1
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
Cursaro I, Milioni L, Eslami K, Sirous H, Carullo G, Gemma S, Butini S, Campiani G. Targeting N-Methyl-lysine Histone Demethylase KDM4 in Cancer: Natural Products Inhibitors as a Driving Force for Epigenetic Drug Discovery. ChemMedChem 2025; 20:e202400682. [PMID: 39498961 PMCID: PMC11831885 DOI: 10.1002/cmdc.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
KDM4A-F enzymes are a subfamily of histone demethylases containing the Jumonji C domain (JmjC) using Fe(II) and 2-oxoglutarate for their catalytic function. Overexpression or deregulation of KDM4 enzymes is associated with various cancers, altering chromatin structure and causing transcriptional dysfunction. As KDM4 enzymes have been associated with malignancy, they may represent novel targets for developing innovative therapeutic tools to treat different solid and blood tumors. KDM4A is the isozyme most frequently associated with aggressive phenotypes of these tumors. To this aim, industrial and academic medicinal chemistry efforts have identified different KDM4 inhibitors. Industrial and academic efforts in medicinal chemistry have identified numerous KDM4 inhibitors, primarily pan-KDM4 inhibitors, though they often lack selectivity against other Jumonji family members. The pharmacophoric features of the inhibitors frequently include a chelating group capable of coordinating the catalytic iron within the active site of the KDM4 enzyme. Nonetheless, non-chelating compounds have also demonstrated promising inhibitory activity, suggesting potential flexibility in the drug design. Several natural products, containing monovalent or bivalent chelators, have been identified as KDM4 inhibitors, albeit with a micromolar inhibition potency. This highlights the potential for leveraging them as templates for the design and synthesis of new derivatives, exploiting nature's chemical diversity to pursue more potent and selective KDM4 inhibitors.
Collapse
Affiliation(s)
- Ilaria Cursaro
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Leonardo Milioni
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Kourosh Eslami
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahan81746-7346Iran.
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahan81746-7346Iran.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Stefania Butini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia Aldo Moro 253100SienaItaly
| |
Collapse
|
3
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
4
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
5
|
Messingschlager M, Bartel-Steinbach M, Mackowiak SD, Denkena J, Bieg M, Klös M, Seegebarth A, Straff W, Süring K, Ishaque N, Eils R, Lehmann I, Lermen D, Trump S. Genome-wide DNA methylation sequencing identifies epigenetic perturbations in the upper airways under long-term exposure to moderate levels of ambient air pollution. ENVIRONMENTAL RESEARCH 2023; 233:116413. [PMID: 37343754 DOI: 10.1016/j.envres.2023.116413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
While the link between exposure to high levels of ambient particulate matter (PM) and increased incidences of respiratory and cardiovascular diseases is widely recognized, recent epidemiological studies have shown that low PM concentrations are equally associated with adverse health effects. As DNA methylation is one of the main mechanisms by which cells regulate and stabilize gene expression, changes in the methylome could constitute early indicators of dysregulated signaling pathways. So far, little is known about PM-associated DNA methylation changes in the upper airways, the first point of contact between airborne pollutants and the human body. Here, we focused on cells of the upper respiratory tract and assessed their genome-wide DNA methylation pattern to explore exposure-associated early regulatory changes. Using a mobile epidemiological laboratory, nasal lavage samples were collected from a cohort of 60 adults that lived in districts with records of low (Simmerath) or moderate (Stuttgart) PM10 levels in Germany. PM10 concentrations were verified by particle measurements on the days of the sample collection and genome-wide DNA methylation was determined by enzymatic methyl sequencing at single-base resolution. We identified 231 differentially methylated regions (DMRs) between moderately and lowly PM10 exposed individuals. A high proportion of DMRs overlapped with regulatory elements, and DMR target genes were involved in pathways regulating cellular redox homeostasis and immune response. In addition, we found distinct changes in DNA methylation of the HOXA gene cluster whose methylation levels have previously been linked to air pollution exposure but also to carcinogenesis in several instances. The findings of this study suggest that regulatory changes in upper airway cells occur at PM10 levels below current European thresholds, some of which may be involved in the development of air pollution-related diseases.
Collapse
Affiliation(s)
- Marey Messingschlager
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; Freie Universität Berlin, Institute for Biology, Königin-Luise-Strasse 12-16, 14195, Berlin, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sebastian D Mackowiak
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Johanna Denkena
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Bieg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Klös
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Anke Seegebarth
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Straff
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Katrin Süring
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany; Health Data Science Unit, Heidelberg University Hospital and BioQuant, University of Heidelberg, Germany; Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 14, 14195, Berlin, Germany
| | - Irina Lehmann
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany.
| | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Saskia Trump
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
6
|
Hou Y, Yu W, Wu G, Wang Z, Leng S, Dong M, Li N, Chen L. Carcinogenesis promotion in oral squamous cell carcinoma: KDM4A complex-mediated gene transcriptional suppression by LEF1. Cell Death Dis 2023; 14:510. [PMID: 37553362 PMCID: PMC10409759 DOI: 10.1038/s41419-023-06024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the mouth, characterised by rapid progression and poor prognosis. Hence, an urgent need exists for the development of predictive targets for early diagnosis, prognosis determination, and clinical therapy. Dysregulation of lymphoid enhancer-binding factor 1 (LEF1), an important transcription factor involved in the Wnt-β-catenin pathway, contributes to the poor prognosis of OSCC. Herein, we aimed to explore the correlation between LEF1 and histone lysine demethylase 4 A (KDM4A). Results show that the KDM4A complex is recruited by LEF1 and specifically binds the LATS2 promoter region, thereby inhibiting its expression, and consequently promoting cell proliferation and impeding apoptosis in OSCC. We also established NOD/SCID mouse xenograft models using CAL-27 cells to conduct an in vivo analysis of the roles of LEF1 and KDM4A in tumour growth, and our findings show that cells stably suppressing LEF1 or KDM4A have markedly decreased tumour-initiating capacity. Overall, the results of this study demonstrate that LEF1 plays a pivotal role in OSCC development and has potential to serve as a target for early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Yiming Hou
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Zhaoling Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shuai Leng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Ming Dong
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China.
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
8
|
Park JW, Bae YS. Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway. BMB Rep 2022. [PMID: 35000672 PMCID: PMC8891621 DOI: 10.5483/bmbrep.2022.55.2.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lysine methylation is one of the most important histone modifications that modulate chromatin structure. In the present study, the roles of the histone lysine demethylases JMJD2a and LSD1 in CK2 downregulation-mediated senescence were investigated. The ectopic expression of JMJD2a and LSD1 suppressed the induction of senescence-associated β-galactosidase activity and heterochromatin foci formation as well as the reduction of colony-forming and cell migration ability mediated by CK2 knockdown. CK2 downregulation inhibited JMJD2a and LSD1 expression by activating the mammalian target of rapamycin (mTOR)-ribosomal p70 S6 kinase (p70S6K) pathway. In addition, the down-regulation of JMJD2a and LSD1 was involved in activating the p53-p21Cip1/WAF1-SUV39h1-trimethylation of the histone H3 Lys9 (H3K9me3) pathway in CK2-downregulated cells. Further, CK2 downregulation-mediated JMJD2a and LSD1 reduction was found to stimulate the dimethylation of Lys370 on p53 (p53K370me2) and nuclear import of SUV39h1. Therefore, this study indicated that CK2 downregulation reduces JMJD2a and LSD1 expression by activating mTOR, resulting in H3K9me3 induction by increasing the p53K370me2-dependent nuclear import of SUV39h1. These results suggest that CK2 is a potential therapeutic target for age-related diseases.
Collapse
Affiliation(s)
- Jeong-Woo Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Young-Seuk Bae
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
9
|
Kaczmarek JV, Bogan CM, Pierce JM, Tao YK, Chen SC, Liu Q, Liu X, Boyd KL, Calcutt MW, Bridges TM, Lindsley CW, Friedman DL, Richmond A, Daniels AB. Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34757417 PMCID: PMC8590161 DOI: 10.1167/iovs.62.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity. Methods In vivo pharmacokinetic experiments in rabbits and in vitro cytotoxicity experiments were performed to determine the 90% inhibitory concentration (IC90). Functional toxicity by electroretinography and structural toxicity by optical coherence tomography (OCT), OCT angiography, and histopathology were evaluated in rabbits following three injections of belinostat 350 µg (2× IC90) or 700 µg (4× IC90), compared with melphalan 12.5 µg (rabbit equivalent of the human dose). The relative efficacy of intravitreal belinostat versus melphalan to treat WERI-Rb1 human cell xenografts in rabbit eyes was directly quantified. RNA sequencing was used to assess belinostat-induced changes in RB cell gene expression. Results The maximum nontoxic dose of belinostat was 350 µg, which caused no reductions in electroretinography parameters, retinal microvascular loss on OCT angiography, or retinal degeneration. Melphalan caused severe retinal structural and functional toxicity. Belinostat 350 µg (equivalent to 700 µg in the larger human eye) was equally effective at eradicating vitreous seeds in the rabbit xenograft model compared with melphalan (95.5% reduction for belinostat, P < 0.001; 89.4% reduction for melphalan, P < 0.001; belinostat vs. melphalan, P = 0.10). Even 700 µg belinostat (equivalent to 1400 µg in humans) caused only minimal toxicity. Widespread changes in gene expression resulted. Conclusions Molecularly targeted inhibition of HDACs with intravitreal belinostat was equally effective as standard-of-care melphalan but without retinal toxicity. Belinostat may therefore be an attractive agent to pursue clinically for intravitreal treatment of retinoblastoma.
Collapse
Affiliation(s)
- Jessica V Kaczmarek
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Carley M Bogan
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janene M Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yuankai K Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Xiao Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kelli L Boyd
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Thomas M Bridges
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Debra L Friedman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ann Richmond
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States.,Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation. PLoS Pathog 2021; 17:e1009670. [PMID: 34111227 PMCID: PMC8219169 DOI: 10.1371/journal.ppat.1009670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
KDM4A is a histone lysine demethylase that has been described as an oncogene in various types of cancer. The importance of KDM4A-mediated epigenetic regulation in tumorigenesis is just emerging. Here, by using Kaposi’s sarcoma associated herpesvirus (KSHV) as a screening model, we identified 6 oncogenic virus-induced long non-coding RNAs (lncRNAs) with the potential to open chromatin. RNA immunoprecipitation revealed KSHV-induced KDM4A-associated transcript (KIKAT)/LINC01061 as a binding partner of KDM4A. Integrated ChIP-seq and RNA-seq analysis showed that the KIKAT/LINC01061 interaction may mediate relocalization of KDM4A from the transcription start site (TSS) of the AMOT promoter region and transactivation of AMOT, an angiostatin binding protein that regulates endothelial cell migration. Knockdown of AMOT diminished the migration ability of uninfected SLK and iSLK-BAC16 cells in response to KIKAT/LINC01061 overexpression. Thus, we conclude that KIKAT/LINC01061 triggered shifting of KDM4A as a potential epigenetic mechanism regulating gene transactivation. Dysregulation of KIKAT/LINC01061 expression may represent a novel pathological mechanism contributing to KDM4A oncogenicity. Epigenetic regulation of chromatin structure and gene function connects genotype to phenotype and diseases. Long non-coding RNA (lncRNA) is emerging as a novel type of epigenetic regulator exhibiting diverse biological functions. Aberrant lncRNA expression is associated with various diseases, including cancer. The widespread epigenetic changes that occur during the latent-to-lytic switch of herpes virus life cycle make it an attractive model to study epigenetic regulation. Using Kaposi’s sarcoma associated herpesvirus (KSHV) as a model, we screened the epigenetic function of lncRNAs whose expression was induced by reactivation of this oncogenic virus. KIKAT/LINC01061 was identified as a novel histone lysine-specific demethylase 4A (KDM4A) interacting lncRNA. KDM4A is the first identified histone trimethyl demethylase that has been demonstrated as an oncogene in various cancers. Our data reveal a novel lncRNA-mediated regulation of the epigenetic function of KDM4A and demonstrate this lncRNA-chromatin modifier interaction may serve as a potential target in cancer therapy.
Collapse
|
11
|
Mechanistic insights into KDM4A driven genomic instability. Biochem Soc Trans 2021; 49:93-105. [PMID: 33492339 PMCID: PMC7925003 DOI: 10.1042/bst20191219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Alterations in global epigenetic signatures on chromatin are well established to contribute to tumor initiation and progression. Chromatin methylation status modulates several key cellular processes that maintain the integrity of the genome. KDM4A, a demethylase that belongs to the Fe-II dependent dioxygenase family that uses α-ketoglutarate and molecular oxygen as cofactors, is overexpressed in several cancers and is associated with an overall poor prognosis. KDM4A demethylates lysine 9 (H3K9me2/3) and lysine 36 (H3K36me3) methyl marks on histone H3. Given the complexity that exists with these marks on chromatin and their effects on transcription and proliferation, it naturally follows that demethylation serves an equally important role in these cellular processes. In this review, we highlight the role of KDM4A in transcriptional modulation, either dependent or independent of its enzymatic activity, arising from the amplification of this demethylase in cancer. KDM4A modulates re-replication of distinct genomic loci, activates cell cycle inducers, and represses proteins involved in checkpoint control giving rise to proliferative damage, mitotic disturbances and chromosomal breaks, ultimately resulting in genomic instability. In parallel, emerging evidence of non-nuclear substrates of epigenetic modulators emphasize the need to investigate the role of KDM4A in regulating non-nuclear substrates and evaluate their contribution to genomic instability in this context. The existence of promising KDM-specific inhibitors makes these demethylases an attractive target for therapeutic intervention in cancers.
Collapse
|
12
|
Histone demethylase JMJD2B/KDM4B regulates transcriptional program via distinctive epigenetic targets and protein interactors for the maintenance of trophoblast stem cells. Sci Rep 2021; 11:884. [PMID: 33441614 PMCID: PMC7806742 DOI: 10.1038/s41598-020-79601-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Trophoblast stem cell (TSC) is crucial to the formation of placenta in mammals. Histone demethylase JMJD2 (also known as KDM4) family proteins have been previously shown to support self-renewal and differentiation of stem cells. However, their roles in the context of the trophoblast lineage remain unclear. Here, we find that knockdown of Jmjd2b resulted in differentiation of TSCs, suggesting an indispensable role of JMJD2B/KDM4B in maintaining the stemness. Through the integration of transcriptome and ChIP-seq profiling data, we show that JMJD2B is associated with a loss of H3K36me3 in a subset of embryonic lineage genes which are marked by H3K9me3 for stable repression. By characterizing the JMJD2B binding motifs and other transcription factor binding datasets, we discover that JMJD2B forms a protein complex with AP-2 family transcription factor TFAP2C and histone demethylase LSD1. The JMJD2B-TFAP2C-LSD1 complex predominantly occupies active gene promoters, whereas the TFAP2C-LSD1 complex is located at putative enhancers, suggesting that these proteins mediate enhancer-promoter interaction for gene regulation. We conclude that JMJD2B is vital to the TSC transcriptional program and safeguards the trophoblast cell fate via distinctive protein interactors and epigenetic targets.
Collapse
|
13
|
Kong NR, Bassal MA, Tan HK, Kurland JV, Yong KJ, Young JJ, Yang Y, Li F, Lee JD, Liu Y, Wu CS, Stein A, Luo HR, Silberstein LE, Bulyk ML, Tenen DG, Chai L. Zinc Finger Protein SALL4 Functions through an AT-Rich Motif to Regulate Gene Expression. Cell Rep 2021; 34:108574. [PMID: 33406418 PMCID: PMC8197658 DOI: 10.1016/j.celrep.2020.108574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
The zinc finger transcription factor SALL4 is highly expressed in embryonic stem cells, downregulated in most adult tissues, but reactivated in many aggressive cancers. This unique expression pattern makes SALL4 an attractive therapeutic target. However, whether SALL4 binds DNA directly to regulate gene expression is unclear, and many of its targets in cancer cells remain elusive. Here, through an unbiased screen of protein binding microarray (PBM) and cleavage under targets and release using nuclease (CUT&RUN) experiments, we identify and validate the DNA binding domain of SALL4 and its consensus binding sequence. Combined with RNA sequencing (RNA-seq) analyses after SALL4 knockdown, we discover hundreds of new SALL4 target genes that it directly regulates in aggressive liver cancer cells, including genes encoding a family of histone 3 lysine 9-specific demethylases (KDMs). Taken together, these results elucidate the mechanism of SALL4 DNA binding and reveal pathways and molecules to target in SALL4-dependent tumors. In this paper, Kong et al. elucidate the DNA binding mechanisms of the transcription factor SALL4 and an epigenetic pathway that it regulates. Due to its important role in driving aggressive cancers, better understanding of SALL4 function will lead to strategies to target this protein in cancer.
Collapse
Affiliation(s)
- Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Boston, MA 02115, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hong Kee Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117599, Singapore
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kol Jia Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Biochemistry, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - John J Young
- Department of Biology, Simmons University, Boston, MA 02115, USA
| | - Yang Yang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Yue Liu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Chan-Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Alicia Stein
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongbo R Luo
- Joint Program in Transfusion Medicine, Department of Laboratory Medicne, Children's Hospital Boston, Boston, MA 02115, USA
| | - Leslie E Silberstein
- Joint Program in Transfusion Medicine, Department of Laboratory Medicne, Children's Hospital Boston, Boston, MA 02115, USA
| | - Martha L Bulyk
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Boston, MA 02115, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
15
|
Arroyave F, Montaño D, Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21228685. [PMID: 33217903 PMCID: PMC7698772 DOI: 10.3390/ijms21228685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the main causes of morbidity and mortality, with an increasing incidence worldwide. The impact of DM on public health in developing countries has triggered alarm due to the exaggerated costs of the treatment and monitoring of patients with this disease. Considerable efforts have been made to try to prevent the onset and reduce the complications of DM. However, because insulin-producing pancreatic β-cells progressively deteriorate, many people must receive insulin through subcutaneous injection. Additionally, current therapies do not have consistent results regarding the prevention of chronic complications. Leveraging the approval of real-time continuous glucose monitors and sophisticated algorithms that partially automate insulin infusion pumps has improved glycemic control, decreasing the burden of diabetes management. However, these advances are facing physiologic barriers. New findings in molecular and cellular biology have produced an extraordinary advancement in tissue development for the treatment of DM. Obtaining pancreatic β-cells from somatic cells is a great resource that currently exists for patients with DM. Although this therapeutic option has great prospects for patients, some challenges remain for this therapeutic plan to be used clinically. The purpose of this review is to describe the new techniques in cell biology and regenerative medicine as possible treatments for DM. In particular, this review highlights the origin of induced pluripotent cells (iPSCs) and how they have begun to emerge as a regenerative treatment that may mitigate the pathology of this disease.
Collapse
Affiliation(s)
- Felipe Arroyave
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Diana Montaño
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
| | - Fernando Lizcano
- Doctoral Program in Biosciences, Universidad de La Sabana, Chía 250008, CU, Colombia;
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chía 250008, CU, Colombia;
- Correspondence: ; Tel.: +57-3144120052 or +57-18615555 (ext. 23906)
| |
Collapse
|
16
|
Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020; 8:498. [PMID: 32719792 PMCID: PMC7347797 DOI: 10.3389/fcell.2020.00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Lucas van Duin
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kim M Summers
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Li M, Cheng J, Ma Y, Guo H, Shu H, Huang H, Kuang Y, Yang T. The histone demethylase JMJD2A promotes glioma cell growth via targeting Akt-mTOR signaling. Cancer Cell Int 2020; 20:101. [PMID: 32256210 PMCID: PMC7106579 DOI: 10.1186/s12935-020-01177-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/17/2020] [Indexed: 02/02/2023] Open
Abstract
Background A number of JmjC domain-containing histone demethylases have been identified and biochemically characterized in mammalian models and humans. JMJD2A is a transcriptional co-factor and enzyme that catalyzes the demethylation of histone H3 lysine 9 and 36 (H3K9 and H3K36). Here in this study, we reported the role of JMJD2A in human glioma. Methods Quantitative real-time PCR and western blot were performed to analyzed JMJD2A expression in glioma. Log-rank was performed to plot the survival curve. JMJD2A was knocked or overexpressed with lentivirus. Cell proliferation and colony formation were performed to assess the effects of JMJD2A on glioma cell growth. Xenograft experiment was performed the evaluate the growth rate of glioma cells in vivo. The signaling pathway was analyzed with western blot and mTOR was inhibited with rapamycin. Results Quantitative real-time PCR and western blot experiments revealed higher expression of JMJD2A and lower levels of H3K9me3/H3K36me3 in glioma tissues than that in normal brain tissues. We showed that knockdown of JMJD2A expression attenuated the growth and colony formation in three lines of glioma cells (U251, T98G, and U87MG), whereas JMJD2A overexpression resulted in opposing effects. Furthermore, we performed in vivo xenograft experiments and our data demonstrated that JMJD2A knockdown reduced the growth of glioma T98G cells in vivo. Further mechanism study implicated that JMJD2A activated the Akt-mTOR pathway and promoted protein synthesis in glioma cells via promoting phosphoinositide-dependent kinase-1 (PDK1) expression. The activation of the Akt-mTOR pathway was also validated in human glioma tissues. Finally, we showed that inhibition of mTOR with rapamycin blocked the effects of JMJD2A on protein synthesis, cell proliferation and colony formation of glioma cells. Conclusions These findings demonstrated that JMJD2A regulated glioma growth and implicated that JMJD2A might be a promising target for intervention.
Collapse
Affiliation(s)
- Min Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Jingmin Cheng
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Yuan Ma
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Heng Guo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Haidong Huang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Yongqin Kuang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Tao Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| |
Collapse
|
18
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|
20
|
Tsurumi A, Xue S, Zhang L, Li J, Li WX. Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila. Mol Genet Genomics 2019; 294:1107-1121. [PMID: 31020413 PMCID: PMC6813854 DOI: 10.1007/s00438-019-01561-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/03/2019] [Indexed: 12/23/2022]
Abstract
The histone lysine demethylase 4 (Kdm4/Jmjd2/Jhdm3) family is highly conserved across species and reverses di- and tri-methylation of histone H3 lysine 9 (H3K9) and lysine 36 (H3K36) at the N-terminal tail of the core histone H3 in various metazoan species including Drosophila, C.elegans, zebrafish, mice and humans. Previous studies have shown that the Kdm4 family plays a wide variety of important biological roles in different species, including development, oncogenesis and longevity by regulating transcription, DNA damage response and apoptosis. Only two functional Kdm4 family members have been identified in Drosophila, compared to five in mammals, thus providing a simple model system. Drosophila Kdm4 loss-of-function mutants do not survive past the early 2nd instar larvae stage and display a molting defect phenotype associated with deregulated ecdysone hormone receptor signaling. To further characterize and identify additional targets of Kdm4, we employed a genome-wide approach to investigate transcriptome alterations in Kdm4 mutants versus wild-type during early development. We found evidence of increased deregulated transcripts, presumably associated with a progressive accumulation of H3K9 and H3K36 methylation through development. Gene ontology analyses found significant enrichment of terms related to the ecdysteroid hormone signaling pathway important in development, as expected, and additionally previously unidentified potential targets that warrant further investigation. Since Kdm4 is highly conserved across species, our results may be applicable more widely to other organisms and our genome-wide dataset may serve as a useful resource for further studies.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.
- Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA.
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA.
| | - Shuang Xue
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Lin Zhang
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Willis X Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
21
|
de Paiva REF, Du Z, Nakahata DH, Lima FA, Corbi PP, Farrell NP. Gold‐Catalyzed C–S Aryl‐Group Transfer in Zinc Finger Proteins. Angew Chem Int Ed Engl 2018; 57:9305-9309. [DOI: 10.1002/anie.201803082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Raphael E. F. de Paiva
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Zhifeng Du
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| | - Douglas H. Nakahata
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Frederico A. Lima
- Centro Nacional de Pesquisa em Energia e Materiais Brazilian Synchrotron Light Laboratory—LNLS, 13084-971 Campinas SP Brazil
- European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
| | - Pedro P. Corbi
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| |
Collapse
|
22
|
de Paiva REF, Du Z, Nakahata DH, Lima FA, Corbi PP, Farrell NP. Gold‐Catalyzed C–S Aryl‐Group Transfer in Zinc Finger Proteins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Raphael E. F. de Paiva
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Zhifeng Du
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| | - Douglas H. Nakahata
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Frederico A. Lima
- Centro Nacional de Pesquisa em Energia e Materiais Brazilian Synchrotron Light Laboratory—LNLS, 13084-971 Campinas SP Brazil
- European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
| | - Pedro P. Corbi
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| |
Collapse
|
23
|
Lin H, Li Q, Li Q, Zhu J, Gu K, Jiang X, Hu Q, Feng F, Qu W, Chen Y, Sun H. Small molecule KDM4s inhibitors as anti-cancer agents. J Enzyme Inhib Med Chem 2018; 33:777-793. [PMID: 29651880 PMCID: PMC6010108 DOI: 10.1080/14756366.2018.1455676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone demethylation is a vital process in epigenetic regulation of gene expression. A number of histone demethylases are present to control the methylated states of histone. Among these enzymes, KDM4s are one subfamily of JmjC KDMs and play important roles in both normal and cancer cells. The discovery of KDM4s inhibitors is a potential therapeutic strategy against different diseases including cancer. Here, we summarize the development of KDM4s inhibitors and some related pharmaceutical information to provide an update of recent progress in KDM4s inhibitors.
Collapse
Affiliation(s)
- Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qihang Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qi Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qianqian Hu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Feng Feng
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Wei Qu
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Yao Chen
- c School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
24
|
Rosales W, Lizcano F. The Histone Demethylase JMJD2A Modulates the Induction of Hypertrophy Markers in iPSC-Derived Cardiomyocytes. Front Genet 2018; 9:14. [PMID: 29479368 PMCID: PMC5811633 DOI: 10.3389/fgene.2018.00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/10/2018] [Indexed: 01/04/2023] Open
Abstract
The development of cardiovascular pathologies is partly attributed to epigenetic causes, including histone methylation, which appears to be an important marker in hearts that develop cardiac hypertrophy. Previous studies showed that the histone demethylase JMJD2A can regulate the hypertrophic process in murine cardiomyocytes. However, the influence of JMJD2A on cardiac hypertrophy in a human cardiomyocyte model is still poorly understood. In the present study, cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) were used. Hypertrophy was induced by angiotensin II and endothelin-1 (ET-1), and transfections were performed to overexpress JMJD2A and for small interfering RNA (siRNA)-induced silencing of JMJD2A. Gene expression analyses were determined using RT-PCR and Western blot. The expression levels of B-type natriuretic peptide (BNP), natriuretic peptide A (ANP), and beta myosin heavy chain (β-MHC) were increased by nearly 2–10-fold with ET-1 compared with the control. However, a higher level of JMJD2A and UTX was detected, whereas the level of JMJD2C was lower. When cardiomyocytes were transiently transfected with JMJD2A, an increase close to 150% in BNP was observed, and this increase was greater after treatment with ET-1. To verify the specificity of JMJD2A activity, a knockdown was performed by means of siRNA-JMJD2A, which led to a significant reduction in BNP. The involvement of JMJD2A suggests that histone-specific modifications are associated with genes encoding proteins that are actively transcribed during the hypertrophy process. Since BNP is closely related to JMJD2A expression, we suggest that there could be a direct influence of JMJD2A on the expression of BNP. These results may be studied further to reduce cardiac hypertrophy via the regulation of epigenetic modifiers.
Collapse
Affiliation(s)
- Wendy Rosales
- Center of Biomedical Research, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Research, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
25
|
Wang LY, Hung CL, Chen YR, Yang JC, Wang J, Campbell M, Izumiya Y, Chen HW, Wang WC, Ann DK, Kung HJ. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Rep 2017; 16:3016-3027. [PMID: 27626669 DOI: 10.1016/j.celrep.2016.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yun-Ru Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Joy C Yang
- Department of Urology, University of California, Davis, Sacramento, CA 95817, USA
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Mel Campbell
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | - Yoshihiro Izumiya
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Department of Life Sciences, National Tsinghua University, Hsinchu 30013, Taiwan
| | - David K Ann
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| |
Collapse
|
26
|
Su Y, Yu QH, Wang XY, Yu LP, Wang ZF, Cao YC, Li JD. JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression. BMC Cancer 2017; 17:477. [PMID: 28693517 PMCID: PMC5504777 DOI: 10.1186/s12885-017-3473-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/02/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Jumonji C domain 2A (JMJD2A), as a histone demethylases, plays a vital role in tumorigenesis and progression. But, its functions and underlying mechanisms of JMJD2A in nasopharyngeal carcinoma (NPC) metabolism are remained to be clarified. In this study, we investigated glycolysis regulation by JMJD2A in NPC and the possible mechanism. METHODS JMJD2A expression was detected by Western blotting and Reverse transcription quantitative real-time PCR analysis. Then, we knocked down and ectopically expressed JMJD2A to detect changes in glycolytic enzymes. We also evaluated the impacts of JMJD2A-lactate dehydrogenase A (LDHA) signaling on NPC cell proliferation, migration and invasion. ChIP assays were used to test whether JMJD2A bound to the LDHA promoter. Finally, IHC was used to verify JMJD2A and LDHA expression in NPC tissue samples and analyze their correlation between expression and clinical features. RESULTS JMJD2A was expressed at high levels in NPC tumor tissues and cell lines. Both JMJD2A and LDHA expression were positively correlated with the tumor stage, metastasis and clinical stage. Additionally, the level of JMJD2A was positively correlated with LDHA expression in NPC patients, and higher JMJD2A and LDHA expression predicted a worse prognosis. JMJD2A alteration did not influence most of glycolytic enzymes expression, with the exception of PFK-L, PGAM-1, LDHB and LDHA, and LDHA exhibited the greatest decrease in expression. JMJD2A silencing decreased LDHA expression and the intracellular ATP level and increased LDH activity, lactate production and glucose utilization, while JMJD2A overexpression produced the opposite results. Furthermore, JMJD2A could combine to LDHA promoter region and regulate LDHA expression at the level of transcription. Activated JMJD2A-LDHA signaling pathway promoted NPC cell proliferation, migration and invasion. CONCLUSIONS JMJD2A regulated aerobic glycolysis by regulating LDHA expression. Therefore, the novel JMJD2A-LDHA signaling pathway could contribute to the Warburg effects in NPC progression.
Collapse
Affiliation(s)
- Yi Su
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China.
| | - Qiu-Hong Yu
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Xiang-Yun Wang
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Li-Ping Yu
- Department of E.N.T., Kenli People's Hospital, Shandong, China
| | - Zong-Feng Wang
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Ying-Chun Cao
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Jian-Dong Li
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| |
Collapse
|
27
|
Influence of the KDM4A rs586339 polymorphism on overall survival in Asian non-small-cell lung cancer patients. Pharmacogenet Genomics 2017; 27:120-123. [DOI: 10.1097/fpc.0000000000000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Perspectivas moleculares en cardiopatía hipertrófica: abordaje epigenético desde la modificación de la cromatina. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2016.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Wang J, Wang H, Wang LY, Cai D, Duan Z, Zhang Y, Chen P, Zou JX, Xu J, Chen X, Kung HJ, Chen HW. Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy. Cell Death Differ 2016; 23:1886-1896. [PMID: 27612013 PMCID: PMC5071577 DOI: 10.1038/cdd.2016.92] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/06/2016] [Accepted: 07/21/2016] [Indexed: 02/05/2023] Open
Abstract
Recombinant TRAIL and agonistic antibodies to death receptors (DRs) have been in clinical trial but displayed limited anti-cancer efficacy. Lack of functional DR expression in tumors is a major limiting factor. We report here that chromatin regulator KDM4A/JMJD2A, not KDM4B, has a pivotal role in silencing tumor cell expression of both TRAIL and its receptor DR5. In TRAIL-sensitive and -resistant cancer cells of lung, breast and prostate, KDM4A small-molecule inhibitor compound-4 (C-4) or gene silencing strongly induces TRAIL and DR5 expression, and causes TRAIL-dependent apoptotic cell death. KDM4A inhibition also strongly sensitizes cells to TRAIL. C-4 alone potently inhibits tumor growth with marked induction of TRAIL and DR5 expression in the treated tumors and effectively sensitizes them to the newly developed TRAIL-inducer ONC201. Mechanistically, C-4 does not appear to act through the Akt-ERK-FOXO3a pathway. Instead, it switches histone modifying enzyme complexes at promoters of TRAIL and DR5 transcriptional activator CHOP gene by dissociating KDM4A and nuclear receptor corepressor (NCoR)-HDAC complex and inducing the recruitment of histone acetylase CBP. Thus, our results reveal KDM4A as a key epigenetic silencer of TRAIL and DR5 in tumors and establish inhibitors of KDM4A as a novel strategy for effectively sensitizing tumors to TRAIL pathway-based therapeutics.
Collapse
Affiliation(s)
- Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Haibin Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Demin Cai
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA, USA
| | - Peng Chen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Jianzhen Xu
- Shantou University Medical College, No. 22 Xinling Road, Shantou, China
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA, USA
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Research 3 Bldg, 4645, 2nd Avenue, Sacramento, CA 95817, USA. Tel: +1 916 734 3221; Fax: +1 916 734 0190; E-mail: or
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Veterans Affairs Northern California Health Care System, Mather, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Research 3 Bldg, 4645, 2nd Avenue, Sacramento, CA 95817, USA. Tel: +1 916 734 3221; Fax: +1 916 734 0190; E-mail: or
| |
Collapse
|
30
|
Zhang J, Li Q, Zhang S, Xu Q, Wang T. Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway. Exp Cell Res 2016; 349:77-84. [PMID: 27743893 DOI: 10.1016/j.yexcr.2016.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/01/2022]
Abstract
Lgr4 (leucine-rich repeat domain containing G protein-coupled receptor 4) is implicated in the transcriptional regulation of multiple histone demethylases in the progression of diverse cancers, but there are few reports concerning the molecular mechanism by which Lgr4 regulates histone demethylase activation in prostate cancer (PCa) progression. As Jmjd2a is a histone demethylase, in the current study, we investigated the relationship between interaction Lgr4 with Jmjd 2a and Jmjd2a/androgen receptor (AR) signaling pathway in PCa progression. Firstly, Lgr4 was overexpressed by transfecting pcDNA3.1(+)/Lgr4 plasmids into PCa (LNCaP and PC-3) cell lines. Next, we found that Lgr4 overexpression promoted Jmjd2a mRNA expression, reduced cell apoptosis and arrested cell cycle in the S phase, these effects were reversed by Jmjd2a silencing. Moreover, Lgr4 overexpression markedly elevated AR levels and its interaction with Jmjd2a, which was tested by co-immunoprecipitation and luciferase reporter assays. Furthermore, interaction AR with PSA promoter (containing an AR response element) was obviously improved by Lgr4 overexpression, and PSA silencing reduced Lgr4-induced cell apoptosis and cell cycle arrest in PCa cells. Taken together, Lgr4 may be a novel tumor marker providing new mechanistic insights into PCa progression. Lgr4 activates Jmjd2a/AR signaling pathway to promote interaction AR with PSA promoter, causing reduction of PCa apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Qi Li
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaojin Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quanquan Xu
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Tianen Wang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
31
|
Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2634976. [PMID: 27722168 PMCID: PMC5046009 DOI: 10.1155/2016/2634976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
Abstract
Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and β-MHC) was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process.
Collapse
|
32
|
Bouzas SO, Marini MS, Torres Zelada E, Buzzi AL, Morales Vicente DA, Strobl-Mazzulla PH. Epigenetic activation of Sox2 gene in the developing vertebrate neural plate. Mol Biol Cell 2016; 27:1921-7. [PMID: 27099369 PMCID: PMC4907725 DOI: 10.1091/mbc.e16-01-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
The in vivo requirement of the histone demethylase JmjD2A, together with the kinase MSK1, results in a series of epigenetic events necessary for early activation of Sox2 and subsequent neural fate commitment in vertebrates. One of the earliest manifestations of neural induction is onset of expression of the neural marker Sox2, mediated by the activation of the enhancers N1 and N2. By using loss and gain of function, we find that Sox2 expression requires the activity of JmjD2A and the Msk1 kinase, which can respectively demethylate the repressive H3K9me3 mark and phosphorylate the activating H3S10 (H3S10ph) mark. Bimolecular fluorescence complementation reveals that the adaptor protein 14-3-3, known to bind to H3S10ph, interacts with JMJD2A and may be involved in its recruitment to regulatory regions of the Sox2 gene. Chromatin immunoprecipitation reveals dynamic binding of JMJD2A to the Sox2 promoter and N-1 enhancer at the time of neural plate induction. Finally, we show a clear temporal antagonism on the occupancy of H3K9me3 and H3S10ph modifications at the promoter of the Sox2 locus before and after the neural plate induction. Taken together, our results propose a series of epigenetic events necessary for the early activation of the Sox2 gene in neural progenitor cells.
Collapse
Affiliation(s)
- Santiago O Bouzas
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Melisa S Marini
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Eliana Torres Zelada
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Ailín L Buzzi
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - David A Morales Vicente
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| |
Collapse
|
33
|
Kim TD, Jin F, Shin S, Oh S, Lightfoot SA, Grande JP, Johnson AJ, van Deursen JM, Wren JD, Janknecht R. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest 2016; 126:706-20. [PMID: 26731476 DOI: 10.1172/jci78132] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Histone demethylase upregulation has been observed in human cancers, yet it is unknown whether this is a bystander event or a driver of tumorigenesis. We found that overexpression of lysine-specific demethylase 4A (KDM4A, also known as JMJD2A) was positively correlated with Gleason score and metastasis in human prostate tumors. Overexpression of JMJD2A resulted in the development of prostatic intraepithelial neoplasia in mice, demonstrating that JMJD2A can initiate prostate cancer development. Moreover, combined overexpression of JMJD2A and the ETS transcription factor ETV1, a JMJD2A-binding protein, resulted in prostate carcinoma formation in mice haplodeficient for the phosphatase and tensin homolog (Pten) tumor-suppressor gene. Additionally, JMJD2A cooperated with ETV1 to increase expression of yes associated protein 1 (YAP1), a Hippo pathway component that itself was associated with prostate tumor aggressiveness. ETV1 facilitated the recruitment of JMJD2A to the YAP1 promoter, leading to changes in histone lysine methylation in a human prostate cancer cell line. Further, YAP1 expression largely rescued the growth inhibitory effects of JMJD2A depletion in prostate cancer cells, indicating that YAP1 is a downstream effector of JMJD2A. Taken together, these data reveal a JMJD2A/ETV1/YAP1 axis that promotes prostate cancer initiation and that may be a suitable target for therapeutic inhibition.
Collapse
|
34
|
Hu Q, Chen J, Zhang J, Xu C, Yang S, Jiang H. IOX1, a JMJD2A inhibitor, suppresses the proliferation and migration of vascular smooth muscle cells induced by angiotensin II by regulating the expression of cell cycle-related proteins. Int J Mol Med 2015; 37:189-96. [PMID: 26530537 DOI: 10.3892/ijmm.2015.2393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/01/2015] [Indexed: 11/06/2022] Open
Abstract
The epigenetic modification of vascular smooth muscle cell (VSMC) phenotypic switching, proliferation, migration, apoptosis and extracellular matrix synthesis is known to occur in atherosclerosis. The aim of the present study was to investigate the effects of IOX1, a Jumonji domain-containing 2A (JMJD2A) inhibitor, on regulation of the cell cycle in angiotensin II (Ang II)-stimulated VSMCs and to elucidate the possible mechanisms involved. The proliferation and migration of the Ang II-stimulated VSMCs in the presence or absence of IOX1 were evaluated in vitro. Flow cytometric analysis was used to determine the effects of IOX1 on cell cycle progression. RT-qPCR and western blot analysis were carried out to measure the expression levels of cell cycle-related genes. The trimethylation of histone H3 lysine 9 (H3K9me3) at the promoters of these genes was detected by chromatin immunoprecipitation (ChIP) assay. We confirmed that the JMJD2A levels were increased, whereas the H3K9me3 levels were decreased in the Ang II-stimulated VSMCs. The inhibition of JMJD2A by IOX1 suppressed the Ang II-induced cell proliferation, migration and cell cycle progression by inhibiting cyclin D1 expression and increasing p21 expression. The underlying mechanisms were related to the restoration of the H3K9me3 levels at the promoters of these genes. In conclusion, the findings of our study indicate that IOX1 exerts its anti-proliferative and anti-migratory effects by regulating the expression of the cell cycle-related proteins, cyclin D1 and p21.
Collapse
Affiliation(s)
- Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
35
|
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol 2015; 36:3-17. [PMID: 26416465 DOI: 10.1016/j.semcancer.2015.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022]
Abstract
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Suzanne J Randle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
36
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
37
|
Abstract
Dynamic packaging of DNA into strings of nucleosomes is a major mechanism whereby eukaryotic cells regulate gene expression. Intricate control of nucleosomal structure and assembly governs access of RNA polymerase II to DNA and consequent RNA synthesis. As part of this, post-translational modifications of histone proteins are central to the regulation of chromatin structure, playing vital roles in regulating the activation and repression of gene transcription. In the heart, dynamic homeostasis of histone modification-driven by the actions of modifiers and recruitment of downstream effectors-is a fundamental regulator of the transcriptional reprogramming that occurs in the setting of disease-related stress. Here, we examine the growing evidence for histone modification as a key mechanism governing pathological growth and remodeling of the myocardium.
Collapse
Affiliation(s)
- Thomas G Gillette
- From the Departments of Internal Medicine (Cardiology) (T.G.G., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas.
| | - Joseph A Hill
- From the Departments of Internal Medicine (Cardiology) (T.G.G., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
38
|
St John HC, Meyer MB, Benkusky NA, Carlson AH, Prideaux M, Bonewald LF, Pike JW. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone 2015; 72:81-91. [PMID: 25460572 PMCID: PMC4285334 DOI: 10.1016/j.bone.2014.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1,25(OH)2D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage.
Collapse
Affiliation(s)
- Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy A Benkusky
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alex H Carlson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mathew Prideaux
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO 64110, USA
| | - Lynda F Bonewald
- Department of Oral Biology, School of Dentistry, University of Missouri, Kansas City, MO 64110, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
39
|
Sainathan S, Paul S, Ramalingam S, Baranda J, Anant S, Dhar A. Histone Demethylases in Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40495-015-0025-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Marholz LJ, Chang L, Old WM, Wang X. Development of substrate-selective probes for affinity pulldown of histone demethylases. ACS Chem Biol 2015; 10:129-37. [PMID: 25335116 PMCID: PMC4301071 DOI: 10.1021/cb5006867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
JmjC-domain
containing histone demethylases (JHDMs) play critical
roles in many key cellular processes and have been implicated in multiple
disease conditions. Each enzyme within this family is known to have
a strict substrate scope, specifically the position of the lysine
within the histone and its degree of methylation. While much progress
has been made in determining the substrates of each enzyme, new methods
with which to systematically profile each histone mark are greatly
needed. Novel chemical tools have the potential to fill this role
and, furthermore, can be used as probes to answer fundamental questions
about these enzymes and serve as potential therapeutic leads. In this
work, we first investigated three small-molecule probes differing
in the degree of “methylation state” and their differential
bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence
polarization-based competition assay. We then applied this specificity
toward the “methylation state” and combined it with
specificity toward lysine position in the design and synthesis of
a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized
with a benzophenone cross-linking moiety and a biotin for affinity
purification. Results showed binding of the peptidic probe to JHDM1A
and specific enrichment of this protein in the presence of its native
histone substrates. Affinity purification pulldown experiments from
nuclear lysate coupled with mass spectrometry revealed the capability
of the probe to pull out and enrich JHDMs along with other epigenetic
proteins and transcriptional regulators.
Collapse
Affiliation(s)
- Laura J. Marholz
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Le Chang
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - William M. Old
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Xiang Wang
- Department of Chemistry and
Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Accari SL, Fisher PR. Emerging Roles of JmjC Domain-Containing Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:165-220. [DOI: 10.1016/bs.ircmb.2015.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet 2014; 208:215-24. [PMID: 25633974 DOI: 10.1016/j.cancergen.2014.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Histone posttranslational modifications are important components of epigenetic regulation. One extensively studied modification is the methylation of lysine residues. These modifications were thought to be irreversible. However, several proteins with histone lysine demethylase functions have been discovered and characterized. Among these proteins, KDM4A is the first histone lysine demethylase shown to demethylate trimethylated residues. This enzyme plays an important role in gene expression, cellular differentiation, and animal development. Recently, it has also been shown to be involved in cancer. In this review, we focus on describing the structure, mechanisms, and function of KDM4A. We primarily discuss the role of KDM4A in cancer development and the importance of KDM4A as a potential therapeutic target.
Collapse
Affiliation(s)
- Lissania Guerra-Calderas
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
43
|
Li L, Gao P, Li Y, Shen Y, Xie J, Sun D, Xue A, Zhao Z, Xu Z, Zhang M, Li B, Jiang J. JMJD2A-dependent silencing of Sp1 in advanced breast cancer promotes metastasis by downregulation of DIRAS3. Breast Cancer Res Treat 2014; 147:487-500. [PMID: 25193278 DOI: 10.1007/s10549-014-3083-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/26/2014] [Indexed: 12/14/2022]
Abstract
Specificity protein 1(Sp1) is a ubiquitous transcription factor and is highly expressed in breast cancer. However, its expression pattern and role in breast cancer progression remain unclear. The purpose of this study is to examine the expression pattern of Sp1 and determine its role in breast cancer progression. Immunohistochemistry (IHC) was performed on breast cancer tissues to reveal the expression pattern of Sp1. Spearman rank correlation was used for clinical statistics. Gene and protein expressions were monitored by IHC analysis, quantitative polymerase chain reaction, and Western blot. Wound-healing and Transwell assays were conducted to assess the role of Sp1 in breast cancer. Co-immunoprecipitation, deletion mutagenesis, chromatin immunoprecipitation, and dual luciferase reporter gene assays were used for investigation of the regulatory network. Sp1 expression was downregulated in late stage breast cancer and in highly invasive breast cancer cell lines. Expression of Sp1 was negatively correlated with TNM staging (P = 0.002) and metastasis status (P = 0.023). Overexpression of Sp1 inhibited breast cancer cell migratory and invasive abilities, whereas knockdown of GTP-binding RAS-like 3 (DIRAS3, also known as ARHI, NOEY2) attenuated the inhibitory effects. Moreover, re-expression of DIRAS3 abolished Sp1 knockdown-mediated cell migration and invasion. Jumonji domain containing 2A (JMJD2A) inhibited Sp1 autoregulation and explains Sp1 expression pattern in breast cancer. Sp1 negatively regulated breast cancer metastasis by transcriptional activation of DIRAS3. Inhibition of Sp1 autoregulation by JMJD2A contributed to Sp1 expression pattern in breast cancer. Our findings provided evidence that targeted therapy against Sp1 might be useful in early stage breast cancer. However, in late stages, development of Sp1 activator may be more promising for breast cancer treatments.
Collapse
Affiliation(s)
- Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, 200032, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Das A, Chai JC, Jung KH, Das ND, Kang SC, Lee YS, Seo H, Chai YG. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells. Exp Cell Res 2014; 328:361-78. [PMID: 25193078 DOI: 10.1016/j.yexcr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/21/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Nando Dulal Das
- Clinical Research Centre, Inha University School of Medicine, Incheon 400-711, Republic of Korea.
| | - Sung Chul Kang
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Hyemyung Seo
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea; Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
45
|
Li LL, Xue AM, Li BX, Shen YW, Li YH, Luo CL, Zhang MC, Jiang JQ, Xu ZD, Xie JH, Zhao ZQ. JMJD2A contributes to breast cancer progression through transcriptional repression of the tumor suppressor ARHI. Breast Cancer Res 2014; 16:R56. [PMID: 24886710 PMCID: PMC4077733 DOI: 10.1186/bcr3667] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 05/22/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Breast cancer is a worldwide health problem and the leading cause of cancer death among females. We previously identified Jumonji domain containing 2A (JMJD2A) as a critical mediator of breast cancer proliferation, migration and invasion. We now report that JMJD2A could promote breast cancer progression through transcriptional repression of the tumor suppressor aplasia Ras homolog member I (ARHI). METHODS Immunohistochemistry was performed to examine protein expressions in 155 cases of breast cancer and 30 non-neoplastic tissues. Spearman correlation analysis was used to analyze the correlation between JMJD2A expression and clinical parameters as well as several tumor regulators in 155 cases of breast cancer. Gene and protein expressions were monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Results from knockdown of JMJD2A, overexpression of JMJD2A, Co-immunoprecipitation (Co-IP) assay, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) elucidated molecular mechanisms of JMJD2A action in breast cancer progression. Furthermore, the effects of ARHI overexpression on JMJD2A-mediated tumor progression were investigated in vitro and in vivo. For in vitro experiments, cell proliferation, wound-healing, migration and invasion were monitored by cell counting, scratch and Boyden Chamber assays. For in vivo experiments, control cells and cells stably expressing JMJD2A alone or together with ARHI were inoculated into mammary fat pads of mice. Tumor volume, tumor weight and metastatic nodules were measured by caliper, electronic balance and nodule counting, respectively. RESULTS JMJD2A was highly expressed in human breast cancers and positively correlated with tumor progression. Knockdown of JMJD2A increased ARHI expression whereas overexpression of JMJD2A decreased ARHI expression at both protein and mRNA levels. Furthermore, E2Fs and histone deacetylases were involved in the transcriptional repression of ARHI expression by JMJD2A. And the aggressive behavior of JMJD2A in breast cancers could be reversed by re-expression of ARHI in vitro and in vivo. CONCLUSION We demonstrated a cancer-promoting effect of JMJD2A and defined a novel molecular pathway contributing to JMJD2A-mediated breast cancer progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- E2F Transcription Factors/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- HEK293 Cells
- Histone Deacetylases/genetics
- Humans
- Jumonji Domain-Containing Histone Demethylases/biosynthesis
- Jumonji Domain-Containing Histone Demethylases/genetics
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness/genetics
- Neoplasm Transplantation
- Promoter Regions, Genetic/genetics
- Protein Binding/genetics
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Small Interfering
- Transcription, Genetic/genetics
- Transplantation, Heterologous
- Wound Healing/genetics
- rho GTP-Binding Proteins/biosynthesis
- rho GTP-Binding Proteins/genetics
Collapse
Affiliation(s)
- Li-Liang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Ai-Min Xue
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Bei-Xu Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Yi-Wen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Yu-Hua Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Ming-Chang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Jie-Qing Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Zu-De Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Jian-Hui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Zi-Qin Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| |
Collapse
|
46
|
Hu CE, Liu YC, Zhang HD, Huang GJ. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Commun 2014; 449:1-7. [PMID: 24802408 DOI: 10.1016/j.bbrc.2014.04.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 02/09/2023]
Abstract
A number of JmjC domain-containing histone demethylases have been identified and biochemically characterized in mammalian. JMJD2A is a transcriptional cofactor and enzyme that catalyzes demethylation of histone H3 lysines 9 and 36. Here in this study, we aim to explore the role of JMJD2A in human gastric cancer. Quantitative real-time PCR, Western blot and immunohistochemistry analyses reveal higher expression of JMJD2A in clinical gastric cancer tissues than that in normal gastric mucosa. JMJD2A expression is associated with tumor stage and nodal status, and high level of JMJD2A predicts poor overall and disease-free survival. Univariate and multivariate survival analyses demonstrate that JMJD2A could serve as an independent prognostic factor. Furthermore, we show that inhibition the expression of JMJD2A attenuates the growth and transformation of three lines of gastric cancer cells. Mechanically, JMJD2A knockdown induces apoptosis of gastric cancer cells by up-regulating the expression of pro-apoptotic proteins and by down-regulating anti-apoptotic protein. Finally, we show that JMJD2A level is correlated with the level of the pro-apoptotic microRNA miR-34a in gastric cancer tissues and JMJD2A represses the expression of miR-34a by decreasing its promoter activity. Those findings demonstrate that JMJD2A regulates gastric cancer growth and serves as an independent prognostic factor, and implicate that JMJD2A may be a promising target for intervention.
Collapse
Affiliation(s)
- Cheng-En Hu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Chao Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Dong Zhang
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai, China
| | - Guang-Jian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Jin J, Hu H, Li HS, Yu J, Xiao Y, Brittain GC, Zou Q, Cheng X, Mallette FA, Watowich SS, Sun SC. Noncanonical NF-κB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 2014; 40:342-54. [PMID: 24656046 PMCID: PMC3983709 DOI: 10.1016/j.immuni.2014.02.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/13/2014] [Indexed: 01/12/2023]
Abstract
Production of type I interferons (IFN-I) is a crucial innate immune mechanism against viral infections. IFN-I induction is subject to negative regulation by both viral and cellular factors, but the underlying mechanism remains unclear. We report that the noncanonical NF-κB pathway was stimulated along with innate immune cell differentiation and viral infections and had a vital role in negatively regulating IFN-I induction. Genetic deficiencies in major components of the noncanonical NF-κB pathway caused IFN-I hyperinduction and rendered cells and mice substantially more resistant to viral infection. Noncanonical NF-κB suppressed signal-induced histone modifications at the Ifnb promoter, an action that involved attenuated recruitment of the transcription factor RelA and a histone demethylase, JMJD2A. These findings reveal an unexpected function of the noncanonical NF-κB pathway and highlight an important mechanism regulating antiviral innate immunity.
Collapse
Affiliation(s)
- Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiayi Yu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George C Brittain
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Zou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Khoury-Haddad H, Guttmann-Raviv N, Ipenberg I, Huggins D, Jeyasekharan AD, Ayoub N. PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair. Proc Natl Acad Sci U S A 2014; 111:E728-37. [PMID: 24550317 PMCID: PMC3932863 DOI: 10.1073/pnas.1317585111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the lysine (K)-specific demethylase 4 (KDM4) A-D family of histone demethylases are dysregulated in several types of cancer. Here, we reveal a previously unrecognized role of KDM4D in the DNA damage response (DDR). We show that the C-terminal region of KDM4D mediates its rapid recruitment to DNA damage sites. Interestingly, this recruitment is independent of the DDR sensor ataxia telangiectasia mutated (ATM), but dependent on poly (ADP-ribose) polymerase 1 (PARP1), which ADP ribosylates KDM4D after damage. We demonstrate that KDM4D is required for efficient phosphorylation of a subset of ATM substrates. We note that KDM4D depletion impairs the DNA damage-induced association of ATM with chromatin, explaining its effect on ATM substrate phosphorylation. Consistent with an upstream role in DDR, KDM4D knockdown disrupts the damage-induced recombinase Rad51 and tumor protein P53 binding protein foci formation. Consequently, the integrity of homology-directed repair and nonhomologous end joining of DNA breaks is impaired in KDM4D-deficient cells. Altogether, our findings implicate KDM4D in DDR, furthering the links between the cancer-relevant networks of epigenetic regulation and genome stability.
Collapse
Affiliation(s)
- Hanan Khoury-Haddad
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Inbal Ipenberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Huggins
- Department of Oncology, Hutchison/Medical Research Council Research Centre, Cambridge CB2 0XZ, United Kingdom
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Hospital, Singapore 119228; and
- Cancer Science Institute, National University of Singapore, Singapore 119077
| | - Nabieh Ayoub
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
49
|
The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development. Mol Cell Biol 2014; 34:1031-45. [PMID: 24396064 DOI: 10.1128/mcb.00864-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone demethylase JMJD2C, also known as KDM4C/GASC1, has activity against methylated H3K9 and H3K36 and is amplified and/or overexpressed in human cancers. By the generation of Jmjd2c knockout mice, we demonstrate that loss of Jmjd2c is compatible with cellular proliferation, embryonic stem cell (ESC) self-renewal, and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3-positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain of JMJD2C, which recognizes H3K4me3 but not H4K20me2/me3 in vitro, showing a binding specificity different from that of the double Tudor domains of JMJD2A and JMJD2B. Depletion of JMJD2C in KYSE150 cells has a modest effect on H3K9me3 and H3K36me3 levels but impairs proliferation and leads to deregulated expression of a subset of target genes involved in cell cycle progression. Taking these findings together, we show that JMJD2C is targeted to H3K4me3-positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene JMJD2C generally is not required for cellular proliferation or embryonic development.
Collapse
|
50
|
Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci Rep 2013; 3:2894. [PMID: 24100631 PMCID: PMC3792421 DOI: 10.1038/srep02894] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that DrosophilaKdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters.
Collapse
|