1
|
Daupin K, Dubreuil V, Ahlskog JK, Verrico A, Sistonen L, Mezger V, de Thonel A. HDAC1 is involved in the destabilization of the HSF2 protein under nonstress and stress conditions. Cell Stress Chaperones 2025; 30:100079. [PMID: 40318841 DOI: 10.1016/j.cstres.2025.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025] Open
Abstract
Heat shock transcription factors 1 and 2 (HSF1 and HSF2) are the major regulators of the cellular response to stressors, notably to heat shock and to oxidative stress. HSF1 and HSF2 are also important contributors in devastating human pathologies like cancer, neurodegenerative disorders, and neurodevelopmental disorders. Under physiological conditions, nuclear HSF2 is detected in only a few cell types in human adult healthy tissues. In contrast, HSF2 protein levels are elevated at some embryonic stages, but greatly vary among cell types and fluctuate during the cell cycle in diverse cell lines. HSF2 is a short-lived protein whose rapid turnover is controlled by the components of the ubiquitin-proteasome degradation pathway, and the stabilization of HSF2 constitutes an important step that regulates its DNA-binding activity and mediates its roles in nonstress, physiological processes. The control of HSF2 abundancy is therefore critical for its regulatory roles in stress responses as well as under physiological conditions. In this regard, the fetal brain cortex is a singular context where HSF2 is strikingly abundant, exhibits constitutive DNA-binding activity and, by controlling a specific repertoire of target genes that play important roles at multiple steps of neurodevelopment. Recently, we showed that the lysine-acetyl-transferases CBP and EP300 stabilize the HSF2 protein under both unstressed and stressed conditions and that the integrity of the CBP/EP300-HSF2 pathway is important for neurodevelopment. Here, we identify the lysine-deacetylase histone-deacetylase 1 (HDAC1) as a novel HSF2-interacting protein partner and regulator, in an unbiased manner, and show that HSF2 and HDAC1 localize in the same cells in the developing mouse cortex and human cerebral organoids. We also demonstrate that HDAC1, through its catalytic activity, destabilizes the HSF2 protein, through HSF2 poly-ubiquitination and proteasomal degradation, under both normal and stress conditions.
Collapse
Affiliation(s)
- Kevin Daupin
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France; ED 562 BioSPC, Université Paris Cité, Paris, France
| | | | - Johanna K Ahlskog
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Annalisa Verrico
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valérie Mezger
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Aurélie de Thonel
- Université de Paris, CNRS, Epigenetics and Cell Fate, Paris, France.
| |
Collapse
|
2
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
3
|
Crobu MG, Ravanini P, Impaloni C, Martello C, Bargiacchi O, Di Domenico C, Faolotto G, Macaluso P, Mercandino A, Riggi M, Quaglia V, Andreoni S, Pirisi M, Smirne C. Hepatitis C Virus as a Possible Helper Virus in Human Hepatitis Delta Virus Infection. Viruses 2024; 16:992. [PMID: 38932284 PMCID: PMC11209499 DOI: 10.3390/v16060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies reported that the hepatitis C virus (HCV) could help disseminate the hepatitis D virus (HDV) in vivo through hepatitis B virus (HBV)-unrelated ways, but with essentially inconclusive results. To try to shed light on this still-debated topic, 146 anti-HCV-positive subjects (of whom 91 HCV/HIV co-infected, and 43 with prior HCV eradication) were screened for anti-HDV antibodies (anti-HD), after careful selection for negativity to any serologic or virologic marker of current or past HBV infection. One single HCV/HIV co-infected patient (0.7%) tested highly positive for anti-HD, but with no positive HDV-RNA. Her husband, in turn, was a HCV/HIV co-infected subject with a previous contact with HBV. While conducting a thorough review of the relevant literature, the authors attempted to exhaustively describe the medical history of both the anti-HD-positive patient and her partner, believing it to be the key to dissecting the possible complex mechanisms of HDV transmission from one subject to another, and speculating that in the present case, it may have been HCV itself that behaved as an HDV helper virus. In conclusion, this preliminary research, while needing further validation in large prospective studies, provided some further evidence of a role of HCV in HDV dissemination in humans.
Collapse
Affiliation(s)
- Maria Grazia Crobu
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
- Clinical Biochemistry Laboratory, Department of Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Paolo Ravanini
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Clotilde Impaloni
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Claudia Martello
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Olivia Bargiacchi
- Unit of Infectious Diseases, Maggiore della Carità Hospital, 28100 Novara, Italy;
| | - Christian Di Domenico
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Giulia Faolotto
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Paola Macaluso
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Alessio Mercandino
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Miriam Riggi
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Vittorio Quaglia
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Stefano Andreoni
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Mario Pirisi
- Internal Medicine Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Carlo Smirne
- Internal Medicine Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
4
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
5
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
6
|
Freitas N, Enguehard M, Denolly S, Levy C, Neveu G, Lerolle S, Devignot S, Weber F, Bergeron E, Legros V, Cosset FL. The interplays between Crimean-Congo hemorrhagic fever virus (CCHFV) M segment-encoded accessory proteins and structural proteins promote virus assembly and infectivity. PLoS Pathog 2020; 16:e1008850. [PMID: 32956404 PMCID: PMC7529341 DOI: 10.1371/journal.ppat.1008850] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/01/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that has become a serious threat to the public health. CCHFV has a single-stranded, tripartite RNA genome composed of L, M, and S segments. Cleavage of the M polyprotein precursor generates the two envelope glycoproteins (GPs) as well as three secreted nonstructural proteins GP38 and GP85 or GP160, representing GP38 only or GP38 linked to a mucin-like protein (MLD), and a double-membrane-spanning protein called NSm. Here, we examined the relevance of each M-segment non-structural proteins in virus assembly, egress and infectivity using a well-established CCHFV virus-like-particle system (tc-VLP). Deletion of MLD protein had no impact on infectivity although it reduced by 60% incorporation of GPs into particles. Additional deletion of GP38 abolished production of infectious tc-VLPs. The loss of infectivity was associated with impaired Gc maturation and exclusion from the Golgi, showing that Gn is not sufficient to target CCHFV GPs to the site of assembly. Consistent with this, efficient complementation was achieved in cells expressing MLD-GP38 in trans with increased levels of preGc to Gc conversion, co-targeting to the Golgi, resulting in particle incorporation and restored infectivity. Contrastingly, a MLD-GP38 variant retained in the ER allowed preGc cleavage but failed to rescue miss-localization or infectivity. NSm deletion, conversely, did not affect trafficking of Gc but interfered with Gc processing, particle formation and secretion. NSm expression affected N-glycosylation of different viral proteins most likely due to increased speed of trafficking through the secretory pathway. This highlights a potential role of NSm in overcoming Golgi retention and facilitating CCHFV egress. Thus, deletions of GP38 or NSm demonstrate their important role on CCHFV particle production and infectivity. GP85 is an essential viral factor for preGc cleavage, trafficking and Gc incorporation into particles, whereas NSm protein is involved in CCHFV assembly and virion secretion. Orthonairoviruses, like the lethal Crimean-Congo hemorrhagic fever virus (CCHFV), encode secreted glycoproteins, such as GP38, in addition to virion envelope glycoproteins (Gn and Gc) that are processed by internal cleavage of the viral M segment encoded polyprotein. CCHFV MLD-GP38 proteins (GP160/GP85) also include an N-terminal domain encompassing a mucin-like protein that is released from GP38 by Furin. The protective effect of non-neutralizing monoclonal antibodies targeting GP38 against lethal CCHFV challenge previously highlighted the importance of GP38 in CCHFV replication. CCHFV also encodes a double-membrane-spanning protein (NSm) of unknown function, located between the Gn and Gc on the polyprotein. To investigate the roles of these so-called accessory proteins encoded by the CCHFV M-segment in virus formation and infectivity, we generated several M-segment deletion mutants and tested them in a CCHFV transcription-entry-competent virus-like particle (tc-VLP) system. Here, we demonstrate that GP38 is crucial for Gc biogenesis, interaction with Gn and trafficking to the Golgi, and that its deletion abrogates formation of infectious particles. We also show that NSm increases the rate of protein trafficking through the secretory pathway with altered N-glycosylation profiles that are advantageous for efficient virus release. These data advanced our understanding of GP38 and NSm roles and CCHFV-host interactions.
Collapse
Affiliation(s)
- Natalia Freitas
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
- * E-mail: (NF); (FLC)
| | - Margot Enguehard
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
| | - Solène Denolly
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
| | - Camille Levy
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
| | - Gregory Neveu
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
| | - Solène Lerolle
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
| | - Stephanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Eric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Vincent Legros
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
- Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
| | - François-Loïc Cosset
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, Lyon, France
- * E-mail: (NF); (FLC)
| |
Collapse
|
7
|
Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bossola M, Landi F, Bernabei R, Bucci C, Marzetti E. Generation and Release of Mitochondrial-Derived Vesicles in Health, Aging and Disease. J Clin Med 2020; 9:jcm9051440. [PMID: 32408624 PMCID: PMC7290979 DOI: 10.3390/jcm9051440] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are intracellular organelles involved in a myriad of activities. To safeguard their vital functions, mitochondrial quality control (MQC) systems are in place to support organelle plasticity as well as physical and functional connections with other cellular compartments. In particular, mitochondrial interactions with the endosomal compartment support the shuttle of ions and metabolites across organelles, while those with lysosomes ensure the recycling of obsolete materials. The extrusion of mitochondrial components via the generation and release of mitochondrial-derived vesicles (MDVs) has recently been described. MDV trafficking is now included among MQC pathways, possibly operating via mitochondrial-lysosomal contacts. Since mitochondrial dysfunction is acknowledged as a hallmark of aging and a major pathogenic factor of multiple age-associated conditions, the analysis of MDVs and, more generally, of extracellular vesicles (EVs) is recognized as a valuable research tool. The dissection of EV trafficking may help unravel new pathophysiological pathways of aging and diseases as well as novel biomarkers to be used in research and clinical settings. Here, we discuss (1) MQC pathways with a focus on mitophagy and MDV generation; (2) changes of MQC pathways during aging and their contribution to inflamm-aging and progeroid conditions; and (3) the relevance of MQC failure to several disorders, including neurodegenerative conditions (i.e., Parkinson's disease, Alzheimer's disease) and cardiovascular disease.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy;
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-0832-29-8900 (C.B.); Fax: +39-06-305-1911 (R.C.); +39-0832-29-8941 (C.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Maurizio Bossola
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy;
- Correspondence: (R.C.); (C.B.); Tel.: +39-06-3015-5559 (R.C.); +39-0832-29-8900 (C.B.); Fax: +39-06-305-1911 (R.C.); +39-0832-29-8941 (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (M.B.); (F.L.); (R.B.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
8
|
Sequence Determinants in Gammaretroviral Env Cytoplasmic Tails Dictate Virus-Specific Pseudotyping Compatibility. J Virol 2019; 93:JVI.02172-18. [PMID: 30894464 DOI: 10.1128/jvi.02172-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses can incorporate foreign glycoproteins to form infectious particles through a process known as pseudotyping. However, not all glycoproteins are compatible with all viruses. Despite the fact that viral pseudotyping is widely used, what makes a virus/glycoprotein pair compatible is poorly understood. To study this, we chose to analyze a gammaretroviral glycoprotein (Env) whose compatibility with different viruses could be modulated through small changes in its cytoplasmic tail (CT). One form of this glycoprotein is compatible with murine leukemia virus (MLV) particles but incompatible with human immunodeficiency virus type 1 (HIV-1) particles, while the second is compatible with HIV-1 particles but not with MLV particles. To decipher the factors affecting virus-specific Env incompatibility, we characterized Env incorporation, maturation, cell-to-cell fusogenicity, and virus-to-cell fusogenicity of each Env. The HIV-1 particle incompatibility correlated with less efficient cleavage of the R peptide by HIV-1 protease. However, the MLV particle incompatibility was more nuanced. MLV incompatibility appeared to be caused by lack of incorporation into particles, yet incorporation could be restored by further truncating the CT or by using a chimeric MLV Gag protein containing the HIV-1 MA without fully restoring infectivity. The MLV particle incompatibility appeared to be caused in part by fusogenic repression in MLV particles through an unknown mechanism. This study demonstrates that the Env CT can dictate functionality of Env within particles in a virus-specific manner.IMPORTANCE Viruses utilize viral glycoproteins to efficiently enter target cells during infection. How viruses acquire viral glycoproteins has been studied to understand the pathogenesis of viruses and develop safer and more efficient viral vectors for gene therapies. The CTs of viral glycoproteins have been shown to regulate various stages of glycoprotein biogenesis, but a gap still remains in understanding the molecular mechanism of glycoprotein acquisition and functionality regarding the CT. Here, we studied the mechanism of how specific mutations in the CT of a gammaretroviral envelope glycoprotein distinctly affect infectivity of two different viruses. Different mutations caused failure of glycoproteins to function in a virus-specific manner due to distinct fusion defects, suggesting that there are virus-specific characteristics affecting glycoprotein functionality.
Collapse
|
9
|
Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F, Cosset FL. Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun 2019; 10:2098. [PMID: 31068585 PMCID: PMC6506506 DOI: 10.1038/s41467-019-10117-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) doesn't encode envelope proteins for packaging of its ribonucleoprotein (RNP) and typically relies on the surface glycoproteins (GPs) from hepatitis B virus (HBV) for virion assembly, envelopment and cellular transmission. HDV RNA genome can efficiently replicate in different tissues and species, raising the possibility that it evolved, and/or is still able to transmit, independently of HBV. Here we show that alternative, HBV-unrelated viruses can act as helper viruses for HDV. In vitro, envelope GPs from several virus genera, including vesiculovirus, flavivirus and hepacivirus, can package HDV RNPs, allowing efficient egress of HDV particles in the extracellular milieu of co-infected cells and subsequent entry into cells expressing the relevant receptors. Furthermore, HCV can propagate HDV infection in the liver of co-infected humanized mice for several months. Further work is necessary to evaluate whether HDV is currently transmitted by HBV-unrelated viruses in humans.
Collapse
Affiliation(s)
- Jimena Perez-Vargas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Fouzia Amirache
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Chloé Mialon
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS Inserm U1134, 6 rue Alexandre Cabanel, F-75739, Paris, France
| | - Floriane Fusil
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France.
| |
Collapse
|
10
|
Renner TM, Bélanger K, Langlois MA. Selective Isolation of Retroviruses from Extracellular Vesicles by Intact Virion Immunoprecipitation. Bio Protoc 2018; 8:e3005. [PMID: 34395797 DOI: 10.21769/bioprotoc.3005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
There exists a wide variety of techniques to isolate and purify viral particles from cell culture supernatants. However, these techniques vary greatly in ease of use, purity, yield and impact on viral structural integrity. Most importantly, it is becoming evident that secreted extracellular vesicles (EVs) co-purify with retroviruses using nearly all purification methods due to nearly indistinguishable biophysical characteristics such as size, buoyant density and nucleic acid content. Recently, our group has illustrated a means of isolating intact and highly enriched retroviral virions from EV-containing cell supernatants using an immunoprecipitation approach targeting the viral envelope glycoprotein of the Moloney Murine Leukemia Virus ( Renner et al., 2018 ). This technique, that we call intact virion immunoprecipitation (IVIP), enabled us to characterize the accessibility of epitopes on the surface of these retroviruses and assess the orientation of the virus-encoded integral membrane protein Glycogag (gPr80) in the viral envelope. Proper implementation of this protocol enables fast, simple and reproducible preparations of intact and highly purified retroviral particles devoid of detectable EV contaminants.
Collapse
Affiliation(s)
- Tyler Milston Renner
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada
| | - Kasandra Bélanger
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Li Q, Liu Q, Huang W, Li X, Wang Y. Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol 2018; 28:e1963. [PMID: 29218769 PMCID: PMC7169153 DOI: 10.1002/rmv.1963] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Emerging and reemerging infectious diseases have a strong negative impact on public health. However, because many of these pathogens must be handled in biosafety level, 3 or 4 containment laboratories, research and development of antivirals or vaccines against these diseases are often impeded. Alternative approaches to address this issue have been vigorously pursued, particularly the use of pseudoviruses in place of wild-type viruses. As pseudoviruses have been deprived of certain gene sequences of the virulent virus, they can be handled in biosafety level 2 laboratories. Importantly, the envelopes of these viral particles may have similar conformational structures to those of the wild-type viruses, making it feasible to conduct mechanistic investigation on viral entry and to evaluate potential neutralizing antibodies. However, a variety of challenging issues remain, including the production of a sufficient pseudovirus yield and the inability to produce an appropriate pseudotype of certain viruses. This review discusses current progress in the development of pseudoviruses and dissects the factors that contribute to low viral yields.
Collapse
Affiliation(s)
- Qianqian Li
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Qiang Liu
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| | - Xuguang Li
- Division of Regulatory ResearchCentre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health CanadaOttawaCanada
| | - Youchun Wang
- Division of HIV/AIDS and Sex‐Transmitted Virus VaccinesNational Institutes for Food and Drug ControlBeijingChina
| |
Collapse
|
12
|
Pyeon D, Timani KA, Gulraiz F, He JJ, Park IW. Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation. Virus Res 2016; 223:161-9. [PMID: 27460547 DOI: 10.1016/j.virusres.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
HIV-1 Nef is necessary and may be sufficient for HIV-1-associated AIDS pathogenicity, in that knockout of Nef alone can protect HIV-infected patients from AIDS. We therefore investigated the feasibility of physical knockout of Nef, using the host ubiquitin proteasome system in HIV-1-infected cells. Our co-immunoprecipitation analysis demonstrated that Nef interacted with ubiquitin specific protease 15 (USP15), and that USP15, which is known to stabilize cellular proteins, degraded Nef. Nef could also cause decay of USP15, although Nef-mediated degradation of USP15 was weaker than USP15-mediated Nef degradation. Direct interaction between Nef and USP15 was essential for the observed reciprocal decay of the proteins. Further, USP15 degraded not only Nef but also HIV-1 structural protein, Gag, thereby substantially inhibiting HIV-1 replication. However, Gag did not degrade USP15, indicating that the Nef and USP15 complex, in distinction to other viral proteins, play an integral role in coordinating viral protein degradation and hence HIV-1 replication. Moreover, Nef and USP15 globally suppressed ubiquitylation of cellular proteins, indicating that these proteins are major determinants for the stability of cellular as well as viral proteins. Taken together, these data indicate that Nef and USP15 are vital in regulating degradation of viral and cellular proteins and thus HIV-1 replication, and specific degradation of viral, not cellular proteins, by USP15 points to USP15 as a candidate therapeutic agent to combat AIDS by eliminating viral proteins from the infected cells via USP15-mediated proteosomal degradation.
Collapse
Affiliation(s)
- Dohun Pyeon
- Departments of Immunology and Microbiology, and Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Fahad Gulraiz
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johnny J He
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - In-Woo Park
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
13
|
Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK, Tarr AW. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 2016; 97:2265-2279. [PMID: 27384448 PMCID: PMC5042129 DOI: 10.1099/jgv.0.000537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.
Collapse
Affiliation(s)
- Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C. Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Barnabas King
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Correspondence Alexander W. Tarr
| |
Collapse
|
14
|
King B, Temperton NJ, Grehan K, Scott SD, Wright E, Tarr AW, Daly JM. Technical considerations for the generation of novel pseudotyped viruses. Future Virol 2016. [DOI: 10.2217/fvl.15.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A pseudotyped virus (PV) is a virus particle with an envelope protein originating from a different virus. The ability to dictate which envelope proteins are expressed on the surface has made pseudotyping an important tool for basic virological studies such as determining the cellular targets of the envelope protein of the virus as well as identification of potential antiviral compounds and measuring specific antibody responses. In this review, we describe the common methodologies employed to generate PVs, with a focus on approaches to improve the efficacy of PV generation.
Collapse
Affiliation(s)
- Barnabas King
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Keith Grehan
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Simon D Scott
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Edward Wright
- Viral Pseudotype Unit (Fitzrovia), Faculty of Science & Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Janet M Daly
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| |
Collapse
|
15
|
Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015; 6:161. [PMID: 25972865 PMCID: PMC4413832 DOI: 10.3389/fimmu.2015.00161] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI)-competent antibodies that target the globular head of hemagglutinin (HA) thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D toward the production of a “universal vaccine” has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1–H16). The accurate and sensitive measurement of antibody responses elicited by these “next-generation” influenza vaccines is, however, hampered by the lack of sensitivity of the traditional influenza serological assays HI, single radial hemolysis, and microneutralization. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.
Collapse
Affiliation(s)
- George William Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Craig Peter Thompson
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK ; Department of Zoology, University of Oxford , Oxford , UK ; The Jenner Institute Laboratories, University of Oxford , Oxford , UK
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| |
Collapse
|
16
|
Tang Y, George A, Nouvet F, Sweet S, Emeagwali N, Taylor HE, Simmons G, Hildreth JEK. Infection of female primary lower genital tract epithelial cells after natural pseudotyping of HIV-1: possible implications for sexual transmission of HIV-1. PLoS One 2014; 9:e101367. [PMID: 25010677 PMCID: PMC4092063 DOI: 10.1371/journal.pone.0101367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global AIDS pandemic continues to expand and in some regions of the world, such as southern Africa, the prevalence of HIV-1 infection exceeds 20%. The devastating spread of the virus in young women in these countries appears disproportional to overall risk of infection. Regions with high prevalence of HIV-1 are often also highly endemic for other pathogenic viruses including HSV, CMV and HTLV. We propose that acquisition by HIV-1 of the envelope glycoproteins of other viruses, in a process we call “natural pseudotyping,” expands the cellular tropism of HIV-1, enabling it to infect female genital epithelial cells directly and thereby dramatically increasing risk of infection during sexual intercourse. In this proof-of-concept study, we demonstrate that when HIV-1 co-infects T cells along with the gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), progeny HIV-1 particles are produced capable of infecting primary vaginal, ectocervical and endocervical epithelial cells. These cell types are normally resistant to HIV-1 infection. Infection of primary genital cells was neutralized by antisera against the XMRV glycoprotein, confirming that infection was mediated by the XMRV glycoprotein acquired through pseudotyping of HIV. Inhibition by AZT showed that active replication of HIV-1 occurred in these cells and ruled out non-specific endocytic uptake of the virus. These results demonstrate that natural pseudotyping can expand the tropism of HIV-1 to include genital epithelial cells and have potential implications for sexual transmission of the virus.
Collapse
Affiliation(s)
- Yuyang Tang
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Alvin George
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Franklin Nouvet
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Stephanie Sweet
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
| | - Nkiruka Emeagwali
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Harry E. Taylor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Glenn Simmons
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - James E. K. Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn. Viruses 2014; 6:284-300. [PMID: 24441863 PMCID: PMC3917443 DOI: 10.3390/v6010284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 01/24/2023] Open
Abstract
Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Anne-Sophie Kuhlmann
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Ronald C Montelaro
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
18
|
Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 2013; 10:54. [PMID: 23705972 PMCID: PMC3686653 DOI: 10.1186/1742-4690-10-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Collapse
|
19
|
Witting SR, Vallanda P, Gamble AL. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther 2013; 20:997-1005. [PMID: 23698741 PMCID: PMC3839624 DOI: 10.1038/gt.2013.23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.
Collapse
Affiliation(s)
- S R Witting
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
20
|
Lévy C, Aerts L, Hamelin MÈ, Granier C, Szécsi J, Lavillette D, Boivin G, Cosset FL. Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine 2013; 31:2778-85. [PMID: 23583815 DOI: 10.1016/j.vaccine.2013.03.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/17/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022]
Abstract
Human metapneumovirus (HMPV) is a paramyxovirus that causes acute respiratory-tract infections in children and adults worldwide. A safe and effective vaccine could decrease the burden of disease associated with this novel pathogen. We engineered HMPV viral-like particles (HMPV-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two HMPV viruses of either lineage A or B. These VLPs functionally display F and G HMPV surface glycoproteins. When injected in mice, HMPV-VLPs induce strong humoral immune response against both homologous and heterologous strains. Moreover, the induced neutralizing antibodies prevented mortality upon subsequent infection of the lungs with both homologous and heterologous viruses. Upon challenge, viral titers in the lungs of immunized animals were significantly reduced as compared to those of control animals. In conclusion, a HMPV-VLP vaccine that induces cross-protective immunity in mice is a promising approach to prevent HMPV infections.
Collapse
Affiliation(s)
- Camille Lévy
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Multiple Gag domains contribute to selective recruitment of murine leukemia virus (MLV) Env to MLV virions. J Virol 2012; 87:1518-27. [PMID: 23152533 DOI: 10.1128/jvi.02604-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retroviruses, like all enveloped viruses, must incorporate viral glycoproteins to form infectious particles. Interactions between the glycoprotein cytoplasmic tail and the matrix domain of Gag are thought to direct recruitment of glycoproteins to native virions for many retroviruses. However, retroviruses can also incorporate glycoproteins from other viruses to form infectious virions known as pseudotyped particles. The glycoprotein murine leukemia virus (MLV) Env can readily form pseudotyped particles with many retroviruses, suggesting a generic mechanism for recruitment. Here, we sought to identify which components of Gag, particularly the matrix domain, contribute to recruitment of MLV Env into retroviral particles. Unexpectedly, we discovered that the matrix domain of HIV-1 Gag is dispensable for generic recruitment, since it could be replaced with a nonviral membrane-binding domain without blocking active incorporation of MLV Env into HIV virions. However, MLV Env preferentially assembles with MLV virions. When MLV and HIV particles are produced from the same cell, MLV Env is packaged almost exclusively by MLV particles, thus preventing incorporation into HIV particles. Surprisingly, the matrix domain of MLV Gag is not required for this selectivity, since MLV Gag containing the matrix domain from HIV is still able to outcompete HIV particles for MLV Env. Although MLV Gag is sufficient for selective incorporation to occur, no single Gag domain dictates the selectivity. Our findings indicate that Env recruitment is more complex than previously believed and that Gag assembly/budding sites have fundamental properties that affect glycoprotein incorporation.
Collapse
|
22
|
Lai RP, Yan J, Heeney J, McClure MO, Göttlinger H, Luban J, Pizzato M. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41. PLoS Pathog 2011; 7:e1002442. [PMID: 22194689 PMCID: PMC3240605 DOI: 10.1371/journal.ppat.1002442] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2023] Open
Abstract
Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis. Nef is a pathogenic factor expressed by primate lentiviruses. HIV-1 virions produced by cells that express Nef acquire unknown modifications that allow them to infect new target cells with higher efficiency. We hypothesized that Nef might alter the structure or function of the HIV-1 Env glycoproteins. In this study we tested whether Nef alters the sensitivity of HIV-1 to several agents that inhibit HIV-1 by binding to different parts of Env. We found that Nef confers 10 to 50-fold resistance to neutralization by two antibodies (2F5 and 4E10) that belong to one of the most powerful classes of neutralizing agents, which are active against a wide range of HIV-1 isolates. We established that Nef decreases the recognition of the virus particles by these antibodies, which bind to a domain of the Env adjacent to the retroviral membrane (MPER). Env from diverse HIV-1 isolates are equally sensitive to this activity, and Nef proteins derived from both HIV-1 and SIV retain the activity. By protecting lentiviruses from one of the most broadly-acting classes of neutralizing antibodies, this new activity of Nef might make a significant contribution to AIDS pathogenesis.
Collapse
Affiliation(s)
- Rachel P.J. Lai
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jin Yan
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Jonathan Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Myra O. McClure
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Heinrich Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Department of Microbiology & Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Massimo Pizzato
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Microbiology & Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Garrone P, Fluckiger AC, Mangeot PE, Gauthier E, Dupeyrot-Lacas P, Mancip J, Cangialosi A, Du Chéné I, LeGrand R, Mangeot I, Lavillette D, Bellier B, Cosset FL, Tangy F, Klatzmann D, Dalba C. A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. Sci Transl Med 2011; 3:94ra71. [PMID: 21813755 DOI: 10.1126/scitranslmed.3002330] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic hepatitis C virus (HCV) infection, with its cohort of life-threatening complications, affects more than 200 million persons worldwide and has a prevalence of more than 10% in certain countries. Preventive and therapeutic vaccines against HCV are thus much needed. Neutralizing antibodies (NAbs) are the foundation for successful disease prevention for most established vaccines. However, for viruses that cause chronic infection such as HIV or HCV, induction of broad NAbs from recombinant vaccines has remained elusive. We developed a vaccine platform specifically aimed at inducing NAbs based on pseudotyped virus-like particles (VLPs) made with retroviral Gag. We report that VLPs pseudotyped with E2 and/or E1 HCV envelope glycoproteins induced high-titer anti-E2 and/or anti-E1 antibodies, as well as NAbs, in both mouse and macaque. The NAbs, which were raised against HCV 1a, cross-neutralized the five other genotypes tested (1b, 2a, 2b, 4, and 5). Thus, the described VLP platform, which can be pseudotyped with a vast array of virus envelope glycoproteins, represents a new approach to viral vaccine development.
Collapse
|
24
|
Schneider IC, Eckhardt M, Brynza J, Collins MK, Cichutek K, Buchholz CJ. Escape from R-peptide deletion in a γ-retrovirus. Virology 2011; 418:85-92. [PMID: 21835422 DOI: 10.1016/j.virol.2011.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/17/2011] [Accepted: 07/15/2011] [Indexed: 11/15/2022]
Abstract
The R peptide in the cytoplasmic tail (C-tail) of γ-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in γ-retrovirus infected cells.
Collapse
Affiliation(s)
- Irene C Schneider
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Baur AS. HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree? Trends Microbiol 2011; 19:435-40. [PMID: 21795047 DOI: 10.1016/j.tim.2011.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/15/2011] [Accepted: 06/07/2011] [Indexed: 12/25/2022]
Abstract
After two decades of research the Nef protein of human immunodeficiency virus (HIV) remains a mysterious protein with an indisputable role in HIV pathogenesis. The ability to downregulate CD4 and major histocompatibility complex class I (MHC-I) was the first ascribed function of Nef and, whereas the number of downmodulated receptors by Nef is rising, so are the explanations for how their downregulation could contribute to HIV pathogenesis. At the same time there is increasing evidence that Nef not only induces endocytosis but also exocytosis, namely of cytokines and microvesicles that contain Nef itself. Because endocytosis and exocytosis are connected events, this is not surprising - and raises the intriguing possibility that HIV aims at secretion rather than ingestion. Have we therefore barked up the wrong tree over the past two decades? In this opinion article I argue that Nef-induced secretion is most probably the pathogenesis-relevant function behind this elusive viral effector.
Collapse
Affiliation(s)
- Andreas S Baur
- Department of Dermatology, University of Erlangen/Nürnberg, D-91052 Erlangen, Germany.
| |
Collapse
|
26
|
A concerted action of hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly. PLoS Pathog 2011; 7:e1002144. [PMID: 21814513 PMCID: PMC3141040 DOI: 10.1371/journal.ppat.1002144] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/15/2011] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly.
Collapse
|
27
|
Garcia JM, Lai JCC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 2011; 9:443-55. [PMID: 21504401 DOI: 10.1586/eri.11.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudotyped viral particles are being used as safe surrogates to mimic the structure and surface of many viruses, including highly pathogenic viruses such as avian influenza H5N1, to investigate biological functions mediated by the envelope proteins derived from these viruses. The first part of this article evaluates and discusses the differences in the production and characterization of influenza pseudoparticles. The second part focuses on the applications that such a flexible tool can provide in modern influenza research, in particular in the fields of drug discovery, molecular biology and diagnosis.
Collapse
Affiliation(s)
- Jean-Michel Garcia
- HKU-Pasteur Research Centre, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong.
| | | |
Collapse
|
28
|
Abstract
A mandatory step in the formation of an infectious retroviral particle is the acquisition of its envelope glycoprotein (Env). This step invariably occurs by Env positioning itself in the host membrane at the location of viral budding and being incorporated along with the host membrane into the viral particle. In some ways, this step of the viral life cycle would appear to be imprecise. There is no specific sequence in Env or in the retroviral structural protein, Gag, that is inherently required for the production of an infectious Env-containing particle. Additionally, Env-defective proviruses can efficiently produce infectious particles with any of a number of foreign retroviral Env glycoproteins or even glycoproteins from unrelated viral families, a process termed pseudotyping. However, mounting evidence suggests that Env incorporation is neither passive nor random. Rather, several redundant mechanisms appear to contribute to the carefully controlled process of Env acquisition, many of which are apparently used by a wide variety of enveloped viruses. This review presents and discusses the evidence for these different mechanisms contributing to incorporation.
Collapse
Affiliation(s)
- Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, 65211, USA.
| |
Collapse
|
29
|
Raymond A, Campbell-Sims T, Khan M, Lang M, Huang M, Bond V, Powell M. HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retroviruses 2011; 27:167-78. [PMID: 20964480 DOI: 10.1089/aid.2009.0170] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-1 Nef has been demonstrated to be integral for viral persistence, infectivity, and the acceleration of disease pathogenesis (AIDS) in humans. Nef has also been detected in the plasma of HIV-infected individuals and is released from infected cells. The form in which Nef is released from infected cells is unknown. However, Nef is a myristoylated protein and has been shown to interact with the intracellular vesicular trafficking network. Here we show that Nef is released in CD45-containing microvesicles. This microvesicular Nef (mvNef) is detected in the plasma of HIV-infected individuals at relatively high concentrations (10 ng/ml). It is also present in tissue culture supernatants of Jurkat cells infected with HIV(MN). Interestingly, plasma mvNef levels in HIV(+) patients did not significantly correlate with viral load or CD4 count. Microvesicular Nef levels persisted in the plasma of HIV-infected individuals despite the use of antiretroviral therapy, even in individuals with undetectable viral loads. Using cell lines, we found Nef microvesicles induce apoptosis in Jurkat T-lymphocytes but had no observed effect on the U937 monocytic cell line. Given the large amount of mvNef present in the plasma of HIV-infected individuals, the apoptotic effect of mvNef on T cells, and the observed functions of extracellular soluble Nef in vitro, it seems likely that in vivo mvNef may play a significant role in the pathogenesis of AIDS.
Collapse
Affiliation(s)
| | | | - M. Khan
- Morehouse School of Medicine, Atlanta, Georgia
| | - M. Lang
- Morehouse School of Medicine, Atlanta, Georgia
| | - M.B. Huang
- Morehouse School of Medicine, Atlanta, Georgia
| | - V.C. Bond
- Morehouse School of Medicine, Atlanta, Georgia
| | - M.D. Powell
- Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
30
|
Lucas TM, Lyddon TD, Grosse SA, Johnson MC. Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology 2010; 405:548-55. [PMID: 20655565 PMCID: PMC2923235 DOI: 10.1016/j.virol.2010.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/24/2010] [Accepted: 06/08/2010] [Indexed: 12/12/2022]
Abstract
The cytoplasmic tail domain (CTD) of retroviral envelope (Env) proteins has been implicated in modulating Env incorporation into viral particles. We generated a panel of murine leukemia virus (MLV) Env mutants and analyzed their ability to be recruited to human immunodeficiency virus-1 (HIV-1) assembly sites. Surprisingly, the entire CTD was dispensable for recruitment to assembly sites, but a mutation that disrupted the furin cleavage site in Env abolished recruitment. To determine if MLV Env can show selectivity for homologous assembly sites, cells were co-transfected with both HIV-1 and MLV assembly components along with each MLV Env construct and assayed for infectious particle production. MLV Env selectively formed infectious particles with the MLV components at the expense of infectious HIV-1 infectious particle production, but truncation of the CTD progressively reduced this selectivity. Collectively these data suggest that there are two separable mechanisms that govern MLV Env recruitment to viral assembly sites.
Collapse
Affiliation(s)
- Tiffany M. Lucas
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri- School of Medicine, Columbia, MO 65211
| | - Terri D. Lyddon
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri- School of Medicine, Columbia, MO 65211
| | - Sarah A. Grosse
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri- School of Medicine, Columbia, MO 65211
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Science Center, University of Missouri- School of Medicine, Columbia, MO 65211
| |
Collapse
|
31
|
Dinkins C, Arko-Mensah J, Deretic V. Autophagy and HIV. Semin Cell Dev Biol 2010; 21:712-8. [PMID: 20403451 PMCID: PMC3108047 DOI: 10.1016/j.semcdb.2010.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/01/2023]
Abstract
Autophagy is a key cytoplasmic biomass and organellar quality and quantity control pathway of the eukaryotic cell. It is particularly suited to capture and degrade large, multi-macromolecular cytosplasmic targets earmarked for degradation or turnover. Typical autophagic cargos represent large swaths of cytosol as a source of energy and anabolic precursors at times of growth restrictions imposed by the absence of growth factors, nutrient limitation or hypoxia. Autophagy is the only effective mechanism for removal of whole organelles such as leaky or surplus mitochondria, disposal of potentially toxic protein aggregates too large for proteasomal removal, and elimination of intracellular microbes including bacteria, protozoa and viruses. Recent studies have shown that human immunodeficiency virus (HIV) is targeted for eliminated by autophagy but that this is countered by the viral protein Nef. Here we review these relationships and underscore the untapped potential of autophagy as a druggable antiviral process.
Collapse
Affiliation(s)
- Christina Dinkins
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
32
|
Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion. Virology 2010; 405:214-24. [PMID: 20591459 DOI: 10.1016/j.virol.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/01/2010] [Accepted: 06/01/2010] [Indexed: 11/20/2022]
Abstract
Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.
Collapse
|
33
|
Bonnafous P, Perrault M, Le Bihan O, Bartosch B, Lavillette D, Penin F, Lambert O, Pécheur EI. Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads. J Gen Virol 2010; 91:1919-1930. [PMID: 20375221 DOI: 10.1099/vir.0.021071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell entry and membrane fusion of the hepatitis C virus (HCV) depend on its envelope glycoproteins E1 and E2. HCV pseudotyped particles (HCVpps) are relevant and popular models to study the early steps of the HCV life cycle. However, no structural characterization of HCVpp has been available so far. Using cryo-transmission electron microscopy (cryo-TEM), providing structural information at nanometric resolution, the molecular details of HCVpps and their fusion with liposomes were studied. Cryo-TEM revealed HCVpps as regular 100 nm spherical structures containing the dense retroviral nucleocapsid surrounded by a lipid bilayer. E1-E2 glycoproteins were not readily visible on the membrane surface. Pseudoparticles bearing the E1-E2 glycoproteins of Semliki forest virus looked similar, whereas avian influenza A virus (fowl plague virus) haemagglutinin/neuraminidase-pseudotyped particles exhibited surface spikes. To further characterize HCVpp structurally, a novel method was designed based on magnetic beads covered with anti-HCV antibodies to enrich the samples with particles containing E1-E2. This strategy efficiently sorted HCVpps, which were then directly observed by cryo-TEM in the presence or absence of liposomes at low or neutral pH. After acidification, HCVpps looked the same as at neutral pH and closely contacted the liposomes. These are the first visualizations of early HCV membrane fusion events at the nanometer scale. Furthermore, fluorimetry analysis revealed a relative resistance of HCVpps regarding their fusion capacity when exposed to low pH. This study therefore brings several new molecular details to HCVpp characterization and this efficient strategy of virion immunosorting with magnetic nanobeads is direct, efficient and adaptable to extensive characterization of any virus at a nanometric resolution.
Collapse
Affiliation(s)
- Pierre Bonnafous
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Marie Perrault
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| | - Olivier Le Bihan
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Birke Bartosch
- INSERM, U758, F-69007 Lyon, France
- Université de Lyon, UCB-Lyon 1, IFR128, F-69007 Lyon, France
- Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Dimitri Lavillette
- Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
- INSERM, U758, F-69007 Lyon, France
- Université de Lyon, UCB-Lyon 1, IFR128, F-69007 Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| | - Olivier Lambert
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Eve-Isabelle Pécheur
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| |
Collapse
|
34
|
Vpu-dependent block to incorporation of GaLV Env into lentiviral vectors. Retrovirology 2010; 7:4. [PMID: 20102634 PMCID: PMC2831008 DOI: 10.1186/1742-4690-7-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/26/2010] [Indexed: 11/30/2022] Open
Abstract
Background The gibbon ape leukemia virus (GaLV) Env protein mediates entry into a wide range of human cells and is frequently used to pseudotype retroviral vectors. However, an incompatibility exists between GaLV Env and lentiviral vectors that results in decreased steady-state levels of the mature GaLV Env in cells and prevents its incorporation into lentiviral vector particles. Results We identified the HIV-1 Vpu protein as the major cause of the depletion in GaLV Env levels that occurs when lentiviral vector components are present. This activity of Vpu targeted the mature (cleaved) form of the GaLV Env that exists within or beyond the trans-Golgi. The activity required two conserved phospho-serines in the cytoplasmic tail of Vpu that are known to recruit β TrCP, a substrate adaptor for an SCF E3 ubiquitin ligase complex, and could be blocked by mutation of lysine 618 in the GaLV Env tail. Moreover, the Vpu-mediated decrease of GaLV Env levels was inhibited by the lysosomal inhibitor, bafilomycin A1. Interestingly, this activity of Vpu was only observed in the presence of other lentiviral vector components. Conclusions Similar to the mechanism whereby Vpu targets BST-2/tetherin for degradation, these findings implicate β-TrCP-mediated ubiquitination and the endo-lysosomal pathway in the degradation of the GaLV Env by lentiviral vector components. Possibly, the cytoplasmic tail of the GaLV Env contains features that mimic bona fide targets of Vpu, important to HIV-1 replication. Furthermore, the lack of effect of Vpu on GaLV Env in the absence of other HIV-1 proteins, suggests that a more complex interaction may exist between Vpu and its target proteins, with the additional involvement of one or more component(s) of the HIV-1 replication machinery.
Collapse
|
35
|
Muratori C, Cavallin LE, Krätzel K, Tinari A, De Milito A, Fais S, D'Aloja P, Federico M, Vullo V, Fomina A, Mesri EA, Superti F, Baur AS. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 2009; 6:218-30. [PMID: 19748464 DOI: 10.1016/j.chom.2009.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 04/23/2009] [Accepted: 06/26/2009] [Indexed: 12/25/2022]
Abstract
The HIV Nef protein mediates endocytosis of surface receptors that correlates with disease progression, but the link between this Nef function and HIV pathogenesis is not clear. Here, we report that Nef-mediated activation of membrane trafficking is bidirectional, connecting endocytosis with exocytosis as occurs in activated T cells. Nef expression induced an extensive secretory activity in infected and, surprisingly, also in noninfected T cells, leading to the massive release of microvesicle clusters, a phenotype observed in vitro and in 36%-87% of primary CD4 T cells from HIV-infected individuals. Consistent with exocytosis in noninfected cells, Nef is transferred to bystander cells upon cell-to-cell contact and subsequently induces secretion in an Erk1/2-dependent manner. Thus, HIV Nef alters membrane dynamics, mimicking those of activated T cells and causing a transfer of infected cell signaling (TOS) to bystander cells. This mechanism may help explain the detrimental effect on bystander cells seen in HIV infection.
Collapse
Affiliation(s)
- Claudia Muratori
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jesus da Costa L, Lopes Dos Santos A, Mandic R, Shaw K, Santana de Aguiar R, Tanuri A, Luciw PA, Peterlin BM. Interactions between SIVNef, SIVGagPol and Alix correlate with viral replication and progression to AIDS in rhesus macaques. Virology 2009; 394:47-56. [PMID: 19748111 DOI: 10.1016/j.virol.2009.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/26/2009] [Accepted: 08/12/2009] [Indexed: 11/25/2022]
Abstract
Infection with Simian Immunodeficiency Virus (SIV) leads to high viral loads and progression to Simian AIDS (SAIDS) in rhesus macaques. The viral accessory protein Nef is required for this phenotype in monkeys as well as in HIV-infected humans. Previously, we determined that HIVNef binds HIVGagPol and Alix for optimal viral replication in cells. In this study, we demonstrated that these interactions could correlate with high viral loads leading to SAIDS in the infected host. By infecting rhesus macaques with a mutant SIV(mac239), where sequences in the nef gene that are required for these interactions were mutated, we observed robust viral replication and disease in two out of four monkeys, where they reverted to the wild type genotype and phenotype. These two rhesus macaques also died of SAIDS. Two other monkeys did not progress to disease and continued to harbor mutant nef sequences. We conclude that interactions between Nef, GagPol and Alix contribute to optimal viral replication and progression to disease in the infected host.
Collapse
|
37
|
Bellier B, Huret C, Miyalou M, Desjardins D, Frenkiel MP, Despres P, Tangy F, Dalba C, Klatzmann D. DNA vaccines expressing retrovirus-like particles are efficient immunogens to induce neutralizing antibodies. Vaccine 2009; 27:5772-80. [DOI: 10.1016/j.vaccine.2009.07.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/11/2009] [Accepted: 07/19/2009] [Indexed: 12/21/2022]
|
38
|
Abstract
HCV infection leads in 50 to 80% of cases to chronic hepatitis, liver cirrhosis, or hepatocellular carcinoma. Interferons and the nucleoside analog ribavirin form the basis for treatment but are not sufficiently effective and have numerous side effects. Although about 300 million people worldwide are estimated to be infected, the characterization of HCV biology and associated pathologies and development of new therapeutics have been slow. Systems that support HCV replication and particle formation in vitro have emerged only over the last few years, over 15 years after the discovery of the virus. The available infection models have remained limited to chimpanzee (1) and immunodeficient mice carrying engrafted human liver cells (2). HCV pseudoparticles (HCVpp) were the first in vitro infection system to become available for investigation of entry and neutralization of this major human pathogen. HCVpp are formed by incorporation of the full-length hepatitis C virus glycoproteins E1 and E2 onto lenti- or retroviral core particles. HCVpp have been validated by many research groups, closely mimic the functionality of the wild-type virus in terms of cell entry and neutralization, and have even been used to isolate the recent HCV receptor Claudin-1. HCVpp are a useful model system not only because of the functional conservation of the envelope glycoproteins with those of the wild-type virus, but also because the retro- or lentiviral vectors used to form them offer of a number of significant technical advantages.
Collapse
|
39
|
Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 2009; 186:255-68. [PMID: 19635843 PMCID: PMC2717652 DOI: 10.1083/jcb.200903070] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/01/2009] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cytoplasmic degradative pathway that can participate in biosynthetic processes, as in the yeast Cvt pathway, but is more commonly known for its functions in removing damaged or surplus organelles and macromolecular complexes. Here, we find that autophagy intersects with human immunodeficiency virus (HIV) biogenesis, mirroring the above dichotomy. Early, nondegradative stages of autophagy promoted HIV yields. HIV Gag-derived proteins colocalized and interacted with the autophagy factor LC3, and autophagy promoted productive Gag processing. Nevertheless, when autophagy progressed through maturation stages, HIV was degraded. This, however, does not occur, as the HIV protein Nef acts as an antiautophagic maturation factor through interactions with the autophagy regulatory factor Beclin 1, thus protecting HIV from degradation. The dual interaction of HIV with the autophagy pathway enhances viral yields by using the early stages while inhibiting the late stages of autophagy. The role of Nef in the latter process enhances yields of infectious HIV and may be of significance for progression to clinical AIDS.
Collapse
Affiliation(s)
- George B. Kyei
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Christina Dinkins
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Alexander S. Davis
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Esteban Roberts
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sudha B. Singh
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chunsheng Dong
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Li Wu
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Eiki Kominami
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Ueno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitsugu Yamamoto
- Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanita, 00161 Rome, Italy
| | - Antonito Panganiban
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Isabelle Vergne
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
40
|
Desjardins D, Huret C, Dalba C, Kreppel F, Kochanek S, Cosset FL, Tangy F, Klatzmann D, Bellier B. Recombinant retrovirus-like particle forming DNA vaccines in prime-boost immunization and their use for hepatitis C virus vaccine development. J Gene Med 2009; 11:313-25. [DOI: 10.1002/jgm.1307] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
41
|
Sha J, He Y, Liu X. HIV Nef increasing viral particle infectivity may be through affecting the protein transport of HIV factors or host cellular factors which promote viral assembly or budding. BIOSCIENCE HYPOTHESES 2009; 2:85-87. [DOI: 10.1016/j.bihy.2008.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
42
|
Abstract
Infectious HCV pseudoparticles (HCVpp) can be assembled by display of unmodified and functional HCV glycoproteins on retroviral and lentiviral core particles. HCVpp have been shown to mimic the early infection steps of parental HCV. The presence of a marker gene packaged within these HCV pseudoparticles allows reliable and fast determination of infectivity mediated by the HCV glycoproteins. With this highly flexible system, E1E2 from a broad range of HCV strains can be investigated, including autologous HCV strains from patients' virus, and it has allowed careful investigation of the humoral response to HCV.
Collapse
Affiliation(s)
- Marlène Dreux
- Universit de Lyon, (UCB-Lyon1), Lyon, IFR128, France
| | | |
Collapse
|
43
|
Pizzato M, Popova E, Göttlinger HG. Nef can enhance the infectivity of receptor-pseudotyped human immunodeficiency virus type 1 particles. J Virol 2008; 82:10811-9. [PMID: 18715908 PMCID: PMC2573167 DOI: 10.1128/jvi.01150-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/14/2008] [Indexed: 11/20/2022] Open
Abstract
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.
Collapse
Affiliation(s)
- Massimo Pizzato
- Department of Infectious Diseases, Division of Medicine, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
44
|
Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication. J Virol 2008; 82:11682-94. [PMID: 18799573 PMCID: PMC2583683 DOI: 10.1128/jvi.01562-08] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rhesus monkey intrinsic immunity factor TRIM5alpha(rh) recognizes incoming capsids from a variety of retroviruses, including human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV), and inhibits the accumulation of viral reverse transcripts. However, direct interactions between restricting TRIM5alpha proteins and retroviral capsids have not previously been demonstrated using pure recombinant proteins. To facilitate structural and mechanistic studies of retroviral restriction, we have developed methods for expressing and purifying an active chimeric TRIM5alpha(rh) protein containing the RING domain from the related human TRIM21 protein. This recombinant TRIM5-21R protein was expressed in SF-21 insect cells and purified through three chromatographic steps. Two distinct TRIM5-21R species were purified and shown to correspond to monomers and dimers, as analyzed by analytical ultracentrifugation. Chemically cross-linked recombinant TRIM5-21R dimers and mammalian-expressed TRIM5-21R and TRIM5alpha proteins exhibited similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities, indicating that mammalian TRIM5alpha proteins are predominantly dimeric. Purified TRIM5-21R had ubiquitin ligase activity and could autoubquitylate with different E2 ubiquitin conjugating enzymes in vitro. TRIM5-21R bound directly to synthetic capsids composed of recombinant HIV-1 CA-NC proteins and to authentic EIAV core particles. HIV-1 CA-NC assemblies bound dimeric TRIM5-21R better than either monomeric TRIM5-21R or TRIM5-21R constructs that lacked the SPRY domain or its V1 loop. Thus, our studies indicate that TRIM5alpha proteins are dimeric ubiquitin E3 ligases that recognize retroviral capsids through direct interactions mediated by the SPRY domain and demonstrate that these activities can be recapitulated in vitro using pure recombinant proteins.
Collapse
|
45
|
Arrode G, Hegde R, Jin Y, Singh DK, Narayan O, Chebloune Y. Nef modulates the immunogenicity of Gag encoded in a non-infectious HIV DNA vaccine. Vaccine 2008; 26:3795-804. [PMID: 18586360 PMCID: PMC2519121 DOI: 10.1016/j.vaccine.2008.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/06/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022]
Abstract
Gag-CD8+ T cell responses are associated with immune control of HIV infection. Since during HIV infection Nef impairs T cell responses, we evaluated whether deletion of nef from a non-infectious HIV DNA vaccine (Delta4 Nef+), creating Delta5 Nef(-), would affect its immunogenicity. When compared with Delta4, mice injected with Delta5 developed significantly lower CD8+ T cell responses to Gag, but no significant change in the responses to Env was observed. In vitro, deletion of Nef abrogated the induced cell death, production of virus-like particles and release of Gag from transfected cells. Thus, the effect of Nef in causing extrusion of Gag might adjuvant the CD8+ T cell responses to Gag in DNA vaccine.
Collapse
Affiliation(s)
- Geraldine Arrode
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, 5000 Wahl Hall East, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Enveloped viruses use multiple mechanisms to inhibit infection of a target cell by more than one virion. These mechanisms may be of particular importance for the evolution of segmented viruses, because superinfection exclusion may limit the frequency of reassortment of viral genes. Here, we show that cellular expression of influenza A virus neuraminidase (NA), but not hemagglutinin (HA) or the M2 proton pump, inhibits entry of HA-pseudotyped retroviruses. Cells infected with H1N1 or H3N2 influenza A virus were similarly refractory to HA-mediated infection and to superinfection with a second influenza A virus. Both HA-mediated entry and viral superinfection were rescued by the neuraminidase inhibitors oseltamivir carboxylate and zanamivir. These inhibitors also prevented the removal of alpha-2,3- and alpha-2,6-linked sialic acid observed in cells expressing NA or infected with influenza A viruses. Our data indicate that NA alone among viral proteins limits influenza A virus superinfection.
Collapse
|
47
|
Jung C, Le Doux JM. Lentiviruses inefficiently incorporate human parainfluenza type 3 envelope proteins. Biotechnol Bioeng 2008; 99:1016-27. [PMID: 17705232 DOI: 10.1002/bit.21622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that the envelope glycoproteins of human parainfluenza type 3 (HPIV3), F and HN, are able to pseudotype lentiviruses, but the titers of these viruses are too low for use in clinical gene transfer. In this study we investigated the cause of these low titers. We compared the mRNA and protein expression levels of HN and F in transfected cells and in cells infected with wild-type HPIV3. Transfected cells contained similar levels of HN and F cytosolic mRNA, but fewer cell-surface HN and F proteins (3.8- and 1.3-fold less, respectively), than cells infected with wild-type HPIV3. To increase expression of HN in transfected cells, we codon-optimized HN and used it to transfect lentivirus producer cells. Cell surface expression of HN, as well as the amount of HN incorporated into virus particles, increased two- to threefold. Virus titers increased 1.2- to 6.4-fold, and the transduction efficiency of polarized MDCK cells via their apical surfaces increased 1.4-fold. Interestingly, even though codon optimization improved the expression levels of HN and virus titers, we found that HPIV3 pseudotyped viruses contained about 14-fold fewer envelope proteins than lentiviruses pseudotyped with the amphotropic envelope protein. Taken together, our findings suggest that titers are low, not because virus producer cells express levels of HPIV3 envelope proteins that are too low, but because too few of these proteins are incorporated by the lentiviruses for them to be able to efficiently transduce cells.
Collapse
Affiliation(s)
- Cindy Jung
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia 30332-0535, USA
| | | |
Collapse
|
48
|
Pistello M, Vannucci L, Ravani A, Bonci F, Chiuppesi F, Del Santo B, Freer G, Bendinelli M. Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo dendritic cells and T lymphocytes. GENETIC VACCINES AND THERAPY 2007; 5:8. [PMID: 17880683 PMCID: PMC2075492 DOI: 10.1186/1479-0556-5-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/19/2007] [Indexed: 11/24/2022]
Abstract
Background Safe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised. Methods The pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (ψ), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line. Results To broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer ψ, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas ψ elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation. Conclusion In contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Laura Vannucci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Alessia Ravani
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Francesca Bonci
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Flavia Chiuppesi
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Barbara Del Santo
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Mauro Bendinelli
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
49
|
Khurana S, Krementsov DN, de Parseval A, Elder JH, Foti M, Thali M. Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains. J Virol 2007; 81:12630-40. [PMID: 17855546 PMCID: PMC2168970 DOI: 10.1128/jvi.01255-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.
Collapse
Affiliation(s)
- Sandhya Khurana
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bouard D, Sandrin V, Boson B, Nègre D, Thomas G, Granier C, Cosset FL. An acidic cluster of the cytoplasmic tail of the RD114 virus glycoprotein controls assembly of retroviral envelopes. Traffic 2007; 8:835-47. [PMID: 17547695 DOI: 10.1111/j.1600-0854.2007.00581.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroviral core proteins, Gag and envelope (Env) glycoproteins are expressed from distinct cellular areas and therefore need to encounter to assemble infectious particles. The intrinsic cell localisation properties of either viral component or their capacity to mutually interact determines the assembly of infectious particles. Here, we address how Env determinants and cellular sorting proteins allow the Env derived from gamma retroviruses, murine leukemia virus (MLV) and RD114, to travel to or from late endosomes (LE), which may represent the Env assembly site of retroviruses in some cells. The individual expression of MLV Env resulted in its accumulation in LE in contrast to RD114 Env that required the presence of gamma retroviral Gag proteins. To discriminate between intrinsic intracellular Env localisation and gamma retroviral Gag/Env interactions in influencing Env viral incorporation, we studied Env assembly on heterologous lentiviral particles on which they are passively recruited. We found that an acidic cluster present at the C-terminus of the RD114 Env cytoplasmic tail determines its sub-cellular localisation and retrograde transport. Mutation of this motif induced late endosomal concentration of the RD114 Env, correlating with increased viral incorporation and infectivity. Reciprocally, the reinforcement of a poorly functional acidic motif in the MLV Env resulted in a marked decrease of its late endosomal localisation, leading to weakly infectious lentiviral particles with low Env densities. Finally, through upregulation versus downregulation of its cellular expression, we show that phosphofurin acidic-cluster-sorting protein 1 (PACS-1) controls the function of the RD114 Env acidic cluster, assigning to this cellular effector a crucial role in modulation of Env assembly of some retroviruses.
Collapse
Affiliation(s)
- David Bouard
- Université de Lyon, (UCB-Lyon1), IFR128, Lyon, F-69007, France
| | | | | | | | | | | | | |
Collapse
|