1
|
Magham S, Kumar ML, Krishnamurthy PT, Shaji N, Ramakkamma AR. Purinergic Receptor (P2X7R): A Promising Anti-Parkinson's Drug Target. Adv Pharm Bull 2024; 14:807-818. [PMID: 40190682 PMCID: PMC11970502 DOI: 10.34172/apb.43206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Parkinson's disease (PD) is the fourth most common neurodegenerative disorder, characterized by degeneration of basal ganglia and a decrease in dopamine levels in the brain. Purinergic 2X7 receptors (P2X7Rs) serve as inflammation gatekeepers. They are found in both central and peripheral nervous systems (CNS & PNS), and are activated in glial cells during inflammation. Purinergic 2X receptors (P2XRs) have been extensively studied in recent decades, particularly P2X7R, because of their important role in neuroinflammation caused by selective overexpression in glial cells. As P2X7R and its selective antagonists may provide neuroprotection by preventing the release of inflammatory mediators such as IL-1, they have become a research focus in PD. The review covers structure, signalling, molecular mechanisms, neuroprotective role, and current developments of P2X7R antagonists in PD. Methods A systematic analysis and review of the potential prospects of P2X7R antagonists in the treatment of PD were conducted by analyzing existing research data and reports published between 1996 and present. Results There is a substantial body of evidence linking P2X7R to pathology of PD. As a result, P2X7R antagonists may have therapeutic potential in treatment of PD. Conclusion P2X7R has been demonstrated as an efficacious target in PD. Recent advances in rational drug design have paved the way for development of therapeutically valuable P2X7R antagonists such as adamantyl cyanoguanides, small molecular weight compounds, and PET ligands for the treatment of PD. However, the exact molecular mechanism and therapeutic potential of P2X7R antagonists in treatment of PD are yet to be fully explored.
Collapse
Affiliation(s)
- Saivarshini Magham
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| | - M. Lalith Kumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| | - Neenu Shaji
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| | - Aishwarya Reddy Ramakkamma
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
2
|
Schäfer W, Stähler T, Pinto Espinoza C, Danquah W, Knop JH, Rissiek B, Haag F, Koch-Nolte F. Origin, distribution, and function of three frequent coding polymorphisms in the gene for the human P2X7 ion channel. Front Pharmacol 2022; 13:1033135. [DOI: 10.3389/fphar.2022.1033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2022] Open
Abstract
P2X7, an ion channel gated by extracellular ATP, is widely expressed on the plasma membrane of immune cells and plays important roles in inflammation and apoptosis. Several single nucleotide polymorphisms have been identified in the human P2RX7 gene. In contrast to other members of the P2X family, non-synonymous polymorphisms in P2X7 are common. Three of these occur at overall frequencies of more than 25% and affect residues in the extracellular “head”-domain of P2X7 (155 Y/H), its “lower body” (270 R/H), and its “tail” in the second transmembrane domain (348 T/A). Comparison of the P2X7 orthologues of human and other great apes indicates that the ancestral allele is Y—R—T (at 155–270–348). Interestingly, each single amino acid variant displays lower ATP-sensitivity than the ancestral allele. The originally published reference sequence of human P2X7, often referred to as “wildtype,” differs from the ancestral allele at all three positions, i.e. H—H—A. The 1,000 Genome Project determined the sequences of both alleles of 2,500 human individuals, including roughly 500 persons from each of the five major continental regions. This rich resource shows that the ancestral alleles Y155, R270, and T348 occur in all analyzed human populations, albeit at strikingly different frequencies in various subpopulations (e.g., 25%–59% for Y155, 59%–77% for R270, and 13%–47% for T348). BLAST analyses of ancient human genome sequences uncovered several homozygous carriers of variant P2X7 alleles, possibly reflecting a high degree of inbreeding, e.g., H—R—T for a 50.000 year old Neanderthal, H—R—A for a 24.000 year old Siberian, and Y—R—A for a 7,000 year old mesolithic European. In contrast, most present-day individuals co-express two copies of P2X7 that differ in one or more amino acids at positions 155, 270, and 348. Our results improve the understanding of how P2X7 structure affects its function and suggest the importance of considering P2X7 variants of participants when designing clinical trials targeting P2X7.
Collapse
|
3
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
4
|
Hypercholesterolemia Negatively Regulates P2X7-Induced Cellular Function in CD4 + and CD8 + T-Cell Subsets from B6 Mice Fed a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23126730. [PMID: 35743168 PMCID: PMC9223416 DOI: 10.3390/ijms23126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells.
Collapse
|
5
|
Yang H, Geng YH, Wang P, Yang H, Zhou YT, Zhang HQ, He HY, Fang WG, Tian XX. Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. Oncogene 2020; 39:5795-5810. [PMID: 32724162 DOI: 10.1038/s41388-020-01402-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Our previous research demonstrated that extracellular adenosine 5'-triphosphate (ATP) could promote breast cancer cell invasion. However, the impact of extracellular ATP on chemoresistance and the mechanisms behind ATP pro-invasion and pro-chemoresistance remain unclear. Here we aimed to determine the molecules or signaling pathways involved. cDNA microarray was performed to identify the differentially expressed genes before and after ATP treatment. As a result, Sex-determining region Y-box 9 (SOX9) was up-regulated after ATP treatment in breast cancer cells. In vitro invasion and migration assays demonstrated that knocking down SOX9 attenuated ATP-driven invasive capability. Mass spectrometry and co-IP revealed that SOX9 interacted with Janus kinase 1 (JAK1). Afterward, IL-6-JAK1-STAT3 signaling was demonstrated to promote SOX9 expression and invasion following ATP treatment. Notably, ATP-IL-6-SOX9 signaling was shown to stimulate chemoresistance in breast cancer cells. ChIP assays identified some potential SOX9 target genes, among which carcinoembryonic antigen-related cell adhesion molecule 5/6 (CEACAM5/6) was demonstrated to mediate ATP pro-invasive function, while ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily G member 2 (ABCG2) mediated ATP-driven chemoresistance. In addition, SOX9-knockdown and apyrase (an ATP hydrolase)-treated MDA-MB-231 cells illustrated decreased tumor growth and enhanced drug sensitivity in nude mice. In vitro spheroid formation assays also proved the significance of ATP-SOX9 in mediating chemoresistance. Moreover, molecules involved in ATP-SOX9 signaling were up-regulated in human breast carcinoma specimens and were associated with poor prognosis. Altogether, SOX9 signaling is vital in ATP-driven invasion and chemoresistance, which may serve as a potential target for breast cancer therapies.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yue-Hang Geng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Peng Wang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Han Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Hong-Quan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Hui-Ying He
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China.
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
6
|
Rivas-Yáñez E, Barrera-Avalos C, Parra-Tello B, Briceño P, Rosemblatt MV, Saavedra-Almarza J, Rosemblatt M, Acuña-Castillo C, Bono MR, Sauma D. P2X7 Receptor at the Crossroads of T Cell Fate. Int J Mol Sci 2020; 21:E4937. [PMID: 32668623 PMCID: PMC7404255 DOI: 10.3390/ijms21144937] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a ligand-gated, cation-selective channel whose main physiological ligand is ATP. P2X7 receptor activation may also be triggered by ARTC2.2-dependent ADP ribosylation in the presence of extracellular NAD. Upon activation, this receptor induces several responses, including the influx of calcium and sodium ions, phosphatidylserine externalization, the formation of a non-selective membrane pore, and ultimately cell death. P2X7 receptor activation depends on the availability of extracellular nucleotides, whose concentrations are regulated by the action of extracellular nucleotidases such as CD39 and CD38. The P2X7 receptor has been extensively studied in the context of the immune response, and it has been reported to be involved in inflammasome activation, cytokine production, and the migration of different innate immune cells in response to ATP. In adaptive immune responses, the P2X7 receptor has been linked to T cell activation, differentiation, and apoptosis induction. In this review, we will discuss the evidence of the role of the P2X7 receptor on T cell differentiation and in the control of T cell responses in inflammatory conditions.
Collapse
Affiliation(s)
- Elizabeth Rivas-Yáñez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Carlos Barrera-Avalos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| | - Brian Parra-Tello
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Mariana V. Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| |
Collapse
|
7
|
Rump A, Smolander OP, Rüütel Boudinot S, Kanellopoulos JM, Boudinot P. Evolutionary Origin of the P2X7 C-ter Region: Capture of an Ancient Ballast Domain by a P2X4-Like Gene in Ancient Jawed Vertebrates. Front Immunol 2020; 11:113. [PMID: 32117264 PMCID: PMC7016195 DOI: 10.3389/fimmu.2020.00113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/16/2020] [Indexed: 01/31/2023] Open
Abstract
P2X purinergic receptors are extracellular ATP-gated ion channel receptors present on the cell plasma membrane. P2X receptors have been found in Metazoa, fungi, amoebas, and in plants. In mammals, P2X7 is expressed by a large number of cell types and is involved in inflammation and immunity. Remarkably, P2X7 does not desensitize as other P2X do, a feature linked to a “C-cysteine anchor” intra-cytoplasmic motif encoded by exon 11. Another specific feature of P2X7 is its C-terminal cytoplasmic ballast domain (exon 13) which contains a zinc (Zn) coordinating cysteine motif and a GDP-binding region. To determine the origin of P2X7, we analyzed and compared sequences and protein motifs of the C-terminal intra-cytoplasmic region across all main groups of Metazoa. We identified proteins with typical ballast domains, sharing a remarkably conserved Zn-coordinating cysteine motif. Apart from vertebrates, these ballast domains were not associated with a typical P2X architecture. These results strongly suggest that P2X7 resulted from the fusion of a P2X gene, highly similar to P2X4, with an exon encoding a ballast domain. Our work brings new evidence on the origin of the P2X7 purinergic receptor and identifies the Zn-coordinating cysteine domain as the fundamental feature of the ancient ballast fold.
Collapse
Affiliation(s)
- Airi Rump
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sirje Rüütel Boudinot
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, Jouy en Josas, France
| |
Collapse
|
8
|
Kanellopoulos JM, Delarasse C. Pleiotropic Roles of P2X7 in the Central Nervous System. Front Cell Neurosci 2019; 13:401. [PMID: 31551714 PMCID: PMC6738027 DOI: 10.3389/fncel.2019.00401] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The purinergic receptor P2X7 is expressed in neural and immune cells known to be involved in neurological diseases. Its ligand, ATP, is a signaling molecule that can act as a neurotransmitter in physiological conditions or as a danger signal when released in high amount by damaged/dying cells or activated glial cells. Thus, ATP is a danger-associated molecular pattern. Binding of ATP by P2X7 leads to the activation of different biochemical pathways, depending on the physiological or pathological environment. The aim of this review is to discuss various functions of P2X7 in the immune and central nervous systems. We present evidence that P2X7 may have a detrimental or beneficial role in the nervous system, in the context of neurological pathologies: epilepsy, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, age-related macular degeneration and cerebral artery occlusion.
Collapse
Affiliation(s)
| | - Cécile Delarasse
- Inserm, Sorbonne Université, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
9
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Mellouk A, Bobé P. CD8 +, but not CD4 + effector/memory T cells, express the CD44 highCD45RB high phenotype with aging, which displays reduced expression levels of P2X 7 receptor and ATP-induced cellular responses. FASEB J 2018; 33:3225-3236. [PMID: 30383448 DOI: 10.1096/fj.201800867r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previously we reported that the sensitivity of CD4+ T cells to ATP does not depend on P2X7 receptor (P2X7R) expression levels but on their activation and differentiation stages. Therefore, here we have investigated a potential relationship between the sensitivity of CD8+ T cells to ATP and their stages of differentiation. Thus, the CD8+ subpopulation exhibits a drastically reduced sensitivity to ATP with aging, which parallels the strong increase of an effector/memory CD8+ subset expressing high levels of CD44 cell adhesion molecule and CD45RB transmembrane phosphatase (CD44hiCD45RBhi). Using l-selectin/CD62L, CC-chemokine receptor 7, and CD127/IL-7 receptor-α markers, we showed that effector/memory CD8+ T cells belong to a central or effector memory subset. In contrast, the CD44hiCD45RBhi effector/memory subset is absent or poorly expressed in the CD4+ T subpopulation regardless of age. While ATP treatment can trigger channel and pore formation, CD62L shedding, phosphatidylserine exposure, and cell death in the CD44loCD45RBhi-naive CD8+ subset, it is unable to induce these cellular activities in the CD44hiCD45RBhi effector/memory CD8+ subset. Importantly, both CD44loCD45RBhi-naive and CD44hiCD45RBhi effector/memory subsets express similar low levels of P2X7R, demonstrating that the sensitivity of CD8+ T cells to ATP depends on the stage of differentiation instead of P2X7R expression levels.-Mellouk, A., Bobé, P. CD8+, but not CD4+ effector/memory T cells, express the CD44highCD45RBhigh phenotype with aging, which displays reduced expression levels of P2X7 receptor and ATP-induced cellular responses.
Collapse
Affiliation(s)
- Amine Mellouk
- INSERM, Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Recherche (UMR) 1174, Orsay, France
| | - Pierre Bobé
- INSERM, Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Recherche (UMR) 1174, Orsay, France
| |
Collapse
|
11
|
ATP in the tumour microenvironment drives expression of nfP2X 7, a key mediator of cancer cell survival. Oncogene 2018; 38:194-208. [PMID: 30087439 PMCID: PMC6328436 DOI: 10.1038/s41388-018-0426-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/29/2022]
Abstract
The ATP-gated receptor P2X7 is expressed in multiple malignant tumours including neuroblastoma, melanoma, prostate, lung and breast. P2X7 has a significant role in mediating diverse cell responses, which upon dysregulation are associated with tumour initiation and development. The rapid, ATP-mediated activation of P2X7 induces a fast-inward cation current in cells. However, prolonged ATP-mediated activation of P2X7 leads to formation of a pore that increases membrane permeability and eventually causes cell death. This presents a potential paradox, as the tumour microenvironment contains extracellular ATP at levels sufficient to activate the P2X7 pore and trigger cell death. However, P2X7 expression is associated with enhanced cancer cell survival, proliferation and metastatic potential. At least one distinct conformational form of P2X7, termed non-pore functional P2X7 (nfP2X7), has been described, which is not able to form a functional pore. We demonstrate for the first time in this study that exposure to a high ATP concentration, equivalent to those measured in the tumour microenvironment, drives nfP2X7 expression and also that nfP2X7 is essential for tumour cell survival. We show that monoclonal antibodies raised against a P2X7 amino acid sequence (200–216), whose conformation is distinct from that of wild-type (WT) P2X7, bind specifically to nfP2X7 expressed on the surface of tumour cells. We also show that nfP2X7 is broadly expressed in patient-derived tumour sections from a wide range of cancers. Therefore, antibodies raised against E200 provide tools that can differentiate between forms of the P2X7 receptor that have a key role in cancer.
Collapse
|
12
|
Safya H, Mellouk A, Legrand J, Le Gall SM, Benbijja M, Kanellopoulos-Langevin C, Kanellopoulos JM, Bobé P. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol 2018. [PMID: 29535730 PMCID: PMC5835135 DOI: 10.3389/fimmu.2018.00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5′-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the different abilities of ATP-treated Tconvs to form pore or cleave CD62L depending on their activation and differentiation state suggests that P2X7R signaling varies according to the physiological role of T convs during antigen activation in secondary lymphoid organs or trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Hanaa Safya
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Amine Mellouk
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Sylvain M Le Gall
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 970, INSERM, Université Paris Descartes, Paris, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 1012, INSERM, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | | | | - Pierre Bobé
- UMR1174, INSERM, Université Paris-Sud, Orsay, France.,Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| |
Collapse
|
13
|
Gonzaga DTG, Ferreira LBG, Moreira Maramaldo Costa TE, von Ranke NL, Anastácio Furtado Pacheco P, Sposito Simões AP, Arruda JC, Dantas LP, de Freitas HR, de Melo Reis RA, Penido C, Bello ML, Castro HC, Rodrigues CR, Ferreira VF, Faria RX, da Silva FDC. 1-Aryl-1 H - and 2-aryl-2 H -1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo. Eur J Med Chem 2017; 139:698-717. [DOI: 10.1016/j.ejmech.2017.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
|
14
|
Figliuolo VR, Savio LEB, Safya H, Nanini H, Bernardazzi C, Abalo A, de Souza HSP, Kanellopoulos J, Bobé P, Coutinho CMLM, Coutinho-Silva R. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1183-1194. [PMID: 28286160 DOI: 10.1016/j.bbadis.2017.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 03/05/2017] [Indexed: 12/13/2022]
Abstract
P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RBlow. Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.
Collapse
Affiliation(s)
- Vanessa R Figliuolo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil; Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Hanaa Safya
- Interactions Cellulaires et Physiopathologie Hépatique, UMRS 1174 INSERM, Université Paris Sud, Orsay, France; Centre de la recherche sur l'inflammation, UMR 1149 INSERM, Université Paris Diderot, Paris, France
| | - Hayandra Nanini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Cláudio Bernardazzi
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Alessandra Abalo
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Heitor S P de Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Jean Kanellopoulos
- Institut de Biologie intégrative de la cellule, Centre National de la Recherche Scientifique, I2BC - CNRS/UMR9198, Université Paris-Sud, Orsay, France
| | - Pierre Bobé
- Interactions Cellulaires et Physiopathologie Hépatique, UMRS 1174 INSERM, Université Paris Sud, Orsay, France
| | - Cláudia M L M Coutinho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus? Biomed J 2016; 39:326-338. [PMID: 27884379 PMCID: PMC6138817 DOI: 10.1016/j.bj.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Purinergic signalling plays a crucial role in immunity and autoimmunity. Among purinergic receptors, the P2X7 receptor (P2X7R) has an undisputed role as it is expressed to high level by immune cells, triggers cytokine release and modulates immune cell differentiation. In this review, we focus on evidence supporting a possible role of the P2X7R in the pathogenesis of systemic lupus erythematosus (SLE).
Collapse
|
16
|
Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Sci Rep 2015; 5:14012. [PMID: 26354875 PMCID: PMC4564849 DOI: 10.1038/srep14012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. Here, we aimed to investigate the effects of rhein on P2X7 receptor-mediated responses in vitro. In HEK293 cells expressing rat P2X7 receptor, we first found that rhein concentration-dependently blocked ATP-induced cytosolic calcium concentration ([Ca(2+)]c) elevation and pore formation of the plasma membrane, two hallmarks of the P2X7 receptor activation. These two inhibitory effects of rhein were also observed in rat peritoneal macrophages. Furthermore, rhein counteracted macrophage phagocytosis attenuation and suppressed reactive oxygen species (ROS) production triggered by ATP/BzATP. Meanwhile, rhein reduced ATP/BzATP-induced IL-1β release in lipopolysaccharide-activated macrophages. Prolonged application of ATP caused macrophage apoptosis, while the presence of rhein suppressed this cell cytotoxicity. Such ATP/BzATP-induced cellular reactions were also inhibited by a well-known rat P2X7 receptor antagonist, brilliant blue G, in a similar way to rhein. Together, our results demonstrate that rhein inhibit ATP/BzATP-induced [Ca(2+)]c increase, pore formation, ROS production, phagocytosis attenuation, IL-1β release and cell apoptosis by antagonizing the P2X7 receptor in rat peritoneal macrophages.
Collapse
|
17
|
Toki Y, Takenouchi T, Harada H, Tanuma SI, Kitani H, Kojima S, Tsukimoto M. Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem Biophys Res Commun 2015; 458:771-6. [PMID: 25681768 DOI: 10.1016/j.bbrc.2015.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 01/14/2023]
Abstract
Kupffer cells, which are resident macrophages in liver, can produce various cytokines and chemokines that induce hepatitis and liver fibrosis. It is suggested that extracellular ATP-induced activation of macrophage P2X7 receptor plays an important role in inflammation via release of pro-inflammatory mediators, but the role of P2X7 receptor in Kupffer cells remains unclear. Here, we show that activation of P2X7 receptor in Kupffer cells causes multiple inflammatory responses, using the clonal mouse Kupffer cell line (KUP5) that we previously established. Treatment of LPS-primed Kupffer cells with 3 mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of MAPK, cell lysis, IL-1β release, prostaglandin E2 (PGE2) release, high mobility group box1 (HMGB1) release, and major histocompatibility complex (MHC) class I shedding. These events were significantly suppressed by pretreatment with P2X7 antagonist A438079, indicating involvement of P2X7 receptor activation in these inflammatory responses. Our results suggest that extracellular ATP-induced activation of P2X7 receptor of Kupffer cells plays multiple roles in the inflammatory response in liver. P2X7 receptor might be a new therapeutic target for treatment of liver diseases.
Collapse
Affiliation(s)
- Yusuke Toki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan; Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hitoshi Harada
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka-shi, Mie, Japan
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan.
| |
Collapse
|
18
|
Pacheco PAF, Faria RX, Ferreira LGB, Paixão ICNP. Putative roles of purinergic signaling in human immunodeficiency virus-1 infection. Biol Direct 2014; 9:21. [PMID: 25351961 PMCID: PMC4218944 DOI: 10.1186/1745-6150-9-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023] Open
Abstract
Reviewers This article was reviewed by Neil S. Greenspan and Rachel Gerstein. Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies.
Collapse
Affiliation(s)
| | - Robson X Faria
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Av, Brazil, 4365 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
19
|
Muzzachi S, Blasi A, Ciani E, Favia M, Cardone RA, Marzulli D, Reshkin SJ, Merizzi G, Casavola V, Soleti A, Guerra L. MED1101: A new dialdehydic compound regulating P2×7 receptor cell surface expression in U937 cells. Biol Cell 2013; 105:399-413. [DOI: 10.1111/boc.201200088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Stefania Muzzachi
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Elena Ciani
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Maria Favia
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Rosa A. Cardone
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Domenico Marzulli
- Institute of Biomembranes and Bioenergetics; CNR; Bari; 70126; Italy
| | - Stephan J. Reshkin
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Valeria Casavola
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Lorenzo Guerra
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| |
Collapse
|
20
|
Alberto AVP, Faria RX, Couto CGC, Ferreira LGB, Souza CAM, Teixeira PCN, Fróes MM, Alves LA. Is pannexin the pore associated with the P2X7 receptor? Naunyn Schmiedebergs Arch Pharmacol 2013; 386:775-87. [PMID: 23657251 DOI: 10.1007/s00210-013-0868-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/02/2013] [Indexed: 01/05/2023]
Abstract
The P2X7 receptor (P2X7R), an ATP-gated cation channel, is expressed predominantly in leukocytes. Activation of P2X7R has been implicated in the formation of a cytolytic pore (i.e., a large conductance channel) that allows the passage of molecules up to 900 Da in macrophages. At least two hypotheses have been presented to explain the conversion of a nonselective cation channel to a cytolytic pore. One hypothesis suggests that the pore is a separate molecular structure activated by P2X7R, and the second asserts that this is an intrinsic property of P2X7R (pore dilation). Based on connexin knockout and hemichannel antagonist studies, some groups have concluded that connexins and pannexins, the hemichannel-forming proteins in vertebrates, are fundamental components of the large conductance channel associated with P2X7R. Dye uptake and electrophysiology experiments were used to evaluate the efficacy and specificity of some hemichannel antagonists under conditions known to open the large conductance channel associated with P2X7R. Hemichannel antagonists and interference RNA (RNAi) targeting pannexin-1 did not affect P2X7R macroscopic currents [ATP, 1,570±189 pA; ATP+100 μM carbenoxolone (CBX), 1,498±100 pA; ATP+1 mM probenecid (Prob), 1,522±9 pA] or dye uptake in a FACS assay (ATP, 63±5%; ATP+100 μM CBX, 51.51±8.4%; ATP+1 mM Prob, 57.7±4.3%) in mouse macrophages. These findings strongly suggest that the high-permeability pore evident after prolonged P2X7R activation does not occur through connexin or pannexin hemichannels in murine macrophages. Another membrane protein may be involved in P2X7R pore formation.
Collapse
Affiliation(s)
- A V P Alberto
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365 Manguinhos, CEP: 21045-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Foster JG, Carter E, Kilty I, MacKenzie AB, Ward SG. Mitochondrial superoxide generation enhances P2X7R-mediated loss of cell surface CD62L on naive human CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 190:1551-9. [PMID: 23319734 DOI: 10.4049/jimmunol.1201510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Migration of naive CD4(+) T lymphocytes into lymphoid tissue is essential for their activation and subsequent roles in adaptive immunity. The adhesion molecule L-selectin (CD62L), critical for this process, is highly expressed on naive CD4(+) T lymphocytes and is downregulated upon T lymphocyte activation. We demonstrate protein expression of P2X7R on naive CD4(+) T lymphocytes and show functional channel activity in whole-cell patch clamp recordings. CD62L downregulation occurs rapidly in response to extracellular ATP, a process that is blocked by selective antagonists of P2X7R. This loss of surface CD62L expression was not associated with externalization of phosphatidylserine. While investigating the mechanisms for this process, we revealed that pharmacological modulation of mitochondrial complex I or III, but not inhibition of NADPH oxidase, enhanced P2X7R-dependent CD62L downregulation by increasing ATP potency. Enhanced superoxide generation in the mitochondria of rotenone- and antimycin A-treated cells was observed and may contribute to the enhanced sensitivity of P2X7R to ATP. P2X7R-dependent exposure of phosphatidylserine was also revealed by preincubation with mitochondrial uncouplers prior to ATP treatment. This may present a novel mechanism whereby P2X7R-dependent phosphatidylserine exposure occurs only when cells have enhanced mitochondrial reactive oxygen species generation. The clearance of apoptotic cells may therefore be enhanced by this mechanism which requires functional P2X7R expression.
Collapse
Affiliation(s)
- John G Foster
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Le Gall SM, Legrand J, Benbijja M, Safya H, Benihoud K, Kanellopoulos JM, Bobé P. Loss of P2X7 receptor plasma membrane expression and function in pathogenic B220+ double-negative T lymphocytes of autoimmune MRL/lpr mice. PLoS One 2012; 7:e52161. [PMID: 23284917 PMCID: PMC3528777 DOI: 10.1371/journal.pone.0052161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/12/2012] [Indexed: 12/12/2022] Open
Abstract
Lupus is a chronic inflammatory autoimmune disease influenced by multiple genetic loci including Fas Ligand (FasL) and P2X7 receptor (P2X7R). The Fas/Fas Ligand apoptotic pathway is critical for immune homeostasis and peripheral tolerance. Normal effector T lymphocytes up-regulate the transmembrane tyrosine phosphatase B220 before undergoing apoptosis. Fas-deficient MRL/lpr mice (lpr mutation) exhibit lupus and lymphoproliferative syndromes due to the massive accumulation of B220+ CD4–CD8– (DN) T lymphocytes. The precise ontogeny of B220+ DN T cells is unknown. B220+ DN T lymphocytes could be derived from effector CD4+ and CD8+ T lymphocytes, which have not undergone activation-induced cell death due to inactivation of Fas, or from a special cell lineage. P2X7R is an extracellular ATP-gated cell membrane receptor involved in the release of proinflammatory cytokines and TNFR1/Fas-independent cell death. P2X7R also regulate early signaling events involved in T-cell activation. We show herein that MRL/lpr mice carry a P2X7R allele, which confers a high sensitivity to ATP. However, during aging, the MRL/lpr T-cell population exhibits a drastically reduced sensitivity to ATP- or NAD-mediated stimulation of P2X7R, which parallels the increase in B220+ DN T-cell numbers in lymphoid organs. Importantly, we found that this B220+ DN T-cell subpopulation has a defect in P2X7R-mediated responses. The few B220+ T cells observed in normal MRL+/+ and C57BL/6 mice are also resistant to ATP or NAD treatment. Unexpectedly, while P2X7R mRNA and proteins are present inside of B220+ T cells, P2X7R are undetectable on the plasma membrane of these T cells. Our results prompt the conclusion that cell surface expression of B220 strongly correlates with the negative regulation of the P2X7R pathway in T cells.
Collapse
Affiliation(s)
- Sylvain M Le Gall
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Miyazaki T, Iwasawa M, Nakashima T, Mori S, Shigemoto K, Nakamura H, Katagiri H, Takayanagi H, Tanaka S. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption. J Biol Chem 2012; 287:37808-23. [PMID: 22988253 PMCID: PMC3488055 DOI: 10.1074/jbc.m112.385369] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/09/2012] [Indexed: 11/06/2022] Open
Abstract
Osteoclasts, highly differentiated bone-resorbing cells of hematopoietic origin, have two conflicting tendencies: a lower capacity to survive and a higher capacity to execute energy-consuming activities such as bone resorption. Here, we report that when compared with their precursors, mature mitochondria-rich osteoclasts have lower levels of intracellular ATP, which is associated with receptor activator of nuclear factor κ-B ligand (RANKL)-induced Bcl-x(L) down-regulation. Severe ATP depletion, caused by disrupting mitochondrial transcription factor A (Tfam) gene, leads to increased bone-resorbing activity despite accelerated apoptosis. Although AMP-activated protein kinase (AMPK) activation by ATP depletion is not involved in the regulation of osteoclast function, the release of ATP from intracellular stores negatively regulates bone-resorbing activity through an autocrine/paracrine feedback loop by altering cytoskeletal structures. Furthermore, osteoclasts derived from aged mice exhibit reduced mitochondrial DNA (mtDNA) and intracellular ATP levels with increased bone-resorbing activity, implicating the possible involvement of age-related mitochondrial dysfunction in osteoporosis. Thus, our study provides evidence for a mechanism underlying the control of cellular functions by reciprocal changes in intracellular and extracellular ATP, which regulate the negative correlation between osteoclast survival and bone resorption.
Collapse
Affiliation(s)
- Tsuyoshi Miyazaki
- Department of Geriatric Medicine, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Darmellah A, Rayah A, Auger R, Cuif MH, Prigent M, Arpin M, Alcover A, Delarasse C, Kanellopoulos JM. Ezrin/radixin/moesin are required for the purinergic P2X7 receptor (P2X7R)-dependent processing of the amyloid precursor protein. J Biol Chem 2012; 287:34583-95. [PMID: 22891241 DOI: 10.1074/jbc.m112.400010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Amaria Darmellah
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nishida K, Nakatani T, Ohishi A, Okuda H, Higashi Y, Matsuo T, Fujimoto S, Nagasawa K. Mitochondrial dysfunction is involved in P2X7 receptor-mediated neuronal cell death. J Neurochem 2012; 122:1118-28. [PMID: 22774935 DOI: 10.1111/j.1471-4159.2012.07868.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.
Collapse
Affiliation(s)
- Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
27
|
Kawano A, Tsukimoto M, Mori D, Noguchi T, Harada H, Takenouchi T, Kitani H, Kojima S. Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem Biophys Res Commun 2012; 420:102-7. [DOI: 10.1016/j.bbrc.2012.02.122] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|
28
|
Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages. Biochem Biophys Res Commun 2012; 419:374-80. [PMID: 22349510 DOI: 10.1016/j.bbrc.2012.01.156] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/28/2012] [Indexed: 12/11/2022]
Abstract
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.
Collapse
|
29
|
Corneal epithelium expresses a variant of P2X(7) receptor in health and disease. PLoS One 2011; 6:e28541. [PMID: 22163032 PMCID: PMC3232242 DOI: 10.1371/journal.pone.0028541] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/10/2011] [Indexed: 12/18/2022] Open
Abstract
Improper wound repair of the corneal epithelium can alter refraction of light resulting in impaired vision. We have shown that ATP is released after injury, activates purinergic receptor signaling pathways and plays a major role in wound closure. In many cells or tissues, ATP activates P2X(7) receptors leading to cation fluxes and cytotoxicity. The corneal epithelium is an excellent model to study the expression of both the full-length P2X(7) form (defined as the canonical receptor) and its truncated forms. When Ca(2+) mobilization is induced by BzATP, a P2X(7) agonist, it is attenuated in the presence of extracellular Mg(2+) or Zn(2+), negligible in the absence of extracellular Ca(2+), and inhibited by the competitive P2X7 receptor inhibitor, A438079. BzATP enhanced phosphorylation of ERK. Together these responses indicate the presence of a canonical or full-length P2X(7) receptor. In addition BzATP enhanced epithelial cell migration, and transfection with siRNA to the P2X(7) receptor reduced cell migration. Furthermore, sustained activation did not induce dye uptake indicating the presence of truncated or variant forms that lack the ability to form large pores. Reverse transcription-polymerase chain reaction and Northern blot analysis revealed a P2X(7) splice variant. Western blots identified a full-length and truncated form, and the expression pattern changed as cultures progressed from monolayer to stratified. Cross-linking gels demonstrated the presence of homo- and heterotrimers. We examined epithelium from age matched diabetic and non-diabetic corneas patients and detected a 4-fold increase in P2X(7) mRNA from diabetic corneal epithelium compared to non-diabetic controls and an increased trend in expression of P2X(7)variant mRNA. Taken together, these data indicate that corneal epithelial cells express full-length and truncated forms of P2X(7), which ultimately allows P2X(7) to function as a multifaceted receptor that can mediate cell proliferation and migration or cell death.
Collapse
|
30
|
Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 2011; 8:61-79. [PMID: 22086554 PMCID: PMC3265709 DOI: 10.1007/s11302-011-9278-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023] Open
Abstract
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either G(q) or G(i) upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.
Collapse
|
31
|
Lipopolysaccharide inhibits the channel activity of the P2X7 receptor. Mediators Inflamm 2011; 2011:152625. [PMID: 21941410 PMCID: PMC3173735 DOI: 10.1155/2011/152625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.
Collapse
|
32
|
Lee GE, Lee WG, Lee SY, Lee CR, Park CS, Chang S, Park SG, Song MR, Kim YC. Characterization of protoberberine analogs employed as novel human P2X7 receptor antagonists. Toxicol Appl Pharmacol 2011; 252:192-200. [DOI: 10.1016/j.taap.2011.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/23/2010] [Accepted: 02/07/2011] [Indexed: 01/09/2023]
|
33
|
C terminus of the P2X7 receptor: treasure hunting. Purinergic Signal 2011; 7:7-19. [PMID: 21484094 DOI: 10.1007/s11302-011-9215-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
P2X receptor (P2XR) is a family of the ATP-gated ion channel family and can permeabilize the plasma membrane to small cations such as potassium, sodium, and calcium, resulting in cellular depolarization. There are seven P2XR that have been described and cloned, with 45% identity in amino acid sequence. Each P2X receptors has two transmembrane domains that are separated by an extracellular loop and an intracellular N and C terminus. Unlike the other P2X receptors, the P2X7R has a larger C terminus with an extra 200 amino acid residues compared with the other receptors. The C terminus of the P2X7R has been implicated in regulating receptor function including signaling pathway activation, cellular localization, protein-protein interactions, and post-translational modification (PTM). In the present review, we discuss the role of the P2X7R C terminus in regards to receptor function, describe the specific domains and motifs found therein and compare the C terminus sequence with others proteins to discover predicted domains or sites of PTM.
Collapse
|
34
|
Spooner R, Yilmaz Ö. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 2011; 12:334-52. [PMID: 21339989 PMCID: PMC3039955 DOI: 10.3390/ijms12010334] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/19/2010] [Accepted: 01/05/2011] [Indexed: 02/08/2023] Open
Abstract
The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include "danger-signal-molecules" such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X(7) receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these "injurious" molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling.
Collapse
Affiliation(s)
- Ralee Spooner
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; E-Mail:
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; E-Mail:
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
35
|
Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem 2010; 286:2596-606. [PMID: 21081501 DOI: 10.1074/jbc.m110.200618] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.
Collapse
|
36
|
Cesaro A, Brest P, Hofman V, Hébuterne X, Wildman S, Ferrua B, Marchetti S, Doglio A, Vouret-Craviari V, Galland F, Naquet P, Mograbi B, Unwin R, Hofman P. Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am J Physiol Gastrointest Liver Physiol 2010; 299:G32-42. [PMID: 20185692 DOI: 10.1152/ajpgi.00282.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized during their active phase by polymorphonuclear leukocyte (PMNL) transepithelial migration. The efflux of PMNL into the mucosa is associated with the production of proinflammatory cytokines and the release of ATP from damaged and necrotic cells. The expression and function of purinergic P2X(7) receptor (P2X(7)R) in intestinal epithelial cells (IEC) and its potential role in the "cross talk" between IEC and PMNL have not been explored. The aims of the present study were 1) to examine P2X(7)R expression in IEC (T84 cells) and in human intestinal biopsies; 2) to detect any changes in P2X(7)R expression in T84 cells during PMNL transepithelial migration, and during the active and quiescent phases of IBD; and 3) to test whether P2X(7)R stimulation in T84 monolayers can induce caspase-1 activation and IL-1beta release by IEC. We found that a functional ATP-sensitive P2X(7)R is constitutively expressed at the apical surface of IEC T84 cells. PMNL transmigration regulates dynamically P2X(7)R expression and alters its distribution from the apical to basolateral surface of IEC during the early phase of PMNL transepithelial migration in vitro. P2X(7)R expression was weak in intestinal biopsies obtained during the active phase of IBD. We show that activation of epithelial P2X(7)R is mandatory for PMNL-induced caspase-1 activation and IL-1beta release by IEC. Overall, these changes in P2X(7)R function may serve to tailor the intensity of the inflammatory response and to prevent IL-1beta overproduction and inflammatory disease.
Collapse
Affiliation(s)
- Annabelle Cesaro
- Institut National de la Santé et de la Recherche Médicale (INSERM) ERI-21/EA 4319, 06107 Nice, Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tamajusuku ASK, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AMO, Wink MR, Lenz G. Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 2010; 109:983-91. [PMID: 20069573 DOI: 10.1002/jcb.22478] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gliomas have one of the worst prognosis among cancers. Their resistance to cell death induced by endogenous neurotoxic agents, such as extracellular ATP, seems to play an important role in their pathobiology since alterations in the degradation rate of extracellular ATP drastically affects glioma growth in rats. In the present work we characterized the mechanisms of cell death induced by extracellular ATP in a murine glioma cell line, GL261. ATP and BzATP, a P2X7 agonist, induced cell death at concentrations that are described to activate the P2X7 receptor in mouse. oATP, an antagonist of P2X7, blocked the ATP-induced cell death. Agonists of purinergic receptors expressed in GL261 such as adenosine, ADP, UTP did not cause any cell death, even at mM concentrations. A sub-population of cells more sensitive to ATP expressed more P2X7 when compared to a less sensitive subpopulation. Accordingly, RNA interference of the P2X7 receptor drastically reduced ATP-induced cell death, suggesting that this receptor is necessary for this effect. The mechanism of ATP-induced cell death is predominantly necrotic, since cells presented shrinkage accompanied by membrane permeabilization, but not apoptotic, since no phosphatidylserine externalization or caspase activity was observed. These data show the importance of P2X7 in ATP-induced cell death and shed light on the importance of ATP-induced cell death in glioma development.
Collapse
|
38
|
Faria RX, Cascabulho CM, Reis RAM, Alves LA. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:73-87. [PMID: 20508916 DOI: 10.1007/s00210-010-0523-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.
Collapse
Affiliation(s)
- R X Faria
- Laboratory of Cellular Communication, Department of Immunology, Oswaldo Cruz Institute, FIOCRUZ (Oswaldo Cruz Foundation), Av. Brazil, 4365, Manguinhos, Rio de Janeiro 21045-900, Brazil.
| | | | | | | |
Collapse
|
39
|
Liu L, Zou J, Liu X, Jiang LH, Li J. Inhibition of ATP-induced macrophage death by emodin via antagonizing P2X7 receptor. Eur J Pharmacol 2010; 640:15-9. [PMID: 20452342 DOI: 10.1016/j.ejphar.2010.04.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 03/19/2010] [Accepted: 04/23/2010] [Indexed: 12/21/2022]
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthraquinone derivative from Rheum officinale Baill, exhibits anti-inflammatory and immunosuppressive activities, however, the underlying mechanisms are not fully understood. This study examined the effects of emodin on ATP-evoked responses in rat peritoneal macrophages and in human embryonic kidney 293 cells (HEK293) heterologously expressing the cloned rat P2X7 receptor. Emodin reduced macrophage death induced by millimolar ATP in a concentration-dependent manner with the half of maximal inhibition values (IC50) of 0.2 microM. It also strongly inhibited ATP-induced dye uptake or pore formation, a hallmark property associated with P2X7 receptor activation, and 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) induced increases in intracellular Ca2+ concentrations in macrophages with an IC50 of 0.5 microM. Furthermore, emodin significantly suppressed BzATP-evoked currents in P2X7 receptor expressing HEK293 cells with an IC50 of 3.4 microM. Taken together, these results provide compelling evidence for a novel action of emodin as a P2X7 receptor antagonist, which may underlie its anti-inflammatory and immunosuppressive activities.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin, 300071, PR China
| | | | | | | | | |
Collapse
|
40
|
Qu Y, Ramachandra L, Mohr S, Franchi L, Harding CV, Nunez G, Dubyak GR. P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5052-62. [PMID: 19342685 PMCID: PMC2768485 DOI: 10.4049/jimmunol.0802968] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We recently reported that P2X7 receptor (P2X7R)-induced activation of caspase-1 inflammasomes is accompanied by release of MHC class II (MHC-II) protein into extracellular compartments during brief stimulation of murine macrophages with ATP. Here we demonstrate that MHC-II containing membranes released from macrophages or dendritic cells (DCs) in response to P2X7R stimulation comprise two pools of vesicles with distinct biogenesis: one pool comprises 100- to 600-nm microvesicles derived from direct budding of the plasma membrane, while the second pool is composed of 50- to 80-nm exosomes released from multivesicular bodies. ATP-stimulated release of MHC-II in these membrane fractions is observed within 15 min and results in the export of approximately 15% of the total MHC-II pool within 90 min. ATP did not stimulate MHC-II release in macrophages from P2X7R knockout mice. The inflammasome regulatory proteins, ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain) and NLRP3 (NLR family, pyrin domain containing 3), which are essential for caspase-1 activation, were also required for the P2X7R-regulated release of the exosome but not the microvesicle MHC-II pool. Treatment of bone marrow-derived macrophages with YVAD-cmk, a peptide inhibitor of caspase-1, also abrogated P2X7R-dependent MHC-II secretion. Surprisingly, however, MHC-II release in response to ATP was intact in caspase-1(-/-) macrophages. The inhibitory actions of YVAD-cmk were mimicked by the pan-caspase inhibitor zVAD-fmk and the serine protease inhibitor TPCK, but not the caspase-3 inhibitor DEVD-cho. These data suggest that the ASC/NLRP3 inflammasome complexes assembled in response to P2X7R activation involve protease effector(s) in addition to caspase-1, and that these proteases may play important roles in regulating the membrane trafficking pathways that control biogenesis and release of MHC-II-containing exosomes.
Collapse
Affiliation(s)
- Yan Qu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Lakshmi Ramachandra
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Susanne Mohr
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH
| | - Luigi Franchi
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| | - Gabriel Nunez
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - George R. Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland OH
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland OH
| |
Collapse
|
41
|
Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM. Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 2009; 109:846-57. [PMID: 19250337 DOI: 10.1111/j.1471-4159.2009.06008.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.
Collapse
Affiliation(s)
- Cécile Delarasse
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, CNRS, UMR 8619, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Adriouch S, Scheuplein F, Bähring R, Seman M, Boyer O, Koch-Nolte F, Haag F. Characterisation of the R276A gain-of-function mutation in the ectodomain of murine P2X7. Purinergic Signal 2009; 5:151-61. [PMID: 19234763 DOI: 10.1007/s11302-009-9134-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/16/2008] [Indexed: 12/20/2022] Open
Abstract
The cytolytic P2X7 purinoceptor is widely expressed on leukocytes and has sparked interest because of its key role in the activation of the inflammasome, the release of the pro-inflammatory cytokine IL-1beta and cell death. We report here the functional characterisation of a R276A gain-of-function mutant analysed for its capacities to induce membrane depolarisation, calcium influx and opening of a large membrane pore permeable to YO-PRO-1. Our results highlight the particular sensitivity of R276A mutant to low micromolar adenosine triphosphate (ATP) concentrations, which possibly reflect an increased affinity for its ligands, and a slower closing kinetics of the receptor channel. Our findings support the notion that evolutionary pressures maintain the low sensitivity of P2X7 to ATP. We also believe that the R276A mutant described here may be useful for the generation of new animal models with exacerbated P2X7 functions that will serve to better characterise its role in inflammation and in immune responses.
Collapse
|
43
|
Fontanini A, Foti C, Potu H, Crivellato E, Maestro R, Bernardi P, Demarchi F, Brancolini C. The Isopeptidase Inhibitor G5 Triggers a Caspase-independent Necrotic Death in Cells Resistant to Apoptosis: A COMPARATIVE STUDY WITH THE PROTEASOME INHIBITOR BORTEZOMIB. J Biol Chem 2009; 284:8369-81. [PMID: 19139105 DOI: 10.1074/jbc.m806113200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inhibitors of the ubiquitin-proteasome system (UPSIs) promote apoptosis of cancer cells and show encouraging anti-tumor activities in vivo. In this study, we evaluated the death activities of two different UPSIs: bortezomib and the isopeptidase inhibitor G5. To unveil whether these compounds elicit different types of death, we compared their effect both on apoptosis-proficient wild type mouse embryo fibroblasts and on cells defective for apoptosis (double-deficient Bax/Bak mouse embryo fibroblasts) (double knockout; DKO). We have discovered that (i) both inhibitors induce apoptosis in a Bax and Bak-dependent manner, (ii) both inhibitors elicit autophagy in WT and DKO cells, and (iii) only G5 can kill apoptosis-resistant DKO cells by activating a necrotic response. The induction of necrosis was confirmed by different experimental approaches, including time lapse analysis, HMGB1 release, and electron microscopy studies. Neither treatment with antinecrotic agents, such as antioxidants, poly(ADP-ribose) polymerase and JNK inhibitors, necrostatin, and the intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, nor overexpression of Bcl-2 and Bcl-xL prevented necrosis induced by G5. This necrotic death is characterized by the absence of protein oxidation and by the rapid cyclosporin A-independent dissipation of the mitochondrial membrane potential. Notably, a peculiar feature of the G5-induced necrosis is an early and dramatic reorganization of the actin cytoskeleton, coupled to an alteration of cell adhesion. The importance of cell adhesion impairment in the G5-induced necrotic death of DKO cells was confirmed by the antagonist effect of the extracellular matrix-adhesive components, collagen and fibronectin.
Collapse
Affiliation(s)
- Alessandra Fontanini
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia, and MATI Center of Excellence
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Neary JT, Shi YF, Kang Y, Tran MD. Opposing effects of P2X(7) and P2Y purine/pyrimidine-preferring receptors on proliferation of astrocytes induced by fibroblast growth factor-2: implications for CNS development, injury, and repair. J Neurosci Res 2008; 86:3096-105. [PMID: 18615736 PMCID: PMC4127043 DOI: 10.1002/jnr.21765] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Extracellular nucleotides play important trophic roles in development and central nervous system (CNS) injury, but the functions of distinct purinergic receptors and related signaling pathways have not been fully elucidated. In the present study we identified opposing effects of P2X and P2Y receptors on the ability of FGF2 to induce proliferation in primary cultures of rat cortical astrocytes. Low concentrations of ATP enhanced DNA synthesis induced by FGF2, whereas high concentrations inhibited FGF2-induced proliferation. Comparison of concentration-response experiments with ATP and 2',3'-O-(4-benzoyl)-benzoyl-ATP (BzATP) indicated that the inhibitory effect was mediated by P2X(7) receptors. Interestingly, activation of P2X(7) receptors led to a state of reversible growth arrest rather than cell death. Selectivity studies showed that proliferation evoked by epidermal growth factor and platelet-derived growth factor was also inhibited by P2X(7) receptors, but P2X(1) or P2X(3) receptors did not inhibit proliferation induced by FGF2. A marker of mitosis, phosphohistone-3, was reduced by BzATP and increased by UTP, suggesting that the enhancing effect of ATP on FGF2-induced proliferation was mediated by P2 purine/pyrimidine receptors. Phosphorylation of the growth arrest-related protein kinases p38/MAPK and SAPK/JNK was strongly increased by BzATP but only weakly affected by UTP. We conclude that P2Y purine/pyrimidine receptors enhance proliferation induced by FGF2 in astrocytes, whereas stimulation of P2X(7) receptors inhibits proliferation by shifting cells to a state of reversible growth arrest that may be mediated by protein kinase signaling. These trophic actions of P2X(7) and P2Y purine/pyrimidine receptors may contribute to the regulation of CNS development, adult neurogenesis, and the response of astrocytes to injury.
Collapse
Affiliation(s)
- Joseph T Neary
- Research Service, Miami VA Healthcare System, Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125, USA.
| | | | | | | |
Collapse
|
45
|
Gonnord P, Delarasse C, Auger R, Benihoud K, Prigent M, Cuif MH, Lamaze C, Kanellopoulos JM. Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J 2008; 23:795-805. [PMID: 18971257 DOI: 10.1096/fj.08-114637] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated cationic channel expressed by hematopoietic, epithelial, and neuronal cells. Prolonged ATP exposure leads to the formation of a nonselective pore, which can result in cell death. We show that P2X7R is associated with detergent-resistant membranes (DRMs) in both transfected human embryonic kidney (HEK) cells and primary macrophages independently from ATP binding. The DRM association requires the posttranslational modification of P2X7R by palmitic acid. Treatment of cells with the palmitic acid analog 2-bromopalmitate as well as mutations of cysteine to alanine residues abolished P2X7R palmitoylation. Substitution of the 17 intracellular cysteines of P2X7R revealed that 4 regions of the carboxyl terminus domain are involved in palmitoylation. Palmitoylation-defective P2X7R mutants showed a dramatic decrease in cell surface expression because of their retention in the endoplasmic reticulum and proteolytic degradation. Taken together, our data demonstrate that P2X7R palmitoylation plays a critical role in its association with the lipid microdomains of the plasma membrane and in the regulation of its half-life.
Collapse
Affiliation(s)
- P Gonnord
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris Sud, F-91405 Orsay cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Garcia-Verdugo I, Ravasio A, de Paco EG, Synguelakis M, Ivanova N, Kanellopoulos J, Haller T. Long-term exposure to LPS enhances the rate of stimulated exocytosis and surfactant secretion in alveolar type II cells and upregulates P2Y2 receptor expression. Am J Physiol Lung Cell Mol Physiol 2008; 295:L708-17. [PMID: 18689605 DOI: 10.1152/ajplung.00536.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacterial LPS is a potent proinflammatory molecule. In the lungs, LPS induces alterations in surfactant pool sizes and phospholipid (PL) contents, although direct actions of LPS on the alveolar type II cells (AT II) are not yet clear. For this reason, we studied short- and long-term effects of LPS on basal and agonist-stimulated secretory responses of rat AT II by using Ca(2+) microfluorimetry, a microtiter plate-based exocytosis assay, by quantitating PL and (3)H-labeled choline released into cell supernatants and by using quantitative PCR and Western blot analysis. Long term, but not short term, exposures to LPS led to prolonged ATP-induced Ca(2+) signals and an increased rate in vesicle fusions with an augmented release of surfactant PL. Most notably, the stimulatory effect of LPS was ATP-dependent and may be mediated by the upregulation of the purinergic receptor subtype P2Y(2). Western blot analysis confirmed higher levels of P2Y(2), and suramin, a P2Y receptor antagonist, was more effective in LPS-treated cells. From these observations, we conclude that LPS, probably via Toll-like receptor-4, induces a time-dependent increase in P2Y(2) receptors, which, by yet unknown mechanisms, leads to prolonged agonist-induced Ca(2+) responses that trigger a higher activity in vesicle fusion and secretion. We further conclude that chronic exposure to endotoxin sensitizes AT II to increase the extracellular surfactant pool, which aids in the pulmonary host defense mechanisms.
Collapse
Affiliation(s)
- Ignacio Garcia-Verdugo
- Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
47
|
Taylor SRJ, Gonzalez-Begne M, Dewhurst S, Chimini G, Higgins CF, Melvin JE, Elliott JI. Sequential shrinkage and swelling underlie P2X7-stimulated lymphocyte phosphatidylserine exposure and death. THE JOURNAL OF IMMUNOLOGY 2008; 180:300-8. [PMID: 18097031 DOI: 10.4049/jimmunol.180.1.300] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patterns of change in cell volume and plasma membrane phospholipid distribution during cell death are regarded as diagnostic means of distinguishing apoptosis from necrosis, the former being associated with cell shrinkage and early phosphatidylserine (PS) exposure, whereas necrosis is associated with cell swelling and consequent lysis. We demonstrate that cell volume regulation during lymphocyte death stimulated via the purinergic receptor P2X7 is distinct from both. Within seconds of stimulation, murine lymphocytes undergo rapid shrinkage concomitant with, but also required for, PS exposure. However, within 2 min shrinkage is reversed and swelling ensues ending in cell rupture. P2X7-induced shrinkage and PS translocation depend upon K+ efflux via KCa3.1, but use a pathway of Cl- efflux distinct from that previously implicated in apoptosis. Thus, P2X7 stimulation activates a novel pathway of cell death that does not conform to those conventionally associated with apoptosis and necrosis. The mixed apoptotic/necrotic phenotype of P2X7-stimulated cells is consistent with a potential role for this death pathway in lupus disease.
Collapse
Affiliation(s)
- Simon R J Taylor
- Medical Research Council, Clinical Sciences Centre, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Marques da Silva C, Miranda Rodrigues L, Passos da Silva Gomes A, Mantuano Barradas M, Sarmento Vieira F, Persechini PM, Coutinho-Silva R. Modulation of P2X7 receptor expression in macrophages from mineral oil-injected mice. Immunobiology 2008; 213:481-92. [PMID: 18514750 DOI: 10.1016/j.imbio.2007.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 11/10/2007] [Accepted: 11/19/2007] [Indexed: 12/20/2022]
Abstract
P2X7 receptor activation is involved in a number of pro-inflammatory responses in macrophages and other immune cells. Their expression can be positively modulated with lipopolysaccharide (LPS) and TNFalpha, reinforcing their role during inflammation. We investigated the effect of substances capable of recruiting macrophages into the peritoneal cavity of mice (mineral oil and thioglycolate) on P2X7 receptor expression and function, addressing whether these stimuli can interfere with multinucleated giant cell (MGC) formation, ATP-induced apoptosis, plasma membrane permeabilization and nitric oxide production. It was demonstrated that mineral oil treatment reduces P2X7-dependent MGC formation, whereas thioglycolate treatment does not. Mineral oil treatment reduced P2X7 receptor expression, down-modulating ATP-induced apoptosis, permeabilization and nitric oxide production. In conclusion, mineral oil down modulated P2X7 expression and consequently P2X7-associated phenomena, but thioglycolate did not. These effects might be associated with the unpleasant side effects already described during long-term administration of mineral oil for cosmetic purposes or as a laxative and could be useful in understanding the mechanism of recycling and modulation of P2 receptors present in other situations of immunopathological interest.
Collapse
Affiliation(s)
- Camila Marques da Silva
- Laboratory Imunobiofisica, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Darville T, Welter-Stahl L, Cruz C, Sater AA, Andrews CW, Ojcius DM. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:3707-14. [PMID: 17785807 DOI: 10.4049/jimmunol.179.6.3707] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/physiology
- Animals
- Cell Line, Tumor
- Cervix Uteri/immunology
- Cervix Uteri/metabolism
- Cervix Uteri/microbiology
- Chlamydia Infections/genetics
- Chlamydia Infections/immunology
- Chlamydia Infections/pathology
- Chlamydia Infections/prevention & control
- Chlamydia muridarum/growth & development
- Chlamydia muridarum/immunology
- Chronic Disease
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epithelial Cells/microbiology
- Fallopian Tubes/metabolism
- Fallopian Tubes/pathology
- Female
- Genital Diseases, Female/immunology
- Genital Diseases, Female/metabolism
- Genital Diseases, Female/microbiology
- Genital Diseases, Female/pathology
- Genital Diseases, Female/prevention & control
- HeLa Cells
- Humans
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Purinergic P2 Receptor Agonists
- RNA, Messenger/biosynthesis
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X7
Collapse
Affiliation(s)
- Toni Darville
- Division of Pediatric Infectious Diseases, Arkansas Children's Hospital and University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
50
|
Stefano L, Rössler OG, Griesemer D, Hoth M, Thiel G. P2X(7) receptor stimulation upregulates Egr-1 biosynthesis involving a cytosolic Ca(2+) rise, transactivation of the EGF receptor and phosphorylation of ERK and Elk-1. J Cell Physiol 2007; 213:36-44. [PMID: 17474086 DOI: 10.1002/jcp.21085] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The P2X(7) receptor is an ATP-gated ionotropic receptor that is permeable for small cations including Ca(2+) ions. Using 293 cells expressing P2X(7) receptors, we show that the P2X(7) receptor-specific ligand 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP) induces a signaling cascade leading to the biosynthesis of biologically active Egr-1, a zinc finger transcription factor. BzATP-triggered Egr-1 biosynthesis was attenuated by the mitogen-activated protein kinase kinase inhibitor PD98059, by BAPTA-AM, the acetoxymethylester of the cytosolic Ca(2+) chelator BAPTA, and by an epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor (AG1478). These results indicate that phosphorylation and activation of extracellular signal-regulated protein kinase ERK, elevated levels of intracellular Ca(2+) and the transactivation of the EGF receptor are essential for BzATP-induced upregulation of Egr-1. The requirement of Ca(2+) within the signaling cascade was upstream of Raf kinase activation. Lentiviral-mediated expression of MAP kinase phosphatase-1 (MKP-1), a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, inhibited Egr-1 biosynthesis following BzATP stimulation, indicating that MKP-1 functions as a nuclear shut-off device. Furthermore, the ternary complex factor Elk-1 was phosphorylated and the transcriptional activation potential of Elk-1 was enhanced following P2X(7) receptor stimulation. Expression of a dominant-negative mutant of Elk-1 impaired BzATP-induced upregulation of Egr-1 biosynthesis. Thus, Elk-1 connects the intracellular signaling cascade elicited by activation of P2X(7) receptors with the transcription of the Egr-1 gene.
Collapse
Affiliation(s)
- Luisa Stefano
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | | | | | | | |
Collapse
|