1
|
Zeng R, Chen X, Chen Y, Dong J. FGFR4 inhibition augments paclitaxel-induced cell death in ovarian cancer. Int Immunopharmacol 2025; 155:114626. [PMID: 40245772 DOI: 10.1016/j.intimp.2025.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, which has a high mortality rate due to frequent tumor recurrence. The development of drug resistance against the first-line chemotherapeutic agent, such as paclitaxel/Taxol®, represents a critical reason. The mechanisms of paclitaxel resistance remain largely unknown, and druggable drivers which can be targeted to prevent or revert paclitaxel resistance also need to be identified. METHODS Phos-tag-based screens in cells treated with paclitaxel were used to identify key regulators involved in paclitaxel resistance, such as fibroblast growth factor receptor 4 (FGFR4). The functional role of FGFR4 in regulating paclitaxel resistance was further identified using apoptosis assays, which included the identification of apoptotic marker levels and activities. The involvement of FGFR4 downstream signaling pathways involved in paclitaxel resistance were identified through western blotting and quantitative PCR. Their roles in regulating paclitaxel resistance were also validated using apoptosis assays. Immunofluorescent staining was performed to identify the synergy of paclitaxel and FGFR4 inhibition. RESULTS Functional in vitro and in vivo studies demonstrate that FGFR4 depletion suppresses ovarian cancer cell proliferation, migration, and tumor growth. Importantly, FGFR4 silencing or specific inhibition can sensitize ovarian cancer cells to paclitaxel, whereas FGFR4 overexpression confers paclitaxel resistance. Mechanistically, FGFR4 regulates paclitaxel sensitivity in EOC cells through modulating the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL) via MEK-ERK-RSK signaling pathway. The inhibition of Bcl-xL or MEK-ERK-RSK signaling can also enhance paclitaxel-stimulated cytotoxicity. CONCLUSION These findings indicate that targeting FGFR4 can be a promising novel strategy to overcome paclitaxel resistance and improve the outcomes of EOC patients.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Female
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Carcinoma, Ovarian Epithelial/drug therapy
- Mice
- Mice, Nude
- Signal Transduction/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
Collapse
Affiliation(s)
- Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.; Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China..
| | - Xingcheng Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA..
| |
Collapse
|
2
|
Harrison EN, Jay AN, Kent MR, Sukienik TP, LaVigne CA, Kendall GC. Engineering an fgfr4 knockout zebrafish to study its role in development and disease. PLoS One 2024; 19:e0310100. [PMID: 39576839 PMCID: PMC11584112 DOI: 10.1371/journal.pone.0310100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 11/24/2024] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has a role in many biological processes, including lipid metabolism, tissue repair, and vertebrate development. In recent years, FGFR4 overexpression and activating mutations have been associated with numerous adult and pediatric cancers. As such, FGFR4 presents an opportunity for therapeutic targeting which is being pursued in clinical trials. To understand the role of FGFR4 signaling in disease and development, we generated and characterized three alleles of fgfr4 knockout zebrafish strains using CRISPR/Cas9. To generate fgfr4 knockout crispants, we injected single-cell wildtype zebrafish embryos with fgfr4 targeting guide RNA and Cas9 proteins, identified adult founders, and outcrossed to wildtype zebrafish to create an F1 generation. The generated mutations introduce a stop codon within the second Ig-like domain of Fgfr4, resulting in a truncated 215, 223, or 228 amino acid Fgfr4 protein compared to 922 amino acids in the full-length protein. All mutant strains exhibited significantly decreased fgfr4 mRNA expression during development, providing evidence for successful knockout of fgfr4 in mutant zebrafish. We found that, consistent with other Fgfr4 knockout animal models, the fgfr4 mutant fish developed normally; however, homozygous fgfr4 mutant zebrafish were significantly smaller than wildtype fish at three months post fertilization. These fgfr4 knockout zebrafish lines are a valuable tool to study the role of FGFR4 in vertebrate development and its viability as a potential therapeutic target in pediatric and adult cancers, as well as other diseases.
Collapse
Affiliation(s)
- Emma N. Harrison
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Amanda N. Jay
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States of America
| | - Matthew R. Kent
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Talia P. Sukienik
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Collette A. LaVigne
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Genevieve C. Kendall
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
3
|
Li H, Dong X, Wang L, Wen H, Qi X, Zhang K, Li Y. Genome-wide identification of Fgfr genes and function analysis of Fgfr4 in myoblasts differentiation of Lateolabrax maculatus. Gene 2024; 927:148717. [PMID: 38908457 DOI: 10.1016/j.gene.2024.148717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Fibroblast growth factor receptors (Fgfrs) are involved in cell proliferation, differentiation, and migration via complex signaling pathways in different tissues. Our previous studies showed that fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL) for growth traits. However, studies focusing on the function of fgfr4 on the growth of bony fish are still limited. In this study, we identified seven fgfr genes in spotted sea bass (Lateolabrax maculatus) genome, namely fgfr1a, fgfr1b, fgfr2, fgfr3, fgfr4, fgfr5a, and fgfr5b. Phylogenetic analysis, syntenic analysis and gene structure analysis were conducted to further support the accuracy of our annotation and classification results. Additionally, fgfr4 showed the highest expression levels among fgfrs during the proliferation and differentiation stages of spotted sea bass myoblasts. To further study the function of fgfr4 in myogenesis, dual-fluorescence in situ hybridization (ISH) assay was conducted, and the results showed co-localization of fgfr4 with marker gene of skeletal muscle satellite cells. By treating differentiating myoblasts cultured in vitro with BLU-554, the mRNA expressions of myogenin (myog) and the numbers of myotubes formed by myoblasts increased significantly compared to negative control group. These results indicated that Fgfr4 inhibits the differentiation of myoblasts in spotted sea bass. Our findings contributed to filling a research gap on fgfr4 in bony fish myogenesis and the theoretical understanding of growth trait regulation of spotted sea bass.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
4
|
Xiao W, Xu L, Wang J, Yu K, Xu B, Que Y, Zhao J, Pan Q, Gao C, Zhou P, Zhang X. FGFR4-specific CAR-T cells with inducible caspase-9 suicide gene as an approach to treat rhabdomyosarcoma. Cancer Gene Ther 2024; 31:1571-1584. [PMID: 39183354 PMCID: PMC11489081 DOI: 10.1038/s41417-024-00823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.
Collapse
MESH Headings
- Rhabdomyosarcoma/therapy
- Rhabdomyosarcoma/genetics
- Animals
- Humans
- Mice
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Genes, Transgenic, Suicide
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis
- Female
Collapse
Affiliation(s)
- Wei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Liping Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Kuai Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
| | - Bushu Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiuzhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Chengqi Gao
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Lan Y, Yan D, Li X, Zhou C, Bai Y, Dong X. Muscle growth differences in Lijiang pigs revealed by ATAC-seq multi-omics. Front Vet Sci 2024; 11:1431248. [PMID: 39253524 PMCID: PMC11381499 DOI: 10.3389/fvets.2024.1431248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
As one of the largest tissues in the animal body, skeletal muscle plays a pivotal role in the production and quality of pork. Consequently, it is of paramount importance to investigate the growth and developmental processes of skeletal muscle. Lijiang pigs, which naturally have two subtypes, fast-growing and slow-growing, provide an ideal model for such studies by eliminating breed-related influences. In this study, we selected three fast-growing and three slow-growing 6-month-old Lijiang pigs as subjects. We utilized assay for transposase-accessible chromatin with sequencing (ATAC-seq) combined with genomics, RNA sequencing, and proteomics to screen for differentially expressed genes and transcription factors linked to increased longissimus dorsi muscle volume in Lijiang pigs. We identified 126 genes through ATAC-seq, including PPARA, TNRC6B, NEDD1, and FKBP5, that exhibited differential expression patterns during muscle growth. Additionally, we identified 59 transcription factors, including Foxh1, JunB, Mef2 family members (Mef2a/b/c/d), NeuroD1, and TEAD4. By examining open chromatin regions (OCRs) with significant genetic differentiation, genes such as SAV1, CACNA1H, PRKCG, and FGFR4 were found. Integrating ATAC-seq with transcriptomics and transcriptomics with proteomics, we identified differences in open chromatin regions, transcription, and protein levels of FKBP5 and SCARB2 genes in fast-growing and slow-growing Lijiang pigs. Utilizing multi-omics analysis with R packages, we jointed ATAC-seq, transcriptome, and proteome datasets, identifying enriched pathways related to glycogen metabolism and skeletal muscle cell differentiation. We pinpointed genes such as MYF6 and HABP2 that exhibit strong correlations across these diverse data types. This study provides a multi-faceted understanding of the molecular mechanisms that lead to differences in pig muscle fiber growth.
Collapse
Affiliation(s)
- Yi Lan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinpeng Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunlu Zhou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Harrison EN, Jay AN, Kent MR, Sukienik TP, LaVigne CA, Kendall GC. Engineering an fgfr4 knockout zebrafish to study its role in development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593184. [PMID: 38766056 PMCID: PMC11100669 DOI: 10.1101/2024.05.08.593184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has a role in many biological processes, including lipid metabolism, tissue repair, and vertebrate development. In recent years, FGFR4 overexpression and activating mutations have been associated with numerous adult and pediatric cancers. As such, FGFR4 presents an opportunity for therapeutic targeting which is being pursued in clinical trials. To understand the role of FGFR4 signaling in disease and development, we generated and characterized three alleles of fgfr4 knockout zebrafish strains using CRISPR/Cas9. To generate fgfr4 knockout crispants, we injected single-cell wildtype zebrafish embryos with fgfr4 targeting guide RNA and Cas9 proteins, identified adult founders, and outcrossed to wildtype zebrafish to create an F1 generation. The generated mutations introduce a stop codon within the second Ig-like domain of Fgfr4, resulting in a truncated 215, 223, or 228 amino acid Fgfr4 protein compared to 922 amino acids in the full-length protein. All mutant strains exhibited significantly decreased fgfr4 mRNA expression during development, providing evidence for successful knockout of fgfr4 in mutant zebrafish. We found that, consistent with other Fgfr4 knockout animal models, the fgfr4 mutant fish developed normally; however, homozygous fgfr4 mutant zebrafish were significantly smaller than wildtype fish at three months post fertilization. These fgfr4 knockout zebrafish lines are a valuable tool to study the role of FGFR4 in vertebrate development and its viability as a potential therapeutic target in pediatric and adult cancers, as well as other diseases.
Collapse
|
7
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
8
|
Alboali H, Moradi MH, Khaltabadi Farahani AH, Mohammadi H. Genome-wide association study for body weight and feed consumption traits in Japanese quail using Bayesian approaches. Poult Sci 2024; 103:103208. [PMID: 37980758 PMCID: PMC10663954 DOI: 10.1016/j.psj.2023.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/21/2023] Open
Abstract
The aim of this study was to perform a genome-wide association study (GWAS) based on Bayes A and Bayes B statistical methods to identify genomic loci and candidate genes associated with body weight gain, feed intake, and feed conversion ratio in Japanese quail. For this purpose, genomic data obtained from Illumina iSelect 4K quail SNP chip were utilized. After implementing various quality control steps, genotype data from a total of 875 birds for 2,015 SNP markers were used for subsequent analyses. The Bayesian analyses were performed using hibayes package in R (version 4.3.1) and Gibbs sampling algorithm. The results of the analyses showed that Bayes A accounted for 11.43, 11.65, and 11.39% of the phenotypic variance for body weight gain, feed intake, and feed conversion ratio, respectively, while the variance explained by Bayes B was 7.02, 8.61, and 6.48%, respectively. Therefore, in the current study, results obtained from Bayes A were used for further analyses. In order to perform the gene enrichment analysis and to identify the functional pathways and classes of genes that are over-represented in a large set of genes associated with each trait, all markers that accounted for more than 0.1% of the phenotypic variance for each trait were used. The results of this analysis revealed a total of 23, 38, and 14 SNP markers associated with body weight gain, feed intake, and feed conversion ratio in Japanese quail, respectively. The results of the gene enrichment analysis led to the identification of biological pathways (and candidate genes) related to lipid phosphorylation (TTC7A gene) and cell junction (FGFR4 and FLRT2 genes) associated with body weight gain, calcium signaling pathway (ADCY2 and CAMK1D genes) associated with feed intake, and glycerolipid metabolic process (LIPC gene), lipid metabolic process (ADGRF5 and ESR1 genes), and glutathione transferase (GSTK1 gene) associated with feed conversion ratio. Overall, the findings of this study can provide valuable insights into the genetic architecture of growth and feed consumption traits in Japanese quail.
Collapse
Affiliation(s)
- Hassan Alboali
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran.
| | | | - Hossein Mohammadi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| |
Collapse
|
9
|
Tian M, Wei JS, Shivaprasad N, Highfill SL, Gryder BE, Milewski D, Brown GT, Moses L, Song H, Wu JT, Azorsa P, Kumar J, Schneider D, Chou HC, Song YK, Rahmy A, Masih KE, Kim YY, Belyea B, Linardic CM, Dropulic B, Sullivan PM, Sorensen PH, Dimitrov DS, Maris JM, Mackall CL, Orentas RJ, Cheuk AT, Khan J. Preclinical development of a chimeric antigen receptor T cell therapy targeting FGFR4 in rhabdomyosarcoma. Cell Rep Med 2023; 4:101212. [PMID: 37774704 PMCID: PMC10591056 DOI: 10.1016/j.xcrm.2023.101212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.
Collapse
Affiliation(s)
- Meijie Tian
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Jun S Wei
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Nityashree Shivaprasad
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - David Milewski
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - G Tom Brown
- Artificial Intelligence Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Larry Moses
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Hannah Song
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Jerry T Wu
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Peter Azorsa
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Jeetendra Kumar
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Dina Schneider
- Lentigen Corporation, Miltenyi Bioindustry, 1201 Clopper Road, Gaithersburg, MD 20878, USA
| | - Hsien-Chao Chou
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Young K Song
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Abdelrahman Rahmy
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Katherine E Masih
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Yong Yean Kim
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Brian Belyea
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Corinne M Linardic
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Boro Dropulic
- Caring Cross, 708 Quince Orchard Road, Gaithersburg, MD 20878, USA
| | - Peter M Sullivan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, 1100 Olive Way, Seattle, WA 98101, USA
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - John M Maris
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rimas J Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, 1100 Olive Way, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Adam T Cheuk
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA.
| | - Javed Khan
- Genetics Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
11
|
Negah SS, Forouzanfar F. Dual Role of Fibroblast Growth Factor Pathways in Sleep Regulation. Endocr Metab Immune Disord Drug Targets 2023; 23:63-69. [PMID: 35927892 DOI: 10.2174/1871530322666220802161031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
Abstract
Sleep plays an important function in neuro-immuno-endocrine homeostasis. Sleep disorders have been associated with an increased risk of metabolic and cognitive impairments. Among different factors that have an effect on sleep metabolism, a growing body of literature has investigated growth factors in the course of sleep quality and disorders. A good example of growth factors is fibroblast growth factors (FGFs), which are a large family of polypeptide growth factors. Evidence has shown that FGFs are involved in the modulation of sleep-wake behavior by their receptor subtypes and ligands, e.g., FFG1 plays an important role in the quality of sleep through somnogenic effects, while the high level of FGF23 is associated with secondary disorders in shift workers. Therefore, a controversial effect of FGFs can be seen in the course of sleep in physiologic and pathologic conditions. Further investigation on this topic would help us to understand the role of FGFs in sleep disorders as a therapeutic option and biomarker.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Zhang M, Guo Y, Su R, Corazzin M, Hou R, Xie J, Zhang Y, Zhao L, Su L, Jin Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci 2022; 194:108996. [PMID: 36195032 DOI: 10.1016/j.meatsci.2022.108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Supplementing animal feed with probiotic additives can promote muscle production and improve meat quality. The study aimed to explore the effects of dietary probiotics supplementation on the performance, meat quality and muscle transcriptome profile in Sunit lamb. Overall, feeding probiotics significantly increased the body length, LT area, pH24h and intramuscular fat (IMF) content, but decreased cooking loss and meat shear force compared to the control group (P < .05). A total of 651 differentially expressed genes (DEGs) were found in probiotic supplemented lambs. Pathway analysis revealed that DEGs were involved in multiple pathways related to muscle development and fat deposition, such as the ECM-receptor interactions, the MAPK signaling pathway and the FoxO signaling pathway. Therefore, dietary probiotic supplementation can improve muscle development and final meat quality in Sunit lambs by altering gene expression profiles associated with key pathways, providing unique insights into the molecular mechanisms by which dietary probiotics regulate muscle development in the lamb industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Ran Hou
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Jingyu Xie
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China.
| |
Collapse
|
13
|
Strategies to inhibit FGFR4 V550L-driven rhabdomyosarcoma. Br J Cancer 2022; 127:1939-1953. [PMID: 36097178 PMCID: PMC9681859 DOI: 10.1038/s41416-022-01973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is a paediatric cancer driven either by fusion proteins (e.g., PAX3-FOXO1) or by mutations in key signalling molecules (e.g., RAS or FGFR4). Despite the latter providing opportunities for precision medicine approaches in RMS, there are currently no such treatments implemented in the clinic. METHODS We evaluated biologic properties and targeting strategies for the FGFR4 V550L activating mutation in RMS559 cells, which have a high allelic fraction of this mutation and are oncogenically dependent on FGFR4 signalling. Signalling and trafficking of FGFR4 V550L were characterised by confocal microscopy and proteomics. Drug effects were determined by live-cell imaging, MTS assay, and in a mouse model. RESULTS Among recently developed FGFR4-specific inhibitors, FGF401 inhibited FGFR4 V550L-dependent signalling and cell proliferation at low nanomolar concentrations. Two other FGFR4 inhibitors, BLU9931 and H3B6527, lacked potent activity against FGFR4 V550L. Alternate targeting strategies were identified by RMS559 phosphoproteomic analyses, demonstrating that RAS/MAPK and PI3K/AKT are essential druggable pathways downstream of FGFR4 V550L. Furthermore, we found that FGFR4 V550L is HSP90-dependent, and HSP90 inhibitors efficiently impeded RMS559 proliferation. In a RMS559 mouse xenograft model, the pan-FGFR inhibitor, LY2874455, did not efficiently inhibit growth, whereas FGF401 potently abrogated growth. CONCLUSIONS Our results pave the way for precision medicine approaches against FGFR4 V550L-driven RMS.
Collapse
|
14
|
Homer-Bouthiette C, Xiao L, Hurley MM. Gait disturbances and muscle dysfunction in fibroblast growth factor 2 knockout mice. Sci Rep 2021; 11:11005. [PMID: 34040128 PMCID: PMC8154953 DOI: 10.1038/s41598-021-90565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is important in musculoskeletal homeostasis, therefore the impact of reduction or Fgf2 knockout on skeletal muscle function and phenotype was determined. Gait analysis as well as muscle strength testing in young and old WT and Fgf2KO demonstrated age-related gait disturbances and reduction in muscle strength that were exacerbated in the KO condition. Fgf2 mRNA and protein were significantly decreased in skeletal muscle of old WT compared with young WT. Muscle fiber cross-sectional area was significantly reduced with increased fibrosis and inflammatory infiltrates in old WT and Fgf2KO vs. young WT. Inflammatory cells were further significantly increased in old Fgf2KO compared with old WT. Lipid-related genes and intramuscular fat was increased in old WT and old Fgf2KO with a further increase in fibro-adipocytes in old Fgf2KO compared with old WT. Impaired FGF signaling including Increased β-Klotho, Fgf21 mRNA, FGF21 protein, phosphorylated FGF receptors 1 and 3, was observed in old WT and old Fgf2KO. MAPK/ ERK1/2 was significantly increased in young and old Fgf2KO. We conclude that Fgf2KO, age-related decreased FGF2 in WT mice, and increased FGF21 in the setting of impaired Fgf2 expression likely contribute to impaired skeletal muscle function and sarcopenia in mice.
Collapse
Affiliation(s)
- C Homer-Bouthiette
- Yale Internal Medicine Residency Program, Yale New Haven Hospital, New Haven, CT, 06510, USA
| | - L Xiao
- Department of Medicine, School of Medicine, UConn Health, University of Connecticut, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Marja M Hurley
- Department of Medicine, School of Medicine, UConn Health, University of Connecticut, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
15
|
Zhang X, Sun W, He L, Wang L, Qiu K, Yin J. Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Res Ther 2020; 11:536. [PMID: 33308295 PMCID: PMC7731745 DOI: 10.1186/s13287-020-02053-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. Methods In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. Results As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. Conclusions This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02053-3.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Alijaj N, Moutel S, Gouveia ZL, Gray M, Roveri M, Dzhumashev D, Weber F, Meier G, Luciani P, Rössler JK, Schäfer BW, Perez F, Bernasconi M. Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12113313. [PMID: 33182650 PMCID: PMC7696840 DOI: 10.3390/cancers12113313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Rhabdomyosarcoma (RMS) accounts for more than 50% of all soft tissue sarcomas in childhood and adolescence. Despite progress and intensified multimodality treatment, prognoses are extremely poor with an overall survival rate of approximately 20% in the advanced stage. Therefore, there is an urgent need for targeted treatment options to improve overall survival rates, and to limit long-term side effects. The fibroblast growth factor receptor 4 (FGFR4) is overexpressed in RMS and other tumors as well. The goal of this work was to select FGFR4 specific single-domain antibodies (sdAb) and to develop FGFR4-targeted therapies. We could show that FGFR4-targeted liposomes have the potential to deliver drugs specifically to FGFR4-positive tumor cells and that chimeric antigen receptor T cells built with the selected antibodies can kill specifically FGFR4-expressing RMS cells. Abstract The fibroblast growth factor receptor 4 (FGFR4) is overexpressed in rhabdomyosarcoma (RMS) and represents a promising target for treatments based on specific and efficient antibodies. Despite progress, there is an urgent need for targeted treatment options to improve survival rates, and to limit long-term side effects. From phage display libraries we selected FGFR4-specific single-domain antibodies (sdAb) binding to recombinant FGFR4 and validated them by flow cytometry, surface plasmon resonance, and fluorescence microscopy. The specificity of the selected sdAb was verified on FGFR4-wild type and FGFR4-knock out cells. FGFR4-sdAb were used to decorate vincristine-loaded liposomes and to generate chimeric antigen receptor (CAR) T cells. First, incubation of RMS cells with FGFR4-sdAb revealed that FGFR4-sdAb can block FGF19-FGFR4 signaling via the MAPK pathway and could therefore serve as therapeutics for FGFR4-dependent cancers. Second, FGFR4-targeted vincristine-loaded liposomes bound specifically to RMS cells and were internalized by the receptor, demonstrating the potential for active drug delivery to the tumor. Third, FGFR4-CAR T cells, generated with one sdAb candidate, demonstrated strong and specific cytotoxicity against FGFR4 expressing RMS cells. We selected novel FGFR4-sdAb with high specificity and nano- to picomolar affinities for FGFR4 which have the potential to enable multiple FGFR4-targeted cancer therapy approaches.
Collapse
Affiliation(s)
- Nagjie Alijaj
- Department of Oncology, Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (N.A.); (M.G.); (M.R.); (B.W.S.)
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (D.D.); (J.K.R.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Sandrine Moutel
- Institut Curie, PSL Research University, CNRS UMR144, 75248 Paris, France; (S.M.); (Z.L.G.)
- Recombinant Antibody Platform (TAb-IP), Institut Curie, 75248 Paris, France
| | - Zelia L. Gouveia
- Institut Curie, PSL Research University, CNRS UMR144, 75248 Paris, France; (S.M.); (Z.L.G.)
- Honing Biosciences, 75004 Paris, France
| | - Maxim Gray
- Department of Oncology, Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (N.A.); (M.G.); (M.R.); (B.W.S.)
| | - Maurizio Roveri
- Department of Oncology, Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (N.A.); (M.G.); (M.R.); (B.W.S.)
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (D.D.); (J.K.R.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Florian Weber
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (F.W.); (P.L.)
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland;
| | - Paola Luciani
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (F.W.); (P.L.)
| | - Jochen K. Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (D.D.); (J.K.R.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Beat W. Schäfer
- Department of Oncology, Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (N.A.); (M.G.); (M.R.); (B.W.S.)
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS UMR144, 75248 Paris, France; (S.M.); (Z.L.G.)
- Correspondence: (F.P.); (M.B.)
| | - Michele Bernasconi
- Department of Oncology, Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland; (N.A.); (M.G.); (M.R.); (B.W.S.)
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (D.D.); (J.K.R.)
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Correspondence: (F.P.); (M.B.)
| |
Collapse
|
17
|
Wei W, Cao S, Liu J, Wang Y, Song Q, A L, Sun S, Zhang X, Liang X, Jiang Y. Fibroblast growth factor receptor 4 as a prognostic indicator in triple-negative breast cancer. Transl Cancer Res 2020; 9:6881-6888. [PMID: 35117296 PMCID: PMC8797274 DOI: 10.21037/tcr-20-1756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/26/2020] [Indexed: 11/18/2022]
Abstract
Background Triple-negative breast cancer (TNBC) constitutes up to 15% of all breast cancers. It is one of the most aggressive breast cancers and is more prone to metastasize compared with other subtypes. Breast cancer patients with this subtype usually have a poor prognosis. Fibroblast growth factor receptor 4 (FGFR4) belongs to the receptor tyrosine kinase (RTK) family, and early analyses identified that FGFR4 was involved in breast cancer. However, the prognostic effect of FGFR4 on TNBC is unknown. In the present study, we investigated the association between FGFR4 and TNBC prognosis. Methods A total of 282 TNBC patients were enrolled. FGFR4 protein expression was detected in these 282 TNBC patients using immunohistochemistry (IHC). Results In the present study, FGFR4 was highly expressed in TNBC patients. Lymph node metastasis (LNM) (P=0.033) and p53 status (P=0.019) were associated with high FGFR4 expression. Univariate analysis identified high FGFR4 expression (P=0.016) as a prognostic predictor, and multivariate analysis found that high FGFR4 expression (P=0.016) was an independent prognostic factor. The Kaplan-Meier survival curve showed that high FGFR4 protein expression was correlated with poorer overall survival (OS). Conclusions The results of our present study show that FGFR4 protein expression is correlated with a worse prognosis in TNBC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Breast Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shiyu Cao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuhang Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Quanfu Song
- Department of Oncology, Altay District People's Hospital, Altay, China
| | - Leha A
- Department of Oncology, Altay District People's Hospital, Altay, China
| | - Shanshan Sun
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoshuan Liang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
18
|
Levine KM, Ding K, Chen L, Oesterreich S. FGFR4: A promising therapeutic target for breast cancer and other solid tumors. Pharmacol Ther 2020; 214:107590. [PMID: 32492514 PMCID: PMC7494643 DOI: 10.1016/j.pharmthera.2020.107590] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The fibroblast growth factor receptor (FGFR) signaling pathway has long been known to cancer researchers because of its role in cell survival, proliferation, migration, and angiogenesis. Dysregulation of FGFR signaling is frequently reported in cancer studies, but most of these studies focus on FGFR1-3. However, there is growing evidence implicating an important and unique role of FGFR4 in oncogenesis, tumor progression, and resistance to anti-tumor therapy in multiple types of cancer. Importantly, there are several novel FGFR4-specific inhibitors in clinical trials, making FGFR4 an attractive target for further research. In this review, we focus on assessing the role of FGFR4 in cancer, with an emphasis on breast cancer. First, the structure, physiological functions and downstream signaling pathways of FGFR4 are introduced. Next, different mechanisms reported to cause aberrant FGFR4 activation and their functions in cancer are discussed, including FGFR4 overexpression, FGF ligand overexpression, FGFR4 somatic hotspot mutations, and the FGFR4 G388R single nucleotide polymorphism. Finally, ongoing and recently completed clinical trials targeting FGFRs in cancer are reviewed, highlighting the therapeutic potential of FGFR4 inhibition for the treatment of breast cancer.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Molecular Targeted Therapy
- Mutation
- Polymorphism, Single Nucleotide
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lyuqin Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Wang F, Li X, Wang C. Editorial: Resident and Ectopic FGF Signaling in Development and Disease. Front Cell Dev Biol 2020; 8:720. [PMID: 32984306 PMCID: PMC7479059 DOI: 10.3389/fcell.2020.00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fen Wang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, College Station, TX, United States.,Department of Translational Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Liu Y, Wang H, Wen H, Shi Y, Zhang M, Qi X, Zhang K, Gong Q, Li J, He F, Hu Y, Li Y. First High-Density Linkage Map and QTL Fine Mapping for Growth-Related Traits of Spotted Sea bass (Lateolabrax maculatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:526-538. [PMID: 32424479 DOI: 10.1007/s10126-020-09973-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Possessing powerful adaptive capacity and a pleasant taste, spotted sea bass (Lateolabrax maculatus) has a broad natural distribution and is one of the most popular mariculture fish in China. However, the genetic improvement program for this fish is still in its infancy. Growth is the most economically important trait and is controlled by quantitative trait loci (QTL); thus, the identification of QTLs and genetic markers for growth-related traits is an essential step for the establishment of marker-assisted selection (MAS) breeding programs. In this study, we report the first high-density linkage map of spotted sea bass constructed by sequencing 333 F1 generation individuals in a full-sib family using 2b-RAD technology. A total of 6883 SNP markers were anchored onto 24 linkage groups, spanning 2189.96 cM with an average marker interval of 0.33 cM. Twenty-four growth-related QTLs, including 13 QTLs for body weight and 11 QTLs for body length, were successfully detected, with phenotypic variance explained (PVE) ranging from 5.1 to 8.6%. Thirty potential candidate growth-related genes surrounding the associated SNPs were involved in cell adhesion, cell proliferation, cytoskeleton reorganization, calcium channels, and neuromodulation. Notably, the fgfr4 gene was detected in the most significant QTL; this gene plays a pivotal role in myogenesis and bone growth. The results of this study may facilitate marker-assisted selection for breeding populations and establish the foundation for further genomic and genetic studies investigating spotted sea bass.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haolong Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Meizhao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingli Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yanbo Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
21
|
Wu C, Chen X, Chen D, Xia Q, Liu Z, Li F, Yan Y, Cai Y. Insight into ponatinib resistance mechanisms in rhabdomyosarcoma caused by the mutations in FGFR4 tyrosine kinase using molecular modeling strategies. Int J Biol Macromol 2019; 135:294-302. [DOI: 10.1016/j.ijbiomac.2019.05.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 01/03/2023]
|
22
|
Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, Pendón-Ruiz de Mier MV, Martin-Malo A, Rodriguez M. FGF23, Biomarker or Target? Toxins (Basel) 2019; 11:E175. [PMID: 30909513 PMCID: PMC6468608 DOI: 10.3390/toxins11030175] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays a key role in the complex network between the bones and other organs. Initially, it was thought that FGF23 exclusively regulated phosphate and vitamin D metabolism; however, recent research has demonstrated that an excess of FGF23 has other effects that may be detrimental in some cases. The understanding of the signaling pathways through which FGF23 acts in different organs is crucial to develop strategies aiming to prevent the negative effects associated with high FGF23 levels. FGF23 has been described to have effects on the heart, promoting left ventricular hypertrophy (LVH); the liver, leading to production of inflammatory cytokines; the bones, inhibiting mineralization; and the bone marrow, by reducing the production of erythropoietin (EPO). The identification of FGF23 receptors will play a remarkable role in future research since its selective blockade might reduce the adverse effects of FGF23. Patients with chronic kidney disease (CKD) have very high levels of FGF23 and may be the population suffering from the most adverse FGF23-related effects. The general population, as well as kidney transplant recipients, may also be affected by high FGF23. Whether the association between FGF23 and clinical events is causal or casual remains controversial. The hypothesis that FGF23 could be considered a therapeutic target is gaining relevance and may become a promising field of investigation in the future.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Rafael Santamaria
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Juan R Muñoz-Castañeda
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - M Victoria Pendón-Ruiz de Mier
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Alejandro Martin-Malo
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Mariano Rodriguez
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| |
Collapse
|
23
|
Tang S, Hao Y, Yuan Y, Liu R, Chen Q. Role of fibroblast growth factor receptor 4 in cancer. Cancer Sci 2018; 109:3024-3031. [PMID: 30070748 PMCID: PMC6172014 DOI: 10.1111/cas.13759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) play a significant role in both embryonic development and in adults. Upon binding with ligands, FGFR signaling is activated and triggers various downstream signal cascades that are implicated in diverse biological processes. Aberrant regulations of FGFR signaling are detected in numerous cancers. Although FGFR4 was discovered later than other FGFR, information on the involvement of FGFR4 in cancers has significantly increased in recent years. In this review, the recent findings in FGFR4 structure, signaling transduction, physiological function, aberrant regulations, and effects in cancers as well as its potential applications as an anticancer therapeutic target are summarized.
Collapse
Affiliation(s)
- Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Avin KG, Vallejo JA, Chen NX, Wang K, Touchberry CD, Brotto M, Dallas SL, Moe SM, Wacker MJ. Fibroblast growth factor 23 does not directly influence skeletal muscle cell proliferation and differentiation or ex vivo muscle contractility. Am J Physiol Endocrinol Metab 2018; 315:E594-E604. [PMID: 29558205 PMCID: PMC6230710 DOI: 10.1152/ajpendo.00343.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/29/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
Skeletal muscle dysfunction accompanies the clinical disorders of chronic kidney disease (CKD) and hereditary hypophosphatemic rickets. In both disorders, fibroblast growth factor 23 (FGF23), a bone-derived hormone regulating phosphate and vitamin D metabolism, becomes chronically elevated. FGF23 has been shown to play a direct role in cardiac muscle dysfunction; however, it is unknown whether FGF23 signaling can also directly induce skeletal muscle dysfunction. We found expression of potential FGF23 receptors ( Fgfr1-4) and α-Klotho in muscles of two animal models (CD-1 and Cy/+ rat, a naturally occurring rat model of chronic kidney disease-mineral bone disorder) as well as C2C12 myoblasts and myotubes. C2C12 proliferation, myogenic gene expression, oxidative stress marker 8-OHdG, intracellular Ca2+ ([Ca2+]i), and ex vivo contractility of extensor digitorum longus (EDL) or soleus muscles were assessed after treatment with various amounts of FGF23. FGF23 (2-100 ng/ml) did not alter C2C12 proliferation, expression of myogenic genes, or oxidative stress after 24- to 72-h treatment. Acute or prolonged FGF23 treatment up to 6 days did not alter C2C12 [Ca2+]i handling, nor did acute treatment with FGF23 (9-100 ng/ml) affect EDL and soleus muscle contractility. In conclusion, although skeletal muscles express the receptors involved in FGF23-mediated signaling, in vitro FGF23 treatments failed to directly alter skeletal muscle development or function under the conditions tested. We hypothesize that other endogenous substances may be required to act in concert with FGF23 or apart from FGF23 to promote muscle dysfunction in hereditary hypophosphatemic rickets and CKD.
Collapse
Affiliation(s)
- Keith G Avin
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University , Indianapolis, Indiana
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Julian A Vallejo
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City , Kansas City, Missouri
| | - Neal X Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City , Kansas City, Missouri
| | - Chad D Touchberry
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri
| | - Marco Brotto
- College of Nursing and Health Innovation, Bone-Muscle Collaborative Sciences, University of Texas-Arlington , Arlington, Texas
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City , Kansas City, Missouri
| | - Sharon M Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
- Roudebush Veterans Administration Medical Center , Indianapolis, Indiana
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri
| |
Collapse
|
25
|
Zhang W, Xu Y, Zhang L, Wang S, Yin B, Zhao S, Li X. Synergistic effects of TGFβ2, WNT9a, and FGFR4 signals attenuate satellite cell differentiation during skeletal muscle development. Aging Cell 2018; 17:e12788. [PMID: 29869452 PMCID: PMC6052404 DOI: 10.1111/acel.12788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2018] [Indexed: 11/28/2022] Open
Abstract
Satellite cells play a key role in the aging, generation, and damage repair of skeletal muscle. The molecular mechanism of satellite cells in these processes remains largely unknown. This study systematically investigated for the first time the characteristics of mouse satellite cells at ten different ages. Results indicated that the number and differentiation capacity of satellite cells decreased with age during skeletal muscle development. Transcriptome analysis revealed that 2,907 genes were differentially expressed at six time points at postnatal stage. WGCNA and GO analysis indicated that 1,739 of the 2,907 DEGs were mainly involved in skeletal muscle development processes. Moreover, the results of WGCNA and protein interaction analysis demonstrated that Tgfβ2, Wnt9a, and Fgfr4 were the key genes responsible for the differentiation of satellite cells. Functional analysis showed that TGFβ2 and WNT9a inhibited, whereas FGFR4 promoted the differentiation of satellite cells. Furthermore, each two of them had a regulatory relationship at the protein level. In vivo study also confirmed that TGFβ2 could regulate the regeneration of skeletal muscle, as well as the expression of WNT9a and FGFR4. Therefore, we concluded that the synergistic effects of TGFβ2, WNT9a, and FGFR4 were responsible for attenuating of the differentiation of aging satellite cells during skeletal muscle development. This study provided new insights into the molecular mechanism of satellite cell development. The target genes and signaling pathways investigated in this study would be useful for improving the muscle growth of livestock or treating muscle diseases in clinical settings.
Collapse
Affiliation(s)
- Weiya Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Yueyuan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Lu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Binxu Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University; Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production; Wuhan China
| |
Collapse
|
26
|
McKinnon T, Venier R, Yohe M, Sindiri S, Gryder BE, Shern JF, Kabaroff L, Dickson B, Schleicher K, Chouinard-Pelletier G, Menezes S, Gupta A, Zhang X, Guha R, Ferrer M, Thomas CJ, Wei Y, Davani D, Guidos CJ, Khan J, Gladdy RA. Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene 2018; 37:2630-2644. [PMID: 29487419 PMCID: PMC8054765 DOI: 10.1038/s41388-017-0122-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined. This study tested FGFR4-activating mutations and overexpression for the ability to generate RMS in mice. Murine tumor models were subsequently used to discover potential therapeutic targets and to test a dual PI3K/mTOR inhibitor in a preclinical setting. Specifically, we provide the first mechanistic evidence of differential potency in the most common human RMS mutations, V550E or N535K, compared to FGFR4wt overexpression as murine myoblasts expressing FGFR4V550E undergo higher rates of cellular transformation, engraftment into mice, and rapidly form sarcomas that highly resemble human RMS. Murine tumor cells overexpressing FGFR4V550E were tested in an in vitro dose-response drug screen along with human RMS cell lines. Compounds were grouped by target class, and potency was determined using average percentage of area under the dose-response curve (AUC). RMS cells were highly sensitive to PI3K/mTOR inhibitors, in particular, GSK2126458 (omipalisib) was a potent inhibitor of FGFR4V550E tumor-derived cell and human RMS cell viability. FGFR4V550E-overexpressing myoblasts and tumor cells had low nanomolar GSK2126458 EC50 values. Mass cytometry using mouse and human RMS cell lines validated GSK2126458 specificity at single-cell resolution, decreasing the abundance of phosphorylated Akt as well as decreasing phosphorylation of the downstream mTOR effectors 4ebp1, Eif4e, and S6. Moreover, PI3K/mTOR inhibition also robustly decreased the growth of RMS tumors in vivo. Thus, by developing a preclinical platform for testing novel therapies, we identified PI3K/mTOR inhibition as a promising new therapy for this devastating pediatric cancer.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Marielle Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Sivasish Sindiri
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Berkley E Gryder
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brendan Dickson
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Krista Schleicher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Serena Menezes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Abha Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Wei
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dariush Davani
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia J Guidos
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
McKinnon T, Venier R, Yohe M, Sindiri S, Gryder BE, Shern JF, Kabaroff L, Dickson B, Schleicher K, Chouinard-Pelletier G, Menezes S, Gupta A, Zhang X, Guha R, Ferrer M, Thomas CJ, Wei Y, Davani D, Guidos CJ, Khan J, Gladdy RA. Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene 2018. [PMID: 29487419 DOI: 10.1038/s41388‐017‐0122‐y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined. This study tested FGFR4-activating mutations and overexpression for the ability to generate RMS in mice. Murine tumor models were subsequently used to discover potential therapeutic targets and to test a dual PI3K/mTOR inhibitor in a preclinical setting. Specifically, we provide the first mechanistic evidence of differential potency in the most common human RMS mutations, V550E or N535K, compared to FGFR4wt overexpression as murine myoblasts expressing FGFR4V550E undergo higher rates of cellular transformation, engraftment into mice, and rapidly form sarcomas that highly resemble human RMS. Murine tumor cells overexpressing FGFR4V550E were tested in an in vitro dose-response drug screen along with human RMS cell lines. Compounds were grouped by target class, and potency was determined using average percentage of area under the dose-response curve (AUC). RMS cells were highly sensitive to PI3K/mTOR inhibitors, in particular, GSK2126458 (omipalisib) was a potent inhibitor of FGFR4V550E tumor-derived cell and human RMS cell viability. FGFR4V550E-overexpressing myoblasts and tumor cells had low nanomolar GSK2126458 EC50 values. Mass cytometry using mouse and human RMS cell lines validated GSK2126458 specificity at single-cell resolution, decreasing the abundance of phosphorylated Akt as well as decreasing phosphorylation of the downstream mTOR effectors 4ebp1, Eif4e, and S6. Moreover, PI3K/mTOR inhibition also robustly decreased the growth of RMS tumors in vivo. Thus, by developing a preclinical platform for testing novel therapies, we identified PI3K/mTOR inhibition as a promising new therapy for this devastating pediatric cancer.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Marielle Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Sivasish Sindiri
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Berkley E Gryder
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brendan Dickson
- Department of Pathology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Krista Schleicher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Serena Menezes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Abha Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Wei
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dariush Davani
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia J Guidos
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Hatazawa Y, Ono Y, Hirose Y, Kanai S, Fujii NL, Machida S, Nishino I, Shimizu T, Okano M, Kamei Y, Ogawa Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration. FASEB J 2018; 32:1452-1467. [DOI: 10.1096/fj.201700573r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yukino Hatazawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
- Japan Society for the Promotion of Science Tokyo Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
- Division of Regenerative Medicine Research Japan Agency for Medical Research and Development (AMED) Tokyo Japan
| | - Yuma Hirose
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Sayaka Kanai
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Nobuharu L. Fujii
- Department of Health Promotion SciencesGraduate School of Human Health SciencesTokyo Metropolitan University Hachioji Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University Chiba Japan
| | - Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine Chiba University Graduate School of Medicine Chiba Japan
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University Kumamoto Japan
| | - Yasutomi Kamei
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Laboratory of Molecular Nutrition, Graduate School of Fnvironmental and Life Science Kyoto Prefectural University Kyoto Japan
| | - Yoshihiro Ogawa
- Department of Molecular Hndocrinology and MetabolismGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU) Tokyo Japan
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu University Fukuoka Japan
- Japan Agency for Medical Research and Development (AMED) Core Research for Evolutional Science and Technology (CREST) Tokyo Japan
| |
Collapse
|
29
|
Richter B, Faul C. FGF23 Actions on Target Tissues-With and Without Klotho. Front Endocrinol (Lausanne) 2018; 9:189. [PMID: 29770125 PMCID: PMC5940753 DOI: 10.3389/fendo.2018.00189] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 is a phosphaturic hormone whose physiologic actions on target tissues are mediated by FGF receptors (FGFR) and klotho, which functions as a co-receptor that increases the binding affinity of FGF23 for FGFRs. By stimulating FGFR/klotho complexes in the kidney and parathyroid gland, FGF23 reduces renal phosphate uptake and secretion of parathyroid hormone, respectively, thereby acting as a key regulator of phosphate metabolism. Recently, it has been shown that FGF23 can also target cell types that lack klotho. This unconventional signaling event occurs in an FGFR-dependent manner, but involves other downstream signaling pathways than in "classic" klotho-expressing target organs. It appears that klotho-independent signaling mechanisms are only activated in the presence of high FGF23 concentrations and result in pathologic cellular changes. Therefore, it has been postulated that massive elevations in circulating levels of FGF23, as found in patients with chronic kidney disease, contribute to associated pathologies by targeting cells and tissues that lack klotho. This includes the induction of cardiac hypertrophy and fibrosis, the elevation of inflammatory cytokine expression in the liver, and the inhibition of neutrophil recruitment. Here, we describe the signaling and cellular events that are caused by FGF23 in tissues lacking klotho, and we discuss FGF23's potential role as a hormone with widespread pathologic actions. Since the soluble form of klotho can function as a circulating co-receptor for FGF23, we also discuss the potential inhibitory effects of soluble klotho on FGF23-mediated signaling which might-at least partially-underlie the pleiotropic tissue-protective functions of klotho.
Collapse
|
30
|
Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144:4047-4060. [PMID: 29138288 DOI: 10.1242/dev.152587] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.
Collapse
Affiliation(s)
- Luigi Maddaluno
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Corinne Urwyler
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Nghiem PP, Kornegay JN, Uaesoontrachoon K, Bello L, Yin Y, Kesari A, Mittal P, Schatzberg SJ, Many GM, Lee NH, Hoffman EP. Osteopontin is linked with AKT, FoxO1, and myostatin in skeletal muscle cells. Muscle Nerve 2017; 56:1119-1127. [PMID: 28745831 PMCID: PMC5690863 DOI: 10.1002/mus.25752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 01/17/2023]
Abstract
Introduction: Osteopontin (OPN) polymorphisms are associated with muscle size and modify disease progression in Duchenne muscular dystrophy (DMD). We hypothesized that OPN may share a molecular network with myostatin (MSTN). Methods: Studies were conducted in the golden retriever (GRMD) and mdx mouse models of DMD. Follow‐up in‐vitro studies were employed in myogenic cells and the mdx mouse treated with recombinant mouse (rm) or human (Hu) OPN protein. Results: OPN was increased and MSTN was decreased and levels correlated inversely in GRMD hypertrophied muscle. RM‐OPN treatment led to induced AKT1 and FoxO1 phosphorylation, microRNA‐486 modulation, and decreased MSTN. An AKT1 inhibitor blocked these effects, whereas an RGD‐mutant OPN protein and an RGDS blocking peptide showed similar effects to the AKT inhibitor. RMOPN induced myotube hypertrophy and minimal Feret diameter in mdx muscle. Discussion: OPN may interact with AKT1/MSTN/FoxO1 to modify normal and dystrophic muscle. Muscle Nerve56: 1119–1127, 2017
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU, Texas A&M University, College Station, Texas, 77843-4458, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU, Texas A&M University, College Station, Texas, 77843-4458, USA
| | | | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Ying Yin
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Akanchha Kesari
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Priya Mittal
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Gina M Many
- Department of Health Sciences, Central Washington University, Ellensburg, Washington, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Eric P Hoffman
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, New York, USA
| |
Collapse
|
32
|
Cavanaugh E, DiMario JX. Sp3 controls fibroblast growth factor receptor 4 gene activity during myogenic differentiation. Gene 2017; 617:24-31. [PMID: 28359915 DOI: 10.1016/j.gene.2017.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/20/2016] [Accepted: 03/25/2017] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is a critical component in the regulation of myoblast proliferation and differentiation. The transient FGFR4 gene expression during the transition from proliferating myoblasts to differentiated myotubes indicates that FGFR4 regulates this critical phase of myogenesis. The Specificity Protein (SP) family of transcription factors controls FGFR family member gene activity. We sought to determine if members of the Sp family regulate mouse FGFR4 gene activity during myogenic differentiation. RT-PCR and western blot analysis of FGFR4 mRNA and protein revealed transient expression over 72h, with peak expression between 24 and 36h after addition of differentiation medium to C2C12 myogenic cultures. Sp3 also displayed a transient expression pattern with peak expression occurring after 6h of differentiation. We cloned a 1527bp fragment of the mouse FGFR4 promoter into a luciferase reporter. This FGFR4 promoter contains eight putative Sp binding sites and directed luciferase gene activity comparable to native FGFR4 expression. Overexpression of Sp1 and Sp3 showed that Sp1 repressed FGFR4 gene activity, and Sp3 activated FGFR4 gene activity during myogenic differentiation. Mutational analyses of multiple Sp binding sites within the FGFR4 promoter revealed that three of these sites were transcriptionally active. Electromobility shift assays and chromatin immunoprecipitation of the area containing the activator sites showed that Sp3 bound to this promoter location.
Collapse
Affiliation(s)
- Eric Cavanaugh
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, United States
| | - Joseph X DiMario
- School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, United States.
| |
Collapse
|
33
|
Pawlikowski B, Vogler TO, Gadek K, Olwin BB. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 2017; 246:359-367. [PMID: 28249356 DOI: 10.1002/dvdy.24495] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics 246:359-367, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley Pawlikowski
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Thomas Orion Vogler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Katherine Gadek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| |
Collapse
|
34
|
Arnold MA, Barr FG. Molecular diagnostics in the management of rhabdomyosarcoma. Expert Rev Mol Diagn 2017; 17:189-194. [PMID: 28058850 DOI: 10.1080/14737159.2017.1275965] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A classification of rhabdomyosarcoma (RMS) with prognostic relevance has primarily relied on clinical features and histologic classification as either embryonal or alveolar RMS. The PAX3-FOXO1 and PAX7-FOXO1 gene fusions occur in 80% of cases with the alveolar subtype and are more predictive of outcome than histologic classification. Identifying additional molecular hallmarks that further subclassify RMS is an active area of research. Areas Covered: The authors review the current state of the PAX3-FOXO1 and PAX7-FOXO1 fusions as prognostic biomarkers. Emerging biomarkers, including mRNA expression profiling, MYOD1 mutations, RAS pathway mutations and gene fusions involving NCOA2 or VGLL2 are also reviewed. Expert commentary: Strategies for modifying RMS risk stratification based on molecular biomarkers are emerging with the potential to transform the clinical management of RMS, ultimately improving patient outcomes by tailoring therapy to predicted patient risk and identifying targets for novel therapies.
Collapse
Affiliation(s)
- Michael A Arnold
- a Department of Pathology and Laboratory Medicine , Nationwide Children's Hospital , Columbus , OH , USA.,b Department of Pathology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Fredric G Barr
- c Laboratory of Pathology , National Cancer Institute , Bethesda , MD , USA
| |
Collapse
|
35
|
Wu W, Hai Y, Chen L, Liu RJ, Han YX, Li WH, Li S, Lin S, Wu XR. Deguelin-induced blockade of PI3K/protein kinase B/MAP kinase signaling in zebrafish and breast cancer cell lines is mediated by down-regulation of fibroblast growth factor receptor 4 activity. Pharmacol Res Perspect 2016; 4:e00212. [PMID: 27069628 PMCID: PMC4804323 DOI: 10.1002/prp2.212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 10/18/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Deguelin, a natural component derived from leguminous plants, has been used as pesticide in some regions. Accumulating evidence show that deguelin has promising chemopreventive and therapeutic activities against cancer cells. This study shows that low concentrations of deguelin can lead to significant delay in zebrafish embryonic development through growth inhibition and induction of apoptosis. Furthermore, we identified fibroblast growth factor receptor 4 (FGFR4) as the putative target of deguelin. The candidate was initially identified by a microarray approach and then validated through in vitro experiments using hormone‐responsive (MCF‐7) and nonresponsive (MDA‐MB‐231) human breast cancer cell lines. The results show that deguelin suppressed cell proliferation and induced apoptosis in both cancer cell lines, but not in Hs 578Bst cells, by blocking PI3K/AKT and mitogen‐activated protein kinases (MAPK) signaling. The FGFR4 mRNA and protein level also diminished in a dose‐dependent manner. Interestingly, we found that forced FGFR4 overexpression attenuated deguelin‐induced proliferative suppression and apoptotic cell death in both zebrafish and MCF‐7 cell lines, p‐AKT and p‐ERK levels were restored upon FGFR4 overexpression. Taken together, our results strongly suggest that deguelin inhibition of PI3K/AKT and MAPK signaling in zebrafish and breast cancer cell lines is partially mediated through down‐regulation of FGFR4 activity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Yang Hai
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Lu Chen
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Rui-Jin Liu
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Yu-Xiang Han
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Wen-Hao Li
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Song Li
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Shuo Lin
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China; Department of Molecular Cell and Developmental Biology University of California Los Angeles California 90095 USA
| | - Xin-Rong Wu
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| |
Collapse
|
36
|
Abstract
The tongue and mandible have common origins. They arise simultaneously from the mandibular arch and are coordinated in their development and growth, which is evident from several clinical conditions such as Pierre Robin sequence. Here, we review in detail the molecular networks controlling both mandible and tongue development. We also discuss their mechanical relationship and evolution as well as the potential for stem cell-based therapies for disorders affecting these organs.
Collapse
Affiliation(s)
- Carolina Parada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
37
|
Heinzle C, Erdem Z, Paur J, Grasl-Kraupp B, Holzmann K, Grusch M, Berger W, Marian B. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr Pharm Des 2015; 20:2881-98. [PMID: 23944363 DOI: 10.2174/13816128113199990594] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine 1, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Garza-Rodea ASDL, Boersma H, Dambrot C, Vries AAFD, Bekkum DWV, Knaän-Shanzer S. Barriers in contribution of human mesenchymal stem cells to murine muscle regeneration. World J Exp Med 2015; 5:140-153. [PMID: 25992329 PMCID: PMC4436938 DOI: 10.5493/wjem.v5.i2.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/31/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study regeneration of damaged human and murine muscle implants and the contribution of added xenogeneic mesenchymal stem cells (MSCs).
METHODS: Minced human or mouse skeletal muscle tissues were implanted together with human or mouse MSCs subcutaneously on the back of non-obese diabetic/severe combined immunodeficient mice. The muscle tissues (both human and murine) were minced with scalpels into small pieces (< 1 mm3) and aliquoted in portions of 200 mm3. These portions were either cryopreserved in 10% dimethylsulfoxide or freshly implanted. Syngeneic or xenogeneic MSCs were added to the minced muscles directly before implantation. Implants were collected at 7, 14, 30 or 45 d after transplantation and processed for (immuno)histological analysis. The progression of muscle regeneration was assessed using a standard histological staining (hematoxylin-phloxin-saffron). Antibodies recognizing Pax7 and von Willebrand factor were used to detect the presence of satellite cells and blood vessels, respectively. To enable detection of the bone marrow-derived MSCs or their derivatives we used MSCs previously transduced with lentiviral vectors expressing a cytoplasmic LacZ gene. X-gal staining of the fixed tissues was used to detect β-galactosidase-positive cells and myofibers.
RESULTS: Myoregeneration in implants of fresh murine muscle was evident as early as day 7, and progressed with time to occupy 50% to 70% of the implants. Regeneration of fresh human muscle was slower. These observations of fresh muscle implants were in contrast to the regeneration of cryopreserved murine muscle that proceeded similarly to that of fresh tissue except for day 45 (P < 0.05). Cryopreserved human muscle showed minimal regeneration, suggesting that the freezing procedure was detrimental to human satellite cells. In fresh and cryopreserved mouse muscle supplemented with LacZ-tagged mouse MSCs, β-galactosidase-positive myofibers were identified early after grafting at the well-vascularized periphery of the implants. The contribution of human MSCs to murine myofiber formation was, however, restricted to the cryopreserved mouse muscle implants. This suggests that fresh murine muscle tissue provides a suboptimal environment for maintenance of human MSCs. A detailed analysis of the histological sections of the various muscle implants revealed the presence of cellular structures with a deviating morphology. Additional stainings with alizarin red and alcian blue showed myofiber calcification in 50 of 66 human muscle implants, and encapsulated cartilage in 10 of 81 of murine muscle implants, respectively.
CONCLUSION: In mouse models the engagement of human MSCs in myoregeneration might be underestimated. Furthermore, our model permits the dissection of species-specific factors in the microenvironment.
Collapse
|
39
|
Hayashi S, Yokoyama H, Tamura K. Roles of Hippo signaling pathway in size control of organ regeneration. Dev Growth Differ 2015; 57:341-51. [PMID: 25867864 DOI: 10.1111/dgd.12212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/21/2015] [Accepted: 03/07/2015] [Indexed: 01/10/2023]
Abstract
Animals have an intrinsic regeneration ability for injured tissues and organs. Species that have high regeneration ability such as newts can regenerate an organ with exactly the same size and shape as those of the original one. It has been unclear how a regenerating organ grows and ceases growth at an appropriate size. Organ size control in regeneration is seen in various organs of various species that have high regeneration ability. In animal species that do not have sufficient regeneration ability, a wound heals (the injury is closed, but lost parts are not regenerated), but an organ cannot be restored to its original size. On the other hand, perturbation of regeneration sometimes results in oversized or extra structures. In this sense, organ size control plays essential roles in proper regeneration. In this article, we introduce the concept of size control in organ regeneration regulated by the Hippo signaling pathway. We focused on the transcriptional regulator Yap, which shuttles between the nuclei and cytoplasm to exert a regulatory function in a context-dependent manner. The Yap-mediated Hippo pathway is thought to sense cell density, extracellular matrix (ECM) contact and cell position and to regulate gene expression for control of organ size. This mechanism can reasonably explain size control of organ regeneration.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
40
|
Mielcarek M, Toczek M, Smeets CJLM, Franklin SA, Bondulich MK, Jolinon N, Muller T, Ahmed M, Dick JRT, Piotrowska I, Greensmith L, Smolenski RT, Bates GP. HDAC4-myogenin axis as an important marker of HD-related skeletal muscle atrophy. PLoS Genet 2015; 11:e1005021. [PMID: 25748626 PMCID: PMC4352047 DOI: 10.1371/journal.pgen.1005021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of Huntington’s disease (HD). While HD has been described primarily as a neurological disease, HD patients’ exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD. Huntington’s disease (HD) is a neurodegenerative disorder in which the mutation results in an extra-long tract of glutamines that causes the huntingtin protein to aggregate. It is characterized by neurological symptoms and brain pathology, which is associated with nuclear and cytoplasmic protein aggregates and with transcriptional deregulation. Despite the fact that HD has been recognized principally as a neurological disease, there are multiple studies indicating that peripheral pathologies including cardiac dysfunction and skeletal muscle atrophy, contribute to the overall progression of HD. To unravel the cause of the skeletal muscle dysfunction, we applied a wide range of molecular and physiological methods to the analysis of two well established genetic mouse models of this disease. We found that symptomatic animals developed muscle dysfunction characterised by a change in the contractile characteristics of fast twitch muscles and a decrease in twitch and tetanic force of hindlimb muscles. In addition, there is a significant decrease in the number of motor units innervating the EDL muscle, and this motor unit loss progresses during the course of the disease. These changes were accompanied by the re-expression of contractile transcripts and markers of muscle denervation such as the HDAC4-Dach2-myogenin axis, as well as the apparent deterioration in energy metabolism and decreased oxidation. Therefore, we conclude, that the HD-related skeletal muscle atrophy is accompanied by progressive loss of functional motor units.
Collapse
Affiliation(s)
- Michal Mielcarek
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- * E-mail: (MM); (GPB)
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cleo J. L. M. Smeets
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Sophie A. Franklin
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Marie K. Bondulich
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Nelly Jolinon
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Thomas Muller
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Mhoriam Ahmed
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - James R. T. Dick
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | | | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Milano, Italy
| | - Gillian P. Bates
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- * E-mail: (MM); (GPB)
| |
Collapse
|
41
|
Dadgar S, Wang Z, Johnston H, Kesari A, Nagaraju K, Chen YW, Hill DA, Partridge TA, Giri M, Freishtat RJ, Nazarian J, Xuan J, Wang Y, Hoffman EP. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. ACTA ACUST UNITED AC 2015; 207:139-58. [PMID: 25313409 PMCID: PMC4195829 DOI: 10.1083/jcb.201402079] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Duchenne muscular dystrophy, asynchronous regeneration in microenvironments within muscle tissue results in development of fibrosis in lieu of global muscle recovery. We sought to determine the mechanisms underlying failure of muscle regeneration that is observed in dystrophic muscle through hypothesis generation using muscle profiling data (human dystrophy and murine regeneration). We found that transforming growth factor β–centered networks strongly associated with pathological fibrosis and failed regeneration were also induced during normal regeneration but at distinct time points. We hypothesized that asynchronously regenerating microenvironments are an underlying driver of fibrosis and failed regeneration. We validated this hypothesis using an experimental model of focal asynchronous bouts of muscle regeneration in wild-type (WT) mice. A chronic inflammatory state and reduced mitochondrial oxidative capacity are observed in bouts separated by 4 d, whereas a chronic profibrotic state was seen in bouts separated by 10 d. Treatment of asynchronously remodeling WT muscle with either prednisone or VBP15 mitigated the molecular phenotype. Our asynchronous regeneration model for pathological fibrosis and muscle wasting in the muscular dystrophies is likely generalizable to tissue failure in chronic inflammatory states in other regenerative tissues.
Collapse
Affiliation(s)
- Sherry Dadgar
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Zuyi Wang
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Helen Johnston
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Akanchha Kesari
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - D Ashley Hill
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Mamta Giri
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Jianhua Xuan
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 24061
| | - Yue Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 24061
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| |
Collapse
|
42
|
Hayashi S, Ochi H, Ogino H, Kawasumi A, Kamei Y, Tamura K, Yokoyama H. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Dev Biol 2014; 396:31-41. [DOI: 10.1016/j.ydbio.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/06/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
|
43
|
Tu CF, Tsao KC, Lee SJ, Yang RB. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development. J Biol Chem 2014; 289:18928-42. [PMID: 24849601 DOI: 10.1074/jbc.m114.551929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and
| | - Ku-Chi Tsao
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Jye Lee
- the Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and the Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan,
| |
Collapse
|
44
|
Fan CM, Li L, Rozo ME, Lepper C. Making skeletal muscle from progenitor and stem cells: development versus regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:315-27. [PMID: 22737183 DOI: 10.1002/wdev.30] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For locomotion, vertebrate animals use the force generated by contractile skeletal muscles. These muscles form an actin/myosin-based biomachinery that is attached to skeletal elements to affect body movement and maintain posture. The mechanics, physiology, and homeostasis of skeletal muscles in normal and disease states are of significant clinical interest. How muscles originate from progenitors during embryogenesis has attracted considerable attention from developmental biologists. How skeletal muscles regenerate and repair themselves after injury by the use of stem cells is an important process to maintain muscle homeostasis throughout lifetime. In recent years, much progress has been made toward uncovering the origins of myogenic progenitors and stem cells as well as the regulation of these cells during development and regeneration.
Collapse
Affiliation(s)
- Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
45
|
Hoffman EP, Gordish-Dressman H, McLane VD, Devaney JM, Thompson PD, Visich P, Gordon PM, Pescatello LS, Zoeller RF, Moyna NM, Angelopoulos TJ, Pegoraro E, Cox GA, Clarkson PM. Alterations in osteopontin modify muscle size in females in both humans and mice. Med Sci Sports Exerc 2014; 45:1060-8. [PMID: 23274598 DOI: 10.1249/mss.0b013e31828093c1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE An osteopontin (OPN; SPP1) gene promoter polymorphism modifies disease severity in Duchenne muscular dystrophy, and we hypothesized that it might also modify muscle phenotypes in healthy volunteers. METHODS Gene association studies were carried out for OPN (rs28357094) in the FAMuSS cohort (n = 752; mean ± SD age = 23.7 ± 5.7 yr). The phenotypes studied included muscle size (MRI), strength, and response to supervised resistance training. We also studied 147 young adults that had carried out a bout of eccentric elbow exercise (age = 24.0 ± 5.2 yr). Phenotypes analyzed included strength, soreness, and serum muscle enzymes. RESULTS In the FAMuSS cohort, the G allele was associated with 17% increase in baseline upper arm muscle volume only in women (F = 26.32; P = 5.32 × 10), explaining 5% of population variance. In the eccentric damage cohort, weak associations of the G allele were seen in women with both baseline myoglobin and elevated creatine kinase. The sexually dimorphic effects of OPN on muscle were also seen in OPN-null mice. Five of seven muscle groups examined showed smaller size in OPN-null female mice, whereas two were smaller in male mice. The query of OPN gene transcription after experimental muscle damage in mice showed rapid induction within 12 h (100-fold increase from baseline), followed by sustained high-level expression through 16 d of regeneration before falling to back to baseline. CONCLUSION OPN is a sexually dimorphic modifier of muscle size in normal humans and mice and responds to muscle damage. The OPN gene is known to be estrogen responsive, and this may explain the female-specific genotype effects in adult volunteers.
Collapse
Affiliation(s)
- Eric P Hoffman
- Department of Integrative Systems Biology, Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Luo Y, Yang C, Ye M, Jin C, Abbruzzese JL, Lee MH, Yeung SCJ, McKeehan WL. Deficiency of metabolic regulator FGFR4 delays breast cancer progression through systemic and microenvironmental metabolic alterations. Cancer Metab 2013; 1:21. [PMID: 24279986 PMCID: PMC4178208 DOI: 10.1186/2049-3002-1-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endocrine FGF21 and FGF19 target adipocytes and hepatocytes through betaKlotho (KLB) and FGFR tyrosine kinases effecting glucose, lipid and energy metabolism. Both factors alleviate obesity and metabolic abnormalities which are contributing factors to breast tumor progression. Genomic manipulation of hepatic FGFR4 has uncovered roles of endocrine FGF signaling in both metabolic and cellular homeostasis. Here we determined whether systemic and microenvironmental metabolic alterations caused by the FGFR4 deficiency affect tumorigenesis in breast where FGFR4 is negligible. Breast tumors were induced in the bigenic mice with ablation of FGFR4 and overexpression of TGFα that activates Her2 in the ductal and lobular epithelium surrounded by adipocytes. Mammary tumorigenesis and alterations in systemic and breast microenvironmental metabolic parameters and regulatory pathways were analyzed. RESULTS Ablation of FGFR4 had no effect on cellular homeostasis and Her2 activity of normal breast tissue. However, the absence of FGFR4 reduced TGFα-driven breast tumor incidence and progression and improved host survival. Notable increases in hepatic and serum FGF21, ileal FGF15/19, adiponectin and adipsin, and decreases in systemic Fetuin A, IGF-1, IGFBP-1, RBP4 and TIMP1 were observed. The ablation affected adipogenesis and secretory function of adipocytes as well as lipogenesis, glycolysis and energy homeostasis associated with the functions of mitochondria, ER and peroxisomes in the breast and tumor foci. Treatment with a chemical inhibitor of NAMPT involved in the pathways inhibited the growth and survival of breast tumor cells and tumor-initiating cell-containing spheres. The FGFR4 ablation also caused elevation of inflammatory factors in the breast. CONCLUSIONS Although the primary role of FGFR4 in metabolism occurs in hepatocytes, its ablation results in a net inhibitory effect on mammary tumor progression. We suggest that the tumor-delaying effect of FGFR4 deficiency may be in large part due to elevated anti-obesogenic FGF21 that triggers tumor-suppressing signals from both peripheral and breast adipocytes. The predominant changes in metabolic pathways suggested roles of metabolic effects from both peripheral and breast adipocytes on metabolic reprogramming in breast epithelial cells that contribute to the suppression of tumor progression. These results provide new insights into the contribution of systemic and microenvironmental metabolic effects controlled by endocrine FGF signaling to breast carcinogenesis.
Collapse
Affiliation(s)
- Yongde Luo
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W, Holcombe Blvd,, Houston, TX 77030-3303, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Li SQ, Cheuk AT, Shern JF, Song YK, Hurd L, Liao H, Wei JS, Khan J. Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLoS One 2013; 8:e76551. [PMID: 24124571 PMCID: PMC3790700 DOI: 10.1371/journal.pone.0076551] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. Despite advances in modern therapy, patients with relapsed or metastatic disease have a very poor clinical prognosis. Fibroblast Growth Factor Receptor 4 (FGFR4) is a cell surface tyrosine kinase receptor that is involved in normal myogenesis and muscle regeneration, but not commonly expressed in differentiated muscle tissues. Amplification and mutational activation of FGFR4 has been reported in RMS and promotes tumor progression. Therefore, FGFR4 is a tractable therapeutic target for patients with RMS. In this study, we used a chimeric Ba/F3 TEL-FGFR4 construct to test five tyrosine kinase inhibitors reported to specifically inhibit FGFRs in the nanomolar range. We found ponatinib (AP24534) to be the most potent FGFR4 inhibitor with an IC50 in the nanomolar range. Ponatinib inhibited the growth of RMS cells expressing wild-type or mutated FGFR4 through increased apoptosis. Phosphorylation of wild-type and mutated FGFR4 as well as its downstream target STAT3 was also suppressed by ponatinib. Finally, ponatinib treatment inhibited tumor growth in a RMS mouse model expressing mutated FGFR4. Therefore, our data suggests that ponatinib is a potentially effective therapeutic agent for RMS tumors that are driven by a dysregulated FGFR4 signaling pathway.
Collapse
Affiliation(s)
- Samuel Q. Li
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adam T. Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jack F. Shern
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Young K. Song
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Hurd
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongling Liao
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jun S. Wei
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Peláez-García A, Barderas R, Torres S, Hernández-Varas P, Teixidó J, Bonilla F, de Herreros AG, Casal JI. FGFR4 role in epithelial-mesenchymal transition and its therapeutic value in colorectal cancer. PLoS One 2013; 8:e63695. [PMID: 23696849 PMCID: PMC3655941 DOI: 10.1371/journal.pone.0063695] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/06/2013] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is vital in early development and tissue repair. FGFR4 expression levels are very restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg(388), in different colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFβ gene expression levels and an increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for colorectal cancer therapy.
Collapse
Affiliation(s)
- Alberto Peláez-García
- Department of Celular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Rodrigo Barderas
- Department of Celular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Sofía Torres
- Department of Celular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Joaquín Teixidó
- Chemokines and Cell Migration Laboratory, CIB-CSIC, Madrid, Spain
| | - Félix Bonilla
- Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - J. Ignacio Casal
- Department of Celular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
49
|
Olanich ME, Barr FG. A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opin Ther Targets 2013; 17:607-23. [PMID: 23432728 DOI: 10.1517/14728222.2013.772136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Expression of fusion oncoproteins generated by recurrent chromosomal translocations represents a major tumorigenic mechanism characteristic of multiple cancers, including one-third of all sarcomas. Oncogenic fusion genes provide novel targets for therapeutic intervention. The PAX3-FOXO1 oncoprotein in alveolar rhabdomyosarcoma (ARMS) is presented as a paradigm to examine therapeutic strategies for targeting sarcoma-associated fusion genes. AREAS COVERED This review discusses the role of PAX3-FOXO1 in ARMS tumors. Besides evaluating various approaches to molecularly target PAX3-FOXO1 itself, this review highlights therapeutically attractive downstream genes activated by PAX3-FOXO1. EXPERT OPINION Oncogenic fusion proteins represent desirable therapeutic targets because their expression is specific to tumor cells, but these fusions generally characterize rare malignancies. Full development and testing of potential drugs targeted to these fusions are complicated by the small numbers of patients in these disease categories. Although efforts to develop targeted therapies against fusion proteins should continue, molecular targets that are applicable to a broader tumor landscape should be pursued. A shift of the traditional paradigm to view therapeutic intervention as target-specific rather than tumor-specific will help to circumvent the challenges posed by rare tumors and maximize the possibility of developing successful new treatments for patients with these rare translocation-associated sarcomas.
Collapse
Affiliation(s)
- Mary E Olanich
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology , Bethesda, MD 20892, USA
| | | |
Collapse
|
50
|
Palermo AT, Palmer RE, So KS, Oba-Shinjo SM, Zhang M, Richards B, Madhiwalla ST, Finn PF, Hasegawa A, Ciociola KM, Pescatori M, McVie-Wylie AJ, Mattaliano RJ, Madden SL, Marie SKN, Klinger KW, Pomponio RJ. Transcriptional response to GAA deficiency (Pompe disease) in infantile-onset patients. Mol Genet Metab 2012; 106:287-300. [PMID: 22658377 DOI: 10.1016/j.ymgme.2012.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022]
Abstract
Pompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease.
Collapse
Affiliation(s)
- A T Palermo
- Genetics & Genomics, Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|