1
|
Janjetovic Z, Qayyum S, Reddy SB, Podgorska E, Scott SG, Szpotan J, Mobley AA, Li W, Boda VK, Ravichandran S, Tuckey RC, Jetten AM, Slominski AT. Novel Vitamin D3 Hydroxymetabolites Require Involvement of the Vitamin D Receptor or Retinoic Acid-Related Orphan Receptors for Their Antifibrogenic Activities in Human Fibroblasts. Cells 2024; 13:239. [PMID: 38334631 PMCID: PMC10854953 DOI: 10.3390/cells13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Ewa Podgorska
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - S. Gates Scott
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Justyna Szpotan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Alisa A. Mobley
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Vijay K. Boda
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (W.L.); (V.K.B.)
| | - Senthilkumar Ravichandran
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
| | - Robert C. Tuckey
- School of Molecular Science, The University of Western Australia, Perth 6009, Australia;
| | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Z.J.); (S.Q.); (S.B.R.); (E.P.); (S.G.S.); (J.S.); (A.A.M.); (S.R.)
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- VA Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Tang Y, Wang Y, Wang S, Wang R, Xu J, Peng Y, Ding L, Zhao J, Zhou G, Sun S, Zhang Z. Methylation and transcriptomic expression profiles of HUVEC in the oxygen and glucose deprivation model and its clinical implications in AMI patients. Front Genet 2023; 14:1293393. [PMID: 38145212 PMCID: PMC10740152 DOI: 10.3389/fgene.2023.1293393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The obstructed coronary artery undergoes a series of pathological changes due to ischemic-hypoxic shocks during acute myocardial infarction (AMI). However, the altered DNA methylation levels in endothelial cells under these conditions and their implication for the etiopathology of AMI have not been investigated in detail. This study aimed to explore the relationship between DNA methylation and pathologically altered gene expression profile in human umbilical vein endothelial cells (HUVECs) subjected to oxygen-glucose deprivation (OGD), and its clinical implications in AMI patients. The Illumina Infinium MethylationEPIC BeadChip assay was used to explore the genome-wide DNA methylation profile using the Novaseq6000 platform for mRNA sequencing in 3 pairs of HUVEC-OGD and control samples. GO and KEGG pathway enrichment analyses, as well as correlation, causal inference test (CIT), and protein-protein interaction (PPI) analyses identified 22 hub genes that were validated by MethylTarget sequencing as well as qRT-PCR. ELISA was used to detect four target molecules associated with the progression of AMI. A total of 2,524 differentially expressed genes (DEGs) and 22,148 differentially methylated positions (DMPs) corresponding to 6,642 differentially methylated genes (DMGs) were screened (|Δβ|>0.1 and detection p < 0.05). After GO, KEGG, correlation, CIT, and PPI analyses, 441 genes were filtered. qRT-PCR confirmed the overexpression of VEGFA, CCL2, TSP-1, SQSTM1, BCL2L11, and TIMP3 genes, and downregulation of MYC, CD44, BDNF, GNAQ, RUNX1, ETS1, NGFR, MME, SEMA6A, GNAI1, IFIT1, and MEIS1. DNA fragments BDNF_1_ (r = 0.931, p < 0.0001) and SQSTM1_2_NEW (r = 0.758, p = 0.0043) were positively correlated with the expressions of corresponding genes, and MYC_1_ (r = -0.8245, p = 0.001) was negatively correlated. Furthermore, ELISA confirmed TNFSF10 and BDNF were elevated in the peripheral blood of AMI patients (p = 0.0284 and p = 0.0142, respectively). Combined sequencing from in vitro cellular assays with clinical samples, aiming to establish the potential causal chain of the causal factor (DNA methylation) - mediator (mRNA)-cell outcome (endothelial cell ischemic-hypoxic injury)-clinical outcome (AMI), our study identified promising OGD-specific genes, which provided a solid basis for screening fundamental diagnostic and prognostic biomarkers of coronary endothelial cell injury of AMI. Moreover, it furnished the first evidence that during ischemia and hypoxia, the expression of BNDF was regulated by DNA methylation in endothelial cells and elevated in peripheral blood.
Collapse
Affiliation(s)
- Yuning Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yongxiang Wang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shengxiang Wang
- School of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Runqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Jin Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yu Peng
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liqiong Ding
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Gang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shougang Sun
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zheng Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
4
|
Ma H, Yan X, Liu J, Lu Y, Feng Y, Lai J. Secondary ferroptosis promotes thrombogenesis after venous injury in rats. Thromb Res 2022; 216:59-73. [DOI: 10.1016/j.thromres.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
|
5
|
Wang JH, Chuang YF, Chen J, Singh V, Lin FL, Wilson R, Tu L, Ma C, Wong RCB, Wang PY, Zhong J, Hewitt AW, van Wijngaarden P, Dusting GJ, Liu GS. An Integrative Multi-Omics Analysis Reveals MicroRNA-143 as Potential Therapeutics to Attenuate Retinal Angiogenesis. Nucleic Acid Ther 2022; 32:251-266. [PMID: 35363088 DOI: 10.1089/nat.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal neovascularization is a severe complication of proliferative diabetic retinopathy (PDR). MicroRNAs (miRNAs) are master regulators of gene expression that play an important role in retinal neovascularization. In this study, we show that miR-143-3p is significantly downregulated in the retina of a rat model of oxygen-induced retinopathy (OIR) by miRNA-sequencing. Intravitreal injection of synthetic miR-143 mimics significantly ameliorate retinal neovascularization in OIR rats. miR-143 is identified to be highly expressed in the neural retina particularly in the ganglion cell layer and retinal vasculature. In miR-143 treated cells, the functional evaluation showed a decrease in cell migration and delayed endothelial vessel-like tube remodeling. The multiomics analysis suggests that miR-143 negatively impacts endothelial cell activity through regulating cell-matrix adhesion and mediating hypoxia-inducible factor-1 signaling. We predict hub genes regulated by miR-143 that may be involved in mediating endothelial cell function by cytoHubba. We also demonstrate that the retinal neovascular membranes in patients with PDR principally consist of endothelial cells by CIBERSORTx. We then identify 2 hub genes, thrombospondin 1 and plasminogen activator inhibitor, direct targets of miR-143, that significantly altered in the PDR patients. These findings suggest that miR-143 appears to be essential for limiting endothelial cell-matrix adhesion, thus suppressing retinal neovascularization.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jinying Chen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Vikrant Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Leilei Tu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | | | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia.,Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
6
|
Subramaniam S, Ogoti Y, Hernandez I, Zogg M, Botros F, Burns R, DeRousse JT, Dockendorff C, Mackman N, Antoniak S, Fletcher C, Weiler H. A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Adv 2021; 5:2760-2774. [PMID: 34242391 PMCID: PMC8288670 DOI: 10.1182/bloodadvances.2021004360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of blood coagulation and endothelial inflammation are hallmarks of respiratory infections with RNA viruses that contribute significantly to the morbidity and mortality of patients with severe disease. We investigated how signaling by coagulation proteases affects the quality and extent of the response to the TLR3-ligand poly(I:C) in human endothelial cells. Genome-wide RNA profiling documented additive and synergistic effects of thrombin and poly(I:C) on the expression level of many genes. The most significantly active genes exhibiting synergistic induction by costimulation with thrombin and poly(I:C) included the key mediators of 2 critical biological mechanisms known to promote endothelial thromboinflammatory functions: the initiation of blood coagulation by tissue factor and the control of leukocyte trafficking by the endothelial-leukocyte adhesion receptors E-selectin (gene symbol, SELE) and VCAM1, and the cytokines and chemokines CXCL8, IL-6, CXCL2, and CCL20. Mechanistic studies have indicated that synergistic costimulation with thrombin and poly(I:C) requires proteolytic activation of protease-activated receptor 1 (PAR1) by thrombin and transactivation of PAR2 by the PAR1-tethered ligand. Accordingly, a small-molecule PAR2 inhibitor suppressed poly(I:C)/thrombin-induced leukocyte-endothelial adhesion, cytokine production, and endothelial tissue factor expression. In summary, this study describes a positive feedback mechanism by which thrombin sustains and amplifies the prothrombotic and proinflammatory function of endothelial cells exposed to the viral RNA analogue, poly(I:C) via activation of PAR1/2.
Collapse
Affiliation(s)
| | - Yamini Ogoti
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Irene Hernandez
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Mark Zogg
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Fady Botros
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Robert Burns
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | | | - Chris Dockendorff
- Department of Chemistry, Marquette University, Milwaukee, WI
- Function Therapeutics LLC, Milwaukee, WI; and
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, and
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Craig Fletcher
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| |
Collapse
|
7
|
Gdula AM, Swiatkowska M. A2 A receptor agonists and P2Y 12 receptor antagonists modulate expression of thrombospondin-1 (TSP-1) and its secretion from Human Microvascular Endothelial Cells (HMEC-1). Microvasc Res 2021; 138:104218. [PMID: 34182003 DOI: 10.1016/j.mvr.2021.104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUNDS AND AIMS To address the problem of resistance to standard antiplatelet therapy in some patients, our team proposed a purinoceptor-dependent dual therapy. Its efficacy is also determined by the condition of the vascular endothelium which, by secreting numerous factors, is involved in hemostasis. Among them, thrombospondin-1 is important in the context of thrombotic events. Therefore we sought to determine if the novel dual purinoceptor-dependent concept is associated with TSP-1 changes in vascular endothelial cells. METHODS AND RESULTS TSP-1 expression in human microvascular endothelial cells was determined at transcriptional and protein level. We performed real-time PCR, the Western blot analysis and ELISA test. We found that TSP-1 mRNA and protein expression levels significantly changed in response to P1R agonists treatment. Furthermore, we have observed that co-administration of selective A2AR agonists (UK-432,097 or MRE0094) with P2Y12R antagonists altered TSP-1 expression levels, and the direction of these changes was not synergistic. MRE0094 applied with ARC69931MX or R-138727 increased mRNA expression from 39 to 56 or 57%, respectively (*P < 0.05 vs. MRE0094; ***P < 0.001 vs. control). Also, in the case of the P2Y12R antagonists used together with UK-432,097, there was an increase from 53 to 71 and 70% (*P < 0.05 vs. UK-432,097; ***P < 0.001 vs. control). The observed trends in gene expression were reflected in the protein expression and the level of its secretion from HMEC-1. CONCLUSION The article presents evidence which proves that the purinoceptor-dependent concept is associated with TSP-1 changes in endothelial cells (EC). Moreover, Human Microvascular Endothelial Cells treatment applied together with agonists (MRE0094 or UK-432,097) and P2Y12R antagonist did not result in any synergistic effect, implicating a possible crosstalk between G proteins in GPCRs dependent signaling. Therefore, we suggest that understanding of the specific mechanism underlying TSP-1 alterations in EC in the context of the dual purinoceptor-dependent approach is essential for antiplatelet therapies and should be the subject of future research.
Collapse
Affiliation(s)
- Anna M Gdula
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
8
|
Yuan Y, Bar-Joseph Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol 2020; 21:300. [PMID: 33303016 PMCID: PMC7726911 DOI: 10.1186/s13059-020-02214-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Most methods for inferring gene-gene interactions from expression data focus on intracellular interactions. The availability of high-throughput spatial expression data opens the door to methods that can infer such interactions both within and between cells. To achieve this, we developed Graph Convolutional Neural networks for Genes (GCNG). GCNG encodes the spatial information as a graph and combines it with expression data using supervised training. GCNG improves upon prior methods used to analyze spatial transcriptomics data and can propose novel pairs of extracellular interacting genes. The output of GCNG can also be used for downstream analysis including functional gene assignment.Supporting website with software and data: https://github.com/xiaoyeye/GCNG .
Collapse
Affiliation(s)
- Ye Yuan
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ziv Bar-Joseph
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Kim MS, Choi HS, Wu M, Myung J, Kim EJ, Kim YS, Ro S, Ha SE, Bartlett A, Wei L, Ryu HS, Choi SC, Park WC, Kim KY, Lee MY. Potential Role of PDGFRβ-Associated THBS4 in Colorectal Cancer Development. Cancers (Basel) 2020; 12:2533. [PMID: 32899998 PMCID: PMC7564555 DOI: 10.3390/cancers12092533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a significant cause of death since it frequently metastasizes to several organs such as the lung or liver. Tumor development is affected by various factors, including a tumor microenvironment, which may be an essential factor that leads to tumor growth, proliferation, invasion, and metastasis. In the tumor microenvironment, abnormal changes in various growth factors, enzymes, and cytokines can wield a strong influence on cancer. Thrombospondin-4 (THBS4), which is an extracellular matrix protein, also plays essential roles in the tumor microenvironment and mediates angiogenesis by transforming growth factor-β (TGFβ) signaling. Platelet-derived growth factor receptor β (PDGFRβ), which is a receptor tyrosine kinase and is also a downstream signal of TGFβ, is associated with invasion and metastasis in colorectal cancer. We identified that PDGFRβ and THBS4 are overexpressed in tumor tissues of colorectal cancer patients, and that PDGF-D expression increased after TGFβ treatment in the colon cancer cell line DLD-1. TGFβ and PDGF-D increased cellular THBS4 protein levels and secretion but did not increase THBS4 mRNA levels. This response was further confirmed by the inositol 1,4,5-triphosphate receptor (IP3R) and stromal interaction molecule 1 (STIM1) blockade as well as the PDGFRβ blockade. We propose that the PDGFRβ signal leads to a modification of the incomplete form of THBS4 to its complete form through IP3R, STIM1, and Ca2+-signal proteins, which further induces THBS4 secretion. Additionally, we identified that DLD-1 cell-conditioned medium stimulated with PDGF-D promotes adhesion, migration, and proliferation of colon myofibroblast CCD-18co cells, and this effect was intensified in the presence of thrombin. These findings suggest that excessive PDGFRβ signaling due to increased TGFβ and PDGF-D in colorectal tumors leads to over-secretion of THBS4 and proliferative tumor development.
Collapse
Affiliation(s)
- Min Seob Kim
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Hyun Seok Choi
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - JiYeon Myung
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Eui Joong Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Yong Sung Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Han-Seung Ryu
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Suck Chei Choi
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Won Cheol Park
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Keun Young Kim
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Moon Young Lee
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| |
Collapse
|
10
|
Association of Circulating microRNAs with Coronary Artery Disease and Usefulness for Reclassification of Healthy Individuals: The REGICOR Study. J Clin Med 2020; 9:jcm9051402. [PMID: 32397522 PMCID: PMC7290581 DOI: 10.3390/jcm9051402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Risk prediction tools cannot identify most individuals at high coronary artery disease (CAD) risk. Oxidized low-density lipoproteins (oxLDLs) and microRNAs are actively involved in atherosclerosis. Our aim was to examine the association of CAD and oxLDLs-induced microRNAs, and to assess the microRNAs predictive capacity of future CAD events. Human endothelial and vascular smooth muscle cells were treated with oxidized/native low-density lipoproteins, and microRNA expression was analyzed. Differentially expressed and CAD-related miRNAs were examined in serum samples from (1) a case-control study with 476 myocardial infarction (MI) patients and 487 controls, and (2) a case-cohort study with 105 incident CAD cases and 455 randomly-selected cohort participants. MicroRNA expression was analyzed with custom OpenArray plates, log rank tests and Cox regression models. Twenty-one microRNAs, two previously undescribed (hsa-miR-193b-5p and hsa-miR-1229-5p), were up- or down-regulated upon cell treatment with oxLDLs. One of the 21, hsa-miR-122-5p, was also upregulated in MI cases (fold change = 4.85). Of the 28 CAD-related microRNAs tested, 11 were upregulated in MI cases-1 previously undescribed (hsa-miR-16-5p)-, and 1/11 was also associated with CAD incidence (adjusted hazard ratio = 0.55 (0.35–0.88)) and improved CAD risk reclassification, hsa-miR-143-3p. We identified 2 novel microRNAs modulated by oxLDLs in endothelial cells, 1 novel microRNA upregulated in AMI cases compared to controls, and one circulating microRNA that improved CAD risk classification.
Collapse
|
11
|
Anasagasti A, Ezquerra-Inchausti M, Barandika O, Muñoz-Culla M, Caffarel MM, Otaegui D, López de Munain A, Ruiz-Ederra J. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:2381-2392. [PMID: 29847644 PMCID: PMC5939684 DOI: 10.1167/iovs.18-24091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration.
Collapse
Affiliation(s)
- Ander Anasagasti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maitane Ezquerra-Inchausti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| | - Olatz Barandika
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - María M Caffarel
- Oncology Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - Adolfo López de Munain
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Centro de Investigaciones Biomédicas en Red Sobre Enfermedades Neurodegenerativas, Instituto Carlos III, Ministerio de Economía y Competitividad, Spain.,Department of Neuroscience, University of the Basque Country, San Sebastian, Spain
| | - Javier Ruiz-Ederra
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| |
Collapse
|
12
|
Abstract
Background Precise identification of three-dimensional genome organization, especially enhancer-promoter interactions (EPIs), is important to deciphering gene regulation, cell differentiation and disease mechanisms. Currently, it is a challenging task to distinguish true interactions from other nearby non-interacting ones since the power of traditional experimental methods is limited due to low resolution or low throughput. Results We propose a novel computational framework EP2vec to assay three-dimensional genomic interactions. We first extract sequence embedding features, defined as fixed-length vector representations learned from variable-length sequences using an unsupervised deep learning method in natural language processing. Then, we train a classifier to predict EPIs using the learned representations in supervised way. Experimental results demonstrate that EP2vec obtains F1 scores ranging from 0.841~ 0.933 on different datasets, which outperforms existing methods. We prove the robustness of sequence embedding features by carrying out sensitivity analysis. Besides, we identify motifs that represent cell line-specific information through analysis of the learned sequence embedding features by adopting attention mechanism. Last, we show that even superior performance with F1 scores 0.889~ 0.940 can be achieved by combining sequence embedding features and experimental features. Conclusions EP2vec sheds light on feature extraction for DNA sequences of arbitrary lengths and provides a powerful approach for EPIs identification. Electronic supplementary material The online version of this article (10.1186/s12864-018-4459-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanwen Zeng
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing, 100084, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Mengmeng Wu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing, 100084, China.,Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing, 100084, China. .,Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Wang HJ, Chen SF, Lo WY. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells. Thromb Res 2015; 135:944-50. [PMID: 25746365 DOI: 10.1016/j.thromres.2015.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. MATERIALS AND METHODS HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. RESULTS A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. CONCLUSIONS Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation.
Collapse
Affiliation(s)
- Huang-Joe Wang
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wan-Yu Lo
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
D'Asti E, Kool M, Pfister SM, Rak J. Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. J Thromb Haemost 2014; 12:1838-49. [PMID: 25163932 DOI: 10.1111/jth.12715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND The coagulation system becomes activated during progression and therapy of high-grade brain tumors. Triggering tissue factor (F3/TF) and thrombin receptors (F2R/PAR-1) may influence the vascular tumor microenvironment and angiogenesis irrespective of clinically apparent thrombosis. These processes are poorly understood in medulloblastoma (MB), in which diverse oncogenic pathways define at least four molecular disease subtypes (WNT, SHH, Group 3 and Group 4). We asked whether there is a link between molecular subtype and the network of vascular regulators expressed in MB. METHODS Using R2 microarray analysis and visualization platform, we mined MB datasets for differential expression of vascular (coagulation and angiogenesis)-related genes, and explored their link to known oncogenic drivers. We evaluated the functional significance of this link in DAOY cells in vitro following growth factor and thrombin stimulation. RESULTS The coagulome and angiome differ across MB subtypes. F3/TF and F2R/PAR-1 mRNA expression are upregulated in SHH tumors and correlate with higher levels of hepatocyte growth factor receptor (MET). Cultured DAOY (MB) cells exhibit an up-regulation of F3/TF and F2R/PAR-1 following combined SHH and MET ligand (HGF) treatment. These factors cooperate with thrombin, impacting the profile of vascular regulators, including interleukin 1β (IL1B) and chondromodulin 1 (LECT1). CONCLUSIONS Coagulation pathway sensors (F3/TF, F2R/PAR-1) are expressed in MB in a subtype-specific manner, and may be functionally linked to SHH and MET circuitry. Thus coagulation system perturbations may elicit subtype/context-specific changes in vascular and cellular responses in MB.
Collapse
Affiliation(s)
- E D'Asti
- Cancer and Angiogenesis Laboratory, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
15
|
Lee AH, Dhaliwal R, Kantores C, Ivanovska J, Gosal K, McNamara PJ, Letarte M, Jankov RP. Rho-kinase inhibitor prevents bleomycin-induced injury in neonatal rats independent of effects on lung inflammation. Am J Respir Cell Mol Biol 2014; 50:61-73. [PMID: 23947621 DOI: 10.1165/rcmb.2013-0131oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation dominated by neutrophils and macrophages, inhibited distal airway and vascular development, and pulmonary hypertension, similar to human infants with severe bronchopulmonary dysplasia. Rho-kinase (ROCK) is known to mediate lung injury in adult animals via stimulatory effects on inflammation. We therefore hypothesized that inhibition of ROCK may ameliorate bleomycin-induced lung injury in the neonatal rat. Pups received daily intraperitoneal bleomycin or saline from Postnatal Days 1 through 14 with or without Y-27632, a ROCK inhibitor. Treatment with Y-27632 prevented bleomycin-induced pulmonary hypertension, as evidenced by normalized pulmonary vascular resistance, decreased right-ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. Bleomycin-induced changes in distal lung architecture, including septal thinning, inhibited alveolarization, and decreased numbers of peripheral arteries and capillaries, were partially or completely normalized by Y-27632. Treatment with Y-27632 or a CXCR2 antagonist, SB265610, also abrogated tissue neutrophil influx, while having no effect on macrophages. However, treatment with SB265610 did not prevent bleomycin-induced lung injury. Lung content of angiostatic thrombospondin-1 (TSP1) was increased significantly in the lungs of bleomycin-exposed animals, and was completely attenuated by treatment with Y-27632. Thrombin-stimulated TSP1 production by primary cultured rat pulmonary artery endothelial cells was also attenuated by Y-27632. Taken together, our findings suggest a preventive effect of Y-27632 on bleomycin-mediated injury by a mechanism unrelated to inflammatory cells. Our data suggest that improvements in lung morphology may have been related to indirect stimulatory effects on angiogenesis via down-regulation of TSP1.
Collapse
|
16
|
Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 2014; 37:69-82. [PMID: 24582666 DOI: 10.1016/j.matbio.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests critical functions of thrombospondins (TSPs) in a variety of physiological and pathological processes. With the growing understanding of the importance of these matricellular proteins, the need to understand the mechanisms of regulation of their expression and potential approaches to modulate their levels is also increasing. The regulation of TSP expression is multi-leveled, cell- and tissue-specific, and very precise. However, the knowledge of mechanisms modulating the levels of TSPs is fragmented and incomplete. This review discusses the known mechanisms of regulation of TSP levels and the gaps in our knowledge that prevent us from developing strategies to modulate the expression of these physiologically important proteins.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave NB50, Cleveland, OH 44195, United States.
| |
Collapse
|
17
|
Prentice RL, Zhao S, Johnson M, Aragaki A, Hsia J, Jackson RD, Rossouw JE, Manson JE, Hanash SM. Proteomic risk markers for coronary heart disease and stroke: validation and mediation of randomized trial hormone therapy effects on these diseases. Genome Med 2013; 5:112. [PMID: 24373343 PMCID: PMC3971342 DOI: 10.1186/gm517] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Here we report CHD and stroke risk validation studies for highly ranked proteins, and consider the extent to which protein concentration changes relate to disease risk or provide an explanation for hormone therapy effects on these outcomes. METHODS Five proteins potentially associated with CHD (beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), thrombospondin-1(THBS1), complement factor D pre-protein (CFD), and insulin-like growth factor binding protein 1 (IGFBP1)) and five potentially associated with stroke (B2M, IGFBP2, IGFBP4, IGFBP6, and hemopexin (HPX)) had high discovery phase significance level ranking and an available ELISA assay, and were included in case-control validation studies within the Women's Health Initiative (WHI) hormone therapy trials. Protein concentrations, at baseline and 1 year following randomization, were assessed for 358 CHD cases and 362 stroke cases, along with corresponding disease-free controls. Disease association, and mediation of estrogen-alone and estrogen plus progestin effects on CHD and stroke risk, were assessed using logistic regression. RESULTS B2M, THBS1, and CFD were confirmed (P <0.05) as novel CHD risk markers, and B2M, IGFBP2, and IGFBP4 were confirmed as novel stroke disease risk markers, while the assay for HPX proved to be unreliable. The change from baseline to 1 year in B2M was associated (P <0.05) with subsequent stroke risk, and trended similarly with subsequent CHD risk. Change from baseline to 1 year in IGFBP1 was also associated with CHD risk, and this change provided evidence of hormone therapy effect mediation. CONCLUSIONS Plasma B2M is confirmed to be an informative risk marker for both CHD and stroke. The B2M increase experienced by women during the first year of hormone therapy trial participation conveys cardiovascular disease risk. The increase in IGFBP1 similarly conveys CHD risk, and the magnitude of the IGFBP1 increase following hormone therapy may be a mediator of hormone therapy effects. Plasma THBS1 and CFD are confirmed as CHD risk markers, and plasma IGFBP4 and IGFBP2 are confirmed as stroke risk markers. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov identifier: NCT00000611.
Collapse
Affiliation(s)
- Ross L Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Melissa Johnson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Aaron Aragaki
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Judith Hsia
- Research and Development, AstraZeneca LP, 1971 Rockland Road, Wilmington, DE 19803, USA
| | - Rebecca D Jackson
- Division of Endocrinology, The Ohio State University, 376 West Tenth Avenue, Suite 205, Columbus, OH 43210, USA
| | - Jacques E Rossouw
- WHI Project Office, National Heart, Lung, and Blood Institute, National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, 6767 Bertner Street, Houston, TX 77030, USA
| |
Collapse
|
18
|
Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F, Davis JS, Hansen TR. Pregnancy-associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum. Physiol Genomics 2013; 45:1095-108. [PMID: 24046284 DOI: 10.1152/physiolgenomics.00082.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The hypothesis that ovine luteal gene expression differs due to pregnancy status and day of estrous cycle was tested. RNA was isolated from corpora lutea (CL) on days 12 and 14 of the estrous cycle (NP) or pregnancy (P) and analyzed with the Affymetrix bovine microarray. RNA also was isolated from luteal cells on day 10 of estrous cycle that were cultured for 24 h with luteolytic hormones (OXT and PGF) and secretory products of the conceptus (IFNT and PGE2). Differential gene expression (>1.5-fold, P < 0.05) was confirmed using semiquantitative real-time PCR. Serum progesterone concentrations decreased from day 12 to day 15 in NP ewes (P < 0.05) reflecting luteolysis and remained >1.7 ng/ml in P ewes reflecting rescue of the CL. Early luteolysis (days 12-14) was associated with differential expression of 683 genes in the CL, including upregulation of SERPINE1 and THBS1. Pregnancy on day 12 (55 genes) and 14 (734 genes) also was associated with differential expression of genes in the CL, many of which were ISGs (i.e., ISG15, MX1) that were induced when culturing luteal cells with IFNT, but not PGE2. Finally, many genes, such as PTX3, IL6, VEGF, and LHR, were stabilized during pregnancy and downregulated during the estrous cycle and in response to culture of luteal cells with luteolytic hormones. In conclusion, pregnancy circumvents luteolytic pathways and activates or stabilizes genes associated with interferon, chemokine, cell adhesion, cytoskeletal, and angiogenic pathways in the CL.
Collapse
Affiliation(s)
- Jared J Romero
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | | | | | | | | | | | | |
Collapse
|
19
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
20
|
McMorrow JP, Crean D, Gogarty M, Smyth A, Connolly M, Cummins E, Veale D, Fearon U, Tak PP, Fitzgerald O, Murphy EP. Tumor necrosis factor inhibition modulates thrombospondin-1 expression in human inflammatory joint disease through altered NR4A2 activity. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1243-1257. [PMID: 23933487 DOI: 10.1016/j.ajpath.2013.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 01/07/2023]
Abstract
We examined thrombospondin-1 (THBS1, alias TSP-1) expression in human synovial tissue (ST) during the resolution phase of chronic inflammation and elucidated its transcriptional regulation by the orphan receptor 4A2 (NR4A2). In vivo, rheumatoid arthritis (RA) serum and ST revealed altered expression levels and tissue distribution of TSP-1. After anti-tumor necrosis factor therapy, a reciprocal relationship between TSP-1 and NR4A2 expression levels was measured in patients with clinical and ST responses to biological treatment. In vitro, primary RA fibroblast-like synoviocytes (FLSs) expressed minimal TSP-1 mRNA levels with high transcript levels of NR4A2, vascular endothelial growth factor (VEGF), and IL-8 measured. Hypoxic modulation of RA FLSs resulted in inverse expression levels of TSP-1 compared with NR4A2, IL-8, and VEGF. Ectopic NR4A2 expression led to reduced TSP-1 mRNA and protein levels with concomitant increases in proangiogenic mediators. NR4A2 transcriptional activity, independent of DNA binding, repressed the hTSP-1 promoter leading to reduced mRNA and protein release in immortalized K4IM FLSs. Bioinformatic and deletion studies identified a 5' region of the TSP-1 promoter repressed by NR4A2 and proangiogenic transcription factors, including NF-κB and Ets1/2. Stable depletion of NR4A2 levels resulted in a shift in the TSP-1/VEGF expression ratio. Thus, modulation of TSP-1 expression is achieved through anti-tumor necrosis factor therapy effects on specific transcriptional networks, suggesting that enhanced TSP-1 expression may help restore tissue homeostasis during resolution of inflammation.
Collapse
Affiliation(s)
- Jason P McMorrow
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Daniel Crean
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Martina Gogarty
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Aisling Smyth
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland
| | - Mary Connolly
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Eoin Cummins
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Douglas Veale
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Paul P Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver Fitzgerald
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland; Department of Rheumatology, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Evelyn P Murphy
- UCD Veterinary Sciences Centre, University College Dublin, Belfield, Ireland; Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| |
Collapse
|
21
|
Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective. J Biomed Res 2013; 28:47-52. [PMID: 24474963 PMCID: PMC3904174 DOI: 10.7555/jbr.27.20130055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclerosis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atherosclerotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
22
|
Wall EH, Bond JP, McFadden TB. Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression. BMC Genomics 2013; 14:296. [PMID: 23638659 PMCID: PMC3658990 DOI: 10.1186/1471-2164-14-296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/20/2013] [Indexed: 11/24/2022] Open
Abstract
Background The lactating mammary gland responds to changes in milking frequency by modulating milk production. This response is locally regulated and, in dairy cows, the udder is particularly sensitive during early lactation. Relative to cows milked twice-daily throughout lactation, those milked four-times-daily for just the first 3 weeks of lactation produce more milk throughout that lactation. We hypothesized that the milk yield response would be associated with increased mammary cell turnover and changes in gene expression during frequent milking and persisting thereafter. Cows were assigned to unilateral frequent milking (UFM; left udder halves milked twice-daily; right udder halves milked four-times daily) on days 1 to 21 of lactation, followed by twice-daily milking for the remainder of lactation. Relative to udder halves milked twice-daily, those milked four-times produced more milk during UFM; the difference in milk yield declined acutely upon cessation of UFM after day 21, but remained significantly elevated thereafter. We obtained mammary biopsies from both udder halves on days 21, 23, and 40 of lactation. Results Mammary cell proliferation and apoptosis were not affected by milking frequency. We identified 75 genes that were differentially expressed between paired udder halves on day 21 but exhibited a reversal of differential expression on day 23. Among those genes, we identified four clusters characterized by similar temporal patterns of differential expression. Two clusters (11 genes) were positively correlated with changes in milk yield and were differentially expressed on day 21 of lactation only, indicating involvement in the initial milk yield response. Two other clusters (64 genes) were negatively correlated with changes in milk yield. Twenty-nine of the 75 genes were also differentially expressed on day 40 of lactation. Conclusions Changes in milking frequency during early lactation did not alter mammary cell population dynamics, but were associated with coordinated changes in mammary expression of at least 75 genes. Twenty-nine of those genes were differentially expressed 19 days after cessation of treatment, implicating them in the persistent milk yield response. We conclude that we have identified a novel transcriptional signature that may mediate the adaptive response to changes in milking frequency.
Collapse
|
23
|
Yang AL, Zhou HJ, Lin Y, Luo JK, Cui HJ, Tang T, Yang QD. Thrombin promotes the expression of thrombospondin-1 and ‐2 in a rat model of intracerebral hemorrhage. J Neurol Sci 2012; 323:141-6. [DOI: 10.1016/j.jns.2012.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
24
|
Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood 2012; 120:5050-8. [PMID: 22976952 DOI: 10.1182/blood-2012-02-413138] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Patients with sickle cell disease suffer from painful crises associated with disseminated vaso-occlusions, increased circulating erythrocyte microparticles (MPs), and thrombospondin-1 (TSP1). MPs are submicron membrane vesicles shed by compromised or activated cells. We hypothesized that TSP1 mediates MP shedding and participates in vaso-occlusions. We injected TSP1 to transgenic SAD mice with sickle cell disease and characterized circulating phosphatidylserine+ MPs by FACS. TSP1 stimulated MPs in plasma and initiated vaso-occlusions within minutes. In vitro, TSP1 triggered rapid erythrocyte conversion into spicule-covered echinocytes, followed by MP shedding. MP shedding was recapitulated by peptides derived from the TSP1 carboxyterminus. We purified MPs shed by erythrocytes in vitro and administered them back to SAD mice. MPs triggered immediate renal vaso-occlusions. In vitro, MPs triggered the production of radical oxygen species by endothelial monolayers, favored erythrocyte adhesion, and induced endothelial apoptosis. MPs also compromised vasodilation in perfused microvessels. These effects were inhibited by saturating MP phosphatidylserine with annexin-V, or with inhibitors of endothelial ROS production. We conclude that TSP1 triggers erythrocyte MP shedding. These MPs induce endothelial injury and facilitate acute vaso-occlusive events in transgenic SAD mice. This work supports a novel concept that toxic erythrocyte MPs may connect sickle cell anemia to vascular disease.
Collapse
|
25
|
Schuepbach RA, Madon J, Ender M, Galli P, Riewald M. Protease-activated receptor-1 cleaved at R46 mediates cytoprotective effects. J Thromb Haemost 2012; 10:1675-84. [PMID: 22712885 PMCID: PMC3419798 DOI: 10.1111/j.1538-7836.2012.04825.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Activated protein C (aPC) mediates powerful cytoprotective effects through the protease-activated receptor-1 (PAR1) that translate into reduced harm in mouse injury models. However, it remains elusive how aPC-activated PAR1 can mediate cytoprotective effects whereas thrombin activation does the opposite. OBJECTIVES We hypothesized that aPC and thrombin might induce distinct active conformations in PAR1 causing opposing effects. METHODS We analyzed antibody binding to, and cleavage and signalling of PAR1 in either endogenously expressing endothelial or overexpressing 293T cells. RESULTS In thrombin-cleaved PAR1 neither the tethered ligand nor the hirudin-like domain were available for anti-PAR1 ATAP2 and WEDE15 binding unless the tethered ligand was quenched. In contrast, aPC irreversibly prevented ATAP2 binding while not affecting WEDE15 binding. Reporter constructs with selective glutamine substitutions confirmed R41 as the only thrombin cleavage site in PAR1, whereas aPC preferentially cleaved at R46. Similarly, we report distinct cleavage sites on PAR3, K38 for thrombin and R41 for aPC. A soluble peptide corresponding to R46-cleaved PAR1 enhanced the endothelial barrier function and reduced staurosporine toxicity in endothelial as well as in 293T cells if PAR1 was expressed. Overexpression of PAR1 variants demonstrated that cleavage at R46 but not R41 is required for cytoprotective aPC signaling. CONCLUSIONS We provide a novel concept on how aPC and thrombin mediate distinct effects. We propose that the enzyme-specific cleavage sites induce specific conformations which mediate divergent downstream effects. This unexpected model of PAR1 signaling might lead to novel therapeutic options for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- R A Schuepbach
- Surgical Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Grootaert C, Van de Wiele T, Verstraete W, Bracke M, Vanhoecke B. Angiopoietin-like protein 4: health effects, modulating agents and structure-function relationships. Expert Rev Proteomics 2012; 9:181-99. [PMID: 22462789 DOI: 10.1586/epr.12.12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) has been identified as a multifunctional signal protein. It is produced by a variety of tissues, and is secreted into the bloodstream in glycosylated, oligomerized, native and cleaved isoforms to modulate physiological events such as angiogenesis, cell differentiation and the crosstalk between liver, brain, adipose and muscle tissue in lipid and glucose metabolism. In addition, the expression and isoform appearance of ANGPTL4 are modified by the intestinal microbiota. With an eye on an effective strategy to improve health using ANGPTL4, we will focus on: health issues associated with ANGPTL4 expression, including obesity, Type 2 diabetes, cardiovascular diseases and cancer; several modulators of ANGPTL4 of chemical, microbiological, food and host origin; and the correlation of the specific ANGPTL4 isoforms with these modulators and their health effects.
Collapse
Affiliation(s)
- Charlotte Grootaert
- Laboratory of Microbial Ecology & Technology (LabMET), Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Suen JY, Gardiner B, Grimmond S, Fairlie DP. Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One 2010; 5:e13809. [PMID: 21072196 PMCID: PMC2970545 DOI: 10.1371/journal.pone.0013809] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 10/04/2010] [Indexed: 12/28/2022] Open
Abstract
Protease-Activated Receptor-2 (PAR2) has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD) and key events in tumor progression (angiogenesis, metastasis), but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293), a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2) and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2)). Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes), the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2) and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15). Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4) known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.
Collapse
Affiliation(s)
- Jacky Y. Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Brooke Gardiner
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sean Grimmond
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Guilini C, Urayama K, Turkeri G, Dedeoglu DB, Kurose H, Messaddeq N, Nebigil CG. Divergent roles of prokineticin receptors in the endothelial cells: angiogenesis and fenestration. Am J Physiol Heart Circ Physiol 2010; 298:H844-52. [DOI: 10.1152/ajpheart.00898.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prokineticins are secreted peptides that activate two G protein-coupled receptors: PKR1 and PKR2. Prokineticins induce angiogenesis and fenestration, but the cognate receptors involved in these functions are unknown. We hypothesized a role for prokineticin receptor signaling pathways and expression profiles in determining the selective effects of prokineticins on coronary endothelial cells (H5V). Activation of the PKR1/MAPK/Akt signaling pathway stimulates proliferation, migration, and angiogenesis in H5V cells, in which PKR1 predominates over PKR2. PKR1 was colocalized with Gα11 and was internalized following the stimulation of these cells with prokineticin-2. Knock down of PKR1 or Gα11 expression in H5V cells effectively inhibited prokineticin-2-induced vessel formation and MAPK/Akt activation, indicating a role for PKR1/Gα11 in this process. However, in conditions in which PKR2 predominated over PKR1, these cells displayed a fenestrated endothelial cell phenotype. H5V cells overexpressing PKR2 displayed large numbers of multivesicular bodies and caveolar clusters and a disruption of the distribution of zonula occluden-1 tight junction protein. Prokineticin-2 induced the colocalization of PKR2 with Gα12, and activated Gα12, which bound to zonula occluden-1 to trigger the degradation of this protein in these cells. Prokineticin-2 induced the formation of vessel-like structures by human aortic endothelial cells expressing only PKR1, and disorganized the tight junctions in human hepatic sinusoidal endothelial cells expressing only PKR2, confirming the divergent roles of these receptors. Our findings show the functional characteristics of coronary endothelial cells depend on the expression of PKR1 and PKR2 levels and the divergent signaling pathways used by these receptors.
Collapse
Affiliation(s)
- Célia Guilini
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, FRE3211, Centre National de la Recherche Scientifique, Université de Strasbourg, and Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Kyoji Urayama
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, FRE3211, Centre National de la Recherche Scientifique, Université de Strasbourg, and Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Gulen Turkeri
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, FRE3211, Centre National de la Recherche Scientifique, Université de Strasbourg, and Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Deniz B. Dedeoglu
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, FRE3211, Centre National de la Recherche Scientifique, Université de Strasbourg, and Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Kyushu University, Fukuoka, Japan; and
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire, Illkirch, France
| | - Canan G. Nebigil
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, FRE3211, Centre National de la Recherche Scientifique, Université de Strasbourg, and Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| |
Collapse
|
31
|
Thippegowda PB, Singh V, Sundivakkam PC, Xue J, Malik AB, Tiruppathi C. Ca2+ influx via TRPC channels induces NF-kappaB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells. Am J Physiol Cell Physiol 2009; 298:C656-64. [PMID: 20032510 DOI: 10.1152/ajpcell.00456.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-kappaB signaling is known to induce the expression of antiapoptotic and proinflammatory genes in endothelial cells (ECs). We have shown recently that Ca(2+) influx through canonical transient receptor potential (TRPC) channels activates NF-kappaB in ECs. Here we show that Ca(2+) influx signal prevents thrombin-induced apoptosis by inducing NF-kappaB-dependent A20 expression in ECs. Knockdown of TRPC1 expressed in human umbilical vein ECs with small interfering RNA (siRNA) suppressed thrombin-induced Ca(2+) influx and NF-kappaB activation in ECs. Interestingly, we observed that thrombin induced >25% of cell death (apoptosis) in TRPC1-knockdown ECs whereas thrombin had no effect on control or control siRNA-transfected ECs. To understand the basis of EC survival, we performed gene microarray analysis using ECs. Thrombin stimulation increased only a set of NF-kappaB-regulated genes 3- to 14-fold over basal levels in ECs. Expression of the antiapoptotic gene A20 was the highest among these upregulated genes. Like TRPC1 knockdown, thrombin induced apoptosis in A20-knockdown ECs. To address the importance of Ca(2+) influx signal, we measured thrombin-induced A20 expression in control and TRPC1-knockdown ECs. Thrombin-induced p65/RelA binding to A20 promoter-specific NF-kappaB sequence and A20 protein expression were suppressed in TRPC1-knockdown ECs compared with control ECs. Furthermore, in TRPC1-knockdown ECs, thrombin induced the expression of proapoptotic proteins caspase-3 and BAX. Importantly, thrombin-induced apoptosis in TRPC1-knockdown ECs was prevented by adenovirus-mediated expression of A20. These results suggest that Ca(2+) influx via TRPC channels plays a critical role in the mechanism of cell survival signaling through A20 expression in ECs.
Collapse
Affiliation(s)
- Prabhakar B Thippegowda
- Dept. of Pharmacology, College of Medicine, Univ. of Illinois, 835 South Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
32
|
Xu ZY, Chen JS, Shu YQ. Gene expression profile towards the prediction of patient survival of gastric cancer. Biomed Pharmacother 2009; 64:133-9. [PMID: 20005068 DOI: 10.1016/j.biopha.2009.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 06/07/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Several gene expression signatures have been reported to predict patient survival of gastric cancer after surgical resection. However, the prognostic gene lists have overlapped poorly until now. This study conducted an analysis to characterize gene expression profile and developed a survival prediction model. METHODS The gene expression profile was evaluated in fresh frozen tumor tissue obtained from 48 patients with primary gastric cancer. We measured 84 representative genes involved in transformation and tumorigenesis using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and related the results to overall survival. RESULTS In a univariate analysis, 84 genes were ranked on their ability to predict survival, of which nine genes were the strongest predictor (P<0.05). They were PLAU, MAP2K1, THBS1, TWIST1, ITGB5, NME4, ANGPT2, platelet-derived growth factor B (PDGFB), ITGB1. Then, we did a multivariate analysis to further select four genes (ITGB1, PDGFB, THBS1, TWIST1) from the above nine genes for the construction of biomathematics model, which was independent of age, gender, TNM stage and other variables. This model could correctly clarify gastric patients into the high-risk group, median-risk group and low-risk group, as well as predict their survival. CONCLUSIONS Measurement of the expression of four genes is probable to predict surgery-related survival. This model may be test further for its potential to improve the selection of the resected gastric cancer patients in adjuvant chemotherapy.
Collapse
|
33
|
Ghafoori P, Yoshimura T, Turpie B, Masli S. Increased IkappaB alpha expression is essential for the tolerogenic property of TGF-beta-exposed APCs. FASEB J 2009; 23:2226-34. [PMID: 19237504 PMCID: PMC2704595 DOI: 10.1096/fj.08-124545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/29/2009] [Indexed: 11/11/2022]
Abstract
IkappaB alpha is an inhibitor of the transcriptional factor NF-kappaB, and it is an essential component of the signaling pathways that lead to expression of inflammatory molecules. These include cytokines and costimulatory molecules associated with antigen presentation in an inflammatory immune response. In this study, we report that antigen-presenting cells exposed to TGF-beta induce peripheral tolerance by increasing IkappaB alpha expression. Exposure of antigen presenting cells (APCs) to TGF-beta is known to impair their ability to secrete IL-12, and such impairment correlated with reduced NF-kappaB activity as indicated by significantly reduced nuclear levels of p50, an essential subunit of NF-kappaB for IL-12 transcription. Blockade of increased nuclear IkappaB alpha in APCs by expression of small interfering RNA molecules (siRNAs) targeting IkappaB alpha transcripts prevented IL-12 impairment and the decline in nuclear p50 levels. Furthermore, such IkappaB alpha blockade also interfered with the tolerogenic property of TGF-beta-exposed APCs. However, increased expression of IkappaB alpha in APCs, independent of TGF-beta exposure, reduced nuclear p50 levels and permitted tolerance induction by APCs. Thus, our findings attribute a direct and significant role to IkappaB alpha in the tolerogenic potential of APCs. Increased IkappaB alpha expression in APCs may therefore offer a therapeutic approach to achieve antigen-specific immunomodulation.
Collapse
Affiliation(s)
- Paiman Ghafoori
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
34
|
Wadgaonkar R, Somnay K, Garcia JG. Thrombin induced secretion of macrophage migration inhibitory factor (MIF) and its effect on nuclear signaling in endothelium. J Cell Biochem 2008; 105:1279-88. [DOI: 10.1002/jcb.21928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Arora S, Wang Y, Jia Z, Vardar-Sengul S, Munawar A, Doctor KS, Birrer M, McClelland M, Adamson E, Mercola D. Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip. Genome Biol 2008; 9:R166. [PMID: 19032775 PMCID: PMC2614498 DOI: 10.1186/gb-2008-9-11-r166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/25/2008] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND UV irradiation activates the epidermal growth factor receptor, induces Egr1 expression and promotes apoptosis in a variety of cell types. We examined the hypothesis that Egr1 regulates genes that mediate this process by use of a chip-on-chip protocol in human tumorigenic prostate M12 cells. RESULTS UV irradiation led to significant binding of 288 gene promoters by Egr1. A major functional subgroup consisted of apoptosis related genes. The largest subgroup of 24 genes belongs to the epidermal growth factor receptor-signal transduction pathway. Egr1 promoter binding had a significant impact on gene expression of target genes. Conventional chromatin immunoprecipitation and quantitative real time PCR were used to validate promoter binding and expression changes. Small interfering RNA experiments were used to demonstrate the specific role of Egr1 in gene regulation. UV stimulation promotes growth arrest and apoptosis of M12 cells and our data clearly show that a downstream target of the epidermal growth factor receptor, namely Egr1, mediates this apoptotic response. Our study also identified numerous previously unknown targets of Egr1. These include FasL, MAX and RRAS2, which may play a role in the apoptotic response/growth arrest. CONCLUSIONS Our results indicate that M12 cells undergo Egr1-dependent apoptotic response upon UV stimulation and led to the identification of downstream targets of Egr1, which mediate epidermal growth factor receptor function.
Collapse
Affiliation(s)
- Shilpi Arora
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Blackburn JS, Brinckerhoff CE. Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1736-46. [PMID: 18988801 DOI: 10.2353/ajpath.2008.080512] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many tumor types express matrix metalloproteinase-1 (MMP-1); its collagenase activity facilitates both tumor cell invasion and metastasis. MMP-1 expression is also associated with increased angiogenesis; however, the exact mechanism by which this occurs is not clear. MMP-1 proteolytically activates protease activated receptor-1 (PAR-1), a thrombin receptor that is highly expressed in endothelial cells. Thrombin is also present in the tumor microenvironment, and its activation of PAR-1 is pro-angiogenic. It is currently unknown whether MMP-1 activation of PAR-1 induces angiogenesis in a similar or different manner compared with thrombin. We sought to determine the mechanism by which MMP-1 promotes angiogenesis and to compare the effects of MMP-1 with those of thrombin. Our results demonstrate that via PAR-1, MMP-1 activates mitogen-activated protein kinase signaling cascades in microvessel endothelial cells. Although thrombin activation of PAR-1 also induces signaling through these pathways, the time-course of activation appears to vary. Gene expression analysis revealed a possible consequence of these signaling differences as MMP-1 and thrombin induce expression of different subsets of pro-angiogenic genes. Furthermore, the combination of thrombin and MMP-1 is more angiogenic than either protease alone. These data demonstrate that MMP-1 acts directly on endothelial cells as a pro-angiogenic signaling molecule and also suggest that the effects of MMP-1 may complement the activity of thrombin to better facilitate angiogenesis and promote tumor progression.
Collapse
Affiliation(s)
- Jessica S Blackburn
- Department of Biochemistry, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
37
|
Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci 2008; 1123:134-45. [PMID: 18375586 DOI: 10.1196/annals.1420.016] [Citation(s) in RCA: 445] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endothelium is a semi-permeable barrier that regulates the flux of liquid and solutes, including plasma proteins, between the blood and surrounding tissue. The permeability of the vascular barrier can be modified in response to specific stimuli acting on endothelial cells. Transport across the endothelium can occur via two different pathways: through the endothelial cell (transcellular) or between adjacent cells, through interendothelial junctions (paracellular). This review focuses on the regulation of the paracellular pathway. The paracellular pathway is composed of adhesive junctions between endothelial cells, both tight junctions and adherens junctions. The actin cytoskeleton is bound to each junction and controls the integrity of each through actin remodeling. These interendothelial junctions can be disassembled or assembled to either increase or decrease paracellular permeability. Mediators, such as thrombin, TNF-alpha, and LPS, stimulate their respective receptor on endothelial cells to initiate signaling that increases cytosolic Ca2+ and activates myosin light chain kinase (MLCK), as well as monomeric GTPases RhoA, Rac1, and Cdc42. Ca2+ activation of MLCK and RhoA disrupts junctions, whereas Rac1 and Cdc42 promote junctional assembly. Increased endothelial permeability can be reversed with "barrier stabilizing agents," such as sphingosine-1-phosphate and cyclic adenosine monophosphate (cAMP). This review provides an overview of the mechanisms that regulate paracellular permeability.
Collapse
Affiliation(s)
- Emily Vandenbroucke
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illonois College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
38
|
Li RW, Freeman C, Yu D, Hindmarsh EJ, Tymms KE, Parish CR, Smith PN. Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2008; 58:1590-600. [PMID: 18512775 DOI: 10.1002/art.23489] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Although heparanase is recognized as a proangiogenic factor, the involvement of heparanase in rheumatoid arthritis (RA) is unclear. In this study, we assessed heparanase activity in synovial fluid (SF) and synovial tissue (ST) from patients with RA or osteoarthritis (OA), and analyzed the expression of angiogenic pathway-focused genes in ST from RA and OA patients. METHODS SF and ST were obtained from the knees of patients with either RA or OA and from asymptomatic donors with no documented history of degenerative or inflammatory joint diseases. Heparanase activity was determined by an enzymatic assay using a radiolabeled substrate, and the presence of heparanase in ST was demonstrated by Western blotting. The expression of angiogenesis genes, including heparanase, in ST was analyzed by real-time quantitative polymerase chain reaction. RESULTS Heparanase activity was dramatically higher (>100-fold) in SF and ST from RA patients than in SF and ST from OA patients and asymptomatic donors. Active heparanase enzyme was detected and heparanase messenger RNA was up-regulated in ST from RA patients. We also found that angiogenesis gene expression was significantly regulated in RA synovium, and was correlated with heparanase activity. CONCLUSION These findings are novel and contribute to our understanding of joint destruction in RA, suggesting that heparanase may be a reliable prognostic factor for RA progression and an attractive target for the treatment of RA.
Collapse
Affiliation(s)
- Rachel W Li
- Australian National University, and Canberra Hospital, Canberra, ACT, Australia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Martínez-Sales V, Vila V, Ferrando M, Reganon E. Atorvastatin neutralizes the up-regulation of thrombospondin-1 induced by thrombin in human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2008; 14:233-8. [PMID: 17922340 DOI: 10.1080/10623320701617209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Statins have been reported to affect blood vessel formation. Thrombospondin-1 (TSP-1) is a multifunctional protein that affects vasculature systems such as platelet activation, angiogenesis, and wound healing. This study was designed to investigate the effect of atorvastatin on TSP-1 synthesis in thrombin-stimulated human umbilical vein endothelial cells (HUVECs), and its regulation by mevalonate or its derivatives. The results showed that atorvastatin down-regulated TSP-1 expression in HUVECs. This effect was fully reversed by mevalonate, farnesylpyrophosphate (FPP), and gerarylgeranylpyrophosphate (GGPP). Furthermore, farnesyltransferase and geranylgeranyltransferase inhibitors decreased TSP-1expression. It was also found that thrombin increased TSP-1 expression in HUVECs. Atorvastatin (0.1, 1, and 10 muM) decreased TSP-1 in thrombin-stimulated cells (45%, 66%, and 80%). Mevalonate partially reversed this inhibitory effect of atorvastatin on TSP-1, whereas the presence of FPP and GGPP did not alter TSP-1. Rho-kinase inhibitor neutralized the up-regulation of TSP-1 induced by thrombin. In conclusion, atorvastatin inhibits TSP-1 expression in endothelial cells via the mevalonate pathway. Rho protein activation is necessary for up-regulation of TSP-1 synthesis induced by thrombin. Because FPP and GGPP are essential for the activity of Rho proteins, inhibition of these proteins may constitute the mechanism by which atorvastatin inhibits thrombin up-regulated TSP-1 expression.
Collapse
|
40
|
Kai Y, Hirano K, Maeda Y, Nishimura J, Sasaki T, Kanaide H. Prevention of the hypercontractile response to thrombin by proteinase-activated receptor-1 antagonist in subarachnoid hemorrhage. Stroke 2007; 38:3259-65. [PMID: 17962603 DOI: 10.1161/strokeaha.107.487769] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral vasospasm is one of the major complications of subarachnoid hemorrhage (SAH). Its pathogenesis still remains elusive, and effective therapeutic strategies are yet to be established. We investigated the role of proteinase-activated receptor-1 (PAR1) in the hypercontractile state in SAH. METHODS Rabbit double hemorrhage model was used as a model of SAH. The contractile response to thrombin and the PAR1 expression were evaluated in the isolated rings of basilar artery. RESULTS Thrombin exhibited only a minor contractile effect in the control, whereas it induced augmented contractions in SAH. The expression of PAR1 was upregulated in SAH. Intracisternal injection of PAR1 antagonist E5555 prevented the enhancement of the contractile responses to thrombin in SAH. The maximal prevention was obtained with 2 microg/kg weight/injection. The contractile responses to K(+) depolarization or endothelin-1 remained unaffected. The upregulation of PAR1 was also prevented by E5555 (2 microg/kg weight/injection) to a level similar to that seen in the control. Ex vivo treatment with E5555 (1 micromol/L) inhibited the contraction induced by thrombin, whereas it had little effect on the contraction induced by K(+) depolarization or endothelin-1, in the basilar artery of SAH. E5555 also inhibited the [Ca(2+)](i) elevation induced by thrombin, but not trypsin, in cultured smooth muscle cells. CONCLUSIONS PAR1 plays a critical role in upregulating PAR1 itself, thereby enhancing the contractile response to thrombin in SAH. PAR1 could thus be a therapeutic target. However, the usefulness of PAR1 antagonist remains to be investigated in vivo.
Collapse
Affiliation(s)
- Yasutoshi Kai
- Professor, Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Saban R, Simpson C, Davis CA, Dozmorov I, Maier J, Fowler B, Ihnat MA, Hurst RE, Wershil BK, Saban MR. Transcription factor network downstream of protease activated receptors (PARs) modulating mouse bladder inflammation. BMC Immunol 2007; 8:17. [PMID: 17705868 PMCID: PMC2000913 DOI: 10.1186/1471-2172-8-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/17/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND All four PARs are present in the urinary bladder, and their expression is altered during inflammation. In order to search for therapeutic targets other than the receptors themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary bladders. METHODS For this purpose, we used a protein/DNA combo array containing 345 different TF consensus sequences. Next, the TF selected was validated by EMSA and IHC. As mast cells seem to play a fundamental role in bladder inflammation, we determined whether c-kit receptor deficient (Kit w/Kit w-v) mice have an abrogated response to PAR stimulation. Finally, TFEB antibody was used for CHIP/Q-PCR assay and revealed up-regulation of genes known to be downstream of TFEB. RESULTS TFEB, a member of the MiTF family of basic helix-loop-helix leucine zipper, was the only TF commonly up-regulated by all PAR-APs. IHC results confirm a correlation between inflammation and TFEB expression in C57BL/6 mice. In contrast, Kit w/Kit w-v mice did not exhibit inflammation in response to PAR activation. EMSA results confirmed the increased TFEB binding activity in C57BL/6 but not in Kit w/Kit w-v mice. CONCLUSION This is the first report describing the increased expression of TFEB in bladder inflammation in response to PAR activation. As TFEB belongs to a family of TFs essential for mast cell survival, our findings suggest that this molecule may influence the participation of mast cells in PAR-mediated inflammation and that targeting TFEB/MiTF activity may be a novel approach for the treatment of bladder inflammatory disorders.
Collapse
Affiliation(s)
- Ricardo Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Cindy Simpson
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carole A Davis
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Igor Dozmorov
- Oklahoma Medical Research Foundation (OMRF), Imaging Core Facility, Oklahoma City, Oklahoma 73104, USA
| | - Julie Maier
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray/Euk. Genomics Core Facility, Oklahoma City, Oklahoma 73104. USA
| | - Ben Fowler
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray/Euk. Genomics Core Facility, Oklahoma City, Oklahoma 73104. USA
| | - Michael A Ihnat
- Department of Cell Biology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Hurst
- Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Barry K Wershil
- Albert Einstein College of Medicine Division of Pediatric GI and Nutrition The Children's Hospital at Montefiore Bronx, NY 10467, USA
| | - Marcia R Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
42
|
Seo DM, Goldschmidt-Clermont PJ, West M. Of mice and men: Sparse statistical modeling in cardiovascular genomics. Ann Appl Stat 2007. [DOI: 10.1214/07-aoas110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Urayama K, Guilini C, Messaddeq N, Hu K, Steenman M, Kurose H, Ert G, Nebigil CG. The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis. FASEB J 2007; 21:2980-93. [PMID: 17442730 DOI: 10.1096/fj.07-8116com] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prokineticins are potent angiogenic factors that bind to two G protein-coupled receptors to initiate their biological effects. We hypothesize that prokineticin receptor-1 (PKR1/GPR73) signaling may contribute to cardiomyocyte survival or repair in myocardial infarction. Since we showed that prokineticin-2 and PKR1 are expressed in adult mouse heart and cardiac cells, we investigated the role of prokineticin-2 on capillary endothelial cell and cardiomyocyte function. In cultured cardiac endothelial cells, prokineticin-2 or overexpression of PKR1 induces vessel-like formation without increasing VEGF levels. In cardiomyocytes and H9c2 cells, prokineticin-2 or overexpressing PKR1 activates Akt to protect cardiomyocytes against oxidative stress. The survival and angiogenesis promoting effects of prokineticin-2 in cardiac cells were completely reversed by siRNA-PKR1, indicating PKR1 involvement. We thus, further investigated whether intramyocardial gene transfer of DNA encoding PKR1 may rescue the myocardium against myocardial infarction in mouse model. Transient PKR1 gene transfer after coronary ligation reduces mortality and preserves left ventricular function by promoting neovascularization and protecting cardiomyocytes without altering VEGF levels. In human end-stage failing heart samples, reduced PKR1 and prokineticin-2 transcripts and protein levels implicate a more important role for prokineticin-2/PKR1 signaling in heart. Our results suggest that PKR1 may represent a novel therapeutic target to limit myocardial injury following ischemic events.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apoptosis
- Cell Hypoxia
- Cells, Cultured
- Embryo, Mammalian
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Genetic Therapy
- Heart/physiology
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Myocardial Infarction/metabolism
- Myocardial Infarction/prevention & control
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Neovascularization, Pathologic
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Probes
- RNA, Small Interfering/pharmacology
- Rats
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kyoji Urayama
- UMR 7175/CNRS/Universite Strasbourg I, Ecole Supérieure de Biotechnologie de Strasbourg, Bld. Sébastien Brandt BP. 10413, F-67412 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
McLaughlin JN, Patterson MM, Malik AB. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci U S A 2007; 104:5662-7. [PMID: 17376866 PMCID: PMC1838494 DOI: 10.1073/pnas.0700763104] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thrombin activates endothelial cell signaling by cleaving the protease-activated receptor-1 (PAR1). However, the function of the apparently nonsignaling receptor PAR3 also expressed in endothelial cells is unknown. We demonstrate here the crucial role of PAR3 in potentiating the responsiveness of PAR1 to thrombin. We tested the hypothesis that PAR1/PAR3 heterodimerization and its effect in modifying G protein selectivity was responsible for PAR3 regulation of PAR1 sensitivity. Using bioluminescent resonance energy transfer-2, we showed that PAR1 had comparable dimerization affinity for PAR3 as for itself. We observed increased Galpha(13) coupling between the PAR1/3 heterodimer compared with the PAR1/1 homodimer. Moreover, knockdown of PAR3 moderated the PAR1-activated increase in endothelial permeability. These results demonstrate a role of PAR3 in allosterically regulating PAR1 signaling governing increased endothelial permeability. Because PAR3 is a critical determinant of PAR1 function, targeting of PAR3 may mitigate the effects of PAR1 in activating endothelial responses such as vascular inflammation.
Collapse
Affiliation(s)
- Joseph N McLaughlin
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
45
|
Moczulski DK, Fojcik H, Wielgorecki A, Trautsolt W, Gawlik B, Kosiorz-Gorczynska S, Oczko-Wojciechowska M, Wiench M, Strojek K, Zukowska-Szczechowska E, Grzeszczak W. Expression pattern of genes in peripheral blood mononuclear cells in diabetic nephropathy. Diabet Med 2007; 24:266-71. [PMID: 17263765 DOI: 10.1111/j.1464-5491.2006.02067.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Only one-third of Type 1 diabetes patients develop diabetic nephropathy, and a genetic predisposition is postulated. To obtain more insight into processes that lead to diabetic nephropathy, messenger RNA expression profiles of peripheral blood mononuclear cells from patients with and without diabetic nephropathy were compared. METHODS We studied seven male patients with Type 1 diabetes and proteinuria and 12 male patients with Type 1 diabetes and normoalbuminuria after at least 20 years of diabetes duration. The expression of genes was examined using the microarray method with Human Genome U133A Arrays (Affymetrix, Santa Clara, CA, USA). We analysed the expression of all candidate genes suggested to be involved in the pathogenesis of diabetic nephropathy in previously published articles. Altogether, expression of 198 genes was analysed. RESULTS We found that thrombospondin 1 (THBS1) and cyclooxygenase 1(COX1) genes were over-expressed in patients with diabetic nephropathy, and matrix metalloproteinase 9 (MMP9) and cyclooxygenase 2 (COX2) genes had lower expression in diabetic nephropathy. For other genes, we did not observe different expression between patients with and without diabetic nephropathy,or the expression was too low for analysis. CONCLUSIONS The different gene expression pattern in peripheral blood mononuclear cells in patients with diabetic nephropathy might indicate an important pathway in the pathogenesis of this complication.
Collapse
Affiliation(s)
- D K Moczulski
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hirano K. The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2006; 27:27-36. [PMID: 17095716 DOI: 10.1161/01.atv.0000251995.73307.2d] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors, thus mediating the cellular effects of proteinases. In the vascular system, thrombin and other proteinases in the coagulation-fibrinolysis system are considered to be the physiologically relevant agonists, whereas PARs are among the most important mechanisms mediating the interaction between the coagulation-fibrinolysis system and the vascular wall. Under physiological conditions, PARs are mainly expressed in endothelial cells, and participate in the regulation of vascular tone, mostly by inducing endothelium-dependent relaxation. PARs in endothelial cells are also suggested to contribute to a proinflammatory phenotypic conversion and an increase in the permeability of vascular lesions. In smooth muscle cells, PARs mediate contraction, migration, proliferation, hypertrophy, and production of the extracellular matrix, thereby contributing to the development of vascular lesions and the pathophysiology of such vascular diseases as atherosclerosis. However, the expression of PARs in the smooth muscle of normal arteries is limited. The upregulation of PARs in the smooth muscle is thus considered to be a key step for PARs to participate in the pathogenesis of vascular lesions. Elucidating the molecular mechanism regulating the PARs expression is therefore important to develop new strategies for the prevention and treatment of vascular diseases.
Collapse
MESH Headings
- Animals
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Cardiovascular Physiological Phenomena
- Cardiovascular System/cytology
- Cardiovascular System/physiopathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation
- Humans
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/physiopathology
- Nitric Oxide/metabolism
- Receptors, Proteinase-Activated/metabolism
- Receptors, Proteinase-Activated/physiology
Collapse
Affiliation(s)
- Katsuya Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
47
|
Manns JM, Uknis AB, Rico MC, Agelan A, Castaneda J, Arango I, Barbe MF, Safadi FF, Popoff SN, DeLa Cadena RA. A peptide from thrombospondin 1 modulates experimental erosive arthritis by regulating connective tissue growth factor. ACTA ACUST UNITED AC 2006; 54:2415-22. [PMID: 16869004 DOI: 10.1002/art.22021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with leukocyte adhesion to and extravasation through vascular endothelium into synovial tissue. Recent evidence indicates that the thrombospondin 1 gene is up-regulated in patients with RA. We have identified a region within the TSP-1 type 3 repeats that inhibits human neutrophil elastase (HNE) and binds to human neutrophils. The present study was undertaken to investigate the therapeutic benefit of this TSP-1-derived peptide sequence and its effect on connective tissue growth factor (CTGF), a protein involved in fibrotic disorders and in neovascularization, which is a hallmark of RA. METHODS CTGF gene and protein expression, as well as protein levels of CTGF in the synovium, after treatment with the TSP-1-derived peptide were studied in the peptidoglycan-polysaccharide animal model of erosive arthritis. RESULTS Peptide treatment prevented joint infiltration and inflammation and was associated with reduced circulating antigen levels of HNE and TSP-1. Additionally, CTGF was up-regulated in this experimental model of RA. Treatment with the TSP-1-derived peptide was associated with down-regulation of the message and protein levels of CTGF. Immunofluorescence studies showed that the mean area fraction of CTGF immunoreactivity in the peptide-treated group of animals was significantly less than that in the untreated group. CONCLUSION These results document a role for TSP-1 in regulating CTGF gene and protein expression in synovial tissue, suggesting a link with the disease course in this model of RA. This TSP-1-derived synthetic peptide may represent an important template for drug development in RA and other inflammatory conditions associated with neutrophil activation.
Collapse
Affiliation(s)
- Joanne M Manns
- Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Luyendyk JP, Lehman-McKeeman LD, Nelson DM, Bhaskaran VM, Reilly TP, Car BD, Cantor GH, Deng X, Maddox JF, Ganey PE, Roth RA. Coagulation-dependent gene expression and liver injury in rats given lipopolysaccharide with ranitidine but not with famotidine. J Pharmacol Exp Ther 2006; 317:635-43. [PMID: 16401727 DOI: 10.1124/jpet.105.096305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In an animal model of drug idiosyncrasy, rats cotreated with nonhepatotoxic doses of lipopolysaccharide (LPS) and ranitidine (RAN) develop hepatocellular injury, whereas rats treated with LPS and famotidine (FAM) do not. The coagulation system and neutrophils (PMNs) are requisite mediators of LPS/RAN-induced liver injury. We tested the hypothesis that unique gene expression in LPS/RAN-treated rats requires coagulation system activation and that these changes are absent in rats given LPS and FAM. Rats were treated with a nonhepatotoxic dose of LPS (44.4 x 10(6) endotoxin units/kg i.v.) or its vehicle, and then 1 h later, they were treated with heparin (3000 U/kg) or its vehicle. One hour thereafter, they were given RAN (30 mg/kg), FAM (6 mg/kg, a pharmacologically equiefficacious dose, or 28.8 mg/kg, an equimolar dose), or vehicle (i.v.). They were killed 2 or 6 h after drug treatment for evaluation of hepatotoxicity, coagulation system activation, and liver gene expression (2 h only). Statistical filtering of gene array results and real-time polymerase chain reaction identified groups of genes expressed in LPS/RAN-treated rats but not LPS/FAM-treated rats that were either changed or unchanged by heparin administration. For example, LPS/RAN-induced mRNA expression of the inflammatory mediators interleukin-6, cyclooxygenase-2, and macrophage inflammatory protein-2 (MIP-2) was reduced by anticoagulation. Enhancement of serum MIP-2 and plasminogen activator inhibitor-1 concentrations in LPS/RAN-treated rats was prevented by anticoagulation. The results suggest cross-talk between hemostasis-induced gene expression and inflammation (e.g., PMN function) in the genesis of hepatocellular injury in LPS/RAN-treated rats. In contrast, neither the expression of such genes nor hepatocellular necrosis occurred in rats treated with LPS/FAM.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sood R, Kalloway S, Mast AE, Hillard CJ, Weiler H. Fetomaternal cross talk in the placental vascular bed: control of coagulation by trophoblast cells. Blood 2005; 107:3173-80. [PMID: 16380449 PMCID: PMC1895751 DOI: 10.1182/blood-2005-10-4111] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humans and rodents exhibit a peculiar type of placentation in which zygote-derived trophoblast cells, rather than endothelial cells, line the terminal maternal vascular space. This peculiar aspect of the placental vasculature raises important questions about the relative contribution of fetal and maternal factors in the local control of hemostasis in the placenta and how these might determine the phenotypic expression of thrombophilia-associated complications of pregnancy. Using genomewide expression analysis, we identify a panel of genes that determine the ability of fetal trophoblast cells to regulate hemostasis at the fetomaternal interface. We show that spontaneous differentiation of trophoblast stem cells is associated with the acquisition of an endothelial cell-like thromboregulatory gene expression program. This program is developmentally regulated and conserved between mice and humans. We further show that trophoblast cells sense, via the expression of protease activated receptors, the presence of activated coagulation factors. Engagement of these receptors results in cell-type specific changes in gene expression. Our observations define candidate fetal genes that are potential risk modifiers of maternal thrombophilia-associated pregnancy complications and provide evidence that coagulation activation at the fetomaternal interface can affect trophoblast physiology altering placental function in the absence of frank thrombosis.
Collapse
Affiliation(s)
- Rashmi Sood
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|