1
|
Umotoy JC, Kroon PZ, Man S, van Dort KA, Atabey T, Schriek AI, Dekkers G, Herrera-Carrillo E, Geijtenbeek TB, Heukers R, Kootstra NA, van Gils MJ, de Taeye SW. Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9. iScience 2024; 27:110958. [PMID: 39391729 PMCID: PMC11465043 DOI: 10.1016/j.isci.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
HIV-1 alters the dynamics and distribution of tetraspanins, a group of proteins integral to membrane organization, to facilitate both entry and egress. Notably, the tetraspanin CD9 is dysregulated during HIV-1 infection, correlating with multifaceted effects on viral replication. Here, we generated llama-derived nanobodies against CD9 to restrict HIV-1 replication. We immunized llamas with recombinant large extracellular loop of CD9 and identified eight clonally distinct nanobodies targeting CD9, each exhibiting a range of affinities and differential binding to cell surface-expressed CD9. Notably, nanobodies T2C001 and T2C002 demonstrated low nanomolar affinities and exhibited differential sensitivities against endogenous and overexpressed CD9 on the cell surface. Although CD9-directed nanobodies did not impede the early stages of HIV-1 life cycle, they effectively inhibited virus-induced syncytia formation and virus replication in T cells and monocyte-derived macrophages. This discovery opens new avenues for host-targeted therapeutic strategies, potentially augmenting existing antiretroviral treatments for HIV-1.
Collapse
Affiliation(s)
- Jeffrey C. Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Karel A. van Dort
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tugba Atabey
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Angela I. Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Gillian Dekkers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elena Herrera-Carrillo
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Wang MD, Li HT, Peng LX, Mei Y, Zheng LS, Li CZ, Meng DF, Lang YH, Xu L, Peng XS, Liu ZJ, Xie DH, Guo LL, Ma MG, Ding LY, Huang BJ, Cao Y, Qian CN. TSPAN1 inhibits metastasis of nasopharyngeal carcinoma via suppressing NF-kB signaling. Cancer Gene Ther 2024; 31:454-463. [PMID: 38135697 DOI: 10.1038/s41417-023-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.
Collapse
Affiliation(s)
- Ming-Dian Wang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hui-Ting Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Li-Sheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Chang-Zhi Li
- Medical School, Pingdingshan University, Pingdingshan, Henan Province, 467021, P. R. China
| | - Dong-Fang Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P. R. China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Xing-Si Peng
- Department of radiation oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiotherapy, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - De-Huan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Mao-Guang Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Liu-Yan Ding
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yun Cao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Guangzhou Concord Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Tetraspanins set the stage for bone marrow microenvironment-induced chemoprotection in hematologic malignancies. Blood Adv 2023; 7:4403-4413. [PMID: 37561544 PMCID: PMC10432613 DOI: 10.1182/bloodadvances.2023010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Despite recent advances in the treatment of hematologic malignancies, relapse still remains a consistent issue. One of the primary contributors to relapse is the bone marrow microenvironment providing a sanctuary to malignant cells. These cells interact with bone marrow components such as osteoblasts and stromal cells, extracellular matrix proteins, and soluble factors. These interactions, mediated by the cell surface proteins like cellular adhesion molecules (CAMs), induce intracellular signaling that leads to the development of bone marrow microenvironment-induced chemoprotection (BMC). Although extensive study has gone into these CAMs, including the development of targeted therapies, very little focus in hematologic malignancies has been put on a family of cell surface proteins that are just as important for mediating bone marrow interactions: the transmembrane 4 superfamily (tetraspanins; TSPANs). TSPANs are known to be important mediators of microenvironmental interactions and metastasis based on numerous studies in solid tumors. Recently, evidence of their possible role in hematologic malignancies, specifically in the regulation of cellular adhesion, bone marrow homing, intracellular signaling, and stem cell dynamics in malignant hematologic cells has come to light. Many of these effects are facilitated by associations with CAMs and other receptors on the cell surface in TSPAN-enriched microdomains. This could suggest that TSPANs play an important role in mediating BMC in hematologic malignancies and could be used as therapeutic targets. In this review, we discuss TSPAN structure and function in hematologic cells, their interactions with different cell surface and signaling proteins, and possible ways to target/inhibit their effects.
Collapse
Affiliation(s)
- Anthony Quagliano
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Sonali P. Barwe
- Lisa Dean Moseley Foundation Institute for Cancer and Blood Disorders, Nemours Children’s Hospital, Wilmington, DE
- Department of Biological Sciences, University of Delaware, Newark, DE
| |
Collapse
|
4
|
Ondruššek R, Kvokačková B, Kryštofová K, Brychtová S, Souček K, Bouchal J. Prognostic value and multifaceted roles of tetraspanin CD9 in cancer. Front Oncol 2023; 13:1140738. [PMID: 37007105 PMCID: PMC10063841 DOI: 10.3389/fonc.2023.1140738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
CD9 is a crucial regulator of cell adhesion in the immune system and plays important physiological roles in hematopoiesis, blood coagulation or viral and bacterial infections. It is involved in the transendothelial migration of leukocytes which might also be hijacked by cancer cells during their invasion and metastasis. CD9 is found at the cell surface and the membrane of exosomes affecting cancer progression and therapy resistance. High expression of CD9 is mostly associated with good patients outcome, with a few exceptions. Discordant findings have been reported for breast, ovarian, melanoma, pancreatic and esophageal cancer, which might be related to using different antibodies or inherent cancer heterogeneity. According to in vitro and in vivo studies, tetraspanin CD9 is not clearly associated with either tumor suppression or promotion. Further mechanistic experiments will elucidate the role of CD9 in particular cancer types and specific conditions.
Collapse
Affiliation(s)
- Róbert Ondruššek
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Pathology, EUC Laboratore CGB a.s., Ostrava, Czechia
| | - Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karolína Kryštofová
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Světlana Brychtová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, Olomouc, Czechia
- *Correspondence: Jan Bouchal,
| |
Collapse
|
5
|
Ding Y, Chen J, Li S, Wren JD, Bajpai AK, Wang J, Tanaka T, Rice HC, Hays FA, Lu L, Zhang XA. EWI2 and its relatives in Tetraspanin-enriched membrane domains regulate malignancy. Oncogene 2023; 42:861-868. [PMID: 36788350 DOI: 10.1038/s41388-023-02623-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Experimental studies on immunoglobulin superfamily (IgSF) member EWI2 reveal that it suppresses a variety of solid malignant tumors including brain, lung, skin, and prostate cancers in animal models and inhibits tumor cell movement and growth in vitro. While EWI2 appears to support myeloid leukemia in mouse models and maintain leukemia stem cells. Bioinformatics analyses suggest that EWI2 gene expression is downregulated in glioblastoma but upregulated in melanoma, pancreatic cancer, and liver cancer. The mechanism of action for EWI2 is linked to its inhibition of growth factor receptors and cell adhesion proteins through its associated tetraspanin-enriched membrane domains (TEMDs), by altering the cell surface clustering and endolysosome trafficking/turnover of these transmembrane proteins. Recent studies also show that EWI2 modulates the nuclear translocation of ERK and TFEB to change the activities of these gene expression regulators. For EWI2 relatives including FPRP, IgSF3, and CD101, although their roles in malignant diseases are not fully clear and remain to be determined experimentally, FPRP and IgSF3 likely promote the progression of solid malignant tumors while CD101 seems to modulate immune cells of tumor microenvironment. Distinctive from other tumor regulators, the impacts of EWI subfamily members on solid malignant tumors are likely to be context dependent. In other words, the effect of a given EWI subfamily member on a tumor probably depends on the molecular network and composition of TEMDs in that tumor. Collectively, EWI2 and its relatives are emerged as important regulators of malignant diseases with promising potentials to become anti-cancer therapeutics and cancer therapy targets.
Collapse
Affiliation(s)
- Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shuping Li
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Takemi Tanaka
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Heather C Rice
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lu Lu
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Li X, Han P, Chen W, Gao C, Wang S, Song T, Niu M, Rodriguez-Patón A. MARPPI: boosting prediction of protein-protein interactions with multi-scale architecture residual network. Brief Bioinform 2023; 24:6887309. [PMID: 36502435 DOI: 10.1093/bib/bbac524] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions (PPIs) are a major component of the cellular biochemical reaction network. Rich sequence information and machine learning techniques reduce the dependence of exploring PPIs on wet experiments, which are costly and time-consuming. This paper proposes a PPI prediction model, multi-scale architecture residual network for PPIs (MARPPI), based on dual-channel and multi-feature. Multi-feature leverages Res2vec to obtain the association information between residues, and utilizes pseudo amino acid composition, autocorrelation descriptors and multivariate mutual information to achieve the amino acid composition and order information, physicochemical properties and information entropy, respectively. Dual channel utilizes multi-scale architecture improved ResNet network which extracts protein sequence features to reduce protein feature loss. Compared with other advanced methods, MARPPI achieves 96.03%, 99.01% and 91.80% accuracy in the intraspecific datasets of Saccharomyces cerevisiae, Human and Helicobacter pylori, respectively. The accuracy on the two interspecific datasets of Human-Bacillus anthracis and Human-Yersinia pestis is 97.29%, and 95.30%, respectively. In addition, results on specific datasets of disease (neurodegenerative and metabolic disorders) demonstrate the ability to detect hidden interactions. To better illustrate the performance of MARPPI, evaluations on independent datasets and PPIs network suggest that MARPPI can be used to predict cross-species interactions. The above shows that MARPPI can be regarded as a concise, efficient and accurate tool for PPI datasets.
Collapse
Affiliation(s)
- Xue Li
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Peifu Han
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Wenqi Chen
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Changnan Gao
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Shuang Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Tao Song
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Muyuan Niu
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| | - Alfonso Rodriguez-Patón
- School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
7
|
Gao H, Chen C, Li S, Wang C, Zhou W, Yu B. Prediction of protein-protein interactions based on ensemble residual conventional neural network. Comput Biol Med 2022. [DOI: 10.1016/j.compbiomed.2022.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
9
|
Fu C, Wang J, Pallikkuth S, Ding Y, Chen J, Wren JD, Yang Y, Wong KK, Kameyama H, Jayaraman M, Munshi A, Tanaka T, Lidke KA, Zhang XA. EWI2 prevents EGFR from clustering and endocytosis to reduce tumor cell movement and proliferation. Cell Mol Life Sci 2022; 79:389. [PMID: 35773608 PMCID: PMC10428948 DOI: 10.1007/s00018-022-04417-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
EWI2 is a transmembrane immunoglobulin superfamily (IgSF) protein that physically associates with tetraspanins and integrins. It inhibits cancer cells by influencing the interactions among membrane molecules including the tetraspanins and integrins. The present study revealed that, upon EWI2 silencing or ablation, the elevated movement and proliferation of cancer cells in vitro and increased cancer metastatic potential and malignancy in vivo are associated with (i) increases in clustering, endocytosis, and then activation of EGFR and (ii) enhancement of Erk MAP kinase signaling. These changes in signaling make cancer cells (i) undergo partial epithelial-to-mesenchymal (EMT) for more tumor progression and (ii) proliferate faster for better tumor formation. Inhibition of EGFR or Erk kinase can abrogate the cancer cell phenotypes resulting from EWI2 removal. Thus, to inhibit cancer cells, EWI2 prevents EGFR from clustering and endocytosis to restrain its activation and signaling.
Collapse
Affiliation(s)
- Chenying Fu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Yuchao Yang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | - Anupama Munshi
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Takemi Tanaka
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| |
Collapse
|
10
|
Wang J, Wren JD, Ding Y, Chen J, Mittal N, Xu C, Li X, Zeng C, Wang M, Shi J, Zhang YH, Han SJ, Zhang XA. EWI2 promotes endolysosome-mediated turnover of growth factor receptors and integrins to suppress lung cancer. Cancer Lett 2022; 536:215641. [PMID: 35339615 PMCID: PMC9036562 DOI: 10.1016/j.canlet.2022.215641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
As a partner of tetraspanins, EWI2 suppresses glioblastoma, melanoma, and prostate cancer; but its role in lung cancer has not been investigated. Bioinformatics analysis reveals that EWI2 gene expression is up regulated in lung adenocarcinoma and higher expression of EWI2 mRNA may predict poorer overall survival. However, experimental analysis shows that EWI2 protein is actually downregulated constantly in the tissues of lung adenocarcinoma and lung squamous cell carcinoma. Forced expression of EWI2 in human lung adenocarcinoma cells reduces total cellular and cell surface levels of various integrins and growth factor receptors, which initiates the outside-in motogenic and mitogenic signaling. These reductions result in the decreases in 1) cell-matrix adhesion, cell movement, and cell transformation in vitro and 2) tumor growth, burden, and metastasis in vivo, and result from the increases in lysosomal trafficking and proteolytic degradation of theses membrane receptors. EWI2 elevates lysosome formation by promoting nuclear retention of TFEB, the master transcription factor driving lysosomogenesis. In conclusion, EWI2 as a lung cancer suppressor attenuates lung cancer cells in a comprehensive fashion by inhibiting both tumor growth and tumor metastasis; EWI2 as an endolysosome regulator promotes lysosome activity to enhance lysosomal degradation of growth factor receptors and integrins and then reduce their levels and functions; and EWI2 can become a promising therapeutic candidate given its accessibility at the cell surface, dual inhibition on growth factor receptors and integrins, and broad-spectrum anti-cancer activity. More importantly, our observations also provide a novel therapeutic strategy to bypass the resistance to EGFR inhibitors.
Collapse
Affiliation(s)
- Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nikhil Mittal
- Michigan Technological University, Houghton, Michigan, USA
| | - Chao Xu
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xing Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cengxi Zeng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Shi
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanhui H. Zhang
- University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | | | - Xin A. Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA,To whom correspondence should be addressed: Dr. Xin Zhang, Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Biomedical Research Center Room 1474, 975 NE 10 Street, Oklahoma City, OK 73104. Tel: 405-271-8001 (ext. 56218);
| |
Collapse
|
11
|
Quantitative characterization of tetraspanin 8 homointeractions in the plasma membrane. Biochem J 2021; 478:3643-3654. [PMID: 34524408 DOI: 10.1042/bcj20210459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists in a monomer-dimer equilibrium in the plasma membrane. Tetraspanin 8 dimerization is described by a high dissociation constant (Kd = 14 700 ± 1100 Tspan8/µm2), one of the highest dissociation constants measured for membrane proteins in live cells. We propose that this high dissociation constant, and thus the short lifetime of the Tetraspanin 8 dimer, is critical for Tetraspanin 8 functioning as a master regulator of cell signaling.
Collapse
|
12
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
13
|
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) 2021; 246:1121-1138. [PMID: 33601913 DOI: 10.1177/1535370220981855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present minireview, we intend to provide a brief history of the field of CD9 involvement in oncogenesis and in the metastatic process of cancer, considering its potential value as a tumor-associated antigenic target. Over the years, CD9 has been identified as a favorable prognostic marker or predictor of metastatic potential depending on the cancer type. To understand its implications in cancer beside its use as an antigenic biomarker, it is essential to know its physiological functions, including its molecular partners in a given cell system. Moreover, the discovery that CD9 is one of the most specific and broadly expressed markers of extracellular membrane vesicles, nanometer-sized entities that are released into extracellular space and various physiological body fluids and play a role in intercellular communication under physiological and pathological conditions, notably the establishment of cancer metastases, has added a new dimension to our knowledge of CD9 function in cancer. Here, we will discuss these issues as well as the possible cancer therapeutic implications of CD9, their limitations, and pitfalls.
Collapse
Affiliation(s)
- Aurelio Lorico
- Touro University College of Medicine, Henderson, NV 89014, USA.,Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | | | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Giuseppe Pizzorno
- University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Erlanger Health System, Chattanooga, TN 37403 , USA
| |
Collapse
|
14
|
Xu H, Xu D, Zhang N, Zhang Y, Gao R. Protein-Protein Interaction Prediction Based on Spectral Radius and General Regression Neural Network. J Proteome Res 2021; 20:1657-1665. [PMID: 33555893 DOI: 10.1021/acs.jproteome.0c00871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-protein interaction (PPI) not only plays a critical role in cell life activities, but also plays an important role in discovering the mechanism of biological activity, protein function, and disease states. Developing computational methods is of great significance for PPIs prediction since experimental methods are time-consuming and laborious. In this paper, we proposed a PPI prediction algorithm called GRNN-PPI only using the amino acid sequence information based on general regression neural network and two feature extraction methods. Specifically, we designed a new feature extraction method named Mutation Spectral Radius (MSR) to extract evolutionary information by the BLOSUM62 matrix. Meanwhile, we integrated another feature extraction method, autocorrelation description, which can completely extract information on physicochemical properties and protein sequences. The principal component analysis was applied to eliminate noise, and the general regression neural network was adopted as a classifier. The prediction accuracy of the yeast, human, and Helicobacter pylori1 (H. pylori1) data sets were 97.47%, 99.63%, and 99.97%, respectively. In addition, we also conducted experiments on two important PPI networks and six independent data sets. All results were significantly higher than some state-of-the-art methods used for comparison, showing that our method is feasible and robust.
Collapse
Affiliation(s)
- Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
15
|
GTB-PPI: Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 18:582-592. [PMID: 33515750 PMCID: PMC8377384 DOI: 10.1016/j.gpb.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/21/2019] [Accepted: 05/12/2020] [Indexed: 11/20/2022]
Abstract
Protein–protein interactions (PPIs) are of great importance to understand genetic mechanisms, delineate disease pathogenesis, and guide drug design. With the increase of PPI data and development of machine learning technologies, prediction and identification of PPIs have become a research hotspot in proteomics. In this study, we propose a new prediction pipeline for PPIs based on gradient tree boosting (GTB). First, the initial feature vector is extracted by fusing pseudo amino acid composition (PseAAC), pseudo position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Second, to remove redundancy and noise, we employ L1-regularized logistic regression (L1-RLR) to select an optimal feature subset. Finally, GTB-PPI model is constructed. Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15% and 90.47% on Saccharomyces cerevisiae and Helicobacter pylori datasets, respectively. In addition, GTB-PPI could be applied to predict the independent test datasets for Caenorhabditis elegans, Escherichia coli, Homo sapiens, and Mus musculus, the one-core PPI network for CD9, and the crossover PPI network for the Wnt-related signaling pathways. The results show that GTB-PPI can significantly improve accuracy of PPI prediction. The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.
Collapse
|
16
|
Zuidema A, Wang W, Sonnenberg A. Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Bioessays 2020; 42:e2000119. [PMID: 32830356 DOI: 10.1002/bies.202000119] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
17
|
Castello-Serrano I, Lorent JH, Ippolito R, Levental KR, Levental I. Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains. J Phys Chem B 2020; 124:5930-5939. [PMID: 32436385 PMCID: PMC7792449 DOI: 10.1021/acs.jpcb.0c03028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Eukaryotic membranes can be partitioned into lipid-driven membrane microdomains called lipid rafts, which function to sort lipids and proteins in the plane of the membrane. As protein selectivity underlies all functions of lipid rafts, there has been significant interest in understanding the structural and molecular determinants of raft affinity. Such determinants have been described for lipids and single-spanning transmembrane proteins; however, how multipass transmembrane proteins (TMPs) partition between ordered and disordered phases has not been widely explored. Here we used cell-derived giant plasma membrane vesicles (GPMVs) to systematically measure multipass TMP partitioning to ordered membrane domains. Across a set of 24 structurally and functionally diverse multipass TMPs, the large majority (92%) had minimal raft affinity. The only exceptions were two myelin-associated four-pass TMPs, myelin and lymphocyte protein (MAL), and proteo lipid protein (PLP). We characterized the potential mechanisms for their exceptional raft affinity and observed that PLP requires cholesterol and sphingolipids for optimal association with ordered membrane domains and that PLP and MAL appear to compete for cholesterol-mediated raft affinity. These observations suggest broad conclusions about the composition of ordered membrane domains in cells and point to previously unrecognized drivers of raft affinity for multipass transmembrane proteins.
Collapse
Affiliation(s)
- Ivan Castello-Serrano
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joseph H Lorent
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rossana Ippolito
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Neviani V, van Deventer S, Wörner TP, Xenaki KT, van de Waterbeemd M, Rodenburg RNP, Wortel IMN, Kuiper JK, Huisman S, Granneman J, van Bergen En Henegouwen PMP, Heck AJR, van Spriel AB, Gros P. Site-specific functionality and tryptophan mimicry of lipidation in tetraspanin CD9. FEBS J 2020; 287:5323-5344. [PMID: 32181977 PMCID: PMC7818406 DOI: 10.1111/febs.15295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/19/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell–cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild‐type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI‐F binding, while cysteine‐to‐alanine CD9 mutations markedly reduced binding of EWI‐F. EWI‐F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super‐resolution microscopy using a CD9‐specific nanobody. Thus, these data demonstrate site‐specific, possibly conformation‐dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site‐specific transmembrane‐protein lipidation.
Collapse
Affiliation(s)
- Viviana Neviani
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Sjoerd van Deventer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Katerina T Xenaki
- Cell Biology, Department of Biology, Utrecht University, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Remco N P Rodenburg
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Inge M N Wortel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Jeroen K Kuiper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Sofie Huisman
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Joke Granneman
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Department of Chemistry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
19
|
Kong M, Zhang Y, Xu D, Chen W, Dehmer M. FCTP-WSRC: Protein-Protein Interactions Prediction via Weighted Sparse Representation Based Classification. Front Genet 2020; 11:18. [PMID: 32117437 PMCID: PMC7010952 DOI: 10.3389/fgene.2020.00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
The task of predicting protein–protein interactions (PPIs) has been essential in the context of understanding biological processes. This paper proposes a novel computational model namely FCTP-WSRC to predict PPIs effectively. Initially, combinations of the F-vector, composition (C) and transition (T) are used to map each protein sequence onto numeric feature vectors. Afterwards, an effective feature extraction method PCA (principal component analysis) is employed to reconstruct the most discriminative feature subspaces, which is subsequently used as input in weighted sparse representation based classification (WSRC) for prediction. The FCTP-WSRC model achieves accuracies of 96.67%, 99.82%, and 98.09% for H. pylori, Human and Yeast datasets respectively. Furthermore, the FCTP-WSRC model performs well when predicting three significant PPIs networks: the single-core network (CD9), the multiple-core network (Ras-Raf-Mek-Erk-Elk-Srf pathway), and the cross-connection network (Wnt-related Network). Consequently, the promising results show that the proposed method can be a powerful tool for PPIs prediction with excellent performance and less time.
Collapse
Affiliation(s)
- Meng Kong
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, China
| | - Da Xu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, China
| | - Wei Chen
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, China
| | - Matthias Dehmer
- University of Applied Sciences Upper Austria, School of Management, Steyr, Austria.,College of Artificial Intellegience, Nankai University, Tianjin, China.,Department of Biomedical Computer Science and Mechantronics, UMIT Hall, Tyrol, Austria
| |
Collapse
|
20
|
Lei H, Wen Y, You Z, Elazab A, Tan EL, Zhao Y, Lei B. Protein-Protein Interactions Prediction via Multimodal Deep Polynomial Network and Regularized Extreme Learning Machine. IEEE J Biomed Health Inform 2018; 23:1290-1303. [PMID: 29994278 DOI: 10.1109/jbhi.2018.2845866] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the protein-protein interactions (PPIs) has played an important role in many applications. Hence, a novel computational method for PPIs prediction is highly desirable. PPIs endow with protein amino acid mutation rate and two physicochemical properties of protein (e.g., hydrophobicity and hydrophilicity). Deep polynomial network (DPN) is well-suited to integrate these modalities since it can represent any function on a finite sample dataset via the supervised deep learning algorithm. We propose a multimodal DPN (MDPN) algorithm to effectively integrate these modalities to enhance prediction performance. MDPN consists of a two-stage DPN, the first stage feeds multiple protein features into DPN encoding to obtain high-level feature representation while the second stage fuses and learns features by cascading three types of high-level features in the DPN encoding. We employ a regularized extreme learning machine to predict PPIs. The proposed method is tested on the public dataset of H. pylori, Human, and Yeast and achieves average accuracies of 97.87%, 99.90%, and 98.11%, respectively. The proposed method also achieves good accuracies on other datasets. Furthermore, we test our method on three kinds of PPI networks and obtain superior prediction results.
Collapse
|
21
|
Malla RR, Pandrangi S, Kumari S, Gavara MM, Badana AK. Exosomal tetraspanins as regulators of cancer progression and metastasis and novel diagnostic markers. Asia Pac J Clin Oncol 2018; 14:383-391. [PMID: 29575602 DOI: 10.1111/ajco.12869] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
Abstract
Exosomes are cell-cell communicators emerging as a new paradigm for noninvasive diagnosis and prognosis of treatment response. Exosomal tetraspanin proteins like CD63, CD9 and CD81 play a critical role in sorting, selective recruitment of biomolecules, target selection, cell-specific entry, capturing, angiogenesis and vasculogenesis. These tetraspanins are being used as markers for oral, colorectal and colon cancers and glioblastoma. However, exosomal markers with robust specificity for early detection of carcinomas are the furthest along. EXO CARTA database shows the presence of CD151 in exosomes of colorectal, melanoma, ovarian and prostate cancers. CD151 preferentially targets exosomes to lung, lymph node and stroma cells. The present review discussed the possible role of tetraspanins in the formation, cargo selection, target selection and uptake of exosomes and suggests exciting new directions for future research.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Santhi Pandrangi
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Seema Kumari
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Murali Mohan Gavara
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Anil Kumar Badana
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| |
Collapse
|
22
|
Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017; 45:741-750. [PMID: 28620035 DOI: 10.1042/bst20160284] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Abstract
To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin-tetraspanin interactions supporting web formation, (3) tetraspanin-partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.
Collapse
|
23
|
Tspan2: a tetraspanin protein involved in oligodendrogenesis and cancer metastasis. Biochem Soc Trans 2017; 45:465-475. [PMID: 28408487 PMCID: PMC5390497 DOI: 10.1042/bst20160022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Tetraspanin 2 (Tspan2) is one of the less well-characterised members of the tetraspanin superfamily, and its precise function in different human tissue types remains to be explored. Initial studies have highlighted its possible association in neuroinflammation and carcinogenesis. In the central nervous system, Tspan2 may contribute to the early stages of the oligodendrocyte differentiation into myelin-forming glia. Furthermore, in human lung cancer, Tspan2 could be involved in the progression of the tumour metastasis by modulating cancer cell motility and invasion functions. In this review, we discuss the available evidence for the potential role of Tspan2 and introduce possible strategies for disease targeting.
Collapse
|
24
|
Ding Y, Tang J, Guo F. Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC Bioinformatics 2016; 17:398. [PMID: 27677692 PMCID: PMC5039908 DOI: 10.1186/s12859-016-1253-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background Protein-protein interactions (PPIs) are central to a lot of biological processes. Many algorithms and methods have been developed to predict PPIs and protein interaction networks. However, the application of most existing methods is limited since they are difficult to compute and rely on a large number of homologous proteins and interaction marks of protein partners. In this paper, we propose a novel sequence-based approach with multivariate mutual information (MMI) of protein feature representation, for predicting PPIs via Random Forest (RF). Methods Our method constructs a 638-dimentional vector to represent each pair of proteins. First, we cluster twenty standard amino acids into seven function groups and transform protein sequences into encoding sequences. Then, we use a novel multivariate mutual information feature representation scheme, combined with normalized Moreau-Broto Autocorrelation, to extract features from protein sequence information. Finally, we feed the feature vectors into a Random Forest model to distinguish interaction pairs from non-interaction pairs. Results To evaluate the performance of our new method, we conduct several comprehensive tests for predicting PPIs. Experiments show that our method achieves better results than other outstanding methods for sequence-based PPIs prediction. Our method is applied to the S.cerevisiae PPIs dataset, and achieves 95.01 % accuracy and 92.67 % sensitivity repectively. For the H.pylori PPIs dataset, our method achieves 87.59 % accuracy and 86.81 % sensitivity respectively. In addition, we test our method on other three important PPIs networks: the one-core network, the multiple-core network, and the crossover network. Conclusions Compared to the Conjoint Triad method, accuracies of our method are increased by 6.25,2.06 and 18.75 %, respectively. Our proposed method is a useful tool for future proteomics studies.
Collapse
Affiliation(s)
- Yijie Ding
- School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin Haihe Education Park, Tianjin, People's Republic of China
| | - Jijun Tang
- School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin Haihe Education Park, Tianjin, People's Republic of China.,Department of Computer Science and Engineering, University of South Carolina, Columbia, USA
| | - Fei Guo
- School of Computer Science and Technology, Tianjin University, No.135, Yaguan Road, Tianjin Haihe Education Park, Tianjin, People's Republic of China.
| |
Collapse
|
25
|
Levina E, Ji H, Chen M, Baig M, Oliver D, Ohouo P, Lim CU, Schools G, Carmack S, Ding Y, Broude EV, Roninson IB, Buttyan R, Shtutman M. Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells. Oncotarget 2016; 6:13088-104. [PMID: 26036626 PMCID: PMC4537001 DOI: 10.18632/oncotarget.3743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer progression to castration refractory disease is associated with anomalous transcriptional activity of the androgen receptor (AR) in an androgen-depleted milieu. To identify novel gene products whose downregulation transactivates AR in prostate cancer cells, we performed a screen of enzymatically-generated shRNA lenti-libraries selecting for transduced LNCaP cells with elevated expression of a fluorescent reporter gene under the control of an AR-responsive promoter. The shRNAs present in selected populations were analyzed using high-throughput sequencing to identify target genes. Highly enriched gene targets were then validated with siRNAs against selected genes, testing first for increased expression of luciferase from an AR-responsive promoter and then for altered expression of endogenous androgen-regulated genes in LNCaP cells. We identified 20 human genes whose silencing affected the expression of exogenous and endogenous androgen-responsive genes in prostate cancer cells grown in androgen-depleted medium. Knockdown of four of these genes upregulated the expression of endogenous AR targets and siRNAs targeting two of these genes (IGSF8 and RTN1) enabled androgen-independent proliferation of androgen-dependent cells. The effects of IGSF8 appear to be mediated through its interaction with a tetraspanin protein, CD9, previously implicated in prostate cancer progression. Remarkably, homozygous deletions of IGSF8 are found almost exclusively in prostate cancers but not in other cancer types. Our study shows that androgen independence can be achieved through the inhibition of specific genes and reveals a novel set of genes that regulate AR signaling in prostate cancers.
Collapse
Affiliation(s)
- Elina Levina
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA.,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mengqiang Chen
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mirza Baig
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - David Oliver
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Patrice Ohouo
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - Chang-uk Lim
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Garry Schools
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Steven Carmack
- Wadsworth Center, NY State Department of Health, Albany, NY, USA
| | - Ye Ding
- Wadsworth Center, NY State Department of Health, Albany, NY, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Ralph Buttyan
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
26
|
Yin Y, Deng X, Liu Z, Baldwin LA, Lefringhouse J, Zhang J, Hoff JT, Erfani SF, Rucker EB, O'Connor K, Liu C, Wu Y, Zhou BP, Yang XH. CD151 represses mammary gland development by maintaining the niches of progenitor cells. Cell Cycle 2015; 13:2707-22. [PMID: 25486358 DOI: 10.4161/15384101.2015.945823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanin CD151 interacts with laminin-binding integrins (i.e., α3β1, α6β1 and α6β4) and other cell surface molecules to control diverse cellular and physiological processes, ranging from cell adhesion, migration and survival to tissue architecture and homeostasis. Here, we report a novel role of CD151 in maintaining the branching morphogenesis and activity of progenitor cells during the pubertal development of mammary glands. In contrast to the disruption of laminin-binding integrins, CD151 removal in mice enhanced the tertiary branching in mammary glands by 2.4-fold and the number of terminal end buds (TEBs) by 30%, while having minimal influence on either primary or secondary ductal branching. Consistent with these morphological changes are the skewed distribution of basal/myoepithelial cells and a 3.2-fold increase in proliferating Ki67-positive cells. These novel observations suggest that CD151 impacts the branching morphogenesis of mammary glands by upregulating the activities of bipotent progenitor cells. Indeed, our subsequent analyses indicate that upon CD151 removal the proportion of CD24(Hi)CD49f(Low) progenitor cells in the mammary gland increased by 34%, and their proliferating and differentiating activities were significantly upregulated. Importantly, fibronectin, a pro-branching extracellular matrix (ECM) protein deposited underlying mammary epithelial or progenitor cells, increased by >7.2-fold. Moreover, there was a concomitant increase in the expression and nuclear distribution of Slug, a transcription factor implicated in the maintenance of mammary progenitor cell activities. Taken together, our studies demonstrate that integrin-associated CD151 represses mammary branching morphogenesis by controlling progenitor cell activities, ECM integrity and transcription program.
Collapse
Affiliation(s)
- Yuanqin Yin
- a Cancer Institute; First Affiliated Hospital ; China Medical University ; Shenyang , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
EWI-2 negatively regulates TGF-β signaling leading to altered melanoma growth and metastasis. Cell Res 2015; 25:370-85. [PMID: 25656846 DOI: 10.1038/cr.2015.17] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/24/2014] [Accepted: 11/07/2014] [Indexed: 01/02/2023] Open
Abstract
In normal melanocytes, TGF-β signaling has a cytostatic effect. However, in primary melanoma cells, TGF-β-induced cytostasis is diminished, thus allowing melanoma growth. Later, a second phase of TGF-β signaling supports melanoma EMT-like changes, invasion and metastasis. In parallel with these "present-absent-present" TGF-β signaling phases, cell surface protein EWI motif-containing protein 2 (EWI-2 or IgSF8) is "absent-present-absent" in melanocytes, primary melanoma, and metastatic melanoma, respectively, suggesting that EWI-2 may serve as a negative regulator of TGF-β signaling. Using melanoma cell lines and melanoma short-term cultures, we performed RNAi and overexpression experiments and found that EWI-2 negatively regulates TGF-β signaling and its downstream events including cytostasis (in vitro and in vivo), EMT-like changes, cell migration, CD271-dependent invasion, and lung metastasis (in vivo). When EWI-2 is present, it associates with cell surface tetraspanin proteins CD9 and CD81 - molecules not previously linked to TGF-β signaling. Indeed, when associated with EWI-2, CD9 and CD81 are sequestered and have no impact on TβR2-TβR1 association or TGF-β signaling. However, when EWI-2 is knocked down, CD9 and CD81 become available to provide critical support for TβR2-TβR1 association, thus markedly elevating TGF-β signaling. Consequently, all of those TGF-β-dependent functions specifically arising due to EWI-2 depletion are reversed by blocking or depleting cell surface tetraspanin proteins CD9 or CD81. These results provide new insights into regulation of TGF-β signaling in melanoma, uncover new roles for tetraspanins CD9 and CD81, and strongly suggest that EWI-2 could serve as a favorable prognosis indicator for melanoma patients.
Collapse
|
28
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
29
|
Potel J, Rassam P, Montpellier C, Kaestner L, Werkmeister E, Tews BA, Couturier C, Popescu CI, Baumert TF, Rubinstein E, Dubuisson J, Milhiet PE, Cocquerel L. EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cell Microbiol 2013; 15:1234-52. [PMID: 23351194 PMCID: PMC7162402 DOI: 10.1111/cmi.12112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 01/07/2023]
Abstract
CD81 is a major receptor for Hepatitis C Virus (HCV). It belongs to the tetraspanin family whose members form dynamic clusters with numerous partner proteins and with one another, forming tetraspanin-enriched areas in the plasma membrane. In our study, we combined single-molecule microscopy and biochemistry experiments to investigate the clustering and membrane behaviour of CD81 in the context of cells expressing EWI-2wint, a natural inhibitor of HCV entry. Interestingly, we found that EWI-2wint reduces the global diffusion of CD81 molecules due to a decrease of the diffusion rate of mobile CD81 molecules and an increase in the proportion of confined molecules. Indeed, we demonstrated that EWI-2wint promotes CD81 clustering and confinement in CD81-enriched areas. In addition, we showed that EWI-2wint influences the colocalization of CD81 with Claudin-1 - a co-receptor required for HCV entry. Together, our results indicate that a change in membrane partitioning of CD81 occurs in the presence of EWI-2wint. This study gives new insights on the mechanism by which HCV enters into its target cells, namely by exploiting the dynamic properties of CD81.
Collapse
Affiliation(s)
- Julie Potel
- Hepatitis C Laboratory, Center for Infection and Immunity of Lille, University Lille Nord de France, CNRS-UMR8204, Inserm-U1019, Pasteur Institute of Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yoon H, Song JM, Ryu CJ, Kim YG, Lee EK, Kang S, Kim SJ. An efficient strategy for cell-based antibody library selection using an integrated vector system. BMC Biotechnol 2012; 12:62. [PMID: 22989299 PMCID: PMC3505469 DOI: 10.1186/1472-6750-12-62] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 12/19/2022] Open
Abstract
Background Cell panning of phage-displayed antibody library is a powerful tool for the development of therapeutic and imaging agents since disease-related cell surface proteins in native complex conformation can be directly targeted. Here, we employed a strategy taking advantage of an integrated vector system which allows rapid conversion of scFv-displaying phage into scFv-Fc format for efficient cell-based scFv library selection on a tetraspanin protein, CD9. Results A mouse scFv library constructed by using a phagemid vector, pDR-D1 was subjected to cell panning against stable CD9 transfectant, and the scFv repertoire from the enriched phage pool was directly transferred to a mammalian cassette vector, pDR-OriP-Fc1. The resulting constructs enabled transient expression of enough amounts of scFv-Fcs in HEK293E cells, and flow cytometric screening of binders for CD9 transfectant could be performed simply by using the culture supernatants. All three clones selected from the screening showed correct CD9-specificity. They could immunoprecipitate CD9 molecules out of the transfectant cell lysate and correctly stain endogenous CD9 expression on cancer cell membrane. Furthermore, competition assay with a known anti-CD9 monoclonal antibody (mAb) suggested that the binding epitopes of some of them overlap with that of the mAb which resides within the large extracellular loop of CD9. Conclusions This study demonstrates that scFv-Fc from mammalian transient expression can be chosen as a reliable format for rapid screening and validation in cell-based scFv library selection, and the strategy described here will be applicable to efficient discovery of antibodies to diverse cell-surface targets.
Collapse
Affiliation(s)
- Hyerim Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejon 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Guo Q, Xia B, Zhang F, Richardson MM, Li M, Zhang JS, Chen F, Zhang XA. Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregulating cell-matrix and cell-cell adhesions. PLoS One 2012; 7:e38464. [PMID: 22679508 PMCID: PMC3367972 DOI: 10.1371/journal.pone.0038464] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 05/06/2012] [Indexed: 12/14/2022] Open
Abstract
Alterations in tetraspanin CO-029 expression are associated with the progression and metastasis of cancers in the digestive system. However, how CO-029 promotes cancer metastasis is still poorly understood. To determine the mechanism, we silenced CO-029 expression in HT29 colon cancer cells and found that the CO-029 knockdown significantly reduced cell migratory ability. The diminished cell migration was accompanied by the upregulation of both integrin-dependent cell-matrix adhesion on laminin and calcium-dependent cell-cell adhesion. The cell surface levels of laminin-binding integrin α3β1 and fibronectin-integrin α5β1 were increased while the level of CD44 was decreased upon CO-029 silencing. These changes contribute to the altered cell-matrix adhesion. The deregulated cell-cell adhesion results, at least partially, from increased activity of cadherins and reduced level of MelCAM. In conclusion, CO-029 functions as a regulator of both cell-matrix and cell-cell adhesion. During colon cancer progression, CO-029 promotes cancer cell movement by deregulating cell adhesions.
Collapse
Affiliation(s)
- Qiusha Guo
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University Medical School, Wuhan, China
- Internal Medicine, Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bing Xia
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University Medical School, Wuhan, China
- * E-mail: (XAZ); (BX)
| | - Feng Zhang
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Mekel M. Richardson
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Minghao Li
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Julian S. Zhang
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Feng Chen
- Internal Medicine, Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xin A. Zhang
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (XAZ); (BX)
| |
Collapse
|
32
|
Wang HX, Kolesnikova TV, Denison C, Gygi SP, Hemler ME. The C-terminal tail of tetraspanin protein CD9 contributes to its function and molecular organization. J Cell Sci 2011; 124:2702-10. [PMID: 21771881 DOI: 10.1242/jcs.085449] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tetraspanin protein CD9 supports sperm-egg fusion, and regulates cell adhesion, motility, metastasis, proliferation and signaling. The large extracellular loop and transmembrane domains of CD9 engage in functionally important interactions with partner proteins. However, neither functional nor biochemical roles have been shown for the CD9 C-terminal tail, despite it being highly conserved throughout vertebrate species. To gain new insight into the CD9 tail, three C-terminal amino acids (Glu-Met-Val) were replaced with residues corresponding to C-terminal amino acids from tetraspanin protein CD82 (Pro-Lys-Tyr). Wild-type and mutant CD9 were then stably expressed in MOLT-4, K562, U937, RD and HT1080 cells. Whereas wild-type CD9 inhibited cell adhesion and spreading on fibronectin, mutant CD9 did not. Wild-type CD9 also promoted homotypic cell-cell aggregation and microvilli formation, whereas mutant CD9 did not. Protein interactions of wild-type and mutant CD9 were compared quantitatively using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with liquid-chromatography-tandem mass spectrometry (LC-MS/MS) technology. SILAC results showed that, despite wild-type and mutant CD9 having identical expression levels, mutant CD9 and its major transmembrane interacting partners were recovered in substantially reduced amounts from 1% Brij 96 lysates. Immunoprecipitation experiments confirmed that mutant CD9 recovery was decreased in Brij 96, but not in more stringent Triton X-100 detergent. Additionally, compared with wild-type CD9 complexes, mutant CD9 complexes were larger and more oligomerized in Brij 96 detergent, consistent with decreased Brij 96 solubility, perhaps due to more membrane domains packing more tightly together. In conclusion, multiple CD9 functions depend on its C-terminal tail, which affects the molecular organization of CD9 complexes, as manifested by their altered solubilization in Brij 96 and organization on the cell surface.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Montpellier C, Tews BA, Poitrimole J, Rocha-Perugini V, D'Arienzo V, Potel J, Zhang XA, Rubinstein E, Dubuisson J, Cocquerel L. Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint, and their effect on hepatitis C virus infection. J Biol Chem 2011; 286:13954-65. [PMID: 21343309 DOI: 10.1074/jbc.m111.220103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD81 is a tetraspanin protein that is involved in several essential cellular functions, as well as in the hepatitis C virus (HCV) infection. CD81 interacts with a high stoichiometry with its partner proteins EWI-2, EWI-2wint, and EWI-F. These latter proteins modify the functions of CD81 and can thereby potentially inhibit infection or modulate cell migration. Here, we characterized the cleavage of EWI-2 leading to the production of EWI-2wint, which has been shown to inhibit HCV infection. We determined the regions of EWI-2/EWI-2wint and CD81 that are important for their interaction and their functionality. More precisely, we identified a glycine zipper motif in the transmembrane domain of EWI-2/EWI-2wint that is essential for the interaction with CD81. In addition, we found that palmitoylation on two juxtamembranous cysteines in the cytosolic tail of EWI-2/EWI-2wint is required for their interaction with CD81 as well as with CD9, another tetraspanin. Thus, we have shown that palmitoylation of a tetraspanin partner protein can influence the interaction with a tetraspanin. We therefore propose that palmitoylation not only of tetraspanins, but also of their partner proteins is important in regulating the composition of complexes in tetraspanin networks. Finally, we identified the regions in CD81 that are necessary for its functionality in HCV entry and we demonstrated that EWI-2wint needs to interact with CD81 to exert its inhibitory effect on HCV infection.
Collapse
Affiliation(s)
- Claire Montpellier
- Center for Infection and Immunity of Lille, Hepatitis C Laboratory, University Lille Nord de France, CNRS UMR8204, INSERM U1019, Pasteur Institute of Lille, 59021 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li L, Dong L, Xia L, Li T, Zhong H. Chemical and genetic probes for analysis of protein palmitoylation. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 879:1316-24. [PMID: 21163712 DOI: 10.1016/j.jchromb.2010.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/23/2010] [Accepted: 11/16/2010] [Indexed: 12/25/2022]
Abstract
Reversible protein palmitoylation is one of the most important posttranslational modifications that has been implicated in the regulation of protein signaling, trafficking, localizing and enzymatic activities in cells and tissues. In order to achieve a precise understanding of mechanisms and functions of protein palmitoylation as well as its roles in physiological processes and disease progression, it is necessary to develop techniques that can qualitatively and quantitatively monitor the dynamic protein palmitoylation in vivo and in vitro. This review will highlight recent advances in both chemical and genetic encoded probes that have been developed for accurate analysis of protein palmitoylation, including identification and quantification of acyl moieties and palmitoylated proteins, localization of amino acid residues on which acyl moieties are attached, and imaging of cellular distributions of palmitoylated proteins. The role of major techniques of fluorescence microscopy and mass spectrometry in facilitating the analysis of protein palmitoylation will also be explored.
Collapse
Affiliation(s)
- Lun Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | | | | | | | | |
Collapse
|
35
|
Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O. The Ig domain protein CD9P-1 down-regulates CD81 ability to support Plasmodium yoelii infection. J Biol Chem 2009; 284:31572-8. [PMID: 19762465 DOI: 10.1074/jbc.m109.057927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria natural infection. The molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that CD81 is required on hepatocytes for infection by Plasmodium falciparum and Plasmodium yoelii sporozoites. CD81 belongs to the tetraspanin superfamily of transmembrane proteins. By interacting with each other and with other transmembrane proteins, tetraspanins may play a role in the lateral organization of membrane proteins. In this study, we investigated the role of the two major molecular partners of CD81 in hepatocytic cells, CD9P-1/EWI-F and EWI-2, two transmembrane proteins belonging to a novel subfamily of immunoglobulin proteins. We show that CD9P-1 silencing increases the host cell susceptibility to P. yoelii sporozoite infection, whereas EWI-2 knock-down has no effect. Conversely, overexpression of CD9P-1 but not EWI-2 partially inhibits infection. Using CD81 and CD9P-1 chimeric molecules, we demonstrate the role of transmembrane regions in CD81-CD9P-1 interactions. Importantly, a CD9P-1 chimera that no longer associates with CD81 does not affect infection. Based on these data, we conclude that CD9P-1 acts as a negative regulator of P. yoelii infection by interacting with CD81 and regulating its function.
Collapse
Affiliation(s)
- Stéphanie Charrin
- INSERM, U602, Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 2009; 19:434-46. [DOI: 10.1016/j.tcb.2009.06.004] [Citation(s) in RCA: 439] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/14/2022]
|
37
|
Rocha-Perugini V, Lavie M, Delgrange D, Canton J, Pillez A, Potel J, Lecoeur C, Rubinstein E, Dubuisson J, Wychowski C, Cocquerel L. The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. BMC Microbiol 2009; 9:111. [PMID: 19476617 PMCID: PMC2694809 DOI: 10.1186/1471-2180-9-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 05/28/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Interestingly, CD81 is also required for Plasmodium infection. A major characteristic of tetraspanins is their ability to interact with each other and other transmembrane proteins to build tetraspanin-enriched microdomains (TEM). RESULTS In our study, we describe a human hepatoma Huh-7 cell clone (Huh-7w7) which has lost CD81 expression and can be infected by HCV when human CD81 (hCD81) or mouse CD81 (mCD81) is ectopically expressed. We took advantage of these permissive cells expressing mCD81 and the previously described MT81/MT81w mAbs to analyze the role of TEM-associated CD81 in HCV infection. Importantly, MT81w antibody, which only recognizes TEM-associated mCD81, did not strongly affect HCV infection. Furthermore, cholesterol depletion, which inhibits HCV infection and reduces total cell surface expression of CD81, did not affect TEM-associated CD81 levels. In addition, sphingomyelinase treatment, which also reduces HCV infection and cell surface expression of total CD81, raised TEM-associated CD81 levels. CONCLUSION In contrast to Plasmodium infection, our data show that association of CD81 with TEM is not essential for the early steps of HCV life cycle, indicating that these two pathogens, while using the same molecules, invade their host by different mechanisms.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Institut de Biologie de Lille, CNRS-UMR8161, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Despite high expression levels at the plasma membrane or in intracellular vesicles, tetraspanins remain among the most mysterious transmembrane molecules 20 years after their discovery. Several genetic studies in mammals and invertebrates have demonstrated key physiological roles for some of these tetraspanins, in particular in the immune response, sperm-egg fusion, photoreceptor function and the normal function of certain epithelia. Other studies have highlighted their ability to modulate cell migration and metastasis formation. Their role in the propagation of infectious agents has drawn recent attention, with evidence for HIV budding in tetraspanin-enriched plasma membrane domains. Infection of hepatocytic cells by two major pathogens, the hepatitis C virus and the malaria parasite, also requires the tetraspanin CD81. The function of tetraspanins is thought to be linked to their ability to associate with one another and a wealth of other integral proteins, thereby building up an interacting network or 'tetraspanin web'. On the basis of the biochemical dissection of the tetraspanin web and recent analysis of the dynamics of some of its constituents, we propose that tetraspanins tightly regulate transient interactions between a variety of molecules and as such favour the efficient assembly of specialized structures upon proper stimulation.
Collapse
|
39
|
Glioblastoma inhibition by cell surface immunoglobulin protein EWI-2, in vitro and in vivo. Neoplasia 2009; 11:77-86, 4p following 86. [PMID: 19107234 DOI: 10.1593/neo.81180] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 01/28/2023] Open
Abstract
EWI-2, a cell surface IgSF protein, is highly expressed in normal human brain but is considerably diminished in glioblastoma tumors and cell lines. Moreover, loss of EWI-2 expression correlated with a shorter survival time in human glioma patients, suggesting that EWI-2 might be a natural inhibitor of glioblastoma. In support of this idea, EWI-2 expression significantly impaired both ectopic and orthotopic tumor growth in nude mice in vivo. In vitro assays provided clues regarding EWI-2 functions. Expression of EWI-2 in T98G and/or U87-MG malignant glioblastoma cell lines failed to alter two-dimensional cell proliferation but inhibited glioblastoma colony formation in soft agar and caused diminished cell motility and invasion. At the biochemical level, EWI-2 markedly affects the organization of four molecules (tetraspanin proteins CD9 and CD81 and matrix metalloproteinases MMP-2 and MT1-MMP), which play key roles in the biology of astrocytes and gliomas. EWI-2 causes CD9 and CD81 to become more associated with each other, whereas CD81 and other tetraspanins become less associated with MMP-2 and MT1-MMP. We propose that EWI-2 inhibition of glioblastoma growth in vivo is at least partly explained by the capability of EWI-2 to inhibit growth and/or invasion in vitro. Underlying these functional effects, EWI-2 causes a substantial molecular reorganization of multiple molecules (CD81, CD9, MMP-2, and MT1-MMP) known to affect proliferation and/or invasion of astrocytes and/or glioblastomas.
Collapse
|
40
|
Hemler ME. Targeting of tetraspanin proteins--potential benefits and strategies. Nat Rev Drug Discov 2009; 7:747-58. [PMID: 18758472 DOI: 10.1038/nrd2659] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tetraspanin transmembrane proteins have emerged as key players in malignancy, the immune system, during fertilization and infectious disease processes. Tetraspanins engage in a wide range of specific molecular interactions, occurring through the formation of tetraspanin-enriched microdomains (TEMs). TEMs therefore serve as a starting point for understanding how tetraspanins affect cell signalling, adhesion, morphology, motility, fusion and virus infection. An abundance of recent evidence suggests that targeting tetraspanins, for example, by monoclonal antibodies, soluble large-loop proteins or RNAi technology, should be therapeutically beneficial.
Collapse
Affiliation(s)
- Martin E Hemler
- Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachussetts 02115, USA.
| |
Collapse
|
41
|
Abstract
Tumours progress through a cascade of events that enable the formation of metastases. Some of the components that are required for this fatal process are well established. Tetraspanins, however, have only recently received attention as both metastasis suppressors and metastasis promoters. This late appreciation is probably due to their capacity to associate with various molecules, which they recruit into special membrane microdomains, and their abundant presence in tumour-derived small vesicles that aid intercellular communication. It is reasonable to assume that differences in the membrane and vesicular web components that associate with individual tetraspanins account for their differing abilities to promote and suppress metastasis.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
42
|
Bari R, Zhang YH, Zhang F, Wang NX, Stipp CS, Zheng JJ, Zhang XA. Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:647-60. [PMID: 19116362 DOI: 10.2353/ajpath.2009.080685] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In transmembrane (TM) domains, tetraspanin KAI1/CD82 contains an Asn, a Gln, and a Glu polar residue. A mutation of all three polar residues largely disrupts the migration-, invasion-, and metastasis-suppressive activities of KAI1/CD82. Notably, KAI1/CD82 inhibits the formation of microprotrusions and the release of microvesicles, while the mutation disrupts these inhibitions, revealing the connections of microprotrusion and microvesicle to KAI1/CD82 function. The TM polar residues are needed for proper interactions between KAI1/CD82 and tetraspanins CD9 and CD151, which also regulate cell movement, but not for the association between KAI1/CD82 and alpha3beta1 integrin. However, KAI1/CD82 still efficiently inhibits cell migration when either CD9 or CD151 is absent. Hence, KAI1/CD82 interacts with tetraspanin and integrin by different mechanisms and is unlikely to inhibit cell migration through its associated proteins. Moreover, without significantly affecting the glycosylation, homodimerization, and global folding of KAI1/CD82, the TM interactions maintain the conformational stability of KAI1/CD82, evidenced by the facts that the mutant is more sensitive to denaturation and less associable with tetraspanins and supported by the modeling analysis. Thus, the TM interactions mediated by these polar residues determine a conformation either in or near the tightly packed TM region and this conformation and/or its change are needed for the intrinsic activity of KAI1/CD82. In contrast to immense efforts to block the signaling of cancer progression, the perturbation of TM interactions may open a new avenue to prevent cancer invasion and metastasis.
Collapse
Affiliation(s)
- Rafijul Bari
- Vascular Biology Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
He ZY, Gupta S, Myles D, Primakoff P. Loss of surface EWI-2 on CD9 null oocytes. Mol Reprod Dev 2008; 76:629-36. [DOI: 10.1002/mrd.20991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F. Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. THE JOURNAL OF IMMUNOLOGY 2008; 181:7002-13. [PMID: 18981120 DOI: 10.4049/jimmunol.181.10.7002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several cytokines and growth factors are released by proteolytic cleavage of a membrane-anchored precursor, through the action of ADAM (a disintegrin and metalloprotease) metalloproteases. The activity of these proteases is regulated through largely unknown mechanisms. In this study we show that Ab engagement of several tetraspanins (CD9, CD81, CD82) increases epidermal growth factor and/or TNF-alpha secretion through a mechanism dependent on ADAM10. The effect of anti-tetraspanin mAb on TNF-alpha release is rapid, not relayed by intercellular signaling, and depends on an intact MEK/Erk1/2 pathway. It is also associated with a concentration of ADAM10 in tetraspanin-containing patches. We also show that a large fraction of ADAM10 associates with several tetraspanins, indicating that ADAM10 is a component of the "tetraspanin web." These data show that tetraspanins regulate the activity of ADAM10 toward several substrates, and illustrate how membrane compartmentalization by tetraspanins can control the function of cell surface proteins such as ectoproteases.
Collapse
|
45
|
Sharma C, Yang XH, Hemler ME. DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 2008; 19:3415-25. [PMID: 18508921 DOI: 10.1091/mbc.e07-11-1164] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although palmitoylation markedly affects tetraspanin protein biochemistry and functions, relevant palmitoylating enzymes were not known. There are 23 mammalian "DHHC" (Asp-His-His-Cys) proteins, which presumably palmitoylate different sets of protein substrates. Among DHHC proteins tested, DHHC2 best stimulated palmitoylation of tetraspanins CD9 and CD151, whereas inactive DHHC2 (containing DH-->AA or C-->S mutations within the DHHC motif) failed to promote palmitoylation. Furthermore, DHHC2 associated with CD9 and CD151, but not other cell surface proteins, and DHHC2 knockdown diminished CD9 and CD151 palmitoylation. Knockdown of six other Golgi-resident DHHC proteins (DHHC3, -4, -8, -17, -18, and -21) had no effect on CD9 or CD151. DHHC2 selectively affected tetraspanin palmitoylation, but not the palmitoylations of integrin beta4 subunit and bulk proteins visible in [(3)H]palmitate-labeled whole cell lysates. DHHC2-dependent palmitoylation also had multiple functional effects. First, it promoted physical associations between CD9 and CD151, and between alpha3 integrin and other proteins. Second, it protected CD151 and CD9 from lysosomal degradation. Third, the presence of DHHC2, but not other DHHC proteins, shifted cells away from a dispersed state and toward increased cell-cell contacts.
Collapse
|
46
|
Rocha-Perugini V, Montpellier C, Delgrange D, Wychowski C, Helle F, Pillez A, Drobecq H, Le Naour F, Charrin S, Levy S, Rubinstein E, Dubuisson J, Cocquerel L. The CD81 partner EWI-2wint inhibits hepatitis C virus entry. PLoS One 2008; 3:e1866. [PMID: 18382656 PMCID: PMC2270906 DOI: 10.1371/journal.pone.0001866] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/18/2008] [Indexed: 12/13/2022] Open
Abstract
Two to three percent of the world's population is chronically infected with hepatitis C virus (HCV) and thus at risk of developing liver cancer. Although precise mechanisms regulating HCV entry into hepatic cells are still unknown, several cell surface proteins have been identified as entry factors for this virus. Among these molecules, the tetraspanin CD81 is essential for HCV entry. Here, we have identified a partner of CD81, EWI-2wint, which is expressed in several cell lines but not in hepatocytes. Ectopic expression of EWI-2wint in a hepatoma cell line susceptible to HCV infection blocked viral entry by inhibiting the interaction between the HCV envelope glycoproteins and CD81. This finding suggests that, in addition to the presence of specific entry factors in the hepatocytes, the lack of a specific inhibitor can contribute to the hepatotropism of HCV. This is the first example of a pathogen gaining entry into host cells that lack a specific inhibitory factor.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - Claire Montpellier
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - David Delgrange
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - Czeslaw Wychowski
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - François Helle
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - André Pillez
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - Hervé Drobecq
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
| | - François Le Naour
- INSERM-U602, Institut André-Lwoff, Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| | - Stéphanie Charrin
- INSERM-U602, Institut André-Lwoff, Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, California, United States of America
| | - Eric Rubinstein
- INSERM-U602, Institut André-Lwoff, Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| | - Jean Dubuisson
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
- * E-mail: (JD); (LC)
| | - Laurence Cocquerel
- Institut de Biologie de Lille (UMR8161), CNRS, Universités de Lille I et Lille II, Institut Pasteur de Lille, Lille, France
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail: (JD); (LC)
| |
Collapse
|
47
|
Lazo PA. Functional implications of tetraspanin proteins in cancer biology. Cancer Sci 2007; 98:1666-77. [PMID: 17727684 PMCID: PMC11159418 DOI: 10.1111/j.1349-7006.2007.00584.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/30/2007] [Accepted: 07/03/2007] [Indexed: 12/25/2022] Open
Abstract
Human tetraspanin proteins are a group of 33 highly hydrophobic membrane proteins that can form complexes in cholesterol-rich microdomains, distinct from lipid rafts, on the cell surface in a dynamic and reversible way. These complexes are composed of a core of several tetraspanin proteins that organize other membrane proteins such as integrins, human leukocyte antigen (HLA) antigens and some growth factor receptors. Although most tetraspanin proteins have been studied individually, tetraspanin proteins and their complexes can have effects on cellular adhesion and motility, interactions with stroma or affect signaling by growth factors, and for most of them no ligand has been identified. Functionally these proteins have been mostly studied in cells of lymphoid lineage, but they are present in all cell types. Data is also available for some tumors, where some tetraspanins have been identified as metastasis suppressors, but their significance is still not clear. Some of their implications in tumor biology and the areas that deserve further study are outlined.
Collapse
Affiliation(s)
- Pedro A Lazo
- Programa de Oncología Translacional, Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Salamanca, E-37007, Spain.
| |
Collapse
|
48
|
Kovalenko OV, Yang XH, Hemler ME. A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics 2007; 6:1855-67. [PMID: 17644758 DOI: 10.1074/mcp.m700183-mcp200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanins serve as molecular organizers of multiprotein microdomains in cell membranes. Hence to understand functions of tetraspanin proteins, it is critical to identify laterally interacting partner proteins. Here we used a novel technical approach involving exposure and cross-linking of membrane-proximal cysteines coupled with LC-MS/MS protein identification. In this manner we identified nine potential tetraspanin CD9 partners, including claudin-1. Chemical cross-linking yielded a CD9-claudin-1 heterodimer, thus confirming direct association and adding claudin-1 to the short list of proteins that can directly associate with CD9. Interaction of CD9 (and other tetraspanins) with claudin-1 was supported by subcellular colocalization and was confirmed in multiple cell lines, although other claudins (claudin-2, -3, -4, -5, and -7) associated to a much lesser extent. Moreover claudin-1 was distributed very similarly to CD9 in sucrose gradients and, like CD9, was released from A431 and A549 cells upon cholesterol depletion. These biochemical features of claudin-1 are characteristic of tetraspanin microdomain proteins. Although claudins are major structural components of intercellular tight junctions, CD9-claudin-1 complexes did not reside in tight junctions, and depletion of key tetraspanins (CD9 and CD151) by small interfering RNA had no effect on paracellular permeability. However, tetraspanin depletion did cause a marked decrease in the stability of newly synthesized claudin-1. In conclusion, these results (a) validate a technical approach that appears to be particularly well suited for identifying protein partners directly associated with tetraspanins or with other proteins that contain membrane-proximal cysteines and (b) provide insight into how non-junctional claudins may be regulated in the context of tetraspanin-enriched microdomains.
Collapse
Affiliation(s)
- Oleg V Kovalenko
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
49
|
Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci U S A 2007; 104:4337-41. [PMID: 17360525 PMCID: PMC1838603 DOI: 10.1073/pnas.0607879104] [Citation(s) in RCA: 611] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method for PPI prediction using only the information of protein sequences. This method was developed based on a learning algorithm-support vector machine combined with a kernel function and a conjoint triad feature for describing amino acids. More than 16,000 diverse PPI pairs were used to construct the universal model. The prediction ability of our approach is better than that of other sequence-based PPI prediction methods because it is able to predict PPI networks. Different types of PPI networks have been effectively mapped with our method, suggesting that, even with only sequence information, this method could be applied to the exploration of networks for any newly discovered protein with unknown biological relativity. In addition, such supplementary experimental information can enhance the prediction ability of the method.
Collapse
Affiliation(s)
- Juwen Shen
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jian Zhang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaomin Luo
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Weiliang Zhu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; and
| | - Kunqian Yu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yixue Li
- Bioinformation Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hualiang Jiang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; and
| |
Collapse
|