1
|
Dudka W, Salo VT, Mahamid J. Zooming into lipid droplet biology through the lens of electron microscopy. FEBS Lett 2024; 598:1127-1142. [PMID: 38726814 DOI: 10.1002/1873-3468.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.
Collapse
Affiliation(s)
- Wioleta Dudka
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
2
|
Li P, Mei C, Raza SHA, Cheng G, Ning Y, Zhang L, Zan L. Arginine (315) is required for the PLIN2-CGI-58 interface and plays a functional role in regulating nascent LDs formation in bovine adipocytes. Genomics 2024; 116:110817. [PMID: 38431031 DOI: 10.1016/j.ygeno.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.
Collapse
Affiliation(s)
- Peiwei Li
- Shaanxi Institute of Zoology, Xi'an, Shaanxi, 710032, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Cheng
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Amarasinghe I, Phillips W, Hill AF, Cheng L, Helbig KJ, Willms E, Monson EA. Cellular communication through extracellular vesicles and lipid droplets. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e77. [PMID: 38938415 PMCID: PMC11080893 DOI: 10.1002/jex2.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/29/2024]
Abstract
Cellular communication is essential for effective coordination of biological processes. One major form of intercellular communication occurs via the release of extracellular vesicles (EVs). These vesicles mediate intercellular communication through the transfer of their cargo and are actively explored for their role in various diseases and their potential therapeutic and diagnostic applications. Conversely, lipid droplets (LDs) are vesicles that transfer cargo within cells. Lipid droplets play roles in various diseases and evidence for their ability to transfer cargo between cells is emerging. To date, there has been little interdisciplinary research looking at the similarities and interactions between these two classes of small lipid vesicles. This review will compare the commonalities and differences between EVs and LDs including their biogenesis and secretion, isolation and characterisation methodologies, composition, and general heterogeneity and discuss challenges and opportunities in both fields.
Collapse
Affiliation(s)
- Irumi Amarasinghe
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
| | - William Phillips
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
- La Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneAustralia
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityFootscrayVictoriaAustralia
| | - Lesley Cheng
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
- La Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneAustralia
| | - Karla J. Helbig
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
| | - Eduard Willms
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
- La Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneAustralia
| | - Ebony A. Monson
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
| |
Collapse
|
4
|
Florance I, Chandrasekaran N, Gopinath PM, Mukherjee A. Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113612. [PMID: 35561548 DOI: 10.1016/j.ecoenv.2022.113612] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The use of polystyrene micro and nanoplastics in cosmetics and personal care products continues to grow every day. The harmful effects of their biological accumulation in organisms of all trophic levels including humans have been reported by several studies. While we have accumulating evidence on the impact of nanoplastics on different organ systems in humans, only a handful of reports on the impact of polystyrene nanoplastics upon direct contact with the immune system at the cellular level are avialable. The present study offers significant evidence on the cell-specific harmful impact of sulfate-modified nanoplastics (S-NPs) on human macrophages. Here we report that exposure of human macrophages to S-NPs (100 µg/mL) stimulated the accumulation of lipids droplets (LDs) in the cytoplasm resulting in the differentiation of macrophages into foam cells. The observed effect was specific for human and murine macrophages but not for other cell types, especially human keratinocytes, liver, and lung cell models. Furthermore, we found that S-NPs mediated LDs accumulation in human macrophages was accompanied by acute mitochondrial oxidative stress. The accumulated LDs were further delivered and accumulated into lysosomes leading to impaired lysosomal clearance. In conclusion, our study reveals that exposure to polystyrene nanoplastics stabilized with anionic surfactants can be a potent stimulus for dysregulation of lipid metabolism and macrophage foam cell formation, a characteristic feature observed during atherosclerosis posing a serious threat to human health.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India; School of Bioseciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| | - Ponnusamy Manogaran Gopinath
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India; School of Bioseciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| |
Collapse
|
5
|
In Vitro Application of Langmuir Monolayer Model: The interfacial Behavior of Myelin Basic Protein with a Plasma Membrane Model. J Membr Biol 2022; 255:71-78. [PMID: 35084527 DOI: 10.1007/s00232-022-00214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The stability and compactness of myelin structure and brain homeostasis depend on MBP and glial cell plasma membrane interactions. In order to get more detailed mechanisms of this interaction, the MBP of different concentrations interacting with plasma membrane (POPC/POPE/POPS/Cholesterol (Chol)) model to form bionic membrane was studied by atomic force microscopy (AFM) and Langmuir monolayer technology. The surface pressure(π)-area(A) curve is analyzed by the elastic modulus ([Formula: see text]) and two-dimensional virial equation of state (2D-VES), and the second virial coefficient of the interaction between MBP and plasma membrane molecules was calculated. (i) According to two-dimensional virial equation, it could be analyzed that with the increase of MBP concentration in the subphase, the value of the second virial coefficient increases also, which indicates that MBP is absorbed into lipid membrane of the plasma membrane model at low surface pressure and that the interaction between the molecules is spatial repulsive force, and (ii) in the monolayers with MBP, resulting in an increasing mean molecular area and monolayer stability due to hydrophobic and electrostatic interactions between the positively charged MBP with hydrophobic residues and negatively charged POPS and neutral lipid (POPC, POPE). AFM surface topographic results correspond to the results of the curve analysis, indicating that MBP of different concentrations has significant influences on alignment and conformation of plasma membrane, which is of great medical value and biological significance to the application of interaction between MBP and myelin lipid membrane in treatment of central nervous diseases. Adsorption model of interaction between MBP and plasma membrane model.
Collapse
|
6
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Cytosolic phospholipase A 2-α participates in lipid body formation and PGE 2 release in human neutrophils stimulated with an L-amino acid oxidase from Calloselasma rhodostoma venom. Sci Rep 2020; 10:10976. [PMID: 32620771 PMCID: PMC7334223 DOI: 10.1038/s41598-020-67345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
Cr-LAAO, an l-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, has been demonstrated as a potent stimulus for neutrophil activation and inflammatory mediator production. However, the mechanisms involved in Cr-LAAO induced neutrophil activation has not been well characterized. Here we investigated the mechanisms involved in Cr-LAAO-induced lipid body (also known as lipid droplet) biogenesis and eicosanoid formation in human neutrophils. Using microarray analysis, we show for the first time that Cr-LAAO plays a role in the up-regulation of the expression of genes involved in lipid signalling and metabolism. Those include different members of phospholipase A2, mostly cytosolic phospholipase A2-α (cPLA2-α); and enzymes involved in prostaglandin synthesis including cyclooxygenases 2 (COX-2), and prostaglandin E synthase (PTGES). In addition, genes involved in lipid droplet formation, including perilipin 2 and 3 (PLIN 2 and 3) and diacylglycerol acyltransferase 1 (DGAT1), were also upregulated. Furthermore, increased phosphorylation of cPLA2-α, lipid droplet biogenesis and PGE2 synthesis were observed in human neutrophils stimulated with Cr-LAAO. Treatment with cPLA2-α inhibitor (CAY10650) or DGAT-1 inhibitor (A922500) suppressed lipid droplets formation and PGE2 secretion. In conclusion, we demonstrate for the first time the effects of Cr-LAAO to regulate neutrophil lipid metabolism and signalling.
Collapse
|
8
|
Mizuguchi T, Momotake A, Hishida M, Yasui M, Yamamoto Y, Saiki T, Nuriya M. Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering. Anal Chem 2020; 92:5656-5660. [PMID: 32202108 DOI: 10.1021/acs.analchem.0c00673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) imaging is widely used for imaging molecular vibrations inside cells and tissues. Lipid bilayers are potential analytes for CARS imaging due to their abundant CH2 vibrational bonds. However, identifying the plasma membrane is challenging since it possesses a thin structure and is closely apposed to lipid structures inside the cells. Since the plasma membrane provides the most prominent asymmetric location within cells, orientation sensitive sum-frequency generation (SFG) imaging is a promising technique for selective visualization of the plasma membrane labeled by a nonfluorescent and SFG-specific dye, Ap3, when using a CARS microscope system. In this study, we closely compare the characteristics of lipid bilayer imaging by dye-based SFG and CARS using giant vesicles (GVs) and N27 rat dopaminergic neural cells. As a result, we show that CARS imaging can be exploited for the visualization of whole lipid structures inside GVs and cells but is insufficient for identification of the plasma membrane, which instead can be achieved using dye-based SFG imaging. In addition, we demonstrate that these unique properties can be combined and applied to the live-cell tracking of intracellular lipid structures such as lipid droplets beneath the plasma membrane. Thus, multimodal multiphoton imaging through a combination of dye-based SFG and CARS can serve as a powerful chemical imaging tool to investigate lipid bilayers in GVs and living cells.
Collapse
Affiliation(s)
- Takaha Mizuguchi
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Atsuya Momotake
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Masato Yasui
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Toshiharu Saiki
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Schubert M, Becher S, Wallert M, Maeß MB, Abhari M, Rennert K, Mosig AS, Große S, Heller R, Grün M, Lorkowski S. The Peroxisome Proliferator-Activated Receptor (PPAR)- γ Antagonist 2-Chloro-5-Nitro-N-Phenylbenzamide (GW9662) Triggers Perilipin 2 Expression via PPAR δ and Induces Lipogenesis and Triglyceride Accumulation in Human THP-1 Macrophages. Mol Pharmacol 2020; 97:212-225. [PMID: 31871304 DOI: 10.1124/mol.119.117887] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor family, playing pivotal roles in regulating glucose and lipid metabolism as well as inflammation. While characterizing potential PPARγ ligand activity of natural compounds in macrophages, we investigated their influence on the expression of adipophilin [perilipin 2 (PLIN2)], a well-known PPARγ target. To confirm that a compound regulates PLIN2 expression via PPARγ, we performed experiments using the widely used PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662). Surprisingly, instead of blocking upregulation of PLIN2 expression in THP-1 macrophages, expression was concentration-dependently induced by GW9662 at concentrations and under conditions commonly used. We found that this unexpected upregulation occurs in many human and murine macrophage cell models and also primary cells. Profiling expression of PPAR target genes showed upregulation of several genes involved in lipid uptake, transport, and storage as well as fatty acid synthesis by GW9662. In line with this and with upregulation of PLIN2 protein, GW9662 elevated lipogenesis and increased triglyceride levels. Finally, we identified PPARδ as a mediator of the substantial unexpected effects of GW9662. Our findings show that: 1) the PPARγ antagonist GW9662 unexpectedly activates PPARδ-mediated signaling in macrophages, 2) GW9662 significantly affects lipid metabolism in macrophages, 3) careful validation of experimental conditions and results is required for experiments involving GW9662, and 4) published studies in a context comparable to this work may have reported erroneous results if PPARγ independence was demonstrated using GW9662 only. In light of our findings, certain existing studies might require reinterpretation regarding the role of PPARγ SIGNIFICANCE STATEMENT: Peroxisome proliferator-activated receptors (PPARs) are targets for the treatment of various diseases, as they are key regulators of inflammation as well as lipid and glucose metabolism. Hence, reliable tools to characterize the molecular effects of PPARs are indispensable. We describe profound and unexpected off-target effects of the PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662) involving PPARδ and in turn affecting macrophage lipid metabolism. Our results question certain existing studies using GW9662 and make better experimental design of future studies necessary.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Stefanie Becher
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Maria Wallert
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Marten B Maeß
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Masoumeh Abhari
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Knut Rennert
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Alexander S Mosig
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Silke Große
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Regine Heller
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Michael Grün
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| |
Collapse
|
10
|
Oren T, Nimri L, Yehuda-Shnaidman E, Staikin K, Hadar Y, Friedler A, Amartely H, Slutzki M, Pizio AD, Niv MY, Peri I, Graeve L, Schwartz B. Recombinant Ostreolysin Induces Brown Fat-Like Phenotype in HIB-1B Cells. Mol Nutr Food Res 2019; 63:e1970012. [PMID: 30835934 DOI: 10.1002/mnfr.201970012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Yue B, Wu J, Shao S, Zhang C, Fang X, Bai Y, Qi X, Chen H. Polymorphism in PLIN2 gene and its association with growth traits in Chinese native cattle. Anim Biotechnol 2019; 31:142-147. [PMID: 30717637 DOI: 10.1080/10495398.2018.1555166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Perilipin 2 (PLIN2) is a cytosolic protein that regulates intracellular lipid storage and mobilization. However, research reports of the relationship between PLIN2 gene and growth traits in cattle are rare. Here, five novel single nucleotide polymorphisms (SNPs)(g.3036G > C, g.3964C > T, g.6458G > T, g.6555C > T and g.8231G > A)were identified within the bovine PLIN2 gene using DNA sequencing and PCR-SSCP methods in 820 individuals from four Chinese indigenous bovine breeds. Overall, five common haplotypes were identified based on the 5 SNPs, with the most common haplotypes (GCGCG) occurring at a frequency of 69.0%. In addition, The 5 novel SNPs were associated with growth traits at 6, 12, 18 and 24 months in Nanyang population, and significant associations were found in body weight and heart girth. These results suggest that PLIN2 possibly is a strong candidate gene marker for body weight in cattle breeding program.
Collapse
Affiliation(s)
- Binglin Yue
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Jiyao Wu
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Simin Shao
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Yueyu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, P. R. China
| | - Xingshan Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, P. R. China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
12
|
Li P, Wang Y, Zhang L, Ning Y, Zan L. The Expression Pattern of PLIN2 in Differentiated Adipocytes from Qinchuan Cattle Analysis of Its Protein Structure and Interaction with CGI-58. Int J Mol Sci 2018; 19:ijms19051336. [PMID: 29723991 PMCID: PMC5983586 DOI: 10.3390/ijms19051336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
PLIN2 (Perilipin-2) is a protein that can anchor on the membrane of lipid droplets (LDs), playing a vital role in the early formation of LDs and in the regulation of LD metabolism in many types of cells. However, little research has been conducted in cattle adipocytes. In the present study, we found that the expression of PLIN2 mRNA peaks at Day 2 during cattle adipocyte differentiation (p < 0.01), but PLIN2 protein levels maintain high abundance until Day 4 and then decrease sharply. We first built an interaction model using PyMOL. The results of a pull-down assay indicated that bovine PLIN2 and CGI-58 (ABHD5, α/β hydrolase domain-containing protein 5) had an interaction relationship. Furthermore, Bimolecular Fluorescence Complementation-Flow Cytometry (BiFC-FC) was used to explore the function of the PLIN2-CGI-58 interaction. Interestingly, we found that different combined models had different levels of fluorescence intensity; specifically, PLIN2-VN173+CGI-58-VC155 expressed in bovine adipocytes exhibited the highest level of fluorescence intensity. Our findings elucidate the PLIN2 expression pattern in cattle adipocytes, the protein structure and the function of protein–protein interactions (PPI) as well as highlight the characteristics of bovine PLIN2 during the early formation and accumulation of lipid droplets.
Collapse
Affiliation(s)
- Peiwei Li
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yaning Wang
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Le Zhang
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
14
|
HDAC6 Suppresses Age-Dependent Ectopic Fat Accumulation by Maintaining the Proteostasis of PLIN2 in Drosophila. Dev Cell 2017; 43:99-111.e5. [DOI: 10.1016/j.devcel.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/01/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
15
|
Oren T, Nimri L, Yehuda-Shnaidman E, Staikin K, Hadar Y, Friedler A, Amartely H, Slutzki M, Pizio AD, Niv MY, Peri I, Graeve L, Schwartz B. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Mol Nutr Food Res 2017; 61. [PMID: 28464422 DOI: 10.1002/mnfr.201700057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
SCOPE Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. METHODS AND RESULTS Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. CONCLUSION rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Collapse
Affiliation(s)
- Tom Oren
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lili Nimri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katy Staikin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Friedler
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Hadar Amartely
- Institute of Chemistry, the Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, Israel
| | - Michal Slutzki
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lutz Graeve
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Betty Schwartz
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Bakula D, Müller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost AK, Brigger D, Tschan MP, Frickey T, Robenek H, Macek B, Proikas-Cezanne T. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun 2017; 8:15637. [PMID: 28561066 PMCID: PMC5460038 DOI: 10.1038/ncomms15637] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4. During autophagy, AMPK and mTOR associate with ULK1 and regulate phosphatidylinositol 3-phosphate (PtdIns3P) production that mediates autophagosome formation via WIPI proteins. Here the authors show WIPI3 and WIPI4 have a scaffolding function upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes.
Collapse
Affiliation(s)
- Daniela Bakula
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Amelie J Müller
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Theresia Zuleger
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Zsuzsanna Takacs
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Ann-Katrin Thost
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Tancred Frickey
- Department of Biology, Applied Bioinformatics, Konstanz University, D-78457 Konstanz, Germany
| | - Horst Robenek
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, D-48149 Muenster, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,Proteome Center Tuebingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
17
|
Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35:200-221. [PMID: 27702700 DOI: 10.1016/j.arr.2016.09.008] [Citation(s) in RCA: 519] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway.
Collapse
|
18
|
Soayfane Z, Tercé F, Cantiello M, Robenek H, Nauze M, Bézirard V, Allart S, Payré B, Capilla F, Cartier C, Peres C, Al Saati T, Théodorou V, Nelson DW, Yen CLE, Collet X, Coméra C. Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr Metab (Lond) 2016; 13:48. [PMID: 27478484 PMCID: PMC4965885 DOI: 10.1186/s12986-016-0107-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background Intestinal absorption of dietary lipids involves their hydrolysis in the lumen of proximal intestine as well as uptake, intracellular transport and re-assembly of hydrolyzed lipids in enterocytes, leading to the formation and secretion of the lipoproteins chylomicrons and HDL. In this study, we examined the potential involvement of cytosolic lipid droplets (CLD) whose function in the process of lipid absorption is poorly understood. Methods Intestinal lipid absorption was studied in mouse after gavage. Three populations of CLD were purified by density ultracentrifugations, as well as the brush border membranes, which were analyzed by western-blots. Immunofluorescent localization of membranes transporters or metabolic enzymes, as well as kinetics of CLD production, were also studied in intestine or Caco-2 cells. Results We isolated three populations of CLD (ranging from 15 to 1000 nm) which showed differential expression of the major lipid transporters scavenger receptor BI (SR-BI), cluster of differentiation 36 (CD-36), Niemann Pick C-like 1 (NPC1L1), and the ATP-binding cassette transporters ABCG5/G8 but also caveolin 2 and fatty acid binding proteins. The enzyme monoacylglycerol acyltransferase 2 (MGAT2) was identified in the brush border membrane (BBM) in addition to the endoplasmic reticulum, suggesting local synthesis of triglycerides and CLD at both places. Conclusions We show a very fast production of CLD by enterocytes associated with a transfer of apical constituents as lipid transporters. Our findings suggest that following their uptake by enterocytes, lipids can be partially metabolized at the BBM and packaged into CLD for their transportation to the ER. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0107-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeina Soayfane
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - François Tercé
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Michela Cantiello
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Horst Robenek
- Leibniz-Institut für Arterioskleroseforschung, Universität Münster, Münster, Germany
| | - Michel Nauze
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Valérie Bézirard
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - Sophie Allart
- INSERM UMR 1043 (INSERM/UPS/CNRS/USC Inra), CHU Purpan, Toulouse, France
| | - Bruno Payré
- CMEAB, Faculté de Médecine Rangueil, Toulouse, France
| | - Florence Capilla
- INSERM/UPS - US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Christel Cartier
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - Christine Peres
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Talal Al Saati
- INSERM/UPS - US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Vassilia Théodorou
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Xavier Collet
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Christine Coméra
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France.,UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| |
Collapse
|
19
|
Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, Thiruppathi S, Suzuki T, Hiroi S, Seki S, Sakamoto T. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res 2015; 59:1155-70. [PMID: 25677089 DOI: 10.1002/mnfr.201400564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Resveratrol reportedly improves fatty liver. This study purposed to elucidate the effect of resveratrol on fatty liver in mice fed a high-fat (HF) diet, and to investigate the role of liver macrophages (Kupffer cells). METHODS AND RESULTS C57BL/6 mice were divided into three groups, receiving either a control diet, HF diet (50% fat), or HF supplemented with 0.2% resveratrol (HF + res) diet, for 8 weeks. Compared with the HF group, the HF + res group exhibited markedly attenuated fatty liver, and reduced lipid droplets (LDs) in hepatocytes. Proteomic analysis demonstrated that the most downregulated protein in the livers of the HF + res group was adipose differentiation-related protein (ADFP), which is a major constituent of LDs and reflects lipid accumulation in cells. The HF + res group exhibited greatly increased numbers of CD68(+) Kupffer cells with phagocytic activity. Immunohistochemistry showed that several CD68(+) Kupffer cells were colocalized with ADFP immunoreaction in the HF + res group. Additionally, the HF + res group demonstrated markedly decreased TNF-alpha production, which confirmed by both liver mononuclear cells stimulated by LPS in vitro and in situ hybridization analysis, compared with the HF group. CONCLUSION Resveratrol ameliorated fatty liver and increased CD68-positive Kupffer cells with downregulating ADFP expression.
Collapse
Affiliation(s)
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Yoko Fujiwara
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mai Akao
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mariko Sonoda
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Sadayuki Hiroi
- Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Toshihisa Sakamoto
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
20
|
Ramos SV, Turnbull PC, MacPherson REK, LeBlanc PJ, Ward WE, Peters SJ. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction. Exp Physiol 2015; 100:450-62. [PMID: 25663294 DOI: 10.1113/expphysiol.2014.084434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to determine whether mitochondrial protein content of perilipin 3 (PLIN3) and perilipin 5 (PLIN5) is increased following endurance training and whether mitochondrial PLIN5 protein is increased to a greater extent in endurance-trained rats when compared with sedentary rats following acute contraction. What is the main finding and its importance? Mitochondrial PLIN3 but not PLIN5 protein was increased in endurance-trained compared with sedentary rats, suggesting a mitochondrial role for PLIN3 due to chronic exercise. Contrary to our hypothesis, acute mitochondrial PLIN5 protein was similar in both sedentary and endurance-trained rats. Endurance training results in an increased association between skeletal muscle lipid droplets and mitochondria. This association is likely to be important for the expected increase in intramuscular fatty acid oxidation that occurs with endurance training. The perilipin family of lipid droplet proteins, PLIN(2-5), are thought to play a role in skeletal muscle lipolysis. Recently, results from our laboratory demonstrated that skeletal muscle mitochondria contain PLIN3 and PLIN5 protein. Furthermore, 30 min of stimulated contraction induces an increased mitochondrial PLIN5 content. To determine whether mitochondrial content of PLIN3 and PLIN5 is altered with endurance training, Sprague-Dawley rats were randomized into sedentary or endurance-trained groups for 8 weeks of treadmill running followed by an acute (30 min) sciatic nerve stimulation to induce lipolysis. Mitochondrial PLIN3 protein was ∼1.5-fold higher in red gastrocnemius of endurance-trained rats compared with sedentary animals, with no change in mitochondrial PLIN5 protein. In addition, there was an increase in plantaris intramuscular lipid storage. Acute electrically stimulated contraction in red gastrocnemius from sedentary and endurance-trained rats resulted in a similar increase of mitochondrial PLIN5 between these two groups, with no net change in PLIN3 in either group. Plantaris intramuscular lipid content decreased to a similar extent in sedentary and endurance-trained rats. These results suggest that while total mitochondrial PLIN5 content is not altered by endurance training, PLIN5 does have an acute role in the mitochondrial fraction during muscle contraction. Conversely, mitochondrial PLIN3 does not change acutely with muscle contraction, but PLIN3 content was increased following endurance training, indicating a role in chronic adaptations of skeletal muscle.
Collapse
Affiliation(s)
- S V Ramos
- Center for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada; Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Nguyen HT, Ong L, Beaucher E, Madec MN, Kentish SE, Gras SL, Lopez C. Buffalo milk fat globules and their biological membrane: in situ structural investigations. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Ramos SV, MacPherson REK, Turnbull PC, Bott KN, LeBlanc P, Ward WE, Peters SJ. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol Rep 2014; 2:2/10/e12154. [PMID: 25318747 PMCID: PMC4254090 DOI: 10.14814/phy2.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet-mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21; age, 52 days; weight = 317 ± 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10-20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.
Collapse
Affiliation(s)
- Sofhia V Ramos
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Rebecca E K MacPherson
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Patrick C Turnbull
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Kirsten N Bott
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Paul LeBlanc
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| |
Collapse
|
23
|
Zhang RN, Fu XW, Jia BY, Liu C, Cheng KR, Zhu SE. Expression of perilipin 2 (PLIN2) in porcine oocytes during maturation. Reprod Domest Anim 2014; 49:875-80. [PMID: 25131988 DOI: 10.1111/rda.12386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/22/2014] [Indexed: 11/28/2022]
Abstract
Perilipins have been reported to limit the interaction of lipases with neutral lipids within the droplets, thereby regulating neutral lipid accumulation and utilization. This study aimed to identify the location and expression of PLIN1 and PLIN2 in porcine oocytes during maturation. Quantitative real-time polymerase chain reaction (qRT-PCR), immunostaining and Western blot methods were used to characterize the expression and distribution patterns of PLIN1 and PLIN2 in porcine oocytes. The results showed that PLIN1 was not detectable in porcine oocytes. PLIN2 and BODIPY 493/503-detected neutral lipid droplets appeared identical distribution patterns and extensive colocalization in both GV and MII porcine oocytes. PLIN2 protein expression was higher in GV oocytes than that in MII oocytes (p < 0.05), although PLIN2 mRNA expression was similar in both groups. These findings suggested that PLIN2 was a major lipid droplet-associated protein in porcine oocytes.
Collapse
Affiliation(s)
- R N Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
25
|
Pfisterer SG, Bakula D, Frickey T, Cezanne A, Brigger D, Tschan MP, Robenek H, Proikas-Cezanne T. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J Lipid Res 2014; 55:1267-78. [PMID: 24776541 DOI: 10.1194/jlr.m046359] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Collapse
Affiliation(s)
- Simon G Pfisterer
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tancred Frickey
- Applied Bioinformatics Laboratory, University of Konstanz, Konstanz, Germany
| | - Alice Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Horst Robenek
- Leibniz Institute for Arteriosklerosis Research, University of Muenster, Muenster, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
26
|
Li ZJ, Guo WJ, Tian YD, Han RL, Sun YJ, Xue J, Lan XY, Chen H. Characterisation of the genetic effects of the ADFP gene and its association with production traits in dairy goats. Gene 2014; 538:244-50. [PMID: 24487056 DOI: 10.1016/j.gene.2014.01.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/18/2022]
Abstract
Adipose differentiation-related protein (ADFP) is important for regulation of lipid metabolism and insulin secretion in beta-cells. In this study, we investigated polymorphisms within the caprine ADFP gene and determined its relationship with production traits. As there was no sequence information available for the caprine ADFP gene, we generated DNA sequence data and examined the genomic organisation. The caprine ADFP gene is organised into 7 exons and 6 introns that span approximately 8.7 kbp and is transcribed into mRNA containing 1,353 bp of sequence coding for a protein of 450 amino acids. The protein sequences showed substantial similarity (71-99%) to orthologues from cattle, human and mouse. We identified polymorphisms in the sequences using DNA sequencing, PCR-RFLP and forced PCR-RFLP methods. Seven single nucleotide polymorphisms (SNPs) were identified using samples from 4 different goat populations consisting of 1408 healthy and unrelated individuals. Six haplotypes involving the 7 SNPs from the caprine ADFP gene were identified and their effects on production traits were analysed. Haplotype 6 had the highest haplotype frequency and was highly significantly associated with chest circumference and milk yield in the analysed populations. The results of this study suggest that the ADFP gene is a strong candidate gene affecting production traits and may be used for marker-assisted selection and management in Chinese dairy goat breeding programmes.
Collapse
Affiliation(s)
- Zhuan-Jian Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Wen-Jiao Guo
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Rui-Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Yu-Jia Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jing Xue
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
Spincemaille P, Chandhok G, Newcomb B, Verbeek J, Vriens K, Zibert A, Schmidt H, Hannun YA, van Pelt J, Cassiman D, Cammue BPA, Thevissen K. The plant decapeptide OSIP108 prevents copper-induced apoptosis in yeast and human cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1207-1215. [PMID: 24632503 DOI: 10.1016/j.bbamcr.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
We previously identified the Arabidopsis thaliana-derived decapeptide OSIP108, which increases tolerance of plants and yeast cells to oxidative stress. As excess copper (Cu) is known to induce oxidative stress and apoptosis, and is characteristic for the human pathology Wilson disease, we investigated the effect of OSIP108 on Cu-induced toxicity in yeast. We found that OSIP108 increased yeast viability in the presence of toxic Cu concentrations, and decreased the prevalence of Cu-induced apoptotic markers. Next, we translated these results to the human hepatoma HepG2 cell line, demonstrating anti-apoptotic activity of OSIP108 in this cell line. In addition, we found that OSIP108 did not affect intracellular Cu levels in HepG2 cells, but preserved HepG2 mitochondrial ultrastructure. As Cu is known to induce acid sphingomyelinase activity of HepG2 cells, we performed a sphingolipidomic analysis of OSIP108-treated HepG2 cells. We demonstrated that OSIP108 decreased the levels of several sphingoid bases and ceramide species. Moreover, exogenous addition of the sphingoid base dihydrosphingosine abolished the protective effect of OSIP108 against Cu-induced cell death in yeast. These findings indicate the potential of OSIP108 to prevent Cu-induced apoptosis, possibly via its effects on sphingolipid homeostasis.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Benjamin Newcomb
- Department of Medicine and the Stony Brook Cancer Center, University of Stony Brook, Stony Brook, New York, 11794, USA
| | - Jef Verbeek
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Kim Vriens
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Andree Zibert
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Hartmut Schmidt
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, University of Stony Brook, Stony Brook, New York, 11794, USA
| | - Jos van Pelt
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.,Department of Plant Systems Biology, VIB, Technologiepark 927, 9052, Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
28
|
Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation. Exp Mol Med 2014; 46:e71. [PMID: 24406320 PMCID: PMC3909889 DOI: 10.1038/emm.2013.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023] Open
Abstract
Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy.
Collapse
|
29
|
Zhang Q, Cundiff JK, Maria SD, McMahon RJ, Wickham MSJ, Faulks RM, van Tol EAF. Differential digestion of human milk proteins in a simulated stomach model. J Proteome Res 2013; 13:1055-64. [PMID: 24694256 DOI: 10.1021/pr401051u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A key element in understanding how human milk proteins support the health and development of the neonate is to understand how individual proteins are affected during digestion. In the present study, a dynamic gastric model was used to simulate infant gastric digestion of human milk, and a subsequent proteomic approach was applied to study the behavior of individual proteins. A total of 413 human milk proteins were quantified in this study. This approach demonstrated a high degree of variability in the susceptibility of human milk proteins to gastric digestion. Specifically this study reports that lipoproteins are among the class of slowly digested proteins during gastric processes. The levels of integral lysozyme C and partial lactadherin in milk whey increase over digestion. Mucins, ribonuclease 4, and macrophage mannose receptor 1 are also resistant to gastric digestion. The retention or enhancement in whey protein abundance can be ascribed to the digestive release of milk-fat-globule-membrane or immune-cell enclosed proteins that are not initially accessible in milk. Immunoglobulins are more resistant to digestion compared to total milk proteins, and within the immunoglobulin class IgA and IgM are more resistant to digestion compared to IgG. The gastric digestion of milk proteins becomes more apparent from this study.
Collapse
Affiliation(s)
- Qiang Zhang
- Pediatric Nutrition Institute, Mead Johnson Nutrition, 2400 West Lloyd Expressway, Evansville, Indiana 47721, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Ruggles KV, Turkish A, Sturley SL. Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 2013; 33:413-51. [PMID: 23701589 DOI: 10.1146/annurev-nutr-071812-161254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Kelly V Ruggles
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
31
|
Heid H, Rickelt S, Zimbelmann R, Winter S, Schumacher H, Dörflinger Y. Lipid droplets, perilipins and cytokeratins--unravelled liaisons in epithelium-derived cells. PLoS One 2013; 8:e63061. [PMID: 23704888 PMCID: PMC3660578 DOI: 10.1371/journal.pone.0063061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Lipid droplets (LDs) are spherical accumulations of apolar lipids and other hydrophobic substances and are generally surrounded by a thin cortical layer of specific amphiphilic proteins (APs). These APs segregate the LDs from the mostly polar components of the cytoplasm. We have studied LDs in epithelium-derived cell cultures and in particular characterized proteins from the perilipin (PLIN) gene family - in mammals consisting of the proteins Perilipin, Adipophilin, TIP47, S3-12 and MLDP/OXPAT (PLIN 1-5). Using a large number of newly generated and highly specific mono- and polyclonal antibodies specific for individual APs, and using improved LD isolation methods, we have enriched and characterized APs in greater detail and purity. The majority of lipid-AP complexes could be obtained in the top layer fractions of density gradient centrifugation separations of cultured cells, but APs could also be detected in other fractions within such separations. The differently sized LD complexes were analyzed using various biochemical methods and mass spectrometry as well as immunofluorescence and electron- in particular immunoelectron-microscopy. Moreover, by immunoprecipitation, protein-protein binding assays and by immunoelectron microscopy we identified a direct linkage between LD-binding proteins and the intermediate-sized filaments (IF) cytokeratins 8 and 18 (also designated as keratins K8 and K18). Specifically, in gradient fractions of higher density supposedly containing small LDs, we received as co-precipitations cytidylyl-, palmitoyl- and cholesterol transferases and other specific enzymes involved in lipid metabolism. So far, common proteomic studies have used LDs from top layer fractions only and did not report on these transferases and other enzymes. In addition to findings of short alternating hydrophobic/hydrophilic segments within the PLIN protein family, we propose and discuss a model for the interaction of LD-coating APs with IF proteins.
Collapse
Affiliation(s)
- Hans Heid
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
A Lys49 phospholipase A2, isolated from Bothrops asper snake venom, induces lipid droplet formation in macrophages which depends on distinct signaling pathways and the C-terminal region. BIOMED RESEARCH INTERNATIONAL 2012; 2013:807982. [PMID: 23509782 PMCID: PMC3591195 DOI: 10.1155/2013/807982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
MT-II, a Lys49PLA2 homologue devoid of catalytic activity from B. asper venom, stimulates inflammatory events in macrophages. We investigated the ability of MT-II to induce formation of lipid droplets (LDs), key elements of inflammatory responses, in isolated macrophages and participation of protein kinases and intracellular PLA2s in this effect. Influence of MT-II on PLIN2 recruitment and expression was assessed, and the effects of some synthetic peptides on LD formation were further evaluated. At noncytotoxic concentrations, MT-II directly activated macrophages to form LDs. This effect was reproduced by a synthetic peptide corresponding to the C-terminal sequence 115–129 of MT-II, evidencing the critical role of C-terminus for MT-II-induced effect. Moreover, MT-II induced expression and recruitment of PLIN2. Pharmacological interventions with specific inhibitors showed that PKC, PI3K, ERK1/2, and iPLA2, but not P38MAPK or cPLA2, signaling pathways are involved in LD formation induced by MT-II. This sPLA2 homologue also induced synthesis of PGE2 that colocalized to LDs. In conclusion, MT-II is able to induce formation of LDs committed to PGE2 formation in a process dependent on C-terminal loop engagement and regulated by distinct protein kinases and iPLA2. LDs may constitute an important inflammatory mechanism triggered by MT-II in macrophages.
Collapse
|
33
|
Wang R, Liu X, Küster-Schöck E, Fagotto F. Proteomic analysis of differences in ectoderm and mesoderm membranes by DiGE. J Proteome Res 2012; 11:4575-93. [PMID: 22852788 DOI: 10.1021/pr300379m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ectoderm and mesoderm can be considered as prototypes for epithelial and mesenchymal cell types. These two embryonic tissues display clear differences in adhesive and motility properties, which are phenomenologically well characterized but remain largely unexplored at the molecular level. Because the key downstream regulations must occur at the plasma membrane and in the underlying actin cortical structures, we have set out to compare the protein content of membrane fractions from Xenopus ectoderm and mesoderm tissues using 2-dimensional difference gel electrophoresis (DiGE). We have thus identified several proteins that are enriched in one or the other tissues, including regulators of the cytoskeleton and of cell signaling. This study represents to our knowledge the first attempt to use proteomics specifically targeted to the membrane-cortex compartment of embryonic tissues. The identified components should help unraveling a variety of tissue-specific functions in the embryo.
Collapse
Affiliation(s)
- Renee Wang
- Department of Biology, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
34
|
WIPI-1 Positive Autophagosome-Like Vesicles Entrap Pathogenic Staphylococcus aureus for Lysosomal Degradation. Int J Cell Biol 2012; 2012:179207. [PMID: 22829830 PMCID: PMC3399381 DOI: 10.1155/2012/179207] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/27/2022] Open
Abstract
Invading pathogens provoke the autophagic machinery and, in a process termed xenophagy, the host cell survives because autophagy is employed as a safeguard for pathogens that escaped phagosomes. However, some pathogens can manipulate the autophagic pathway and replicate within the niche of generated autophagosome-like vesicles. By automated fluorescence-based high content analyses, we demonstrate that Staphylococcus aureus strains (USA300, HG001, SA113) stimulate autophagy and become entrapped in intracellular PtdIns(3)P-enriched vesicles that are decorated with human WIPI-1, an essential PtdIns(3)P effector of canonical autophagy and membrane protein of both phagophores and autophagosomes. Further, agr-positive S. aureus (USA300, HG001) strains were more efficiently entrapped in WIPI-1 positive autophagosome-like vesicles when compared to agr-negative cells (SA113). By confocal and electron microscopy we provide evidence that single- and multiple-Staphylococci entrapped undergo cell division. Moreover, the number of WIPI-1 positive autophagosome-like vesicles entrapping Staphylococci significantly increased upon (i) lysosomal inhibition by bafilomycin A(1) and (ii) blocking PIKfyve-mediated PtdIns(3,5)P(2) generation by YM201636. In summary, our results provide evidence that the PtdIns(3)P effector function of WIPI-1 is utilized during xenophagy of Staphylococcus aureus. We suggest that invading S. aureus cells become entrapped in autophagosome-like WIPI-1 positive vesicles targeted for lysosomal degradation in nonprofessional host cells.
Collapse
|
35
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
36
|
Hynson RMG, Jeffries CM, Trewhella J, Cocklin S. Solution structure studies of monomeric human TIP47/perilipin-3 reveal a highly extended conformation. Proteins 2012; 80:2046-55. [PMID: 22508559 DOI: 10.1002/prot.24095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/11/2012] [Indexed: 11/12/2022]
Abstract
Tail-interacting protein of 47 kDa (TIP47) has two putative functions: lipid biogenesis and mannose 6-phosphate receptor recycling. Progress in understanding the molecular details of these two functions has been hampered by the lack of structural data on TIP47, with a crystal structure of the C-terminal domain of the mouse homolog constituting the only structural data in the literature so far. Our studies have first provided a strategy to obtain pure monodisperse preparations of the full-length TIP47/perilipin-3 protein, as well as a series of N-terminal truncation mutants with no exogenous sequences. These constructs have then enabled us to obtain the first structural characterization of the full-length protein in solution. Our work demonstrates that the N-terminal region of TIP47/perilipin-3, in contrast to the largely helical C-terminal region, is predominantly β-structure with turns and bends. Moreover, we show that full-length TIP47/perilipin-3 adopts an extended conformation in solution, with considerable spatial separation of the N- and C-termini that would likely translate into a separation of functional domains.
Collapse
Affiliation(s)
- Robert M G Hynson
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
37
|
Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012; 2012:282041. [PMID: 22536247 PMCID: PMC3320019 DOI: 10.1155/2012/282041] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/17/2012] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LDs), initially considered "inert" lipid deposits, have gained during the last decade the classification of cytosolic organelles due to their defined composition and the multiplicity of specific cellular functions in which they are involved. The classification of LD as organelles brings along the need for their regulated turnover and recent findings support the direct contribution of autophagy to this turnover through a process now described as lipophagy. This paper focuses on the characteristics of this new type of selective autophagy and the cellular consequences of the mobilization of intracellular lipids through this process. Lipophagy impacts the cellular energetic balance directly, through lipid breakdown and, indirectly, by regulating food intake. Defective lipophagy has been already linked to important metabolic disorders such as fatty liver, obesity and atherosclerosis, and the age-dependent decrease in autophagy could underline the basis for the metabolic syndrome of aging.
Collapse
Affiliation(s)
- Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
38
|
Storey SM, McIntosh AL, Senthivinayagam S, Moon KC, Atshaves BP. The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure. Am J Physiol Endocrinol Metab 2011; 301:E991-E1003. [PMID: 21846905 PMCID: PMC3213997 DOI: 10.1152/ajpendo.00109.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The significance of lipid droplets (LD) in lipid metabolism, cell signaling, and membrane trafficking is increasingly recognized, yet the role of the LD phospholipid monolayer in LD protein targeting and function remains unknown. To begin to address this issue, two populations of LD were isolated by ConA sepharose affinity chromatography: 1) functionally active LD enriched in perilipin, caveolin-1, and several lipolytic proteins, including ATGL and HSL; and 2) LD enriched in ADRP and TIP47 that contained little to no lipase activity. Coimmunoprecipitation experiments confirmed the close association of caveolin and perilipin and lack of interaction between caveolin and ADRP, in keeping with the separation observed with the ConA procedure. The phospholipid monolayer structure was evaluated to reveal that the perilipin-enriched LD exhibited increased rigidity (less fluidity), as shown by increased cholesterol/phospholipid, Sat/Unsat, and Sat/MUFA ratios. These results were confirmed by DPH-TMA, NBD-cholesterol, and NBD-sphingomyelin fluorescence polarization studies. By structure and organization, the perilipin-enriched LD most closely resembled the adipocyte PM. In contrast, the ADRP/TIP47-enriched LD contained a more fluid monolayer membrane, reflecting decreased polarizations and lipid order based on phospholipid fatty acid analysis. Taken together, results indicate that perilipin and associated lipolytic enzymes target areas in the phospholipid monolayer that are highly organized and rigid, similar in structure to localized areas of the PM where cholesterol and fatty acid uptake and efflux occur.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, Texas Veterinary Medical Center, College Station, Texas, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Mycobacterium tuberculosis is an extremely successful pathogen that demonstrates the capacity to modulate its host both at the cellular and tissue levels. At the cellular level, the bacterium enters its host macrophage and arrests phagosome maturation, thus avoiding many of the microbicidal responses associated with this phagocyte. Nonetheless, the intracellular environment places certain demands on the pathogen, which, in response, senses the environmental shifts and upregulates specific metabolic programs to allow access to nutrients, minimize the consequences of stress, and sustain infection. Despite its intracellular niche, Mycobacterium tuberculosis demonstrates a marked capacity to modulate the tissues surrounding infected cells through the release of potent, bioactive cell wall constituents. These cell wall lipids are released from the host cell by an exocytic process and induce physiological changes in neighboring phagocytes, which drives formation of a granuloma. This tissue response leads to the generation and accumulation of caseous debris and the progression of the human tuberculosis granuloma. Completion of the life cycle of tuberculosis requires damaging the host to release infectious bacteria into the airways to spread the infection. This damage reflects the pathogen's ability to subvert the host's innate and acquired immune responses to its own nefarious ends.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Hocsak E, Racz B, Szabo A, Pozsgai E, Szigeti A, Szigeti E, Gallyas F, Sumegi B, Javor S, Bellyei S. TIP47 confers resistance to taxol-induced cell death by preventing the nuclear translocation of AIF and Endonuclease G. Eur J Cell Biol 2010; 89:853-61. [DOI: 10.1016/j.ejcb.2010.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/26/2023] Open
|
41
|
Bhattacharyya R, Kovacs DM. ACAT inhibition and amyloid beta reduction. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:960-5. [PMID: 20398792 PMCID: PMC2918257 DOI: 10.1016/j.bbalip.2010.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder. Accumulation and deposition of the beta-amyloid (Abeta) peptide generated from its larger amyloid precursor protein (APP) is one of the pathophysiological hallmarks of AD. Intracellular cholesterol was shown to regulate Abeta production. Recent genetic and biochemical studies indicate that not only the amount, but also the distribution of intracellular cholesterol is critical to regulate Abeta generation. Acyl-coenzyme A: cholesterol acyl-transferase (ACAT) is a family of enzymes that regulates the cellular distribution of cholesterol by converting membrane cholesterol into hydrophobic cholesteryl esters for cholesterol storage and transport. Using pharmacological inhibitors and transgenic animal models, we and others have identified ACAT1 as a potential therapeutic target to lower Abeta generation and accumulation. Here we discuss data focusing on ACAT inhibition as an effective strategy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Raja Bhattacharyya
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Dora M. Kovacs
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
42
|
TIP47 protects mitochondrial membrane integrity and inhibits oxidative-stress-induced cell death. FEBS Lett 2010; 584:2953-60. [PMID: 20556887 DOI: 10.1016/j.febslet.2010.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We found that overexpression of tail interacting protein of 47 kDa (TIP47), but not its truncated form (t-TIP47) protected NIH3T3 cells from hydrogen-peroxide-induced cell death, prevented the hydrogen-peroxide-induced mitochondrial depolarization determined by 5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-benzimidazolylcarbocyanine iodide (JC1), while suppression of TIP47 in HeLa cells facilitated oxidative-stress-induced cell death. TIP47 was located to the cytoplasm of untreated cells, but some was associated to mitochondria in oxidative stress. Recombinant TIP47, but not t-TIP47 increased the mitochondrial membrane potential (Deltapsi), and partially prevented Ca2+ induced depolarization. It is assumed that TIP47 can bind to mitochondria in oxidative stress, and inhibit mitochondria mediated cell death by protecting mitochondrial membrane integrity.
Collapse
|
43
|
Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2010; 2:258-74. [PMID: 20597103 PMCID: PMC2913288 DOI: 10.1002/emmm.201000079] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 05/03/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022] Open
Abstract
The progression of human tuberculosis (TB) to active disease and transmission involves the development of a caseous granuloma that cavitates and releases infectious Mycobacterium tuberculosis bacilli. In the current study, we exploited genome-wide microarray analysis to determine that genes for lipid sequestration and metabolism were highly expressed in caseous TB granulomas. Immunohistological analysis of these granulomas confirmed the disproportionate abundance of the proteins involved in lipid metabolism in cells surrounding the caseum; namely, adipophilin, acyl-CoA synthetase long-chain family member 1 and saposin C. Biochemical analysis of the lipid species within the caseum identified cholesterol, cholesteryl esters, triacylglycerols and lactosylceramide, which implicated low-density lipoprotein-derived lipids as the most likely source. M. tuberculosis infection in vitro induced lipid droplet formation in murine and human macrophages. Furthermore, the M. tuberculosis cell wall lipid, trehalose dimycolate, induced a strong granulomatous response in mice, which was accompanied by foam cell formation. These results provide molecular and biochemical evidence that the development of the human TB granuloma to caseation correlates with pathogen-mediated dysregulation of host lipid metabolism.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| | - Helen C Wainwright
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Michael Locketz
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Linda-Gail Bekker
- Department of Medicine, The Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Gabriele B Walther
- Chris Barnard Division of Cardio-Thoracic Surgery, Groote Schuur Hospital, University of Cape TownCape Town, South Africa
| | - Corneli Dittrich
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Annalie Visser
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Wei Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of MedicineSt. Louis, MO, USA
| | - Ursula Wiehart
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| | - Liana Tsenova
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute Center at UMDNJNewark, NJ, USA
| | - Gilla Kaplan
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute Center at UMDNJNewark, NJ, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
44
|
Zanghellini J, Wodlei F, von Grünberg HH. Phospholipid demixing and the birth of a lipid droplet. J Theor Biol 2010; 264:952-61. [PMID: 20184900 DOI: 10.1016/j.jtbi.2010.02.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/25/2010] [Accepted: 02/13/2010] [Indexed: 11/26/2022]
Abstract
The biogenesis of lipid droplets (LD) in the yeast Saccharomyces cerevisiae was theoretically investigated on basis of a biophysical model. In accordance with the prevailing model of LD formation, we assumed that neutral lipids oil-out between the membrane leaflets of the endoplasmic reticulum (ER), resulting in LD that bud-off when a critical size is reached. Mathematically, LD were modeled as spherical protuberances in an otherwise planar ER membrane. We estimated the local phospholipid composition, and calculated the change in elastic free energy of the membrane caused by nascent LD. Based on this model calculation, we found a gradual demixing of lipids in the membrane leaflet that goes along with an increase in surface curvature at the site of LD formation. During demixing, the phospholipid monolayer was able to gain energy during LD growth, which suggested that the formation of curved interfaces was supported by or even driven by lipid demixing. In addition, we show that demixing is thermodynamically necessary as LD cannot bud-off otherwise. In the case of Saccharomyces cerevisiae our model predicts a LD bud-off diameter of about 12 nm. This diameter is far below the experimentally determined size of typical yeast LD. Thus, we concluded that if the standard model of LD formation is valid, LD biogenesis is a two step process. Small LD are produced from the ER, which subsequently ripe within the cytosol through a series of fusions.
Collapse
Affiliation(s)
- J Zanghellini
- School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | | | |
Collapse
|
45
|
Fujii H, Ikura Y, Arimoto J, Sugioka K, Iezzoni JC, Park SH, Naruko T, Itabe H, Kawada N, Caldwell SH, Ueda M. Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J Atheroscler Thromb 2009; 16:893-901. [PMID: 20032580 DOI: 10.5551/jat.2055] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS Perilipin and adipophilin, PAT family proteins, play important roles in lipid metabolism. Although nonalcoholic fatty liver disease (NAFLD) is initiated by hepatocyte lipidation, little is known about the relationship between these proteins and hepatocellular injury. We investigated the expressions of perilipin and adipophilin and their relation to inflammation, fibrosis, hepatocellular ballooning, and oxidized phosphatidylcholine (oxPC) localization in human NAFLD. METHODS AND RESULTS Liver biopsies of nonalcoholic steatohepatitis (NASH, n=39) or simple steatosis (n=9) were studied by immunohistochemical techniques using anti-perilipin, anti-adipophilin and anti-oxPC antibodies. The severity of liver damage was histologically assessed by the Brunt system and NAFLD activity score (NAS). Enlarged hepatocytes usually containing Mallory-Denk bodies were defined as ballooned. Perilipin and adipophilin were detected on the rim of lipid droplets in both NASH and simple steatosis. Perilipin was more evident in larger lipid droplets while adipophilin expression was frequent in lipid droplets of ballooned hepatocytes. The frequency of adipophilin-positive ballooned hepatocytes was correlated to inflammation (Rs=0.72, p<0.0001), fibrosis (Rs=0.46, p=0.005), NAS (Rs=0.47, p=0.004) and oxPC-positive ballooned hepatocytes (Rs=0.35, p=0.033). CONCLUSIONS Expression patterns of perilipin and adipophilin in NASH livers varied with the size of lipid droplets. In partiew or, adipophilin expression in ballooned hepatocytes was closely associated with oxidative damage.
Collapse
Affiliation(s)
- Hideki Fujii
- Department of Hepatology, Osaka City University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Müller G, Jung C, Wied S, Biemer-Daub G. Induced translocation of glycosylphosphatidylinositol-anchored proteins from lipid droplets to adiposomes in rat adipocytes. Br J Pharmacol 2009; 158:749-70. [PMID: 19703169 PMCID: PMC2765595 DOI: 10.1111/j.1476-5381.2009.00360.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/06/2009] [Accepted: 03/30/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Adipocytes release membrane vesicles called adiposomes, which harbor the glycosylphosphatidylinositol-anchored proteins (GPI proteins), Gce1 and CD73, after induction with palmitate, H(2)O(2) and the sulphonylurea drug glimepiride. The role of lipid droplets (LD) in trafficking of GPI proteins from detergent-insoluble, glycolipid-enriched, plasma membrane microdomains (DIGs) to adiposomes in rat adipocytes was studied. EXPERIMENTAL APPROACH Redistribution of Gce1 and CD73 was followed by pulse-chase and long-term labelling, western blot analysis and activity determinations with subcellular fractions and cell-free systems exposed to palmitate, H(2)O(2) and glimepiride. KEY RESULTS In response to these signals, Gce1 and CD73 disappeared from DIGs, then transiently appeared in LD and finally were released into adiposomes from small, and, more efficiently, large adipocytes. From DIGs to LD, Gce1 and CD73 were accompanied by cholesterol. Cholesterol depletion from DIGs or LD caused accumulation at DIGs or accelerated loss from LD and release into adiposomes, respectively, of the GPI proteins. Blockade of translocation of Gce1, CD73, caveolin-1 and perilipin-A from DIGs to LD blocked LD biogenesis and long term-accumulation of LD interfered with induced release of the GPI proteins into adiposomes. GPI protein release was up-regulated upon long term-depletion of LD. Adiposomes were released by a DIGs-based cell-free system, but only in presence of LD. CONCLUSIONS GPI proteins are translocated from DIGs to LD prior to their release into adiposomes, which is regulated by cholesterol, LD content and LD biogenesis. This detour may serve to transfer information about the LD content and to control lipolysis/esterification between large and small adipocytes via GPI protein-harbouring adiposomes.
Collapse
Affiliation(s)
- G Müller
- Sanofi-Aventis Pharma, R & D, Therapeutic Department Metabolism, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
47
|
Meex RCR, Schrauwen P, Hesselink MKC. Modulation of myocellular fat stores: lipid droplet dynamics in health and disease. Am J Physiol Regul Integr Comp Physiol 2009; 297:R913-24. [DOI: 10.1152/ajpregu.91053.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Storage of fatty acids as triacylglycerol (TAG) occurs in almost all mammalian tissues. Whereas adipose tissue is by far the largest storage site of fatty acids as TAG, subcellular TAG-containing structures—referred to as lipid droplets (LD)—are also present in other tissues. Until recently, LD were considered inert storage sites of energy dense fats. Nowadays, however, LD are increasingly considered dynamic functional organelles involved in many intracellular processes like lipid metabolism, vesicle trafficking, and cell signaling. Next to TAG, LD also contain other neutral lipids such as diacylglycerol. Furthermore, LD are coated by a monolayer of phospholipids decorated with a variety of proteins regulating the delicate balance between LD synthesis, growth, and degradation. Disturbances in LD-coating proteins may result in disequilibrium of TAG synthesis and degradation, giving rise to insulin-desensitizing lipid intermediates, especially in insulin-responsive tissues like skeletal muscle. For a proper and detailed understanding, more information on processes and players involved in LD synthesis and degradation is necessary. This, however, is hampered by the fact that research on LD dynamics in (human) muscle is still in its infancy. A rapidly expanding body of knowledge on LD dynamics originates from studies in other tissues and other species. Here, we aim to review the involvement of LD-coating proteins in LD formation and degradation (LD dynamics) and to extrapolate this knowledge to human skeletal muscle and to explore the role of LD dynamics in myocellular insulin sensitivity.
Collapse
Affiliation(s)
- Ruth C. R. Meex
- NUTRIM School for Nutrition, Toxicology and Metabolism, Departments of 1Human Movement Sciences and
| | - Patrick Schrauwen
- Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matthijs K. C. Hesselink
- NUTRIM School for Nutrition, Toxicology and Metabolism, Departments of 1Human Movement Sciences and
| |
Collapse
|
48
|
Tissue-specific expression of the chicken adipose differentiation-related protein (ADP) gene. Mol Biol Rep 2009; 37:2839-45. [PMID: 19774490 DOI: 10.1007/s11033-009-9836-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
Adipose differentiation-related protein gene (ADP) plays an important role in controlling lipid accumulation in mammals. It may also affect lipid deposition in birds. However, the molecular mechanism of its actions in birds remains unknown. In the present study, the coding sequence of ADP cDNA for Chinese native breed Sichuan Mountainous Black-bone chicken (MB) was first cloned from abdominal fat using reverse transcription-PCR (RT-PCR). This putative MB ADP cDNA (1,881 bp) encodes an open reading frame of 438 amino acids (AA) and shares high AA sequence identity with that of red jungle fowl (99%), duck (92%), house mouse (70%), human (70%), chimpanzee (70%), pig (70%), domestic cow (69%) and domestic sheep (68%). Further analysis using bioinformatics shows the deduced MB ADP protein has the typical characters of PAT (Perilipin, Adipophilin and Tip47) family. Quantitative real-time PCR (qRT-PCR) analysis revealed that ADP expresses in chicken leg muscle, whole brain, heart, liver, pectoralis muscle, abdominal fat and subcutaneous fat. Ontogenetic expression studies shows ADP expression levels in abdominal fat, subcutaneous fat and pectoralis muscle were prior to that in leg muscles at posthatch day (P) 84. But, its levels in abdominal fat and subcutaneous fat were less than that in leg muscles at P28, 42, 56 and 70, respectively. The ADP expression levels in subcutaneous fat and abdominal fat were stable from P28 to P70 and both were less than their counterparts at P84. However, it changed greatly in pectoralis muscle, liver, brain, heart and leg muscle at all points. Patterns of ADP expression suggest that ADP plays an important role in fat development, but further study is needed to reconfirm its function in a large population and in other breeds with different genetic backgrounds.
Collapse
|
49
|
Feingold KR, Kazemi MR, Magra AL, McDonald CM, Chui LG, Shigenaga JK, Patzek SM, Chan ZW, Londos C, Grunfeld C. ADRP/ADFP and Mal1 expression are increased in macrophages treated with TLR agonists. Atherosclerosis 2009; 209:81-8. [PMID: 19748622 DOI: 10.1016/j.atherosclerosis.2009.08.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/17/2009] [Accepted: 08/24/2009] [Indexed: 11/27/2022]
Abstract
Activation of macrophages by TLR agonists enhances foam cell formation, but the underlying mechanisms are not understood. We examined the effects of TLR agonists on ADRP/ADFP, a protein associated with forming lipid droplets, and Mal1 a fatty acid-binding protein, in two mouse macrophage cell lines and human monocytes. Low doses of LPS, a TLR4 agonist increased both mRNA and protein levels of ADRP/ADFP and Mal1 in RAW 264.7 macrophages. Following pretreatment with Intralipid, fatty acids, or acetyl-LDL to increase triglyceride or cholesterol ester storage, LPS treatment still increased ADRP/ADFP and Mal1 mRNA levels. LPS also induced ADRP/ADFP and Mal1 in J774 macrophages and ADRP/ADFP in human monocytes. Zymosan, a fungal product that activates TLR2, poly-I:C, a viral mimetic that activates TLR3, and imiquimod, a TLR7 agonist, also increased ADRP/ADFP. Zymosan, but not poly-I:C or imiquimod, induced Mal1. In contrast, neither gene was induced by TNFalpha, IL-1beta, IL-6, or interferon-gamma. Thus TLR agonists induce ADRP/ADFP and Mal1, which likely contributes to macrophage triglyceride and cholesterol ester storage leading to foam cell formation.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Borg J, Klint C, Wierup N, Ström K, Larsson S, Sundler F, Lupi R, Marchetti P, Xu G, Kimmel A, Londos C, Holm C. Perilipin is present in islets of Langerhans and protects against lipotoxicity when overexpressed in the beta-cell line INS-1. Endocrinology 2009; 150:3049-57. [PMID: 19299455 PMCID: PMC2703509 DOI: 10.1210/en.2008-0913] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lipids have been shown to play a dual role in pancreatic beta-cells: a lipid-derived signal appears to be necessary for glucose-stimulated insulin secretion, whereas lipid accumulation causes impaired insulin secretion and apoptosis. The ability of the protein perilipin to regulate lipolysis prompted an investigation of the presence of perilipin in the islets of Langerhans. In this study evidence is presented for perilipin expression in rat, mouse, and human islets of Langerhans as well as the rat clonal beta-cell line INS-1. In rat and mouse islets, perilipin was verified to be present in beta-cells. To examine whether the development of lipotoxicity could be prevented by manipulating the conditions for lipid storage in the beta-cell, INS-1 cells with adenoviral-mediated overexpression of perilipin were exposed to lipotoxic conditions for 72 h. In cells exposed to palmitate, perilipin overexpression caused increased accumulation of triacylglycerols and decreased lipolysis compared with control cells. Whereas glucose-stimulated insulin secretion was retained after palmitate exposure in cells overexpressing perilipin, it was completely abolished in control beta-cells. Thus, overexpression of perilipin appears to confer protection against the development of beta-cell dysfunction after prolonged exposure to palmitate by promoting lipid storage and limiting lipolysis.
Collapse
Affiliation(s)
- Jörgen Borg
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|