for productive viral infection.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
| | - Philip W Hardy-Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jenna Penney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tiegh Taylor
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
10
|
Madsen A, Bjune JI, Bjørkhaug L, Mellgren G, Sagen JV. The cAMP-dependent protein kinase downregulates glucose-6-phosphatase expression through RORα and SRC-2 coactivator transcriptional activity. Mol Cell Endocrinol 2016; 419:92-101. [PMID: 26455881 DOI: 10.1016/j.mce.2015.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Fasting hormones activate the cAMP/PKA signaling pathway and stimulate expression of hepatic gluconeogenic enzymes including glucose-6-phosphatase (G6Pase). Previously it was shown that steroid receptor coactivator 2 (SRC-2) knock-out mice exhibit fasting hypoglycemia and that SRC-2 coactivates RAR-related orphan receptor alpha (RORα) at the proximal G6Pase promoter. We have investigated the upstream regulation and functional implications of this RORα/SRC-2 complex on G6Pase expression. In HepG2 cells, overexpression of the catalytic PKA subunit (PKA-Cα) reduced the SRC-2 protein level, recruitment to the G6Pase promoter, and its ability to coactivate RORα. Knock-down and transactivation experiments employing G6Pase promoter constructs demonstrated that RORα and SRC-2 are required for PGC-1α to stimulate G6Pase expression. These results suggest that PKA inhibits SRC-2 coactivation of RORα and in turn reduces PGC-1α dependent regulation of G6Pase. This indirect feedback mechanism may underlie the suppression of gluconeogenesis throughout long-term starvation.
Collapse
Affiliation(s)
- Andre Madsen
- Department of Clinical Science K2, University of Bergen, N-5020 Norway; The Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Jan-Inge Bjune
- Department of Clinical Science K2, University of Bergen, N-5020 Norway; The Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Lise Bjørkhaug
- The Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, University of Bergen, N-5020 Norway; Department of Biomedicine, University of Bergen, N-5020 Norway.
| | - Gunnar Mellgren
- Department of Clinical Science K2, University of Bergen, N-5020 Norway; The Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, University of Bergen, N-5020 Norway.
| | - Jørn V Sagen
- Department of Clinical Science K2, University of Bergen, N-5020 Norway; The Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway; KG Jebsen Center for Diabetes Research, University of Bergen, N-5020 Norway.
| |
Collapse
|
11
|
Tsai CH, Li CH, Liao PL, Cheng YW, Lin CH, Huang SH, Kang JJ. NcoA2-Dependent Inhibition of HIF-1α Activation Is Regulated via AhR. Toxicol Sci 2015; 148:517-30. [PMID: 26350169 DOI: 10.1093/toxsci/kfv199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High endogenous levels of aryl hydrocarbon receptor (AhR) contribute to hypoxia signaling pathway inhibition following exposure to the potent AhR ligand benzo[a]pyrene (B[a]P) and could alter cellular homeostasis and disease condition. Increasing evidence indicates that AhR might compete with AhR nuclear translocator (ARNT) for complex formation with hypoxia-inducible factor-1α (HIF-1α) for transactivation, which could alter several physiological variables. Nuclear receptor coactivator 2 (NcoA2) is a transcription coactivator that regulates transcription factor activation and inhibition of basic helix-loop-helix Per (Period)-ARNT-SIM (single-minded) (bHLH-PAS) family proteins, such as HIF-1α, ARNT, and AhR, through protein-protein interactions. In this study, we demonstrated that both hypoxia and hypoxia-mimic conditions decreased NcoA2 protein expression in HEK293T cells. Hypoxia response element (HRE) and xenobiotic-responsive element (XRE) transactivation also were downregulated with NcoA2 knockdown under hypoxic conditions. In addition, B[a]P significantly decreased NcoA2 protein expression be accompanied with AhR degradation. We next evaluated whether the absence of AhR could affect NcoA2 protein function under hypoxia-mimetic conditions. NcoA2 and HIF-1α nuclear localization decreased in both B[a]P-pretreated and AhR-knockdown HepG2 cells under hypoxia-mimic conditions. Interestingly, NcoA2 overexpression downregulated HRE transactivation by competing with HIF-1α and AhR to form protein complexes with ARNT. Both NcoA2 knockdown and overexpression inhibited endothelial cell tube formation in vitro. We also demonstrated using the in vivo plug assay that NcoA2-regulated vascularization decreased in mice. Taken together, these results revealed a biphasic role of NcoA2 between AhR and hypoxic conditions, thus providing a novel mechanism underlying the cross talk between AhR and hypoxia that affects disease development and progression.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine; Graduate Institute of Medical Sciences, College of Medicine, and
| | - Po-Lin Liao
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsuan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Jou Kang
- *Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan;
| |
Collapse
|
12
|
Bozickovic O, Hoang T, Fenne IS, Helland T, Skartveit L, Ouchida M, Mellgren G, Sagen JV. Cyclin C interacts with steroid receptor coactivator 2 and upregulates cell cycle genes in MCF-7 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2383-91. [PMID: 25986860 DOI: 10.1016/j.bbamcr.2015.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/23/2015] [Accepted: 05/09/2015] [Indexed: 11/16/2022]
Abstract
Steroid receptor coactivator 2 (SRC-2) is a coactivator that regulates nuclear receptor activity. We previously reported that SRC-2 protein is degraded through the action of cAMP-dependent protein kinase A (PKA) and cAMP response element binding protein (CREB). In the study presented here, we aimed to identify proteins that interact with and thereby regulate SRC-2. We isolated cyclin C (CCNC) as an interacting partner with the SRC-2 degradation domain aa 347-758 in a yeast two-hybrid assay and confirmed direct interaction in an in vitro assay. The protein level of SRC-2 was increased with CCNC overexpression in COS-1 cells and decreased with CCNC silencing in COS-1 and MCF-7 cells. In a pulse-chase assay, we further show that silencing of CCNC resulted in a different SRC-2 degradation pattern during the first 6 h after the pulse. Finally, we provide evidence that CCNC regulates expression of cell cycle genes upregulated by SRC-2. In conclusion, our results suggest that CCNC temporarily protects SRC-2 against degradation and this event is involved in the transcriptional regulation of SRC-2 cell cycle target genes.
Collapse
Affiliation(s)
- Olivera Bozickovic
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen N-5021, Norway.
| | - Tuyen Hoang
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway.
| | - Ingvild S Fenne
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen N-5021, Norway.
| | - Thomas Helland
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen N-5021, Norway.
| | - Linn Skartveit
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen N-5021, Norway.
| | - Mamoru Ouchida
- Department of Molecular Genetics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen N-5021, Norway.
| | - Jørn V Sagen
- Department of Clinical Science, University of Bergen, Bergen N-5021, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen N-5021, Norway.
| |
Collapse
|
13
|
Giembycz MA, Newton R. Potential mechanisms to explain how LABAs and PDE4 inhibitors enhance the clinical efficacy of glucocorticoids in inflammatory lung diseases. F1000PRIME REPORTS 2015; 7:16. [PMID: 25750734 PMCID: PMC4335793 DOI: 10.12703/p7-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhaled glucocorticoids acting via the glucocorticoid receptor are a mainstay treatment option for individuals with asthma. There is a consensus that the remedial actions of inhaled glucocorticoids are due to their ability to suppress inflammation by modulating gene expression. While inhaled glucocorticoids are generally effective in asthma, there are subjects with moderate-to-severe disease in whom inhaled glucocorticoids fail to provide adequate control. For these individuals, asthma guidelines recommend that a long-acting β2-adrenoceptor agonist (LABA) be administered concurrently with an inhaled glucocorticoid. This so-called “combination therapy” is often effective and clinically superior to the inhaled glucocorticoid alone, irrespective of dose. LABAs, and another class of drug known as phosphodiesterase 4 (PDE4) inhibitors, may also enhance the efficacy of inhaled glucocorticoids in chronic obstructive pulmonary disease (COPD). In both conditions, these drugs are believed to work by elevating the concentration of cyclic adenosine-3',5'-monophosphate (cAMP) in target cells and tissues. Despite the success of inhaled glucocorticoid/LABA combination therapy, it remains unclear how an increase in cAMP enhances the clinical efficacy of an inhaled glucocorticoid. In this report, we provide a state-of-the-art appraisal, including unresolved and controversial issues, of how cAMP-elevating drugs and inhaled glucocorticoids interact at a molecular level to deliver enhanced anti-inflammatory benefit over inhaled glucocorticoid monotherapy. We also speculate on ways to further exploit this desirable interaction. Critical discussion of how these two drug classes regulate gene transcription, often in a synergistic manner, is a particular focus. Indeed, because interplay between glucocorticoid receptor and cAMP signaling pathways may contribute to the superiority of inhaled glucocorticoid/LABA combination therapy, understanding this interaction may provide a logical framework to rationally design these multicomponent therapeutics that was not previously possible.
Collapse
Affiliation(s)
- Mark A. Giembycz
- Department of Physiology & Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary3820 Hospital Drive NW, Calgary, AlbertaCanada T2N 1N4
| | - Robert Newton
- Department of Cell Biology & Anatomy, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary3820 Hospital Drive NW, Calgary, AlbertaCanada T2N 1N4
| |
Collapse
|
14
|
Liberman AC, Antunica-Noguerol M, Arzt E. Modulation of the Glucocorticoid Receptor Activity by Post-Translational Modifications. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
| | - María Antunica-Noguerol
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| |
Collapse
|
15
|
Estradiol determines the effects of PTH on ERα-dependent transcription in MC3T3-E1 cells. Biochem Biophys Res Commun 2014; 450:360-5. [DOI: 10.1016/j.bbrc.2014.05.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/15/2022]
|
16
|
Yoon K, Kwack SJ, Kim HS, Lee BM. Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:127-174. [PMID: 24749480 DOI: 10.1080/10937404.2014.882194] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocrine-disrupting chemicals (EDC), including phthalates, bisphenol A (BPA), phytoestrogens such as genistein and daidzein, dichlorodiphenyltrichloroethane (DDT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are associated with a variety of adverse health effects in organisms or progeny by altering the endocrine system. Environmental estrogens, including BPA, phthalates, and phytoestrogens, are the most extensively studied and are considered to mimic the actions of endogenous estrogen, 17β-estradiol (E2). Diverse modes of action of estrogen and estrogen receptors (ERα and ERβ) have been described, but the mode of action of estrogenic EDC is postulated to be more complex and needs to be more clearly elucidated. This review examines the adverse effects of estrogenic EDC on male or female reproductive systems and molecular mechanisms underlying EDC effects that modulate ER-mediated signaling. Mechanisms of action for estrogenic EDC may involve both ER-dependent and ER-independent pathways. Recent findings from systems toxicology of examining estrogenic EDC are also discussed.
Collapse
Affiliation(s)
- Kyungsil Yoon
- a Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | | | | | | |
Collapse
|
17
|
Tetel MJ, Acharya KD. Nuclear receptor coactivators: regulators of steroid action in brain and behaviour. J Neuroendocrinol 2013; 25:1209-18. [PMID: 23795583 PMCID: PMC3830605 DOI: 10.1111/jne.12065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
Steroid hormones act in specific regions of the brain to alter behaviour and physiology. Although it has been well established that the bioavailability of the steroid and the expression of its receptor is critical for understanding steroid action in the brain, the importance of nuclear receptor coactivators in the brain is becoming more apparent. The present review focuses on the function of the p160 family of coactivators, which includes steroid receptor coactivator-1 (SRC-1), SRC-2 and SRC-3, in steroid receptor action in the brain. The expression, regulation and function of these coactivators in steroid-dependent gene expression in both brain and behaviour are discussed.
Collapse
Affiliation(s)
- M J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | |
Collapse
|
18
|
Fenne IS, Helland T, Flågeng MH, Dankel SN, Mellgren G, Sagen JV. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells. PLoS One 2013; 8:e70096. [PMID: 23936147 PMCID: PMC3728357 DOI: 10.1371/journal.pone.0070096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022] Open
Abstract
The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells.
Collapse
Affiliation(s)
- Ingvild S. Fenne
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Thomas Helland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Marianne H. Flågeng
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Simon N. Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jørn V. Sagen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
cAMP signalling decreases p300 protein levels by promoting its ubiquitin/proteasome dependent degradation via Epac and p38 MAPK in lung cancer cells. FEBS Lett 2013; 587:1373-8. [PMID: 23523631 DOI: 10.1016/j.febslet.2013.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 01/21/2023]
Abstract
The transcriptional coactivator p300 functions as a histone acetyltransferase and a scaffold for transcription factors. We investigated the effect of cAMP signalling on p300 expression. The activation of cAMP signalling by the expression of constitutively active Gαs or by treatment with isoproterenol decreased the p300 protein expression in lung cancer cells. Isoproterenol promoted the ubiquitination and subsequent proteasomal degradation of p300 in an Epac-dependent manner. Epac promoted p300 degradation by inhibiting the activity of p38 MAPK. It is concluded that cAMP signalling decreases the level of the p300 protein by promoting its ubiquitin-proteasome dependent degradation, which is mediated by Epac and p38 MAPK, in lung cancer cells.
Collapse
|
21
|
Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 2012; 350:223-34. [PMID: 21801805 DOI: 10.1016/j.mce.2011.07.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid 'non-genomic' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
22
|
Glucocorticoid-dependent phosphorylation of the transcriptional coregulator GRIP1. Mol Cell Biol 2011; 32:730-9. [PMID: 22158970 DOI: 10.1128/mcb.06473-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Much of the regulatory diversity in eukaryotic transcription is provided by coregulators, which are recruited by DNA-binding factors to propagate signaling to basal machinery or chromatin. p160 family members, including the glucocorticoid receptor (GR)-interacting protein 1 (GRIP1), function as coactivators for GR, a ligand-dependent transcription factor of the nuclear receptor superfamily. Unlike other p160s, GRIP1 also potentiates GR-mediated repression of AP1 and NF-κB targets and, surprisingly, transcriptional activation by interferon regulatory factors. What enables GRIP1 activating or repressing properties or discrimination between physiologically antagonistic pathways is unknown. We found that endogenous GRIP1 in mammalian cells undergoes glucocorticoid-induced, GR interaction-dependent phosphorylation and identified one constitutive and six inducible phosphorylation sites and two putative GRIP1 kinases, casein kinase 2 and cyclin-dependent kinase 9. We raised phosphospecific antibodies to the four closely spaced sites in a previously uncharacterized part of GRIP1 which, combined with mutagenesis, revealed the conservation of GRIP1 phosphorylation across several cell types and species and its functional relevance to GR-activated transcription and to response element-specific recruitment of phospho-GRIP1 to native GR targets. We propose that cofactor engagement by GR is neither passive nor stochastic; rather, GR actively imparts modifications that dictate GRIP1 function in a subset of complexes, adding a layer of specificity to GR transcriptional control.
Collapse
|
23
|
Aksaas AK, Larsen AC, Rogne M, Rosendal K, Kvissel AK, Skålhegg BS. G-patch domain and KOW motifs-containing protein, GPKOW; a nuclear RNA-binding protein regulated by protein kinase A. J Mol Signal 2011; 6:10. [PMID: 21880142 PMCID: PMC3179746 DOI: 10.1186/1750-2187-6-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/31/2011] [Indexed: 12/28/2022] Open
Abstract
Background Post-transcriptional processing of pre-mRNA takes place in several steps and requires involvement of a number of RNA-binding proteins. How pre-mRNA processing is regulated is in large enigmatic. The catalytic (C) subunit of protein kinase A (PKA) is a serine/threonine kinase, which regulates numerous cellular processes including pre-mRNA splicing. Despite that a significant fraction of the C subunit is found in splicing factor compartments in the nucleus, there are no indications of a direct interaction between RNA and PKA. Based on this we speculate if the specificity of the C subunit in regulating pre-mRNA splicing may be mediated indirectly through other nuclear proteins. Results Using yeast two-hybrid screening with the PKA C subunit Cbeta2 as bait, we identified the G-patch domain and KOW motifs-containing protein (GPKOW), also known as the T54 protein or MOS2 homolog, as an interaction partner for Cbeta2. We demonstrate that GPKOW, which contains one G-patch domain and two KOW motifs, is a nuclear RNA-binding protein conserved between species. GPKOW contains two sites that are phosphorylated by PKA in vitro. By RNA immunoprecipitation and site directed mutagenesis of the PKA phosphorylation sites we revealed that GPKOW binds RNA in vivo in a PKA sensitive fashion. Conclusion GPKOW is a RNA-binding protein that binds RNA in a PKA regulated fashion. Together with our previous results demonstrating that PKA regulates pre-mRNA splicing, our results suggest that PKA phosphorylation is involved in regulating RNA processing at several steps.
Collapse
|
24
|
Abstract
The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.
Collapse
Affiliation(s)
- Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | |
Collapse
|
25
|
Amazit L, Roseau A, Khan JA, Chauchereau A, Tyagi RK, Loosfelt H, Leclerc P, Lombès M, Guiochon-Mantel A. Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity. Mol Endocrinol 2011; 25:394-408. [PMID: 21273440 PMCID: PMC3320859 DOI: 10.1210/me.2010-0458] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/13/2010] [Indexed: 02/08/2023] Open
Abstract
The progesterone receptor (PR), a ligand-activated transcription factor, recruits the primary coactivator steroid receptor coactivator-1 (SRC-1) gene promoters. It is known that PR transcriptional activity is paradoxically coupled to its ligand-dependent down-regulation. However, despite its importance in PR function, the regulation of SRC-1 expression level during hormonal exposure is poorly understood. Here we report that SRC-1 expression level (but not other p160 family members) is down-regulated by the agonist ligand R5020 in a PR-dependent manner. In contrast, the antagonist RU486 fails to induce down-regulation of the coactivator and impairs PR agonist-dependent degradation of SRC-1. We show that SRC-1 proteolysis is a proteasome- and ubiquitin-mediated process that, predominantly but not exclusively, occurs in the cytoplasmic compartment in which SRC-1 colocalizes with proteasome antigens as demonstrated by confocal imaging. Moreover, SRC-1 was stabilized in the presence of leptomycin B or several proteasomal inhibitors. Two degradation motifs, amino-acids 2-16 corresponding to a PEST motif and amino acids 41-136 located in the basic helix loop helix domain of the coactivator, were identified and shown to control the stability as well as the hormone-dependent down-regulation of the coactivator. SRC-1 degradation is of physiological importance because the two nondegradable mutants that still interacted with PR as demonstrated by coimmunoprecipitation failed to stimulate transcription of exogenous and endogenous target genes, suggesting that concomitant PR/SRC-1 ligand-dependent degradation is a necessary step for PR transactivation activity. Collectively our findings are consistent with the emerging role of proteasome-mediated proteolysis in the gene-regulating process and indicate that the ligand-dependent down-regulation of SRC-1 is critical for PR transcriptional activity.
Collapse
Affiliation(s)
- Larbi Amazit
- Institut National de la Santé et de la Recherche Médicale Unité 693, 63 Rue Gabriel Péri, Le Kremlin-Bicêtre F-94276, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bulynko YA, O'Malley BW. Nuclear receptor coactivators: structural and functional biochemistry. Biochemistry 2010; 50:313-28. [PMID: 21141906 DOI: 10.1021/bi101762x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription of eukaryotic cell is a multistep process tightly controlled by concerted action of macromolecules. Nuclear receptors are ligand-activated sequence-specific transcription factors that bind DNA and activate (or repress) transcription of specific sets of nuclear target genes. Successful activation of transcription by nuclear receptors and most other transcription factors requires "coregulators" of transcription. Coregulators make up a diverse family of proteins that physically interact with and modulate the activity of transcription factors and other components of the gene expression machinery via multiple biochemical mechanisms. The coregulators include coactivators that accomplish reactions required for activation of transcription and corepressors that suppress transcription. This review summarizes our current knowledge of nuclear receptor coactivators with an emphasis on their biochemical mechanisms of action and means of regulation.
Collapse
Affiliation(s)
- Yaroslava A Bulynko
- Molecular and Cellular Biology, BCM130 Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Xie Z, Yang Z, Druey KM. Phosphorylation of RGS13 by the cyclic AMP-dependent protein kinase inhibits RGS13 degradation. J Mol Cell Biol 2010; 2:357-65. [PMID: 20974683 DOI: 10.1093/jmcb/mjq031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulators of G-protein signaling (RGS) proteins are scaffolds that control diverse signaling pathways by modulating signalosome formation and by accelerating the GTPase activity of heterotrimeric G proteins. Although expression of many RGS proteins is relatively low in quiescent cells, transcriptional and post-translational responses to environmental cues regulate both their abundance and activity. We found previously that RGS13, one of the smallest RGS proteins in the family, inhibited cyclic AMP-dependent protein kinase (PKA)-induced gene expression through interactions with the transcription factor cAMP-response element-binding (CREB) protein. Here, we show that PKA activation also leads to increased steady-state RGS13 expression through RGS13 phosphorylation, which inhibits RGS13 protein degradation. RGS13 turnover was significantly reduced in cells stimulated with cAMP, which was reversed by expression of the PKA-specific inhibitory peptide PKI. RGS13 phosphorylation was diminished by mutation of an N-terminal Thr residue (T41) identified as a phosphorylation site by mass spectrometry. Mutation of Thr41 in RGS13 to Ala (T41A) reduced steady-state RGS13 levels and its ability to inhibit M2 muscarinic receptor-mediated Erk phosphorylation compared with wild-type RGS13 by attenuating the protective effect of cAMP on RGS13 degradation. RGS13 underwent ubiquitylation, indicating that it is a likely target of the proteasome. These studies are the first to demonstrate post-translational mechanisms controlling the expression of RGS13. Stabilization of RGS13 through PKA-mediated phosphorylation could enhance RGS13 functions, providing negative feedback regulation that promotes cellular desensitization.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 10 Center Drive, Room 11N242, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
28
|
Dankel SN, Hoang T, Flågeng MH, Sagen JV, Mellgren G. cAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1013-9. [PMID: 20670916 DOI: 10.1016/j.bbamcr.2010.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 02/09/2023]
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4alpha) is a member of the nuclear receptor superfamily with important roles in hepatic metabolism. Fasting induces the cAMP/protein kinase A (PKA)-signaling pathway. The mechanisms whereby cAMP regulates HNF-4alpha transcriptional activity are incompletely understood. We have therefore investigated the role of cAMP/PKA in regulation of HNF-4alpha in COS-1 cells and the hepatoma HepG2 cell line. cAMP/PKA inhibited the transcriptional activity of HNF-4alpha in COS-1 cells, whereas a stimulatory effect was observed in HepG2 cells. The cAMP-induced inhibition of HNF-4alpha in COS-1 cells was counteracted by overexpression of the nuclear receptor coactivator PGC-1alpha, and cAMP/PKA-dependent induction of the PGC1A gene in HepG2 cells seems to explain the cell specific differences. This was further supported by knock-down of PGC-1alpha in HepG2 cells, which abolished the stimulatory effect of PKA on HNF-4alpha transcriptional activity. Similar to the cAMP/PKA-mediated regulation of HNF-4alpha, overexpression of the cAMP-response element binding protein (CREB) inhibited the transcriptional activity of HNF-4alpha in COS-1 cells, regardless of cAMP/PKA activation and CREB phosphorylation. Moreover, activation of CREB by cAMP/PKA further stimulated HNF-4alpha transactivation in HepG2 cells. cAMP induced the expression of the HNF-4alpha target genes PCK1 and G6Pase in these cells. In conclusion, our results suggest that the level of PGC-1alpha determines whether the cAMP/PKA-pathway overall stimulates or inhibits HNF-4alpha transcriptional activation.
Collapse
Affiliation(s)
- Simon Nitter Dankel
- Institute of Medicine, University of Bergen and the Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | | | | | | | | |
Collapse
|
29
|
Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proc Natl Acad Sci U S A 2010; 107:11122-7. [PMID: 20534466 DOI: 10.1073/pnas.1005262107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here we demonstrate that reprogramming steroid receptor coactivator-3 (SRC-3) function by changing its posttranslational modification (PTM) code drastically influences systems biology. These findings support the physiological importance of PTMs in directing in vivo functions of a master coregulator. We previously reported that the transactivation potential of SRC-3 is controlled in part by PTMs, although this data emanated from in vitro studies. To test the physiological implications of PTMs on SRC-3, we developed a knock-in mouse model containing mutations at four conserved phosphorylation sites. These mice displayed a systems biology phenotype with increased body weight and adiposity, coupled with reduced peripheral insulin sensitivity. Collectively, these phenotypes result from increased IGF1 signaling, due to elevated IGFBP3 levels. We provide convincing evidence that these mutations in SRC-3 promoted enhanced transcription of the IGFBP3 gene and globally influenced growth and metabolism. Consequently, these mice displayed increased liver tumorigenesis, which likely results from elevated IGF1 signaling.
Collapse
|
30
|
Shao W, Yu Z, Fantus IG, Jin T. Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic beta-cells. Cell Signal 2010; 22:1240-6. [PMID: 20385228 DOI: 10.1016/j.cellsig.2010.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 04/05/2010] [Indexed: 01/03/2023]
Abstract
Thioredoxin interacting protein (TxNIP) functions as an effector of glucotoxicity in pancreatic beta-cells. Exendin-4 (Ex-4), a long-term effective GLP-1 receptor agonist, reduces TxNIP level in pancreatic beta-cells. Mechanisms underlying this reduction, however, remain largely unknown. We show here that Ex-4, 8-bromo-cAMP, the cAMP promoting agent forskolin, as well as activators of protein kinase A (PKA) and exchange protein activated by cAMP (Epac), all attenuated the effect of high glucose (20mM) on TxNIP level in the pancreatic beta-cell line Ins-1. Forskolin and Ex-4 also reduced TxNIP level in cultured primary rat islets. This repressive effect is at least partially mediated via stimulating proteasome-dependent TxNIP degradation, since the proteasomal inhibitor MG132, but not the lysosomal inhibitor chloroquine, significantly blocked the repressive effect of forskolin. Furthermore, forskolin enhanced TxNIP ubiquitination. Both PKA inhibition and Epac inhibition partially blocked the repressive effect of forskolin on TxNIP level. In addition, forskolin and Ex-4 protected Ins-1 cells from high glucose-induced apoptotic activity, assessed by measuring caspase 3 activity. Finally, knockdown of TxNIP expression led to reduced caspase 3 expression levels and blunted response to forskolin treatment. We suggest that proteasome-dependent TxNIP degradation is a novel mechanism by which Ex-4-cAMP signaling protects pancreatic beta cells.
Collapse
Affiliation(s)
- Weijuan Shao
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Canada; Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Canada; Dept of Medicine, University of Toronto, Canada
| | | | | | | |
Collapse
|
31
|
Carascossa S, Dudek P, Cenni B, Briand PA, Picard D. CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor alpha by cAMP. Genes Dev 2010; 24:708-19. [PMID: 20360387 DOI: 10.1101/gad.568410] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The estrogen receptor alpha (ERalpha) is activated as a transcription factor by both estrogen and a large variety of other extracellular signals. The mechanisms of this ligand-independent activation, notably by cAMP signaling, are still largely unknown. We now close the gap in the signaling pathway between cAMP and ERalpha. Whereas the direct phosphorylation of ERalpha by the cAMP-activated protein kinase A (PKA) is dispensable, the phosphorylation of the coactivator-associated arginine methyltransferase 1 (CARM1) by PKA at a single serine is necessary and sufficient for direct binding to the unliganded hormone-binding domain (HBD) of ERalpha, and the interaction is necessary for cAMP activation of ERalpha. Sustained PKA activity promoting a constitutive interaction may contribute to tamoxifen resistance of breast tumors. Binding and activation involve a novel regulatory groove of the ERalpha HBD. As a result, depending on the activating signal, ERalpha recruits different coactivator complexes to regulate alternate sets of target genes.
Collapse
Affiliation(s)
- Sophie Carascossa
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Yang AJ, Li CC, Lu CY, Liu KL, Tsai CW, Lii CK, Chen HW. Activation of the cAMP/CREB/inducible cAMP early repressor pathway suppresses andrographolide-induced gene expression of the pi class of glutathione S-transferase in rat primary hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1993-2000. [PMID: 20063885 DOI: 10.1021/jf902221j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Andrographolide (Ap) is a bioactive compound in Andrographis paniculata that is a Chinese herb. The pi class of glutathione S-transferase (GSTP) is one kind of phase II detoxification enzyme. Here we show that induction of GSTP protein and mRNA expression in rat primary hepatocytes by Ap was inhibited by forskolin and a variety of cAMP analogues. The inhibitory effect of the cAMP analogues was partially blocked by pretreatment with H89. In the presence of Ap, forskolin, or both, the expression of phospho-cAMP response element-binding protein (CREB) was increased. Ap alone had no effect on inducible cAMP early repressor (ICER) mRNA expression; however, Ap played a potentiating role in forskolin-induced ICER mRNA expression. An EMSA and immunoprecipitation assay showed that ICER binding to cAMP-response element (CRE) was increased in cells cotreated with Ap and forskolin for 3 and 8 h. Taken together, these results suggest that ICER is likely to be involved in the suppression of Ap-induced GSTP expression caused by the increase of cAMP in rat primary hepatocytes.
Collapse
Affiliation(s)
- Ai-Jen Yang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 2010; 315:27-39. [PMID: 19616058 DOI: 10.1016/j.mce.2009.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/01/2009] [Accepted: 07/08/2009] [Indexed: 12/24/2022]
Abstract
Steroidogenic factor 1 (SF-1, also called Ad4BP and NR5A1) is a nuclear receptor with critical roles in steroidogenic tissues, as well as in the brain and pituitary. In particular, SF-1 has emerged as an essential regulator of adrenal and gonadal functions and development. In the last few years, our knowledge on SF-1 has increased considerably at all levels, from the gene to the protein, and on its specific roles in different physiological processes. In this review, we discuss the current understanding on SF-1 with focus on the parameters that control the transcriptional capacity of SF-1 and the mechanisms that ensure proper stage- and tissue-specific expression of the gene encoding SF-1.
Collapse
Affiliation(s)
- Erling A Hoivik
- Department of Biomedicine, University of Bergen, Jonas Lies vei 9, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
34
|
Charlier TD. Importance of steroid receptor coactivators in the modulation of steroid action on brain and behavior. Psychoneuroendocrinology 2009; 34 Suppl 1:S20-9. [PMID: 19524371 DOI: 10.1016/j.psyneuen.2009.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/01/2009] [Accepted: 05/10/2009] [Indexed: 11/30/2022]
Abstract
Steroid receptors such as estrogen and androgen receptors are nuclear receptors involved in the transcriptional regulation of a large number of target genes. Steroid-dependent protein expression in the brain controls a large array of biological processes including spatial cognition, copulatory behavior and neuroprotection. The discovery of a competition, or squelching, between two different nuclear receptors introduced the notion that common cofactors may be involved in the modulation of transcriptional activity of nuclear receptors. These cofactors or coregulatory proteins are functionally divided into coactivators and corepressors and are involved in chromatin remodeling and stabilization of the general transcription machinery. Although a large amount of information has been collected about the in vitro function of these coregulatory proteins, relatively little is known regarding their physiological role in vivo, particularly in the brain. Our laboratory and others have demonstrated the importance of SRC-1 in the differentiation and activation of steroid-dependent sexual behaviors and the related neural genes. For example, we report that the inhibition of SRC-1 expression blocks the activating effects of exogenous testosterone on male sexual behaviors and increases the volume of the median preoptic area. Other coactivators are likely to be involved in the modulation in vivo of steroid receptor activity and it seems that the presence of a precise subset of coactivators could help define the phenotype of the cell by modulating a specific downstream pathway after steroid receptor activation. The very large number of coactivators and their association into preformed complexes potentially allows the determination of hundreds of different phenotypes. The study of the expression of the coactivator and their function in vivo is required to fully understand steroid action and specificity in the brain.
Collapse
Affiliation(s)
- Thierry D Charlier
- University of Liege, GIGA Neuroscience, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium.
| |
Collapse
|
35
|
Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2009; 125:286-327. [PMID: 19932713 DOI: 10.1016/j.pharmthera.2009.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are widely used to treat various inflammatory lung diseases. Acting via the glucocorticoid receptor (GR), they exert clinical effects predominantly by modulating gene transcription. This may be to either induce (transactivate) or repress (transrepress) gene transcription. However, certain individuals, including those who smoke, have certain asthma phenotypes, chronic obstructive pulmonary disease (COPD) or some interstitial diseases may respond poorly to the beneficial effects of glucocorticoids. In these cases, high dose, often oral or parental, glucocorticoids are typically prescribed. This generally leads to adverse effects that compromise clinical utility. There is, therefore, a need to enhance the clinical efficacy of glucocorticoids while minimizing adverse effects. In this context, a long-acting beta(2)-adrenoceptor agonist (LABA) can enhance the clinical efficacy of an inhaled corticosteroid (ICS) in asthma and COPD. Furthermore, LABAs can augment glucocorticoid-dependent gene expression and this action may account for some of the benefits of LABA/ICS combination therapies when compared to ICS given as a monotherapy. In addition to metabolic genes and other adverse effects that are induced by glucocorticoids, there are many other glucocorticoid-inducible genes that have significant anti-inflammatory potential. We therefore advocate a move away from the search for ligands of GR that dissociate transactivation from transrepression. Instead, we submit that ligands should be functionally screened by virtue of their ability to induce or repress biologically-relevant genes in target tissues. In this review, we discuss pharmacological methods by which selective GR modulators and "add-on" therapies may be exploited to improve the clinical efficacy of glucocorticoids while reducing potential adverse effects.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
36
|
Wilson SM, Shen P, Rider CF, Traves SL, Proud D, Newton R, Giembycz MA. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6788-99. [PMID: 19880449 DOI: 10.4049/jimmunol.0902738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to glucocorticoids.
Collapse
Affiliation(s)
- Sylvia M Wilson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Askew EB, Bai S, Hnat AT, Minges JT, Wilson EM. Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators. J Biol Chem 2009; 284:34793-808. [PMID: 19828458 DOI: 10.1074/jbc.m109.065979] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen-dependent transcriptional activity by the androgen receptor (AR) and its coregulators is required for male reproductive development and function. In humans and other primates, melanoma antigen gene protein-A11 (MAGE-11) is an AR selective coregulator that increases AR transcriptional activity. Here we show that the interaction between AR and MAGE-11 is mediated by AR NH(2)-terminal FXXLF motif binding to a highly conserved MAGE-11 F-box in the MAGE homology domain, and is modulated by serum stimulation of mitogen-activated protein kinase phosphorylation of MAGE-11 Ser-174. The MAGE-11-dependent increase in AR transcriptional activity is mediated by a direct interaction between MAGE-11 and transcriptional intermediary factor 2 (TIF2) through the NH(2)-terminal region of TIF2, and by a MAGE-11 FXXIF motif interaction with an F-box-like region in activation domain 1 of TIF2. The results suggest that MAGE-11 functions as a bridging factor to recruit AR coactivators through a novel FXX(L/I)F motif-F-box interaction paradigm.
Collapse
Affiliation(s)
- Emily B Askew
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599-7500, USA
| | | | | | | | | |
Collapse
|
38
|
Emerging roles of the ubiquitin proteasome system in nuclear hormone receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:117-35. [PMID: 20374703 DOI: 10.1016/s1877-1173(09)87004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor (NR)-mediated transcription is intimately tied to the ubiquitin proteasome system (UPS). The UPS targets numerous NR and coregulator proteins, regulating their stability and altering their transcriptional activities through the posttranslational placement of ubiquitin marks on them. Differences in the manner in which ubiquitin is attached to target proteins or itself have distinct regulatory consequences. Protein monoubiquitination, polyubiquitination, the site of ubiquitin attachment to a target protein, and the type of polyubiquitin chain linkage all lead to different biological outcomes and have an important regulatory function in NR-mediated transcription. Consistent with its role in protein degradation, the UPS is able to limit the biological actions of both NRs and coregulators by reducing their protein concentrations in the cell. However, in spite of its destructive capabilities, the UPS can play a positive role in facilitating NR-mediated transcription as well. In addition, ubiquitin-like modifications such as SUMOylation also modify and regulate NRs and coregulators. The UPS forms a key biological system that underlies a sophisticated postranslational regulatory scheme from which complex and dynamic regulation of NR-mediated transcription can occur.
Collapse
|
39
|
Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 2009; 9:615-30. [PMID: 19701241 PMCID: PMC2908510 DOI: 10.1038/nrc2695] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three homologous members of the p160 SRC family (SRC1, SRC2 and SRC3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRCgenes are subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRCs promote breast and prostate cancer cell proliferation and survival, have been identified, as have the specific contributions of individual SRC family members to spontaneous breast and prostate carcinogenesis in genetically manipulated mouse models. These studies have identified new challenges for cancer research and therapy.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Ray-Chang Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
40
|
Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
|
41
|
Spears M, Bartlett J. The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin Ther Targets 2009; 13:665-74. [DOI: 10.1517/14728220902911509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Fraser CC. G protein-coupled receptor connectivity to NF-kappaB in inflammation and cancer. Int Rev Immunol 2009; 27:320-50. [PMID: 18853342 DOI: 10.1080/08830180802262765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex intracellular network interactions regulate gene expression and cellular behavior. Whether at the site of inflammation or within a tumor, individual cells are exposed to a plethora of signals. The transcription factor nuclear factor-kappaB (NF-kappaB) regulates genes that control key cellular activities involved in inflammatory diseases and cancer. NF-kappaB is regulated by several distinct signaling pathways that may be activated individually or simultaneously. Multiple ligands and heterologous cell-cell interactions have an impact on NF-kappaB activity. The G protein-coupled receptor (GPCR) superfamily makes up the largest class of transmembrane receptors in the human genome and has multiple molecularly distinct natural ligands. GPCRs regulate proliferation, differentiation, and chemotaxis and play a major role in inflammatory diseases and cancer. Both GPCRs and NF-kappaB have been, and continue to be, major targets for drug discovery. A clear understanding of network interactions between GPCR signaling pathways and those that control NF-kB may be valuable for the development of better drugs and drug combinations.
Collapse
|
43
|
Han SJ, Lonard DM, O'Malley BW. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab 2009; 20:8-15. [PMID: 19019695 PMCID: PMC3642869 DOI: 10.1016/j.tem.2008.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 01/23/2023]
Abstract
Nuclear receptor (NR) coactivators are recruited to DNA by NRs, potentiating NR-dependent gene transcription. To obtain the complexity of NR-mediated gene regulation with a finite number of coactivators, the molecular properties of coactivators are dynamically modulated by posttranslational modifications (PTMs) in response to external stimuli. PTMs can regulate the molecular interactions of coactivators with transcription factors and other coactivators, in addition to their cellular location, protein stability, conformation and enzymatic activity. Therefore, dynamic regulation of the molecular properties of coactivators by PTMs allows for the complexity of NR-dependent gene expression and influences the regulation of NR-mediated physiological processes. This review focuses on recent progress in our understanding of how coactivator PTMs influence NR-mediated gene transcription and addresses their biological relevance.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
44
|
Tissue-specific ablation of Prkar1a causes schwannomas by suppressing neurofibromatosis protein production. Neoplasia 2008; 10:1213-21. [PMID: 18953430 DOI: 10.1593/neo.08652] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/23/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022] Open
Abstract
Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF). Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice) causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.
Collapse
|
45
|
Kinyamu HK, Collins JB, Grissom SF, Hebbar PB, Archer TK. Genome wide transcriptional profiling in breast cancer cells reveals distinct changes in hormone receptor target genes and chromatin modifying enzymes after proteasome inhibition. Mol Carcinog 2008; 47:845-85. [PMID: 18381591 PMCID: PMC2863309 DOI: 10.1002/mc.20440] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Steroid hormone receptors, like glucocorticoid (GR) and estrogen receptors (ER), are master regulators of genes that control many biological processes implicated in health and disease. Gene expression is dependent on receptor levels which are tightly regulated by the ubiquitin-proteasome system. Previous studies have shown that proteasome inhibition increases GR, but decreases ER-mediated gene expression. At the gene expression level this divergent role of the proteasome in receptor-dependent transcriptional regulation is not well understood. We have used a genomic approach to examine the impact of proteasome activity on GR- and ER-mediated gene expression in MCF-7 breast cancer cells treated with dexamethasone (DEX) or 17beta-estradiol (E2), the proteasome inhibitor MG132 (MG) or MG132 and either hormone (MD or ME2) for 24 h. Transcript profiling reveals that inhibiting proteasome activity modulates gene expression by GR and ER in a similar manner in that several GR and ER target genes are upregulated and downregulated after proteasome inhibition. In addition, proteasome inhibition modulates receptor-dependent genes involved in the etiology of a number of human pathological states, including multiple myeloma, leukemia, breast/prostate cancer, HIV/AIDS, and neurodegenerative disorders. Importantly, our analysis reveals that a number of transcripts encoding histone and DNA modifying enzymes, prominently histone/DNA methyltransferases and demethylases, are altered after proteasome inhibition. As proteasome inhibitors are currently in clinical trials as therapy for multiple myeloma, HIV/AIDS and leukemia, the possibility that some of the target molecules are hormone regulated and chromatin modifying enzymes is intriguing in this era of epigenetic therapy.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Jennifer B. Collins
- Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Sherry F. Grissom
- Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Pratibha B. Hebbar
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233 (MD C4-06), Research Triangle Park, NC USA 27709
| |
Collapse
|
46
|
Oesch-Bartlomowicz B, Oesch F. Role of cAMP in mediating AHR signaling. Biochem Pharmacol 2008; 77:627-41. [PMID: 19013136 DOI: 10.1016/j.bcp.2008.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/11/2008] [Accepted: 10/13/2008] [Indexed: 01/30/2023]
Abstract
Regulation of the nuclear import of many transcription factors represents a step in gene regulation which is crucial for a number of cellular processes. The aryl hydrocarbon receptor (AHR), a basic helix-loop-helix protein of the PAS (PER-ARNT-SIM) family of transcriptional regulators is a cytosol-associated and ligand-activated receptor. The environmental toxin dioxin binds with high affinity to AHR rendering it nuclear and leading to the activation of AHR sensitive genes. However, the fact, that the AHR mediates a large variety of physiological events without the involvement of any known exogenous ligand, including liver and vascular system development, maturation of the immune system, regulation of genes involved in cellular growth, cell differentiation and circadian rhythm, speaks for an important role of AHR in cell biology independent of the presence of an exogenous ligand. Different approaches were applied to study mechanism(s) which render AHR nuclear and design its function in absence of exogenous ligands. We found that AHR is sensitive to cAMP signaling mediated by cAMP-dependent protein kinase (PKA) which fundamentally differs from AHR signaling mediated by the exogenous ligand dioxin. It has been shown that PKA mediated signaling can be confined by compartmentalization of signaling components in microdomains conferring specificity to signaling by the ubiquitous second messenger cAMP. Moreover, A-kinase-anchoring proteins (AKAPs) and newly discovered cAMP receptors, Epac (exchange protein directly activated by cAMP), may give us a further chance to enter into new dimensions of cAMP signal transmissions that potentially may bring us closer to AHR physiology.
Collapse
|
47
|
Fenne IS, Hoang T, Hauglid M, Sagen JV, Lien EA, Mellgren G. Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3',5'-cyclic adenosine 5'-monophosphate-dependent protein kinase. Endocrinology 2008; 149:4336-45. [PMID: 18499756 DOI: 10.1210/en.2008-0037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid receptor coactivators (SRCs), such as glucocorticoid receptor interacting protein 1 (GRIP1) are recruited to the DNA-bound nuclear receptors (NRs) and are also shown to enhance the gene transactivation by other transcription factors. In contrast to the two other members of the SRC family, SRC-1 and SRC-3/amplified in breast cancer 1, SRC-2/GRIP1 is regulated by the cAMP-dependent protein kinase [protein kinase A (PKA)] that stimulates its ubiquitination and degradation. In this report we demonstrate that COS-1 and MCF-7 cells treated with cAMP-elevating agents and 8-para-chlorophenylthio-cAMP for short periods of time showed an increase in GRIP1 coactivator function, whereas prolonged stimulation of the cAMP/PKA pathway led to a decline in GRIP1-mediated activation and protein levels. Furthermore, MCF-7 breast cancer cells were subjected to chromatin immunoprecipitation assays after stimulation of the cAMP/PKA pathway. cAMP/PKA initiated a rapid recruitment of GRIP1 to the endogenous estrogen receptor (ER)-alpha target pS2 gene promoter. In contrast to the estradiol-induced recruitment of GRIP1 to pS2, we observed an additional increase in GRIP1 recruitment on inhibition of the proteasome, suggesting that inhibition of GRIP1 degradation leads to accumulation at the pS2. Real-time PCR experiments confirmed that cAMP/PKA enhanced the expression of pS2. Moreover, confocal imaging of COS-1 cells transfected with yellow fluorescent protein-GRIP1 and cyan fluorescent protein-ERalpha revealed that PKA led to redistribution and colocalization of yellow fluorescent protein-GRIP1 and cyan fluorescent protein-ERalpha in subnuclear foci. In conclusion, these results suggest that activation of the cAMP/PKA pathway stimulates recruitment of GRIP1 to an ER-responsive gene promoter. The initial stimulation of GRIP1 coactivator function is followed by an increased turnover and subsequent degradation of GRIP1 protein.
Collapse
Affiliation(s)
- Ingvild S Fenne
- Institute of Medicine, Section for Endocrinology, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
48
|
Calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of protein kinase A and protein kinase A-mediated stabilization of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Arch Biochem Biophys 2008; 477:227-31. [PMID: 18647593 DOI: 10.1016/j.abb.2008.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/18/2008] [Accepted: 07/04/2008] [Indexed: 11/20/2022]
Abstract
Human neutrophils underwent spontaneous apoptosis, which was accompanied with proteasome-mediated degradation of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO) prevented spontaneous neutrophil apoptosis and degradation of Mcl-1 and XIAP, and the effects of calpain inhibitors on neutrophils were resistant to cycloheximide. Calpain inhibitors induced protein kinase A (PKA) activation, which was unaccompanied with an increase in intracellular cyclic AMP. Calpain inhibition-mediated delayed neutrophil apoptosis, stabilization of Mcl-1 and XIAP, and phosphorylation of PKA substrates were suppressed by H-89 (specific PKA inhibitor). These findings suggest that calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of PKA and PKA-mediated stabilization of Mcl-1 and XIAP.
Collapse
|
49
|
Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK. Growth factor regulation of estrogen receptor coregulator PELP1 functions via Protein Kinase A pathway. Mol Cancer Res 2008; 6:851-61. [PMID: 18505929 PMCID: PMC2782677 DOI: 10.1158/1541-7786.mcr-07-2030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PELP1 (proline-rich, glutamic acid-rich, and leucine-rich protein-1) is a potential proto-oncogene that functions as a coregulator of estrogen receptor (ER), and its expression is deregulated during breast cancer progression. Emerging evidence suggests growth factor signaling crosstalk with ER as one possible mechanism by which breast tumors acquire resistance to therapy. In this study, we examined mechanisms by which growth factors modulate PELP1 functions, leading to activation of ER. Using in vivo labeling assays, we have found that growth factors promote phosphorylation of PELP1. Utilizing a panel of substrate-specific phosphorylated antibodies, we discovered that growth factor stimulation promotes phosphorylation of PELP1 that is recognized by a protein kinase A (PKA) substrate-specific antibody. Accordingly, growth factor-mediated PELP1 phosphorylation was effectively blocked by PKA-specific inhibitor H89. Utilizing purified PKA enzyme and in vitro kinase assays, we obtained evidence of direct PELP1 phosphorylation by PKA. Using deletion and mutational analysis, we identified PELP1 domains that are phosphorylated by PKA. Interestingly, site-directed mutagenesis of the putative PKA site in PELP1 compromised growth factor-induced activation and subnuclear localization of PELP1 and also affected PELP1-mediated transactivation function. Utilizing MCF-7 cells expressing a PELP1 mutant that cannot be phosphorylated by PKA, we provide mechanistic insights by which growth factor signaling regulates ER transactivation in a PELP1-dependent manner. Collectively, these findings suggest that growth factor signals promote phosphorylation of ER coactivator PELP1 via PKA pathway, and such modification may have functional implications in breast tumors with deregulated growth factor signaling.
Collapse
Affiliation(s)
- Jatin K. Nagpal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Sujit Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Dimple Chakravarty
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Rajib Rajhans
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Saikumar Pothana
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Darrell W. Brann
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, Georgia
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
50
|
Bai C, Flores O, Schmidt A. Opportunities for development of novel therapies targeting steroid hormone receptors. Expert Opin Drug Discov 2007; 2:725-37. [DOI: 10.1517/17460441.2.5.725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|