1
|
Chen H, Lin C, Zhang B, Yan L, Zhang B, Wang P, Qiu L, Zhao C. Identification of scavenger receptor (LmSRA3) gene and its immune response to Aeromonas veronii in Lateolabrax maculatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105320. [PMID: 39837471 DOI: 10.1016/j.dci.2025.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Scavenger receptors (SRs) serve as essential pattern recognition receptors in the innate immune system, playing multiple roles in the immunity of fish. They contribute to defense mechanisms against pathogenic infections through various pathways. However, research on the functions of SRs in the immune response of Spotted sea bass remains limited. Here, the LmSRA3 gene was cloned and identified from Spotted sea bass, and a bioinformatic analysis of the sequence was conducted. This analysis revealed that the open reading frame of LmSRA3 spans 1821 bp and encodes 606 amino acids. The estimated molecular mass of this protein is 66.62 kDa, accompanied by isoelectric point of 6.06. It contains a collagen domain, a low-complexity structure, and two coiled-coils regions. Multiple sequence comparisons and phylogenetic analyses demonstrated that the LmSRA3 sequence is notably conserved among fish species. Furthermore, qPCR analysis showed that the LmSRA3 gene is expressed in all examined tissues, with the highest expression in the intestine. In the head kidney, spleen, blood, and intestine after infection with A. veronii, the expression levels of the LmSRA3 gene generally exhibited a pattern of first increasing followed by decreasing, suggesting that LmSRA3 may be involved in the immune response to A. veronii infection through multiple pathways. Subcellular localization experiments revealed that LmSRA3 is predominantly distributed in the cytoplasm. Additionally, results from the enzyme-linked immunosorbent assay indicated the binding capacity of LmSRA3 to A. veronii is not significant. Furthermore, interference or overexpression of LmSRA3 significantly affected the expression of RelA, MyD88, TNFR1, and IL-1β. These results emphasize that LmSRA3 may play a crucial role in the innate immune response of Spotted sea bass and provides insights into the mechanism by which SRs are in the antibacterial immunity of this species.
Collapse
Affiliation(s)
- Huilong Chen
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China.
| |
Collapse
|
2
|
Huang H, Narayanan HV, Hoffmann A. Synergy and antagonism in the integration of BCR and CD40 signals that control B-cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605521. [PMID: 39131345 PMCID: PMC11312454 DOI: 10.1101/2024.07.28.605521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In response to infection or vaccination, a successful antibody response must enrich high-affinity antigen-reactive B-cells through positive selection, but eliminate auto-reactive B-cells through negative selection. B-cells receive signals from the B-cell receptor (BCR) which binds the antigen, and the CD40 receptor which is stimulated by neighboring T-cells that also recognize the antigen. How BCR and CD40 signaling are integrated quantitatively to jointly determine B-cell fate decision and proliferation remains unclear. To investigate this, we developed a differential-equations-based model of the BCR and CD40 signaling networks activating NFκB. Our model accurately recapitulates the NFκB dynamics of B-cells stimulated through their BCR and CD40 receptors, correctly predicting that costimulation induces more NFκB activity. However, when linking it to established cell fate decision models of cell survival and cell cycle control, it predicted potentiated population expansion that was not observed experimentally. We found that this discrepancy was due to a time-dependent functional antagonism exacerbated by BCR-induced caspase activity that can trigger apoptosis in founder cells, unless NFκB-induced survival gene expression protects B-cells in time. Guided by model predictions, sequential co-stimulation experiments revealed how the temporal dynamics of BCR and CD40 signaling control the fate decision between negative and positive selection of B-cell clonal expansion. Our quantitative findings highlight a complex non-monotonic integration of BCR and CD40 signals that is controlled by a balance between NFκB and cell-death pathways, and suggest a mechanism for regulating the stringency of B-cell selection during an antibody response.
Collapse
Affiliation(s)
- Helen Huang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics (MIMG)
- Institute for Quantitative and Computational Biosciences (QCBio)
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, USA
| | - Haripriya Vaidehi Narayanan
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics (MIMG)
- Institute for Quantitative and Computational Biosciences (QCBio)
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics (MIMG)
- Institute for Quantitative and Computational Biosciences (QCBio)
| |
Collapse
|
3
|
Sun F, Xiao Y, Shapiro SD, Qu Z, Xiao G. Critical and distinct roles of cell type-specific NF-κB2 in lung cancer. JCI Insight 2024; 9:e164188. [PMID: 38385745 DOI: 10.1172/jci.insight.164188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Different from the well-studied canonical NF-κB member RelA, the role of the noncanonical NF-κB member NF-κB2 in solid tumors, and lung cancer in particular, is poorly understood. Here we report that in contrast to the tumor-promoting role of RelA, NF-κB2 intrinsic to lung epithelial and tumor cells had no marked effect on lung tumorigenesis and progression. On the other hand, NF-κB2 limited dendritic cell number and activation in the lung but protected lung macrophages and drove them to promote lung cancer through controlling activation of noncanonical and canonical NF-κB, respectively. NF-κB2 was also required for B cell maintenance and T cell activation. The antitumor activity of lymphocyte NF-κB2 was dominated by the protumor function of myeloid NF-κB2; thus, NF-κB2 has an overall tumor-promoting activity. These studies reveal a cell type-dependent role for NF-κB2 in lung cancer and help understand the complexity of NF-κB action and lung cancer pathogenesis for better design of NF-κB-targeted therapy against this deadliest cancer.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Steven D Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
4
|
Merino-Vico A, van Hamburg JP, Tuijnenburg P, Frazzei G, Al-Soudi A, Bonasia CG, Helder B, Rutgers A, Abdulahad WH, Stegeman CA, Sanders JS, Bergamaschi L, Lyons PA, Bijma T, van Keep L, Wesenhagen K, Jongejan A, Olsson H, de Vries N, Kuijpers TW, Heeringa P, Tas SW. Targeting NF-κB signaling in B cells as a potential new treatment modality for ANCA-associated vasculitis. J Autoimmun 2024; 142:103133. [PMID: 37931331 DOI: 10.1016/j.jaut.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-β (IKKβ, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aram Al-Soudi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Boy Helder
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura van Keep
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kirsten Wesenhagen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Pflug KM, Lee DW, Tripathi A, Bankaitis VA, Burgess K, Sitcheran R. Cyanine Dye Conjugation Enhances Crizotinib Localization to Intracranial Tumors, Attenuating NF-κB-Inducing Kinase Activity and Glioma Progression. Mol Pharm 2023; 20:6140-6150. [PMID: 37939020 DOI: 10.1021/acs.molpharmaceut.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive form of brain cancer with a poor prognosis and limited treatment options. The ALK and c-MET inhibitor Crizotinib has demonstrated preclinical therapeutic potential for newly diagnosed GBM, although its efficacy is limited by poor penetration of the blood brain barrier. Here, we identify Crizotinib as a novel inhibitor of nuclear factor-κB (NF-κB)-inducing kinase, which is a key regulator of GBM growth and proliferation. We further show that the conjugation of Crizotinib to a heptamethine cyanine dye, or a near-infrared dye (IR-Crizotinib), attenuated glioma cell proliferation and survival in vitro to a greater extent than unconjugated Crizotinib. Moreover, we observed increased IR-Crizotinib localization to orthotopic mouse xenograft GBM tumors, which resulted in impaired tumor growth in vivo. Overall, IR-Crizotinib exhibited improved intracranial chemotherapeutic delivery and tumor localization with concurrent inhibition of NIK and noncanonical NF-κB signaling, thereby reducing glioma growth in vitro, as well as in vivo, and increasing survival in a preclinical rodent model.
Collapse
Affiliation(s)
- Kathryn M Pflug
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Dong W Lee
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Ashutosh Tripathi
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Vytas A Bankaitis
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77842, United States
| | - Raquel Sitcheran
- Department of Cellular Biology and Genetics, Texas A&M University Health Science Center , College Station, Texas 77807, United States
| |
Collapse
|
6
|
Haselager MV, Eldering E. The Therapeutic Potential of Targeting NIK in B Cell Malignancies. Front Immunol 2022; 13:930986. [PMID: 35911754 PMCID: PMC9326486 DOI: 10.3389/fimmu.2022.930986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is a key player in non-canonical NF-κB signaling, involved in several fundamental cellular processes, and is crucial for B cell function and development. In response to certain signals and ligands, such as CD40, BAFF and lymphotoxin-β activation, NIK protein stabilization and subsequent NF-κB activation is achieved. Overexpression or overactivation of NIK is associated with several malignancies, including activating mutations in multiple myeloma (MM) and gain-of-function in MALT lymphoma as a result of post-translational modifications. Consequently, drug discovery studies are devoted to pharmacologic modulation of NIK and development of specific novel small molecule inhibitors. However, disease-specific in vitro and in vivo studies investigating NIK inhibition are as of yet lacking, and clinical trials with NIK inhibitors remain to be initiated. In order to bridge the gap between bench and bedside, this review first briefly summarizes our current knowledge on NIK activation, functional activity and stability. Secondly, we compare current inhibitors targeting NIK based on efficacy and specificity, and provide a future perspective on the therapeutic potential of NIK inhibition in B cell malignancies.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- *Correspondence: Eric Eldering,
| |
Collapse
|
7
|
Wang B, Shen J. NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis. Front Immunol 2022; 13:895636. [PMID: 35833111 PMCID: PMC9271571 DOI: 10.3389/fimmu.2022.895636] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal immunity and homeostasis are maintained through the regulation of cytokine trafficking, microbiota, necrosis and apoptosis. Intestinal immunity and homeostasis participate in host defenses and inflammatory responses locally or systemically through the gut-organ axis. NF-κB functions as a crucial transcription factor mediating the expression of proteins related to the immune responses. The activation of NF-κB involves two major pathways: canonical and non-canonical. The canonical pathway has been extensively studied and reviewed. Here, we present the current knowledge of NIK, a pivotal mediator of the non-canonical NF-κB pathway and its role in intestinal immunity and homeostasis. This review also discusses the novel role of NIK signaling in the pathogenesis and treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Bingran Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Shen,
| |
Collapse
|
8
|
Shen G, Liu X, Lei W, Duan R, Yao Z. Plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects that prevents menopausal-related osteoporosis in mice. J Biol Chem 2022; 298:101767. [PMID: 35235833 PMCID: PMC8958545 DOI: 10.1016/j.jbc.2022.101767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoporosis is caused by enhanced bone resorption and relatively reduced bone formation. There is an unmet need to develop new agents with both antiresorptive and anabolic effects to treat osteoporosis, although drugs with either effect alone are available. A small molecular compound, plumbagin, was reported to inhibit receptor activator of nuclear factor kappa-B ligand-induced osteoclast (OC) differentiation by inhibiting IκBα phosphorylation-mediated canonical NF-κB activation. However, the key transcriptional factor RelA/p65 in canonical NF-κB pathway functions to promote OC precursor survival but not terminal OC differentiation. Here, we found that plumbagin inhibited the activity of NF-κB inducing kinase, the key molecule that controls noncanonical NF-κB signaling, in an ATP/ADP-based kinase assay. Consistent with this, plumbagin inhibited processing of NF-κB2 p100 to p52 in the progenitor cells of both OCs and osteoblasts (OBs). Interestingly, plumbagin not only inhibited OC but also stimulated OB differentiation in vitro. Importantly, plumbagin prevented trabecular bone loss in ovariectomized mice. This was associated with decreased OC surfaces on trabecular surface and increased parameters of OBs, including OB surface on trabecular surface, bone formation rate, and level of serum osteocalcin, compared to vehicle-treated mice. In summary, we conclude that plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects on bone and could represent a new class of agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Gengyang Shen
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
9
|
Burley TA, Kennedy E, Broad G, Boyd M, Li D, Woo T, West C, Ladikou EE, Ashworth I, Fegan C, Johnston R, Mitchell S, Mackay SP, Pepper AGS, Pepper C. Targeting the Non-Canonical NF-κB Pathway in Chronic Lymphocytic Leukemia and Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14061489. [PMID: 35326640 PMCID: PMC8946537 DOI: 10.3390/cancers14061489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, we evaluated an NF-κB inducing kinase (NIK) inhibitor, CW15337, in primary chronic lymphocytic leukemia (CLL) cells, CLL and multiple myeloma (MM) cell lines and normal B- and T-lymphocytes. Basal NF-κB subunit activity was characterized using an enzyme linked immunosorbent assay (ELISA), and the effects of NIK inhibition were then assessed in terms of cytotoxicity and the expression of nuclear NF-κB subunits following monoculture and co-culture with CD40L-expressing fibroblasts, as a model of the lymphoid niche. CW15337 induced a dose-dependent increase in apoptosis, and nuclear expression of the non-canonical NF-κB subunit, p52, was correlated with sensitivity to CW15337 (p = 0.01; r2 = 0.39). Co-culture on CD40L-expressing cells induced both canonical and non-canonical subunit expression in nuclear extracts, which promoted in vitro resistance against fludarabine and ABT-199 (venetoclax) but not CW15337. Furthermore, the combination of CW15337 with fludarabine or ABT-199 showed cytotoxic synergy. Mechanistically, CW15337 caused the selective inhibition of non-canonical NF-κB subunits and the transcriptional repression of BCL2L1, BCL2A1 and MCL1 gene transcription. Taken together, these data suggest that the NIK inhibitor, CW15337, exerts its effects via suppression of the non-canonical NF-κB signaling pathway, which reverses BCL2 family-mediated resistance in the context of CD40L stimulation.
Collapse
Affiliation(s)
- Thomas A. Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Georgia Broad
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Melanie Boyd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - David Li
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - Timothy Woo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - Christopher West
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.W.); (S.P.M.)
- Drug Discovery Unit, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Iona Ashworth
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Christopher Fegan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (M.B.); (D.L.); (T.W.); (C.F.)
| | - Rosalynd Johnston
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.W.); (S.P.M.)
| | - Andrea G. S. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer BN1 9PX, UK; (T.A.B.); (E.K.); (G.B.); (E.E.L.); (I.A.); (S.M.); (A.G.S.P.)
- Correspondence: ; Tel.: +44-012-7367-8644
| |
Collapse
|
10
|
Halkowycz P, Grimshaw CE, Keung W, Tanis P, Proffitt C, Peacock K, de Jong R, Sabat M, Banerjee U, Ermolieff J. Biochemical and Cellular Profile of NIK Inhibitors with Long Residence Times. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:676-683. [PMID: 33084478 DOI: 10.1177/2472555220964450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two different signaling pathways lead to the activation of the transcription factor NF-κB, initiating distinct biological responses: The canonical NF-κB pathway activation has been implicated in host immunity and inflammatory responses, whereas the noncanonical pathway activation has been involved in lymphoid organ development and B-cell maturation, as well as in the development of chronic inflammatory diseases and some hematologic cancers. The NF-κB-inducing kinase (NIK) is a cytoplasmic Ser/Thr kinase and is a key regulator of the noncanonical pathway. NIK activation results in the processing of the p100 subunit to p52, leading to the formation of the RelB/p52 complex and noncanonical pathway activation. Because of its role in the development of lymphoid malignancies, this kinase has always been considered as an attractive target for the treatment of certain types of cancers and immune diseases. We at Takeda have pursued a drug discovery program to identify small-molecule inhibitors against NIK. This report provides an overview of the data generated from our screening campaign using a small fragment library. Most importantly, we also provide a kinetic analysis of published compounds and chemical series developed at Takeda that are associated with a slow tight-binding mechanism and excellent cellular potency.
Collapse
Affiliation(s)
- Petro Halkowycz
- Medicinal Chemistry-In Vitro Pharmacology Gastrointestinal, Takeda Pharmaceutical, San Diego, CA, USA
| | | | | | - Paul Tanis
- Medicinal Chemistry CNS, Takeda Pharmaceutical, San Diego, CA, USA
| | - Chris Proffitt
- Gastrointestinal-Immunology, Takeda Pharmaceutical, San Diego, CA, USA
| | | | - Ron de Jong
- Ron de Jong Consulting, LLC, San Diego, CA, USA
| | - Mark Sabat
- Medicinal Chemistry-In Vitro Pharmacology Gastrointestinal, Takeda Pharmaceutical, San Diego, CA, USA
| | - Urmi Banerjee
- CNS-In Vitro Pharmacology, Takeda Pharmaceutical, San Diego, CA, USA
| | - Jacques Ermolieff
- Medicinal Chemistry-In Vitro Pharmacology Gastrointestinal, Takeda Pharmaceutical, San Diego, CA, USA
| |
Collapse
|
11
|
Li L, Sun F, Han L, Liu X, Xiao Y, Gregory AD, Shapiro SD, Xiao G, Qu Z. PDLIM2 repression by ROS in alveolar macrophages promotes lung tumorigenesis. JCI Insight 2021; 6:144394. [PMID: 33539325 PMCID: PMC8021114 DOI: 10.1172/jci.insight.144394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
One of the most fundamental and challenging questions in the field of cancer is how immunity is transformed from tumor immunosurveillance to tumor-promoting inflammation. Here, we identified the tumor suppressor PDZ-LIM domain–containing protein 2 (PDLIM2) as a checkpoint of alveolar macrophages (AMs) important for lung tumor suppression. During lung tumorigenesis, PDLIM2 expression in AMs is downregulated by ROS-activated transcription repressor BTB and CNC homology 1 (BACH1). PDLIM2 downregulation leads to constitutive activation of the transcription factor STAT3, driving AM protumorigenic polarization/activation and differentiation from monocytes attracted from the circulation to suppress cytotoxic T lymphocytes and promote lung cancer. PDLIM2 downregulation also decreases AM phagocytosis. These findings establish ROS/BACH1/PDLIM2/STAT3 as a signaling pathway driving AMs for lung tumor promotion.
Collapse
Affiliation(s)
- Liwen Li
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fan Sun
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lei Han
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xujie Liu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
13
|
Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nat Commun 2019; 10:5324. [PMID: 31757943 PMCID: PMC6876573 DOI: 10.1038/s41467-019-13331-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Most cancers are resistant to anti-PD-1/PD-L1 and chemotherapy. Herein we identify PDLIM2 as a tumor suppressor particularly important for lung cancer therapeutic responses. While PDLIM2 is epigenetically repressed in human lung cancer, associating with therapeutic resistance and poor prognosis, its global or lung epithelial-specific deletion in mice causes increased lung cancer development, chemoresistance, and complete resistance to anti-PD-1 and epigenetic drugs. PDLIM2 epigenetic restoration or ectopic expression shows antitumor activity, and synergizes with anti-PD-1, notably, with chemotherapy for complete remission of most lung cancers. Mechanistically, through repressing NF-κB/RelA and STAT3, PDLIM2 increases expression of genes involved in antigen presentation and T-cell activation while repressing multidrug resistance genes and cancer-related genes, thereby rendering cancer cells vulnerable to immune attacks and therapies. We identify PDLIM2-independent PD-L1 induction by chemotherapeutic and epigenetic drugs as another mechanism for their synergy with anti-PD-1. These findings establish a rationale to use combination therapies for cancer treatment. PDLIM2 is repressed epigenetically in lung cancers, which are frequently resistant to anti-PD-1/PD-L1 and chemotherapy. Here, the authors describe the mechanism through which epigenetic restoration of PDLIM2 synergises with anti-PD-1 and chemotherapy in lung cancers.
Collapse
|
14
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
15
|
Henry KL, Kellner D, Bajrami B, Anderson JE, Beyna M, Bhisetti G, Cameron T, Capacci AG, Bertolotti-Ciarlet A, Feng J, Gao B, Hopkins B, Jenkins T, Li K, May-Dracka T, Murugan P, Wei R, Zeng W, Allaire N, Buckler A, Loh C, Juhasz P, Lucas B, Ennis KA, Vollman E, Cahir-McFarland E, Hett EC, Ols ML. CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling. Sci Signal 2018; 11:eaam8216. [PMID: 30065029 DOI: 10.1126/scisignal.aam8216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Members of the family of nuclear factor κB (NF-κB) transcription factors are critical for multiple cellular processes, including regulating innate and adaptive immune responses, cell proliferation, and cell survival. Canonical NF-κB complexes are retained in the cytoplasm by the inhibitory protein IκBα, whereas noncanonical NF-κB complexes are retained by p100. Although activation of canonical NF-κB signaling through the IκBα kinase complex is well studied, few regulators of the NF-κB-inducing kinase (NIK)-dependent processing of noncanonical p100 to p52 and the subsequent nuclear translocation of p52 have been identified. We discovered a role for cyclin-dependent kinase 12 (CDK12) in transcriptionally regulating the noncanonical NF-κB pathway. High-content phenotypic screening identified the compound 919278 as a specific inhibitor of the lymphotoxin β receptor (LTβR), and tumor necrosis factor (TNF) receptor superfamily member 12A (FN14)-dependent nuclear translocation of p52, but not of the TNF-α receptor-mediated nuclear translocation of p65. Chemoproteomics identified CDK12 as the target of 919278. CDK12 inhibition by 919278, the CDK inhibitor THZ1, or siRNA-mediated knockdown resulted in similar global transcriptional changes and prevented the LTβR- and FN14-dependent expression of MAP3K14 (which encodes NIK) as well as NIK accumulation by reducing phosphorylation of the carboxyl-terminal domain of RNA polymerase II. By coupling a phenotypic screen with chemoproteomics, we identified a pathway for the activation of the noncanonical NF-κB pathway that could serve as a therapeutic target in autoimmunity and cancer.
Collapse
Affiliation(s)
- Kate L Henry
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - John E Anderson
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Tom Cameron
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Jun Feng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Benbo Gao
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Kejie Li
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Ru Wei
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Weike Zeng
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Norm Allaire
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Peter Juhasz
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Brian Lucas
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Erik C Hett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
16
|
Eden K, Rothschild DE, McDaniel DK, Heid B, Allen IC. Noncanonical NF-κB signaling and the essential kinase NIK modulate crucial features associated with eosinophilic esophagitis pathogenesis. Dis Model Mech 2017; 10:1517-1527. [PMID: 29259025 PMCID: PMC5769607 DOI: 10.1242/dmm.030767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an allergic disease of the esophagus driven by T cell and eosinophil responses to dietary allergens, resulting in chronic mucosal inflammation. Few spontaneous animal models of esophageal eosinophilia exist, with most studies relying on artificial sensitization procedures. NF-κB-inducing kinase (NIK; MAP3K14) is a key signaling molecule of the noncanonical NF-κB (NFKB1) pathway, an alternative signaling cascade producing chemokines involved in lymphoid stroma development and leukocyte trafficking. Nik-/- mice have been shown to develop a hypereosinophilic syndrome in peripheral blood and major filtering organs; however, the gastrointestinal mucosa of these mice has not been well characterized. We show that Nik-/- mice develop significant, localized eosinophilic esophagitis that mimics human EoE, including features such as severe eosinophil accumulation, degranulation, mucosal thickening, fibrosis and basal cell hyperplasia. The remainder of the GI tract, including the caudal stomach, small intestine and colon, in mice with active EoE are unaffected, also similar to human patients. Gene expression patterns in esophageal tissue of Nik-/- mice mimics human EoE, with thymic stromal lymphopoetin (TSLP) in particular also elevated at the protein level. In gene expression data sets from human biopsy specimens, we further show that many genes associated with noncanonical NF-κB signaling are significantly dysregulated in EoE patients, most notably a paradoxical upregulation of NIK itself with concurrent upregulation of powerful protein-level destabilizers of NIK. These findings suggest that Nik-/- mice could be useful as a spontaneous model of specific features of EoE and highlight a novel role for noncanonical NF-κB signaling in human patients.
Collapse
Affiliation(s)
- Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Daniel E Rothschild
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Department of Biomedical Science, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
17
|
Guan F, Wang L, Hao S, Wu Z, Bai J, Kang Z, Zhou Q, Chang H, Yin H, Li D, Tian K, Ma J, Zhang G, Zhang J. Retinol dehydrogenase-10 promotes development and progression of human glioma via the TWEAK-NF-κB axis. Oncotarget 2017; 8:105262-105275. [PMID: 29285249 PMCID: PMC5739636 DOI: 10.18632/oncotarget.22166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Retinol dehydrogenase-10 (RDH10) is a member of the short-chain dehydrogenase/reductase family, which plays an important role in retinoic acid (RA) synthesis. Here, we show that RDH10 is highly expressed in human gliomas, and its expression correlates with tumor grade and patient survival times. In vitro, lentivirus-mediated shRNA knockdown of RDH10 suppressed glioma cell proliferation, survival, and invasiveness and cell cycle progression. In vivo, RDH10 knockdown reduced glioma growth in nude mice. Microarray analysis revealed that RDH10 silencing reduces expression of TNFRSF12A (Fn14), TNFSF12 (TWEAK), TRAF3, IKBKB (IKK-β), and BMPR2, while it increases expression of TRAF1, NFKBIA (IκBα), NFKBIE (IκBε), and TNFAIP3. This suggests that RDH10 promotes glioma cell proliferation and survival by regulating the TWEAK-NF-κB axis, and that it could potentially serve as a novel target for human glioma treatment.
Collapse
Affiliation(s)
- Feng Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhuang Kang
- Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhou
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Yin
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Polley S, Passos DO, Huang DB, Mulero MC, Mazumder A, Biswas T, Verma IM, Lyumkis D, Ghosh G. Structural Basis for the Activation of IKK1/α. Cell Rep 2016; 17:1907-1914. [PMID: 27851956 PMCID: PMC5508515 DOI: 10.1016/j.celrep.2016.10.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/22/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
Distinct signaling pathways activate the NF-κB family of transcription factors. The canonical NF-κB-signaling pathway is mediated by IκB kinase 2/β (IKK2/β), while the non-canonical pathway depends on IKK1/α. The structural and biochemical bases for distinct signaling by these otherwise highly similar IKKs are unclear. We report single-particle cryoelectron microscopy (cryo-EM) and X-ray crystal structures of human IKK1 in dimeric (∼150 kDa) and hexameric (∼450 kDa) forms. The hexamer, which is the representative form in the crystal but comprises only ∼2% of the particles in solution by cryo-EM, is a trimer of IKK1 dimers. While IKK1 hexamers are not detectable in cells, the surface that supports hexamer formation is critical for IKK1-dependent cellular processing of p100 to p52, the hallmark of non-canonical NF-κB signaling. Comparison of this surface to that in IKK2 indicates significant divergence, and it suggests a fundamental role for this surface in signaling by these kinases through distinct pathways.
Collapse
Affiliation(s)
- Smarajit Polley
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dario Oliveira Passos
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - De-Bin Huang
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Carmen Mulero
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Anup Mazumder
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Inder M Verma
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Transcription factors of the alternative NF-κB pathway are required for germinal center B-cell development. Proc Natl Acad Sci U S A 2016; 113:9063-8. [PMID: 27457956 DOI: 10.1073/pnas.1602728113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NF-κB signaling cascade relays external signals essential for B-cell growth and survival. This cascade is frequently hijacked by cancers that arise from the malignant transformation of germinal center (GC) B cells, underscoring the importance of deciphering the function of NF-κB in these cells. The NF-κB signaling cascade is comprised of two branches, the canonical and alternative NF-κB pathways, mediated by distinct transcription factors. The expression and function of the transcription factors of the alternative pathway, RELB and NF-κB2, in late B-cell development is incompletely understood. Using conditional deletion of relb and nfkb2 in GC B cells, we here report that ablation of both RELB and NF-κB2, but not of the single transcription factors, resulted in the collapse of established GCs. RELB/NF-κB2 deficiency in GC B cells was associated with impaired cell-cycle entry and reduced expression of the cell-surface receptor inducible T-cell costimulator ligand that promotes optimal interactions between B and T cells. Analysis of human tonsillar tissue revealed that plasma cells and their precursors in the GC expressed high levels of NF-κB2 relative to surrounding lymphocytes. Accordingly, deletion of nfkb2 in murine GC B cells resulted in a dramatic reduction of antigen-specific antibody-secreting cells, whereas deletion of relb had no effect. These results demonstrate that the transcription factors of the alternative NF-κB pathway control distinct stages of late B-cell development, which may have implications for B-cell malignancies that aberrantly activate this pathway.
Collapse
|
20
|
Mao X, Phanavanh B, Hamdan H, Moerman-Herzog A, Barger SW. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS. J Neurochem 2016; 137:154-63. [PMID: 26778773 PMCID: PMC5115916 DOI: 10.1111/jnc.13526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022]
Abstract
The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different mechanisms, including the potential for a neuron-specific protein (e.g., one of the 14-3-3 class) to create a novel complex in neurons, whereas the C-terminus may interact directly with NFκB. [Structure of NIK is based on Liu J., Sudom A., Min X., Cao Z., Gao X., Ayres M., Lee F., Cao P., Johnstone S., Plotnikova O., Walker N., Chen G., and Wang Z. (2012) Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. J Biol Chem. 287, 27326-27334); N-terminal lobe is oriented at top].
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Genetics, Washington University, St. Louis MO 63110
| | - Bounleut Phanavanh
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Hamdan Hamdan
- Department of Neuroscience, Baylor College of Medicine, Houston TX 77030
| | - Andréa Moerman-Herzog
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| |
Collapse
|
21
|
Ichikawa K, Ohshima D, Sagara H. Regulation of signal transduction by spatial parameters: a case in NF-κB oscillation. IET Syst Biol 2016; 9:41-51. [PMID: 26672147 DOI: 10.1049/iet-syb.2013.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor regulating expression of more than 500 genes, and its dysfunction leads to the autoimmune and inflammatory diseases. In malignant cancer cells, NF-κB is constitutively activated. Thus the elucidation of mechanisms for NF-κB regulation is important for the establishment of therapeutic treatment caused by incorrect NF-κB responses. Cytoplasmic NF-κB translocates to the nucleus by the application of extracellular stimuli such as cytokines. Nuclear NF-κB is known to oscillate with the cycle of 1.5-4.5 h, and it is thought that the oscillation pattern regulates the expression profiles of genes. In this review, first we briefly describe regulation mechanisms of NF-κB. Next, published computational simulations on the oscillation of NF-κB are summarised. There are at least 60 reports on the computational simulation and analysis of NF-κB oscillation. Third, the importance of a 'space' for the regulation of oscillation pattern of NF-κB is discussed, showing altered oscillation pattern by the change in spatial parameters such as diffusion coefficient, nuclear to cytoplasmic volume ratio (N/C ratio), and transport through nuclear membrane. Finally, simulations in a true intracellular space (TiCS), which is an intracellular 3D space reconstructed in a computer with organelles such as nucleus and mitochondria are discussed.
Collapse
|
22
|
Yu X, Deng Q, Li W, Xiao L, Luo X, Liu X, Yang L, Peng S, Ding Z, Feng T, Zhou J, Fan J, Bode AM, Dong Z, Liu J, Cao Y. Neoalbaconol induces cell death through necroptosis by regulating RIPK-dependent autocrine TNFα and ROS production. Oncotarget 2015; 6:1995-2008. [PMID: 25575821 PMCID: PMC4385831 DOI: 10.18632/oncotarget.3038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/02/2015] [Indexed: 02/04/2023] Open
Abstract
Necroptosis/regulated necrosis is a caspase-independent, but receptor interacting protein kinase (RIPK)-dependent form of cell death. In previous studies, neoalbaconol (NA), a constituent extracted from Albatrellus confluens, was demonstrated to induce necroptosis in some cancer cell lines. The molecular mechanism of NA-induced necroptosis is described in this research study. We determined that NA-induced cell death is partly dependent on tumor necrosis factor α (TNFα) feed-forward signaling. More importantly, NA abolished the ubiquitination of RIPK1 by down-regulating E3 ubiquitin ligases, cellular inhibitors of apoptosis protein 1/2 (cIAP1/2) and TNFα receptor-associated factors (TRAFs). The suppression of RIPK1 ubiquitination induced the activation of the non-canonical nuclear factor-κB (NF-κB) pathway and stimulated the transcription of TNFα. Moreover, we also found that NA caused RIPK3-mediated reactive oxygen species (ROS) production and contribution to cell death. Taken together, these results suggested that two distinct mechanisms are involved in NA-induced necroptosis and include RIPK1/NF-κB-dependent expression of TNFα and RIPK3-dependent generation of ROS.
Collapse
Affiliation(s)
- Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Qipan Deng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Wei Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Lanbo Xiao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Xiangjian Luo
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Xiaolan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Songling Peng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| | - Zhihui Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Tao Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Jian Zhou
- Liver Cancer Institute, Liver Surgery Department, Zhongshan Hospital
| | - Jia Fan
- Liver Cancer Institute, Liver Surgery Department, Zhongshan Hospital
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China.,Key Laboratory of Chinese Ministry of Education, Central South University, Hunan, China.,Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Central South University, Hunan, China
| |
Collapse
|
23
|
Verhelst K, Gardam S, Borghi A, Kreike M, Carpentier I, Beyaert R. XEDAR activates the non-canonical NF-κB pathway. Biochem Biophys Res Commun 2015; 465:275-80. [PMID: 26260321 DOI: 10.1016/j.bbrc.2015.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
Abstract
Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR has been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20.
Collapse
Affiliation(s)
- Kelly Verhelst
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Sandra Gardam
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Alice Borghi
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Marja Kreike
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol (Dordr) 2015; 38:327-39. [PMID: 26318853 DOI: 10.1007/s13402-015-0236-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are regulated by several signaling pathways that ultimately control their maintenance and expansion. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) forms a protein complex that controls DNA transcription and, as such, plays an important role in proliferation, inflammation, angiogenesis, invasion and metastasis. The NF-κB signaling pathway, which has been found to be constitutively activated in CSCs from a variety of cancers, participates in the maintenance, expansion, proliferation and survival of CSCs. Targeted disruption of this pathway may profoundly impair the adverse phenotype of CSCs and may provide a therapeutic opportunity to remove the CSC fraction. In particular, it may be attractive to use specific NF-κB inhibitors in chronic therapeutic schemes to reduce disease progression. Exceptional low toxicity profiles of these inhibitors are a prerequisite for use in combined treatment regimens and to avoid resistance. CONCLUSION Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.
Collapse
|
25
|
NF-κB1 p105 suppresses lung tumorigenesis through the Tpl2 kinase but independently of its NF-κB function. Oncogene 2015; 35:2299-310. [PMID: 26300007 PMCID: PMC4548811 DOI: 10.1038/onc.2015.299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
NF-κB is generally believed to be pro-tumorigenic. Here, we report a tumor-suppressive function for NF-κB1, the prototypical member of NF-κB. While NF-κB1 down-regulation is associated with high lung cancer risk in humans and poor patient survival, NF-κB1 deficient mice are more vulnerable to lung tumorigenesis induced by the smoke carcinogen, urethane. Notably, the tumor suppressive function of NF-κB1 is independent of its classical role as an NF-κB factor, but instead through stabilization of the Tpl2 kinase. NF-κB1 deficient tumors exhibit “normal” NF-κB activity, but a decreased protein level of Tpl2. Reconstitution of Tpl2 or the NF-κB1 p105, but not p50 (the processed product of p105), inhibits the tumorigenicity of NF-κB1 deficient lung tumor cells. Remarkably, Tpl2 knockout mice resemble NF-κB1 knockouts in urethane-induced lung tumorigenesis. Mechanistic studies indicate that p105/Tpl2 signaling is required for suppressing urethane-induced lung damage and inflammation, and activating mutations of the K-Ras oncogene. These studies reveal an unexpected, NF-κB-independent but Tpl2-depenednt role of NF-κB1 in lung tumor suppression. These studies also reveal a previously unexplored role of p105/Tpl2 signaling in lung homeostasis.
Collapse
|
26
|
Brightbill HD, Jackman JK, Suto E, Kennedy H, Jones C, Chalasani S, Lin Z, Tam L, Roose-Girma M, Balazs M, Austin CD, Lee WP, Wu LC. Conditional Deletion of NF-κB-Inducing Kinase (NIK) in Adult Mice Disrupts Mature B Cell Survival and Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:953-64. [PMID: 26116508 DOI: 10.4049/jimmunol.1401514] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 05/30/2015] [Indexed: 01/19/2023]
Abstract
NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.
Collapse
Affiliation(s)
- Hans D Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080;
| | - Janet K Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Eric Suto
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Heather Kennedy
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Charles Jones
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Sreedevi Chalasani
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Zhonghua Lin
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lucinda Tam
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080
| | - Mercedesz Balazs
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080; and
| | - Wyne P Lee
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080;
| |
Collapse
|
27
|
Cherry EM, Lee DW, Jung JU, Sitcheran R. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer 2015; 14:9. [PMID: 25622756 PMCID: PMC4320546 DOI: 10.1186/s12943-014-0273-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND High-grade gliomas are one of the most invasive and therapy-resistant cancers. We have recently shown that noncanonical NF-κB/RelB signaling is a potent driver of tumorigenesis and invasion in the aggressive, mesenchymal subtype of glioma. However, the relevant signals that induce activation of noncanonical NF-κB signaling in glioma and its function relative to the canonical NF-κB pathway remain elusive. METHODS The ability of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) to regulate NF-κB signaling and promote tumor progression was investigated in both established and primary high-grade glioma tumor lines using a three-dimensional (3-D) collagen invasion assay. The roles of specific NF-κB proteins in regulating glioma cell invasion and expression of Matrix Metalloproteinase 9 (MMP9) in response to TWEAK were evaluated using shRNA-mediated loss-of-function studies. The ability of NF-κB-inducing kinase (NIK) to promote glioma growth in vivo was investigated using an orthotopic xenograft mouse model. RESULTS In glioma cells that display elevated noncanonical NF-κB signaling, loss of RelB attenuates invasion without affecting RelA expression or phosphorylation and RelB is sufficient to promote invasion in the absence of RelA. The cytokine TWEAK preferentially activates the noncanonical NF-κB pathway through induction of p100 processing to p52 and nuclear accumulation of both RelB and p52 without activating the canonical NF-κB pathway. Moreover, TWEAK, but not TNFα, significantly increases NIK mRNA levels. TWEAK also promotes noncanonical NFκB-dependent MMP9 expression and glioma cell invasion. Finally, expression of NIK is sufficient to increase gliomagenesis in vivo. CONCLUSIONS Our data establish a key role for NIK and noncanonical NF-κB in mediating TWEAK-induced, MMP-dependent glioma cell invasion. The findings also demonstrate that TWEAK induces noncanonical NF-κB signaling and signal-specific regulation of NIK mRNA expression. Together, these studies reveal the important role of noncanonical NF-κB signaling in regulating glioma invasiveness and highlight the therapeutic potential of targeting activation of NIK in this deadly disease.
Collapse
Affiliation(s)
- Evan M Cherry
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- Medical Science Graduate 588 Program, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dong W Lee
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Ji-Ung Jung
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- Medical Science Graduate 588 Program, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Raquel Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- The Texas Brain and Spine Institute, Bryan, TX, USA.
| |
Collapse
|
28
|
Abstract
In unstimulated cells, NF-κB dimers usually exist as latent complexes in the cytoplasm with the IκB (inhibitor of NF-κB) proteins or IκB-like protein p100, the precursor of NF-κB2 mature form p52. Accordingly, there are two major mechanisms leading to NF-κB activation: inducible degradation of IκBs and processing of p100 to generate p52 (selective degradation of the C-terminal IκB-like sequence of p100), which are termed the canonical and noncanonical NF-κB pathways, respectively. While activation of the canonical NF-κB pathway plays critical roles in a wide range of biological processes, the noncanonical NF-κB pathway has important but more restricted roles in both normal and pathological processes. Systematic detection of the noncanonical NF-κB pathway activation is very important for understanding the physiological role of this pathway in biological processes, and for the diagnosis, prevention, and treatment of related diseases. We describe here the methods we employ to detect noncanonical NF-κB activation in cells and tissues. These methods are immunoblotting, co-immunoprecipitation, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation (ChIP) analysis, and electrophoretic mobility shift assay (EMSA). Noncanonical NF-κB-induced gene expression changes can be determined by gene array analysis and quantitative real-time PCR.
Collapse
Affiliation(s)
- Zhaoxia Qu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, 1.18 Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
29
|
Yılmaz ZB, Kofahl B, Beaudette P, Baum K, Ipenberg I, Weih F, Wolf J, Dittmar G, Scheidereit C. Quantitative dissection and modeling of the NF-κB p100-p105 module reveals interdependent precursor proteolysis. Cell Rep 2014; 9:1756-1769. [PMID: 25482563 DOI: 10.1016/j.celrep.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/26/2022] Open
Abstract
The mechanisms that govern proteolytic maturation or complete destruction of the precursor proteins p100 and p105 are fundamental to homeostasis and activation of NF-κB; however, they remain poorly understood. Using mass-spectrometry-based quantitative analysis of noncanonical LTβR-induced signaling, we demonstrate that stimulation induces simultaneous processing of both p100 and p105. The precursors not only form hetero-oligomers but also interact with the ATPase VCP/p97, and their induced proteolysis strictly depends on the signal response domain (SRD) of p100, suggesting that the SRD-targeting proteolytic machinery acts in cis and in trans. Separation of cellular pools by isotope labeling revealed synchronous dynamics of p105 and p100 proteolysis. The generation of p50 and p52 from their precursors depends on functional VCP/p97. We have developed quantitative mathematical models that describe the dynamics of the system and predict that p100-p105 complexes are signal responsive.
Collapse
Affiliation(s)
- Zekiye Buket Yılmaz
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | - Bente Kofahl
- Mathematical Modeling Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Patrick Beaudette
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Katharina Baum
- Mathematical Modeling Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Inbal Ipenberg
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Falk Weih
- Leibniz-Institute for Age Research-Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jana Wolf
- Mathematical Modeling Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
30
|
Zhou J, Qu Z, Yan S, Sun F, Whitsett JA, Shapiro SD, Xiao G. Differential roles of STAT3 in the initiation and growth of lung cancer. Oncogene 2014; 34:3804-3814. [PMID: 25284582 PMCID: PMC4387125 DOI: 10.1038/onc.2014.318] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/01/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is linked to multiple cancers, including pulmonary adenocarcinoma. However, the role of STAT3 in lung cancer pathogenesis has not been determined. Using lung epithelial-specific inducible knockout strategies, we demonstrate that STAT3 has contrasting roles in the initiation and growth of both chemically and genetically induced lung cancers. Selective deletion of lung epithelial STAT3 in mice before cancer induction by the smoke carcinogen, urethane, resulted in increased lung tissue damage and inflammation, K-Ras oncogenic mutations and tumorigenesis. Deletion of lung epithelial STAT3 after establishment of lung cancer inhibited cancer cell proliferation. Simultaneous deletion of STAT3 and expression of oncogenic K-Ras in mouse lung elevated pulmonary injury, inflammation and tumorigenesis, but reduced tumor growth. These studies indicate that STAT3 prevents lung cancer initiation by maintaining pulmonary homeostasis under oncogenic stress, whereas it facilitates lung cancer progression by promoting cancer cell growth. These studies also provide a mechanistic basis for targeting STAT3 to lung cancer therapy.
Collapse
Affiliation(s)
- Jingjiao Zhou
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Zhaoxia Qu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Shapei Yan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Fan Sun
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Jeffrey A Whitsett
- Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Steven D Shapiro
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Gutian Xiao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
31
|
Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 2014; 25:453-72. [PMID: 25169849 DOI: 10.1016/j.cytogfr.2014.07.016] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor Necrosis Factor (TNF), initially known for its tumor cytotoxicity, is a potent mediator of inflammation, as well as many normal physiological functions in homeostasis and health, and anti-microbial immunity. It also appears to have a central role in neurobiology, although this area of TNF biology is only recently emerging. Here, we review the basic biology of TNF and its normal effector functions, and discuss the advantages and disadvantages of therapeutic neutralization of TNF - now a commonplace practice in the treatment of a wide range of human inflammatory diseases. With over ten years of experience, and an emerging range of anti-TNF biologics now available, we also review their modes of action, which appear to be far more complex than had originally been anticipated. Finally, we highlight the current challenges for therapeutic intervention of TNF: (i) to discover and produce orally delivered small molecule TNF-inhibitors, (ii) to specifically target selected TNF producing cells or individual (diseased) tissue targets, and (iii) to pre-identify anti-TNF treatment responders. Although the future looks bright, the therapeutic modulation of TNF now moves into the era of personalized medicine with society's challenging expectations of durable treatment success and of achieving long-term disease remission.
Collapse
Affiliation(s)
- Lisa M Sedger
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW 2109, Australia; The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| | - Michael F McDermott
- Experimental Rheumatology, National Institute for Health Research - Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James University, Beckett Street, West Yorkshire, Leeds LS9 7TF, UK.
| |
Collapse
|
32
|
Gray CM, McCorkell KA, Chunduru SK, McKinlay MA, May MJ. Negative feedback regulation of NF-κB-inducing kinase is proteasome-dependent but does not require cellular inhibitors of apoptosis. Biochem Biophys Res Commun 2014; 450:341-6. [PMID: 24942881 PMCID: PMC4107106 DOI: 10.1016/j.bbrc.2014.05.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/25/2014] [Indexed: 11/16/2022]
Abstract
Non-canonical NF-κB signaling is controlled by the precise regulation of NF-κB inducing kinase (NIK) stability. NIK is constitutively ubiquitylated by cellular inhibitor of apoptosis (cIAP) proteins 1 and 2, leading to its complete proteasomal degradation in resting cells. Following stimulation, cIAP-mediated ubiquitylation of NIK ceases and NIK is stabilized, allowing for inhibitor of κB kinase (IKK)α activation and non-canonical NF-κB signaling. Non-canonical NF-κB signaling is terminated by feedback phosphorylation of NIK by IKKα that promotes NIK degradation; however, the mechanism of active NIK protein turnover remains unknown. To address this question, we established a strategy to precisely distinguish between basal degradation of newly synthesized endogenous NIK and induced active NIK in stimulated cells. Using this approach, we found that IKKα-mediated degradation of signal-induced activated NIK occurs through the proteasome. To determine whether cIAP1 or cIAP2 play a role in active NIK turnover, we utilized a Smac mimetic (GT13072), which promotes degradation of these E3 ubiquitin ligases. As expected, GT13072 stabilized NIK in resting cells. However, loss of the cIAPs did not inhibit proteasome-dependent turnover of signal-induced NIK showing that unlike the basal regulatory mechanism, active NIK turnover is independent of cIAP1 and cIAP2. Our results therefore establish that the negative feedback control of IKKα-mediated NIK turnover occurs via a novel proteasome-dependent and cIAP-independent mechanism.
Collapse
Affiliation(s)
- Carolyn M Gray
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States
| | - Kelly A McCorkell
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States
| | - Srinivas K Chunduru
- PKPD Biosciences, 717 Constitution Drive, Suite 104, Exton, PA 19341, United States
| | - Mark A McKinlay
- Task Force for Global Health, 325 Swanton Way, Decatur, GA 30030, United States
| | - Michael J May
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States; Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
33
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
34
|
Lim AI, Chan LYY, Tang SCW, Yiu WH, Li R, Lai KN, Leung JCK. BMP-7 represses albumin-induced chemokine synthesis in kidney tubular epithelial cells through destabilization of NF-κB-inducing kinase. Immunol Cell Biol 2014; 92:427-35. [PMID: 24418819 DOI: 10.1038/icb.2013.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/28/2013] [Accepted: 12/12/2013] [Indexed: 01/28/2023]
Abstract
Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA). The expression profiles of chemokines and adhesion molecules in cultured human PTECs were screened by PCR array. Expression of CXCL1, CXCL2 and vascular cell adhesion protein 1 (VCAM-1) by PTECs was significantly upregulated by HSA and reduced by BMP-7. HSA activated both the canonical and noncanonical nuclear factor (NF)-κB pathways in PTECs, as indicated by the increased nuclear translocation of NF-κB p50 and p52 subunits. The nuclear translocation of NF-κB p52 was completely abrogated by BMP-7, whereas NF-κB p50 activation was only partially repressed. BMP-7 increased the expression of cellular inhibitor of apoptosis 1 (cIAP1), tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF3, but not of NF-κB-inducing kinase (NIK) that was significantly upregulated by HSA. Silencing NIK recapitulated the partial inhibitory effect on HSA-induced chemokine synthesis by BMP-7. Complete abolishment of the chemokine synthesis was only achieved by including additional blockade of the NF-κB p65 translocation on top of NIK silencing. Our data suggest that BMP-7 represses the NIK-dependent chemokine synthesis in PTECs activated with HSA through blocking the noncanonical NF-κB pathway and partially interfering with the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Ai Ing Lim
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Wai Han Yiu
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Ruixi Li
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Nephrology Center, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
35
|
Uno M, Saitoh Y, Mochida K, Tsuruyama E, Kiyono T, Imoto I, Inazawa J, Yuasa Y, Kubota T, Yamaoka S. NF-κB inducing kinase, a central signaling component of the non-canonical pathway of NF-κB, contributes to ovarian cancer progression. PLoS One 2014; 9:e88347. [PMID: 24533079 PMCID: PMC3922808 DOI: 10.1371/journal.pone.0088347] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/12/2014] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is one of the leading causes of female death and the development of novel therapeutic approaches is urgently required. Nuclear factor-κB (NF-κB) is constitutively activated in several types of cancer including ovarian cancer and is known to support the survival of cancer cells. However, molecular mechanisms of persistent activation of NF-κB in ovarian cancer remain largely unknown. We report here that, in addition to the previously reported canonical activation, NF-κB is activated through the noncanonical pathway in ovarian cancer cells. RNA interference-mediated silencing of NF-κB inducing kinase (NIK), a central regulator of the noncanonical pathway, reduced the NF-κB2/p52 DNA binding activity and NF-κB-dependent reporter gene expression as well as NF-κB target gene expression. Notably, anchorage-dependent and -independent cell growth was impaired in NIK-depleted cells. Depletion of NIK also suppressed tumor formation in the nude mouse xenograft assay. These results indicate that NIK plays a key role in constitutive NF-κB activation and the progression of ovarian cancer cells and suggest that NIK represents an attractive therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Masaya Uno
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunori Saitoh
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanako Mochida
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Tsuruyama
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Kiyono
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Kubota
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
36
|
Abstract
TLRs (Toll-like receptors) detect invading micro-organisms which triggers the production of pro-inflammatory mediators needed to combat infection. Although these signalling networks are required to protect the host against invading pathogens, dysregulation of TLR pathways contributes to the development of chronic inflammatory diseases and autoimmune disorders. Molecular mechanisms have therefore evolved to restrict the strength of TLR signalling. In the present review, I highlight recent advances in our understanding of the protein kinase networks required to suppress the innate immune response by negatively regulating TLR signalling and/or promoting the secretion of anti-inflammatory cytokines. I present my discoveries on the key roles of the IKK (inhibitor of nuclear factor κB kinase)-related kinases and the SIKs (salt-inducible kinases) in limiting innate immunity within the greater context of the field.
Collapse
|
37
|
Noncanonical Nuclear Factor Kappa B (NF-κB) Signaling and Potential for Therapeutics in Sepsis. Curr Infect Dis Rep 2013; 15:364-71. [PMID: 23975688 DOI: 10.1007/s11908-013-0362-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
NF-κB signaling plays a central role in the pathophysiology of severe sepsis and septic shock. Despite tremendous and missed efforts, novel therapeutics for severe sepsis and septic shock are still needed. Many drugs have been designed to target the canonical NF-κB signaling pathway with limited success, potentially due to the nonspecificity of the drugs for other kinases and the interaction of canonical signaling with other pathways. Here, we review the canonical and noncanonical signaling pathways of NF-κB, the cross talk and negative regulation of the two pathways, and the potential for therapeutics arising from the noncanonical NF-κB pathway in relation to the pathophysiology of septic shock.
Collapse
|
38
|
Ranuncolo SM, Pittaluga S, Evbuomwan MO, Jaffe ES, Lewis BA. Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival. Blood 2012; 120:3756-63. [PMID: 22968463 PMCID: PMC3488888 DOI: 10.1182/blood-2012-01-405951] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023] Open
Abstract
We have analyzed the role of the REL family members in Hodgkin lymphoma (HL). shRNA targeting of each REL member showed that HL was uniquely dependent on relB, in contrast to several other B-cell lymphomas. In addition, relA and c-rel shRNA expression also decreased HL cell viability. In exploring relB activation further, we found stable NF-κB inducing kinase (NIK) protein in several HL cell lines and that NIK shRNA also affected HL cell line viability. More importantly, 49 of 50 HL patient biopsies showed stable NIK protein, indicating that NIK and the noncanonical pathway are very prevalent in HL. Lastly, we have used a NIK inhibitor that reduced HL but not other B-cell lymphoma cell viability. These data show that HL is uniquely dependent on relB and that the noncanonical pathway can be a therapeutic target for HL. Furthermore, these results show that multiple REL family members participate in the maintenance of a HL phenotype.
Collapse
Affiliation(s)
- Stella M Ranuncolo
- Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | | | | | | | | |
Collapse
|
39
|
Hupalowska A, Pyrzynska B, Miaczynska M. APPL1 regulates basal NF-κB activity by stabilizing NIK. J Cell Sci 2012; 125:4090-102. [PMID: 22685329 PMCID: PMC3482318 DOI: 10.1242/jcs.105171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2012] [Indexed: 11/20/2022] Open
Abstract
APPL1 is a multifunctional adaptor protein that binds membrane receptors, signaling proteins and nuclear factors, thereby acting in endosomal trafficking and in different signaling pathways. Here, we uncover a novel role of APPL1 as a positive regulator of transcriptional activity of NF-κB under basal but not TNFα-stimulated conditions. APPL1 was found to directly interact with TRAF2, an adaptor protein known to activate canonical NF-κB signaling. APPL1 synergized with TRAF2 to induce NF-κB activation, and both proteins were necessary for this process and function upstream of the IKK complex. Although TRAF2 was not detectable on APPL endosomes, endosomal recruitment of APPL1 was required for its function in the NF-κB pathway. Importantly, in the canonical pathway, APPL1 appeared to regulate the proper spatial distribution of the p65 subunit of NF-κB in the absence of cytokine stimulation, since its overexpression enhanced and its depletion reduced the nuclear accumulation of p65. By analyzing the patterns of gene transcription upon APPL1 overproduction or depletion we found altered expression of NF-κB target genes that encode cytokines. At the molecular level, overexpressed APPL1 markedly increased the level of NIK, the key component of the noncanonical NF-κB pathway, by reducing its association with the degradative complex containing TRAF2, TRAF3 and cIAP1. In turn, high levels of NIK triggered nuclear translocation of p65. Collectively, we propose that APPL1 regulates basal NF-κB activity by modulating the stability of NIK, which affects the activation of p65. This places APPL1 as a novel link between the canonical and noncanonical machineries of NF-κB activation.
Collapse
Affiliation(s)
| | | | - Marta Miaczynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| |
Collapse
|
40
|
Qu Z, Fu J, Ma H, Zhou J, Jin M, Mapara MY, Grusby MJ, Xiao G. PDLIM2 restricts Th1 and Th17 differentiation and prevents autoimmune disease. Cell Biosci 2012; 2:23. [PMID: 22731402 PMCID: PMC3543335 DOI: 10.1186/2045-3701-2-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 01/31/2023] Open
Abstract
Background PDLIM2 is essential for the termination of the inflammatory transcription factors NF-κB and STAT but is dispensable for the development of immune cells and immune tissues/organs. Currently, it remains unknown whether and how PDLIM2 is involved in physiologic and pathogenic processes. Results Here we report that naive PDLIM2 deficient CD4+ T cells were prone to differentiate into Th1 and Th17 cells. PDLIM2 deficiency, however, had no obvious effect on lineage commitment towards Th2 or Treg cells. Notably, PDLIM2 deficient mice exhibited increased susceptibility to experimental autoimmune encephalitis (EAE), a Th1 and/or Th17 cell-mediated inflammatory disease model of multiple sclerosis (MS). Mechanistic studies further indicate that PDLIM2 was required for restricting expression of Th1 and Th17 cytokines, which was in accordance with the role of PDLIM2 in the termination of NF-κB and STAT activation. Conclusion These findings suggest that PDLIM2 is a key modulator of T-cell-mediated immune responses that may be targeted for the therapy of human autoimmune diseases.
Collapse
Affiliation(s)
- Zhaoxia Qu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shi DD, Shi H, Lu D, Li R, Zhang Y, Zhang J. NDR1/STK38 potentiates NF-κB activation by its kinase activity. Cell Biochem Funct 2012; 30:664-70. [DOI: 10.1002/cbf.2846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/13/2012] [Accepted: 05/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Dan-Dan Shi
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health); Peking University Health Science Center; Beijing; China
| | - Hu Shi
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health); Peking University Health Science Center; Beijing; China
| | - Dan Lu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health); Peking University Health Science Center; Beijing; China
| | - Rui Li
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health); Peking University Health Science Center; Beijing; China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health); Peking University Health Science Center; Beijing; China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health); Peking University Health Science Center; Beijing; China
| |
Collapse
|
42
|
Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol Rev 2012; 246:286-310. [DOI: 10.1111/j.1600-065x.2012.01094.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
44
|
Razani B, Reichardt AD, Cheng G. Non-canonical NF-κB signaling activation and regulation: principles and perspectives. Immunol Rev 2011; 244:44-54. [PMID: 22017430 DOI: 10.1111/j.1600-065x.2011.01059.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear-factor κB (NF-κB) transcription factors are activated by a wide variety of stimuli in diverse cell types and control key aspects of immune function and development. Receptor-mediated activation of NF-κB appears to occur through two distinct signaling pathways termed as the canonical and non-canonical NF-κB pathways. Although much work has demonstrated the physiological importance of non-canonical NF-κB signaling to immunity and its involvement in diverse pathologies, such as cancers and autoimmune disease, the architecture and regulation of the pathway is only beginning to be understood. The non-canonical pathway appears to be activated by a select set of receptors within the tumor necrosis factor superfamily, and we discuss the molecular mechanisms that connect ligation of these receptors to pathway activation. It has become increasingly clear that the key regulatory step of the pathway involves modulation of the post-translational degradation of NF-κB-inducing kinase (NIK), the central activating kinase of non-canonical NF-κB signaling. How NIK post-translational stability is controlled before and after receptor ligation is an important aspect of understanding non-canonical NF-κB signaling. Furthermore, how release of NF-κB dimers downstream of the pathway's activation is actually connected to its identified physiological and pathological roles is a key remaining question in the field.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
45
|
Thair SA, Walley KR, Nakada TA, McConechy MK, Boyd JH, Wellman H, Russell JA. A single nucleotide polymorphism in NF-κB inducing kinase is associated with mortality in septic shock. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2321-8. [PMID: 21257964 DOI: 10.4049/jimmunol.1002864] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We tested the hypothesis that single nucleotide polymorphisms (SNPs) within genes of the NF-κB pathway are associated with altered clinical outcome of septic shock patients. We genotyped 59 SNPs in the NF-κB pathway in a discovery cohort of septic shock patients (St. Paul's Hospital [SPH], N = 589), which identified the C allele of rs7222094 T/C within MAP3K14 (NF-κB inducing kinase; NIK) associated with increased 28-d mortality (uncorrected p = 0.00024, Bonferroni corrected p = 0.014). This result was replicated in a second cohort of septic shock patients (Vasopressin and Septic Shock Trial [VASST; N = 616]) in which the CC genotype of rs7222094 was associated with increased 28-d mortality (Cox regression: SPH cohort hazard ratio [HR], 1.35; 95% confidence interval [CI], 1.12-1.64; p = 0.002 Caucasian only; and VASST cohort HR, 1.24; 95% CI, 1.00-1.52; p = 0.048 Caucasian only). Patients having the CC genotype of rs7222094 in SPH experienced more renal and hematological dysfunction (p = 0.003 and p = 0.011), while patients of the VASST cohort with the rs7222094 CC genotype showed the same trend toward more renal dysfunction. In lymphoblastoid cell lines, we found the rs7222094 genotype most strongly associated with mRNA expression of CXCL10, a chemokine regulated by NF-κB. Accordingly, we measured CXCL10 protein levels and found that the CC genotype of rs7222094 was associated with significantly lower levels than those of the TT genotype in lymphoblastoid cell lines (p < 0.05) and in septic shock patients (p = 0.017). This suggests that the CC genotype of NIK rs7222094 is associated with increased mortality and organ dysfunction in septic shock patients, perhaps due to altered regulation of NF-κB pathway genes, including CXCL10.
Collapse
Affiliation(s)
- Simone A Thair
- University of British Columbia Critical Care Research Laboratories, Heart and Lung Institute, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Sasaki CY, Ghosh P, Longo DL. Recruitment of RelB to the Csf2 promoter enhances RelA-mediated transcription of granulocyte-macrophage colony-stimulating factor. J Biol Chem 2011; 286:1093-102. [PMID: 21071440 PMCID: PMC3020716 DOI: 10.1074/jbc.m110.119438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/29/2010] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) induces expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) but lymphotoxin β (LTβ) does not. Here we report that priming of cells with agonistic LTβ receptor antibody synergistically enhanced TNF-induced GM-CSF expression. The LTβ priming process was not due to an increase in TNF-mediated nuclear translocation of p65, p65 DNA binding, or NF-κB transactivational activity. The synergistic effect of LTβ priming was not observed with other TNF-responsive genes such as Ccl2 or RelB, which suggested that this effect was not a general increase in TNF signaling. Furthermore, RelB and p65 were both independently recruited to the GM-CSF promoter when cells were primed with LTβ followed by TNF treatment. As a consequence, an increase in both chromatin accessibility and the recruitment of RNA polymerase II were observed to the GM-CSF promoter. Taken together, these findings suggested that LTβ signaling amplified TNF-mediated GM-CSF expression by facilitating chromatin access and the co-recruitment of RNA polymerase II to increase gene transcription. Moreover, the novel priming process described here underscores the complexity of the interactions between the classical and alternative NF-κB signaling pathways.
Collapse
Affiliation(s)
- Carl Y. Sasaki
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Paritosh Ghosh
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Dan L. Longo
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
47
|
Farhana L, Dawson MI, Murshed F, Fontana JA. Maximal adamantyl-substituted retinoid-related molecule-induced apoptosis requires NF-κB noncanonical and canonical pathway activation. Cell Death Differ 2011; 18:164-73. [PMID: 20671747 PMCID: PMC2970660 DOI: 10.1038/cdd.2010.84] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/20/2023] Open
Abstract
NF-κB transcription factors have a critical role in regulating cell survival and apoptosis. We have previously shown that 4-(3-Cl-(1-adamantyl)-4-hydroxyphenyl)-3-chlorocinnamic acid (3-Cl-AHPC), an adamantyl-substituted retinoid molecule, induced apoptosis and required NF-κB activation in prostate and breast carcinoma cells. Here, we show that 3-Cl-AHPC activated both IκB kinase (IKK)α and IKKβ with subsequent activation of the canonical and noncanonical NF-κB pathways in the human breast carcinoma and leukemia cell lines. 3-Cl-AHPC-mediated activation of the NF-κB canonical pathway occurred within 6 h, whereas maximal activation of the NF-κB noncanonical pathway required 48 h. Knockout of IKKα or IKKβ expression in mouse embryonic fibroblast cells and knockdown of IKKα or IKKβ in MDA-MB-468 cells resulted in the inhibition of 3-Cl-AHPC-mediated apoptosis, indicating that activation of canonical and noncanonical pathways are required for maximal 3-Cl-AHPC-mediated apoptosis. 3-Cl-AHPC activation of the noncanonical pathway was preceded by caspase-mediated decrease in the E3-ligase c-IAP1 with subsequent stabilization of NF-κB-inducing kinase (NIK) expression, increased binding of NIK by TRAF3, activation of IKKα, and the resultant increased levels of RelB and p52. Increased expression of c-IAP1 blocked 3-Cl-AHPC-mediated stabilization of NIK levels and 3-Cl-AHPC-mediated apoptosis. Cdc37 expression was required for activation of IKKα and IKKβ by 3-Cl-AHPC. These findings suggest that NF-κB pathways have an important role in 3-Cl-AHPC-mediated apoptosis.
Collapse
Affiliation(s)
- L Farhana
- Deparment of Medicine, John D Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, 1550 NW 10 Avenue, Miami, FL 33136, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
49
|
The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2010; 117:1652-61. [PMID: 21115974 DOI: 10.1182/blood-2010-08-303073] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to repress expression of the WWOX tumor suppressor gene. Notably, WWOX specifically inhibited Tax-induced activation of the canonical, but not the noncanonical NF-κB pathway. Mechanistic studies indicated that WWOX blocked Tax-induced inhibitors of κB kinaseα (IKKα) recruitment to RelA and subsequent RelA phosphorylation at S536. In contrast, WWOX Y33R, a mutant unable to block the IKKα recruitment and RelA phosphorylation, lost the ability to inhibit Tax-mediated tumorigenesis. These data provide one important mechanism by which Tax coordinates the 2 NF-κB pathways for tumorigenesis. These data also suggest a novel role of WWOX in NF-κB regulation and viral tumorigenesis.
Collapse
|
50
|
Jin X, Jin HR, Jung HS, Lee SJ, Lee JH, Lee JJ. An atypical E3 ligase zinc finger protein 91 stabilizes and activates NF-kappaB-inducing kinase via Lys63-linked ubiquitination. J Biol Chem 2010; 285:30539-47. [PMID: 20682767 PMCID: PMC2945548 DOI: 10.1074/jbc.m110.129551] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/11/2010] [Indexed: 11/06/2022] Open
Abstract
The NF-κB transcription factors control many physiological processes, including inflammation, immunity, and apoptosis. Its activity contributes to the development of various cell malignancies. NF-κB-inducing kinase (NIK) plays a pivotal role in NF-κB activation. However, the molecular mechanism to stabilize and activate NIK remains elusive, although it is known that cIAP1/2 (cellular inhibitor of apoptosis 1 and 2) ubiquitinate NIK for degradation. Here, we report a novel NF-κB-related zinc finger protein 91 (ZFP91) that stabilizes and activates NIK in a ubiquitination-dependent manner. We show that ZFP91 interacts with and promotes the Lys(63)-linked ubiquitination of NIK and subsequent processing of p100 to p52. The results of in vitro biochemical assays indicate that ZFP91 functions as an E3 ligase directly to NIK. Remarkably, the ubiquitination of NIK coincides with its Thr(559) phosphorylation. Furthermore, knockdown of ZFP91 expression by RNA interference inhibits the CD40 ligation-induced activation of NIK and p100 processing as well as the expression of noncanonical NF-κB target genes. These data clearly indicate that ZFP91 is an important regulator of the noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Xuejun Jin
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
- Key Laboratory for Natural Resources of Changbai Mountain and Functional Molecules, Yanbian University, Yanji, China, and
| | - Hong Ri Jin
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
- Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Haeng Sun Jung
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
| | - Se Jeong Lee
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Jung Joon Lee
- From the Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Republic of Korea
- Korea University of Science and Technology, Daejeon 305-333, Republic of Korea
| |
Collapse
|