1
|
Sheth AS, Chan KK, Liu S, Wan J, Angus SP, Rhodes SD, Mitchell DK, Davis C, Ridinger M, Croucher PJ, Zeidan AM, Wijeratne A, Qian S, Tran NT, Sierra Potchanant EA. PLK1 Inhibition Induces Synthetic Lethality in Fanconi Anemia Pathway-Deficient Acute Myeloid Leukemia. CANCER RESEARCH COMMUNICATIONS 2025; 5:648-667. [PMID: 40111122 PMCID: PMC12011380 DOI: 10.1158/2767-9764.crc-24-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
SIGNIFICANCE This work demonstrates that FA pathway mutations, which are frequently observed in sporadic AML, induce hypersensitivity to PLK1 inhibition, providing rationale for a novel synthetic lethal therapeutic strategy for this patient population.
Collapse
Affiliation(s)
- Aditya S. Sheth
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ka-Kui Chan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steve P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Amer M. Zeidan
- Yale University and Yale Cancer Center, New Haven, Connecticut
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaomin Qian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ngoc Tung Tran
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth A. Sierra Potchanant
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
2
|
Delisle SV, Labreche C, Lara-Márquez M, Abou-Hamad J, Garland B, Lamarche-Vane N, Sabourin LA. Expression of a kinase inactive SLK is embryonic lethal and impairs cell migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119783. [PMID: 38871226 DOI: 10.1016/j.bbamcr.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLKK63R using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLKK63R do not develop into viable mice. However, heterozygotes are viable and fertile with no overt phenotypes. Analyses of mouse embryonic fibroblasts show that expression of SLKK63R results in a 50% decrease in kinase activity in heterozygotes. In contrast to previous studies, our data show that SLK does not form homodimers and that the kinase defective allele does not act in a dominant negative fashion. Expression of SLKK63R leads to altered Rac1 and RhoA activity, increased stress fiber formation and delayed focal adhesion turnover. Our data support a previously observed role for SLK in cell migration and suggest that at least 50% kinase activity is sufficient for embryonic development.
Collapse
Affiliation(s)
- Samuel V Delisle
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Cedrik Labreche
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mónica Lara-Márquez
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brennan Garland
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Tao M, Li Z, Liu M, Ma H, Liu W. Association analysis of polymorphisms in SLK, ARHGEF9, WWC2, GAB3, and FSHR genes with reproductive traits in different sheep breeds. Front Genet 2024; 15:1371872. [PMID: 38680425 PMCID: PMC11045898 DOI: 10.3389/fgene.2024.1371872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
The aim was to investigate the relationship between polymorphisms of gene mutation loci and reproductive traits in local sheep breeds (Duolang Sheep) and introduced sheep breeds (Suffolk, Hu Sheep) in Xinjiang to provide new molecular markers for the selection and breeding of high fecundity sheep. The expression pattern of typing successful genes in sheep tissues was investigated by RT-qPCR technology, providing primary data for subsequent verification of gene function. The 26 mutation loci of WWC2, ARHGEF9, SLK, GAB3, and FSHR genes were typed using KASP. Association analyses were performed using SPSS 25.0, and the typing results showed that five genes with six loci, WWC2 (g.14962207 C>T), ARHGEF9 (g.48271079 C>A), SLK (g.27107842 T>C, g.27108855 G>A), GAB3 (g.86134602 G>A), and FSHR (g.80789180 T>G) were successfully typed. The results of the association analyses showed that WWC2 (g.14962207 C>T), SLK (g.27108855 G>A), ARHGEF9 (g.48271079 C>A), and FSHR (g.80789180 T>G) caused significant or extremely significant effects on the litter size in Duolang, Suffolk and Hu Sheep populations. The expression distribution pattern of the five genes in 12 sheep reproduction-related tissues was examined by RT-qPCR. The results showed that the expression of the SLK gene in the uterus, the FSHR gene in the ovary, and the ARHGEF9 gene in hypothalamic-pituitary-gonadal axis-related tissues were significantly higher than in the tissues of other parts of the sheep. WWC2 and GAB3 genes were highly expressed both in reproductive organs and visceral tissues. In summary, the WWC2 (g.14962207 C>T), SLK (g.27108855 G>A), ARHGEF9 (g.48271079 C>A), and FSHR (g.80789180 T>G) loci can be used as potential molecular markers for detecting differences in reproductive performance in sheep. Due to variations in typing results, the SLK (g.27107842 T>C) and GAB3 (g.86134602 G>A) loci need further validation.
Collapse
Affiliation(s)
- Meini Tao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Meng Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Haiyu Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Song K, Jiang X, Xu X, Chen Y, Zhang J, Tian Y, Wang Q, Weng J, Liang Y, Ma W. Ste20-like kinase activity promotes meiotic resumption and spindle microtubule stability in mouse oocytes. Cell Prolif 2022; 56:e13391. [PMID: 36579845 PMCID: PMC10068952 DOI: 10.1111/cpr.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Ste20-like kinase (SLK) is involved in cell proliferation and migration in somatic cells. This study aims to explore SLK expression and function in mouse oocyte meiosis. Western blot, immunofluorescence, Co-immunoprecipitation, drug treatment, cRNA construct and in vitro transcription, microinjection of morpholino oilgo (MO) and cRNA were performed in oocytes. High and stable protein expression of SLK was detected in mouse oocyte meiosis, with dynamic distribution in the nucleus, chromosomes and spindle apparatus. SLK phosphorylation emerges around meiotic resumption and reaches a peak during metaphase I (MI) and metaphase II. SLK knockdown with MO or expression of kinase-dead SLK K63R dramatically delays meiotic resumption due to sequentially suppressed phosphorylation of Polo-like kinase 1 (Plk1) and cell division cycle 25C (CDC25C) and dephosphorylation of cyclin-dependent kinase 1 (CDK1). SLK depletion promotes ubiquitination-mediated degradation of paxillin, an antagonist to α-tubulin deacetylation, and thus destroys spindle assembly and chromosome alignment; these phenotypes can be substantially rescued by exogenous expression of SLK kinase active fragment. Additionally, exogenous SLK effectively promotes meiotic progression and spindle assembly in aging oocytes with reduced SLK. Collectively, this study reveals SLK is required for meiotic resumption and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Division of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Bruschi M, Granata S, Candiano G, Petretto A, Bartolucci M, Ghiggeri GM, Stallone G, Zaza G. Proteomic analysis of urinary extracellular vesicles of kidney transplant recipients with BKV viruria and viremia: A pilot study. Front Med (Lausanne) 2022; 9:1028085. [PMID: 36465937 PMCID: PMC9712214 DOI: 10.3389/fmed.2022.1028085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION To better define the biological machinery associated with BK virus (BKV) infection, in kidney transplantation, we performed a proteomics analysis of urinary extracellular vesicles (EVs). METHODS Twenty-nine adult kidney transplant recipients (KTRs) with normal allograft function affected by BKV infection (15 with only viremia, 14 with viruria and viremia) and 15 controls (CTR, KTRs without BKV infection) were enrolled and randomly divided in a training cohort (12 BKV and 6 CTR) used for the mass spectrometry analysis of the EVs (microvesicles and exosomes) protein content and a testing cohort (17 BKV and 9 CTR) used for the biological validation of the proteomic results by ELISA. Bioinformatics and functional analysis revealed that several biological processes were enriched in BKV (including immunity, complement activation, renal fibrosis) and were able to discriminate BKV vs. CTR. Kinase was the only gene ontology annotation term including proteins less abundant in BKV (with SLK being the most significantly down-regulated protein). Non-linear support vector machine (SVM) learning and partial least squares discriminant analysis (PLS-DA) identified 36 proteins (including DNASE2, F12, AGT, CTSH, C4A, C7, FABP4, and BPNT1) able to discriminate the two study groups. The proteomic profile of KTRs with BKV viruria alone vs. viremia and viruria was quite similar. Enzyme-linked immunosorbent assay (ELISA) for SLK, BPNT1 and DNASE2, performed on testing cohort, validated proteomics results. DISCUSSIONS Our pilot study demonstrated, for the first time, that BKV infection, also in the viruric state, can have a negative impact on the allograft and it suggested that, whether possible, an early preventive therapeutic strategy should be undertaken also in KTRs with viruria only. Our results, then, revealed new mechanistic insights into BKV infection and they selected potential biomarkers that should be tested in future studies with larger patients' cohorts.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Petretto
- Core Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Bartolucci
- Core Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
6
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
8
|
Gao Y, Ha YS, Kwon TG, Cho YC, Lee S, Lee JN. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis. Cancer Genomics Proteomics 2021; 17:543-553. [PMID: 32859632 DOI: 10.21873/cgp.20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the second-most commonly occurring cancer among men, worldwide. Although the mechanisms associated with the progression of castration-resistant prostate cancer (CRPC) have been widely studied, the mechanism associated with more distant metastases from the bone remains unknown. This study aimed to characterize potential pathogenic kinases associated with highly metastatic PCa, that may regulate phosphorylation in extensively involved and diverse signaling pathways that are associated with the development of various cancers. MATERIALS AND METHODS A mass spectrometry (MS)-based comparative phosphoproteome strategy was utilized to identify differentially expressed kinases between the highly aggressive PCa cell-lines PC-3 and PC-3M. RESULTS Among 2,968 phosphorylation sites in PCa cells, 151 differently expressed phosphoproteins were identified. Seven motifs: -SP-, -SxxE-, -PxS-, -PxSP-, -SxxK-, -SPxK-, and -SxxxxxP- were found to be highly expressed in PC-3M cells. Based on these motifs, the kinases p21-activated kinase (PAK)2, Ste20-like kinase (SLK), mammalian Ste20-like kinase (MST)4, mitogen-activated kinase kinase (MAP2K)2, and A-Raf proto-oncogene serine/threonine kinase (ARAF) were up-regulated in PC-3M cells. CONCLUSION PAK2, SLK, MST4, MAP2K2, and ARAF are kinases that are potentially associated with the progression of increased migration in PC-3M cells and may represent molecule regulators or drug targets for highly metastatic PCa therapy.
Collapse
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Pryce BR, Labrèche C, Hamoudi D, Abou-Hamad J, Al-Zahrani KN, Hodgins JJ, Boulanger-Piette A, Bossé S, Balog-Alvarez C, Frénette J, Ardolino M, Kornegay JN, Sabourin LA. Muscle-specific deletion of SLK/Stk2 enhances p38 activity and myogenesis in mdx mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118917. [PMID: 33259860 DOI: 10.1016/j.bbamcr.2020.118917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Duchenne's muscular dystrophy (DMD) is a severe muscle wasting disorder characterized by the loss of dystrophin expression, muscle necrosis, inflammation and fibrosis. Ongoing muscle regeneration is impaired by persistent cytokine stress, further decreasing muscle function. Patients with DMD rarely survive beyond their early 20s, with cardiac and respiratory dysfunction being the primary cause of death. Despite an increase in our understanding of disease progression as well as promising preclinical animal models for therapeutic intervention, treatment options for muscular dystrophy remain limited and novel therapeutic targets are required. Many reports suggest that the TGFβ signalling pathway is activated in dystrophic muscle and contributes to the pathology of DMD in part by impairing the differentiation of myoblasts into mature myofibers. Here, we show that in vitro knockdown of the Ste20-like kinase, SLK, can partially restore myoblast differentiation downstream of TGFβ in a Smad2/3 independent manner. In an mdx model, we demonstrate that SLK is expressed at high levels in regenerating myofibers. Muscle-specific deletion of SLK reduced leukocyte infiltration, increased myogenin and utrophin expression and enhanced differentiation. This was accompanied by resistance to eccentric contraction-induced injury in slow fiber type-enriched soleus muscles. Finally, we found that these effects were partially dependent on the upregulation of p38 signalling. Collectively, these results demonstrate that SLK downregulation can restore some aspects of disease progression in DMD.
Collapse
Affiliation(s)
- Benjamin R Pryce
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Cédrik Labrèche
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dounia Hamoudi
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Khalid N Al-Zahrani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jonathan J Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Antoine Boulanger-Piette
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada
| | - Sabrina Bossé
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada
| | - Cindy Balog-Alvarez
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Jérôme Frénette
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Centre Hospitalier de L'Université Laval, Université Laval, Quebec City, Quebec, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Woychyshyn B, Papillon J, Guillemette J, Navarro-Betancourt JR, Cybulsky AV. Genetic ablation of SLK exacerbates glomerular injury in adriamycin nephrosis in mice. Am J Physiol Renal Physiol 2020; 318:F1377-F1390. [PMID: 32308020 DOI: 10.1152/ajprenal.00028.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.
Collapse
Affiliation(s)
- Boyan Woychyshyn
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - José R Navarro-Betancourt
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V Cybulsky
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Srivastava M, Chen Z, Zhang H, Tang M, Wang C, Jung SY, Chen J. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome. Cell Rep 2019; 25:3869-3883.e4. [PMID: 30590055 PMCID: PMC6364303 DOI: 10.1016/j.celrep.2018.11.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells use copious measures to ensure accurate duplication of the genome. Various genotoxic agents pose threats to the ongoing replication fork that, if not efficiently dealt with, can result in replication fork collapse. It is unknown how replication fork is precisely controlled and regulated under different conditions. Here, we examined the complexity of replication fork composition upon DNA damage by using a PCNA-based proteomic screen to uncover known and unexplored players involved in replication and replication stress response. We used camptothecin or UV radiation, which lead to fork-blocking lesions, to establish a comprehensive proteomics map of the replisome under such replication stress conditions. We identified and examined two potential candidate proteins WIZ and SALL1 for their roles in DNA replication and replication stress response. In addition, our unbiased screen uncovered many prospective candidate proteins that help fill the knowledge gap in understanding chromosomal DNA replication and DNA repair.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
The LIM domain binding protein 1, Ldb1, has distinct roles in Neu-induced mammary tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1590-1597. [DOI: 10.1016/j.bbamcr.2018.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 01/15/2023]
|
13
|
Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Am J Physiol Renal Physiol 2017; 315:F186-F198. [PMID: 29187370 DOI: 10.1152/ajprenal.00238.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Genaro Patino-Lopez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
14
|
Transforming growth factor β-induced epithelial to mesenchymal transition requires the Ste20-like kinase SLK independently of its catalytic activity. Oncotarget 2017; 8:98745-98756. [PMID: 29228724 PMCID: PMC5716764 DOI: 10.18632/oncotarget.21928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 12/27/2022] Open
Abstract
Invasion can be stimulated in vitro using the soluble ligand transforming growth factor-β (TGFβ) to induce a process called epithelial-to-mesenchymal transition (EMT) characterized by cell-cell junction breakdown and an invasive phenotype. We have previously demonstrated a role for Ste20-like kinase SLK cell migration and invasion. Here we show that SLK depletion in NMuMG mammary epithelial cells significantly impairs their TGFβ-induced migration and invasion. Immunofluorescence studies show that a fraction of SLK localizes to E-cadherin-positive adherens junction and that SLK impairs the breakdown of cell-cell contacts. We find that SLK-depleted cultures express significantly lower levels of vimentin protein as well as Snai1 and E-cadherin mRNA levels following TGF-β treatment. Surprisingly, our data show that SLK depletion does not affect the activation and nuclear translocation of Smad3. Furthermore, we show that expression of a dominant negative kinase does not impair tight junction breakdown and rescues Snai1 mRNA expression levels. Together these data suggest that SLK plays a novel role in TGFβ-induced EMT, independent of Smads, in a kinase activity-independent manner.
Collapse
|
15
|
Wu CW, Storey KB. Regulation of Smad mediated microRNA transcriptional response in ground squirrels during hibernation. Mol Cell Biochem 2017; 439:151-161. [PMID: 28780752 DOI: 10.1007/s11010-017-3144-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
Mammalian hibernation is a state of dormancy that is used by some animals to survive through the unfavorable conditions of winter, and is characterized by coordinated suppression of basal metabolism that is supported by global inhibition of energy/ATP-consuming processes. In this study, we examine the regulation of the anti-proliferatory TGF-β/Smad transcription factor signaling pathway in the liver tissue of the hibernating 13-lined ground squirrel Ictidomys tridecemlineatus. The TGF-β/Smad signaling pathway is known to mediate cell cycle arrest through induction of cell cycle dependent kinase inhibitors, and more recently, has been shown to regulate a wide range of cellular processes via its control of microRNA biosynthesis. We show that phosphorylation levels of the Smad3 protein at its activation residue is increased by ~1.5-fold during torpor, and this is associated with an increase in nuclear localization and DNA binding activity of Smad3. Expression levels of several TGF-β induced microRNAs previously described in human cells were also activated in ground squirrel during torpor. Among these were miR-21, miR-23a, and miR-107, which contain either the conserved R-SBE or R-SBE related motif found in microRNAs that are post-transcriptionally processed by Smad proteins. We show that levels of miR-21 were highly elevated at multiple stages of torpor, and predicted gene targets of miR-21 were enriched to multiple pro-growth cellular processes. Overall, we provide evidence that show the Smad3 transcription factor is activated in ground squirrels during torpor, and suggest a role for this signaling pathway in mediating anti-proliferatory signals via its transcriptional control of cell cycle inhibitors and downstream microRNAs.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
16
|
Cybulsky AV, Guillemette J, Papillon J, Abouelazm NT. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation. PLoS One 2017; 12:e0177226. [PMID: 28475647 PMCID: PMC5419656 DOI: 10.1371/journal.pone.0177226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ development, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival. Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells (GECs) and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein consists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimerization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and S189, which are located in the activation segment. The full-length ectopically- and endogenously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a model SLK substrate (to address exogenous kinase activity), we demonstrate that dimerized SLK 1–373 or full-length SLK can effectively induce activation-specific phosphorylation of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autophosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183. In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury were associated with increased glomerular SLK activity and ezrin phosphorylation. In conclusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play key roles in the activation and signaling of SLK, and provide targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Nihad T. Abouelazm
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness. Skelet Muscle 2017; 7:3. [PMID: 28153048 PMCID: PMC5288853 DOI: 10.1186/s13395-016-0119-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. Methods In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. Results We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Conclusions Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0119-1) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Song L, Wang F, Dong Z, Hua X, Xia Q. Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide. J Proteomics 2016; 154:49-58. [PMID: 27903465 DOI: 10.1016/j.jprot.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Paralytic peptide (PP) participates in diverse physiological processes as an insect cytokine, such as immunity control, paralysis induction, regulation of cell morphology and proliferation. To investigate the molecular mechanism underlying those physiological activities, we systematically investigated the global phosphorylation events in fat body of silkworm larvae induced by PP through label-free quantitative phosphoproteomics. 2534 phosphosites were finally identified, of which the phosphorylation level of 620 phosphosites on 244 proteins was significantly up-regulated and 67 phosphosites on 43 proteins was down-regulated. Among those proteins, 13 were protein kinases (PKs), 13 were transcription factors (TFs) across 10 families and 17 were metabolism related enzymes. Meanwhile, Motif-X analysis of the phosphorylation sites showed that 16 motifs are significantly enriched, including 8 novel phosphorylation motifs. In addition, KEGG and functional interacting network analysis revealed that phosphorylation cascades play the crucial regulation roles in PP-dependent signaling pathways, and highlighted the potential central position of the mitogen-activated protein kinases (MAPKs) in them. These analyses provide direct insights into the molecule mechanisms of cellular response induced by PP. SIGNIFICANCE PP as an insect cytokine participated in diverse functions including immunity control paralysis induction, regulation of cell morphology and proliferation. In this study, we performed firstly a label-free quantitative phosphoproteomics analysis. We found some new phosphorylation targets of PP-stimulation. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional networks revealed that phosphorylation cascades play the crucial regulation roles in PP-dependent signaling pathways. In addition, the potential central position of the mitogen-activated protein kinases (MAPKs) was highlighted in PP-dependent signaling pathways. We think our findings may help us gain a systematic understanding of the cytokine-dependent response regulation in insects.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Xiaoting Hua
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| |
Collapse
|
19
|
Dongsheng H, Zhuo Z, Jiamin L, Hailan M, Lijuan H, Fan C, Dan Y, He Z, Yun X. Proteomic Analysis of the Peri-Infarct Area after Human Umbilical Cord Mesenchymal Stem Cell Transplantation in Experimental Stroke. Aging Dis 2016; 7:623-634. [PMID: 27699085 PMCID: PMC5036957 DOI: 10.14336/ad.2016.0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022] Open
Abstract
Among various therapeutic approaches for stroke, treatment with human umbilical cord mesenchymal stem cells (hUC-MSCs) has acquired some promising results. However, the underlying mechanisms remain unclear. We analyzed the protein expression spectrum of the cortical peri-infarction region after ischemic stroke followed by treatment with hUC-MSCs, and found 16 proteins expressed differentially between groups treated with or without hUC-MSCs. These proteins were further determined by Gene Ontology term analysis and network with CD200-CD200R1, CCL21-CXCR3 and transcription factors. Three of them: Abca13, Grb2 and Ptgds were verified by qPCR and ELISA. We found the protein level of Abca13 and the mRNA level of Grb2 consistent with results from the proteomic analysis. Finally, the function of these proteins was described and the potential proteins that deserve to be further studied was also highlighted. Our data may provide possible underlying mechanisms for the treatment of stroke using hUC-MSCs.
Collapse
Affiliation(s)
- He Dongsheng
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhang Zhuo
- 4Department of Gastroenterology, Children's Hospital of Nanjing, Nanjing Medical University, Nanjing 210008, China
| | - Lao Jiamin
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Meng Hailan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Han Lijuan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Chen Fan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Ye Dan
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhang He
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Xu Yun
- 1Department of Neurology, Affiliated Drum Tower Hospital, and; 2Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China.; 3The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China; 5Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China; 6Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
20
|
Cybulsky AV, Guillemette J, Papillon J. Ste20-like kinase, SLK, activates the heat shock factor 1 - Hsp70 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2147-55. [PMID: 27216364 DOI: 10.1016/j.bbamcr.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Expression and activation of SLK increases during renal ischemia-reperfusion injury. When highly expressed, SLK signals via c-Jun N-terminal kinase and p38 to induce apoptosis, and it exacerbates apoptosis induced by ischemia-reperfusion injury. Overexpression of SLK in glomerular epithelial cells (GECs)/podocytes in vivo induces injury and proteinuria. In response to various stresses, cells enhance expression of chaperones or heat shock proteins (e.g. Hsp70), which are involved in the folding and maturation of newly synthesized proteins, and can refold denatured or misfolded proteins. We address the interaction of SLK with the heat shock factor 1 (HSF1)-Hsp70 pathway. Increased expression of SLK in GECs (following transfection) induced HSF1 transcriptional activity. Moreover, HSF1 transcriptional activity was increased by in vitro ischemia-reperfusion injury (chemical anoxia/recovery) and heat shock, and in both instances was amplified further by SLK overexpression. HSF1 binds to promoters of target genes, such as Hsp70 and induces their transcription. By analogy to HSF1, SLK stimulated Hsp70 expression. Hsp70 was also enhanced by anoxia/recovery and was further amplified by SLK overexpression. Induction of HSF1 and Hsp70 was dependent on the kinase activity of SLK, and was mediated via polo-like kinase-1. Transfection of constitutively active HSF1 enhanced Hsp70 expression and inhibited SLK-induced apoptosis. Conversely, the proapoptotic action of SLK was augmented by HSF1 shRNA, or the Hsp70 inhibitor, pifithrin-μ. In conclusion, increased expression/activity of SLK activates the HSF1-Hsp70 pathway. Hsp70 attenuates the primary proapoptotic effect of SLK. Modulation of chaperone expression may potentially be harnessed as cytoprotective therapy in renal cell injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Jaberi A, Hooker E, Guillemette J, Papillon J, Kristof AS, Cybulsky AV. Identification of Tpr and α-actinin-4 as two novel SLK-interacting proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2539-52. [DOI: 10.1016/j.bbamcr.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 01/05/2023]
|
22
|
Panneton V, Nath A, Sader F, Delaunay N, Pelletier A, Maier D, Oh K, Hipfner DR. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation. J Biol Chem 2015; 290:20960-20971. [PMID: 26170449 DOI: 10.1074/jbc.m115.645952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Indexed: 01/21/2023] Open
Abstract
Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, Quebec H3T 3J7, Canada
| | - Apurba Nath
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, Quebec H3T 3J7, Canada
| | - Fadi Sader
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nathalie Delaunay
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Ariane Pelletier
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Dominic Maier
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Karen Oh
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - David R Hipfner
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; Molecular Biology Program, Université de Montréal, Montreal, Quebec H3T 3J7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
23
|
Baron KD, Al-Zahrani K, Conway J, Labrèche C, Storbeck CJ, Visvader JE, Sabourin LA. Recruitment and activation of SLK at the leading edge of migrating cells requires Src family kinase activity and the LIM-only protein 4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1683-92. [PMID: 25882817 DOI: 10.1016/j.bbamcr.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/20/2015] [Accepted: 04/03/2015] [Indexed: 12/26/2022]
Abstract
The Ste20-like kinase SLK plays a pivotal role in cell migration and focal adhesion turnover and is regulated by the LIM domain-binding proteins Ldb1 and Ldb2. These adapter proteins have been demonstrated to interact with LMO4 in the organization of transcriptional complexes. Therefore, we have assessed the ability of LMO4 to also interact and regulate SLK activity. Our data show that LMO4 can directly bind to SLK and activate its kinase activity in vitro and in vivo. LMO4 can be co-precipitated with SLK following the induction of cell migration by scratch wounding and Cre-mediated deletion of LMO4 in conditional LMO4(fl/fl) fibroblasts inhibits cell migration and SLK activation. Deletion of LMO4 impairs Ldb1 and SLK recruitment to the leading edge of migrating cells. Supporting this, Src/Yes/Fyn-deficient cells (SYF) expressing very low levels of LMO4 do not recruit SLK to the leading edge. Re-expression of wildtype Myc-LMO4 in SYF cells, but not a mutant version, restores SLK localization and kinase activity. Overall, our data suggest that activation of SLK by haptotactic signals requires its recruitment to the leading edge by LMO4 in a Src-dependent manner. Furthermore, this establishes a novel cytosolic role for the transcriptional co-activator LMO4.
Collapse
Affiliation(s)
- Kyla D Baron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Khalid Al-Zahrani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jillian Conway
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Cédrik Labrèche
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Storbeck
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jane E Visvader
- Walter and Eliza Hall Institute Biotechnology Centre, Bundoora, Victoria 3086, Australia
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, Canada.
| |
Collapse
|
24
|
Al-Zahrani KN, Sekhon P, Tessier DR, Yockell-Lelievre J, Pryce BR, Baron KD, Howe GA, Sriram RK, Daniel K, Mckay M, Lo V, Quizi J, Addison CL, Gruslin A, Sabourin LA. Essential role for the SLK protein kinase in embryogenesis and placental tissue development. Dev Dyn 2014; 243:640-51. [PMID: 24868594 DOI: 10.1002/dvdy.24106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Over the past decade, the Ste20-like kinase SLK, has been implicated in several signaling processes. SLK repression has been shown to impair cell cycle kinetics and inhibit FAK-mediated cell migration. Here, using a gene trapped allele, we have generated mice expressing a truncated form of the SLK kinase. RESULTS Our results show that an SLK-LacZ fusion protein is expressed in embryonic stem cells and in embryos throughout development. We find that the SLK-LacZ fusion protein is less efficient at phosphorylating substrates resulting in reduced cell proliferation within the embryos and angiogenic defects in the placentae of the homozygous mutant animals at embryonic day (E) 12.5. This results in marked developmental defects and apoptotic lesions in the embryos by E14.5. CONCLUSIONS Homozygotes expressing the SLK-LacZ fusion protein present with an embryonic lethal phenotype occurring between E12.5 and E14.5. Overall, we demonstrate a requirement for SLK kinase activity in the developing embryo and placenta.
Collapse
|
25
|
Machicoane M, de Frutos CA, Fink J, Rocancourt M, Lombardi Y, Garel S, Piel M, Echard A. SLK-dependent activation of ERMs controls LGN-NuMA localization and spindle orientation. ACTA ACUST UNITED AC 2014; 205:791-9. [PMID: 24958772 PMCID: PMC4068135 DOI: 10.1083/jcb.201401049] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ERM activation by SLK kinase promotes polarized association at the mitotic cortex of LGN and NuMA, a necessary step in proper spindle orientation. Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.
Collapse
Affiliation(s)
- Mickael Machicoane
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252 Paris, France
| | - Cristina A de Frutos
- Institut de Biologie de L'Ecole Normale Supérieure, Ecole Normale Supérieure, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Jenny Fink
- Systems Cell Biology of Cell Polarity and Cell Division Laboratory, Institut Curie, 75005 Paris, France Centre National de la Recherche Scientifique UMR144, 75005 Paris, France
| | - Murielle Rocancourt
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France
| | - Yannis Lombardi
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France
| | - Sonia Garel
- Institut de Biologie de L'Ecole Normale Supérieure, Ecole Normale Supérieure, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Matthieu Piel
- Systems Cell Biology of Cell Polarity and Cell Division Laboratory, Institut Curie, 75005 Paris, France Centre National de la Recherche Scientifique UMR144, 75005 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France
| |
Collapse
|
26
|
Storbeck CJ, Al-Zahrani KN, Sriram R, Kawesa S, O'Reilly P, Daniel K, McKay M, Kothary R, Tsilfidis C, Sabourin LA. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Skelet Muscle 2013; 3:16. [PMID: 23815977 PMCID: PMC3733878 DOI: 10.1186/2044-5040-3-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/02/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. METHODS To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. RESULTS High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. CONCLUSIONS Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function.
Collapse
|
27
|
Al-Zahrani KN, Baron KD, Sabourin LA. Ste20-like kinase SLK, at the crossroads: a matter of life and death. Cell Adh Migr 2012; 7:1-10. [PMID: 23154402 DOI: 10.4161/cam.22495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reorganization of the cytoskeleton is necessary for apoptosis, proliferation, migration, development and tissue repair. However, it is well established that mutations or overexpression of key regulators contribute to the phenotype and progression of several pathologies such as cancer. For instance, c-src mutations and the overexpression of FAK have been implicated in the invasive and metastatic process, suggesting that components of the motility system may represent a new class of therapeutic targets. Over the last several years, we and others have established distinct roles for the Ste20-like kinase SLK, encompassing apoptosis, growth, motility and development. Here, we review the SLK field from its initial cloning to the most recent findings from our laboratory. We summarize the various roles of SLK and the biochemical mechanisms that regulate its activity. These various findings reveal very complex functions and pattern of regulation for SLK in development and cancer, making it a potential therapeutic target.
Collapse
|
28
|
Quizi JL, Baron K, Al-Zahrani KN, O'Reilly P, Sriram RK, Conway J, Laurin AA, Sabourin LA. SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration. Oncogene 2012; 32:4656-63. [PMID: 23128389 DOI: 10.1038/onc.2012.488] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022]
Abstract
Focal adhesion turnover is a complex process required for cell migration. We have previously shown that the Ste20-like kinase (SLK) is required for cell migration and efficient focal adhesion (FA) turnover in a FA kinase (FAK)-dependent manner. However, the role of SLK in this process remains unclear. Using a candidate substrate approach, we show that SLK phosphorylates the adhesion adapter protein paxillin on serine 250. Serine 250 phosphorylation is required for paxillin redistribution and cell motility. Mutation of paxillin serine 250 prevents its phosphorylation by SLK in vitro and results in impaired migration in vivo as evidenced by an accumulation of phospho-FAK-Tyr397 and altered FA turnover rates. Together, our data suggest that SLK phosphorylation of paxillin on serine 250 is required for FAK-dependent FA dynamics.
Collapse
Affiliation(s)
- J L Quizi
- 1] Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada [2] Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cabeza-Arvelaiz Y, Schiestl RH. Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One 2012; 7:e44700. [PMID: 22970289 PMCID: PMC3436760 DOI: 10.1371/journal.pone.0044700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/09/2012] [Indexed: 12/21/2022] Open
Abstract
The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs.
Collapse
Affiliation(s)
- Yofre Cabeza-Arvelaiz
- Department of Pathology and Environmental Health Sciences, David Geffen School of Medicine and School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America.
| | | |
Collapse
|
30
|
Luhovy AY, Jaberi A, Papillon J, Guillemette J, Cybulsky AV. Regulation of the Ste20-like kinase, SLK: involvement of activation segment phosphorylation. J Biol Chem 2011; 287:5446-58. [PMID: 22203681 DOI: 10.1074/jbc.m111.302018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression and activation of the Ste20-like kinase, SLK, is increased during kidney development and recovery from ischemic acute kidney injury. SLK promotes apoptosis, and it may regulate cell survival during injury or repair. This study addresses the role of phosphorylation in the regulation of kinase activity. We mutated serine and threonine residues in the putative activation segment of the SLK catalytic domain and expressed wild type (WT) and mutant proteins in COS-1 or glomerular epithelial cells. Compared with SLK WT, the T183A, S189A, and T183A/S189A mutants showed reduced in vitro kinase activity. SLK WT, but not mutants, increased activation-specific phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. Similarly, SLK WT stimulated activator protein-1 reporter activity, but activation of activator protein-1 by the three SLK mutants was ineffective. To test if homodimerization of SLK affects phosphorylation, the cDNA encoding SLK amino acids 1-373 (which include the catalytic domain) was fused with a cDNA for a modified FK506-binding protein, Fv (Fv-SLK 1-373). After transfection, the addition of AP20187 (an FK506 analog) induced regulated dimerization of Fv-SLK 1-373. AP20187-stimulated dimerization enhanced the kinase activity of Fv-SLK 1-373 WT. In contrast, kinase activity of Fv-SLK 1-373 T183A/S189A was weak and was not enhanced after dimerization. Finally, apoptosis was increased after expression of Fv-SLK 1-373 WT but not T183A/S189A. Thus, phosphorylation of Thr-183 and Ser-189 plays a key role in the activation and signaling of SLK and could represent a target for novel therapeutic approaches to renal injury.
Collapse
Affiliation(s)
- Artem Y Luhovy
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
31
|
Wojtala RL, Tavares IA, Morton PE, Valderrama F, Thomas NSB, Morris JDH. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) are activated in mitosis and contribute to mitotic cell rounding and spindle positioning. J Biol Chem 2011; 286:30161-70. [PMID: 21705329 PMCID: PMC3191055 DOI: 10.1074/jbc.m111.228320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/17/2011] [Indexed: 01/06/2023] Open
Abstract
Prostate-derived sterile 20-like kinases (PSKs) 1-α, 1-β, and 2 are members of the germinal-center kinase-like sterile 20 family of kinases. Previous work has shown that PSK 1-α binds and stabilizes microtubules whereas PSK2 destabilizes microtubules. Here, we have investigated the activation and autophosphorylation of endogenous PSKs and show that their catalytic activity increases as cells accumulate in G(2)/M and declines as cells exit mitosis. PSKs are stimulated in synchronous HeLa cells as they progress through mitosis, and these proteins are activated catalytically during each stage of mitosis. During prophase and metaphase activated PSKs are located in the cytoplasm and at the spindle poles, and during telophase and cytokinesis stimulated PSKs are present in trans-Golgi compartments. In addition, small interfering RNA (siRNA) knockdown of PSK1-α/β or PSK2 expression inhibits mitotic cell rounding as well as spindle positioning and centralization. These results show that PSK catalytic activity increases during mitosis and suggest that these proteins can contribute functionally to mitotic cell rounding and spindle centralization during cell division.
Collapse
Affiliation(s)
- Rachael L. Wojtala
- From the Cancer Division, King's College London, New Hunt's House, Guy's Campus, Great Maze Pond, London SE1 1UL
| | - Ignatius A. Tavares
- From the Cancer Division, King's College London, New Hunt's House, Guy's Campus, Great Maze Pond, London SE1 1UL
| | - Penny E. Morton
- From the Cancer Division, King's College London, New Hunt's House, Guy's Campus, Great Maze Pond, London SE1 1UL
| | - Ferran Valderrama
- the Division of Biomedical Sciences, Anatomy, St. George's Hospital, Cranmer Terrace, London SW17 0RE, and
| | - N. Shaun B. Thomas
- the Cancer Division, Rayne Institute, King's College London, 123 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Jonathan D. H. Morris
- From the Cancer Division, King's College London, New Hunt's House, Guy's Campus, Great Maze Pond, London SE1 1UL
| |
Collapse
|
32
|
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 2010; 3:ra3. [PMID: 20068231 DOI: 10.1126/scisignal.2000475] [Citation(s) in RCA: 1216] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells replicate by a complex series of evolutionarily conserved events that are tightly regulated at defined stages of the cell division cycle. Progression through this cycle involves a large number of dedicated protein complexes and signaling pathways, and deregulation of this process is implicated in tumorigenesis. We applied high-resolution mass spectrometry-based proteomics to investigate the proteome and phosphoproteome of the human cell cycle on a global scale and quantified 6027 proteins and 20,443 unique phosphorylation sites and their dynamics. Co-regulated proteins and phosphorylation sites were grouped according to their cell cycle kinetics and compared to publicly available messenger RNA microarray data. Most detected phosphorylation sites and more than 20% of all quantified proteins showed substantial regulation, mainly in mitotic cells. Kinase-motif analysis revealed global activation during S phase of the DNA damage response network, which was mediated by phosphorylation by ATM or ATR or DNA-dependent protein kinases. We determined site-specific stoichiometry of more than 5000 sites and found that most of the up-regulated sites phosphorylated by cyclin-dependent kinase 1 (CDK1) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells.
Collapse
Affiliation(s)
- Jesper V Olsen
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried near Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Storbeck CJ, Wagner S, O'Reilly P, McKay M, Parks RJ, Westphal H, Sabourin LA. The Ldb1 and Ldb2 transcriptional cofactors interact with the Ste20-like kinase SLK and regulate cell migration. Mol Biol Cell 2009; 20:4174-82. [PMID: 19675209 PMCID: PMC2754931 DOI: 10.1091/mbc.e08-07-0707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/14/2009] [Accepted: 07/30/2009] [Indexed: 11/11/2022] Open
Abstract
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses, and tissue repair. Here, we show that the microtubule-associated Ste20 kinase SLK, required for cell migration, interacts with the LIM domain binding transcriptional cofactor proteins Ldb1/CLIM2 and Ldb2/CLIM1/NLI. We demonstrate that Ldb1 and 2 bind directly to the SLK carboxy-terminal AT1-46 homology domain in vitro and in vivo. We find that Ldb1 and -2 colocalize with SLK in migrating cells and that both knockdown and overexpression of either factor results in increased motility. Supporting this, knockdown of Ldb1 increases focal adhesion turnover and enhances migration in fibroblasts. We propose that Ldb1/2 function to maintain SLK in an inactive state before its activation. These findings highlight a novel function for Ldb1 and -2 and expand their role to include the control of cell migration.
Collapse
Affiliation(s)
- Chris J. Storbeck
- *Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Simona Wagner
- *Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Paul O'Reilly
- *Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Marlene McKay
- Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 4E9, Canada; and
| | - Robin J. Parks
- Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 4E9, Canada; and
| | - Heiner Westphal
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892
| | - Luc A. Sabourin
- *Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 4E9, Canada; and
| |
Collapse
|
34
|
Cybulsky AV, Takano T, Guillemette J, Papillon J, Volpini RA, Di Battista JA. The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Am J Physiol Renal Physiol 2009; 297:F971-80. [DOI: 10.1152/ajprenal.00294.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression and activity of the germinal center SLK are increased during kidney development and recovery from renal ischemia-reperfusion injury. SLK promotes apoptosis, in part, via pathway(s) involving apoptosis signal-regulating kinase-1 and p38 mitogen-activated protein kinase. This study addresses the role of p53 as a potential effector of SLK. p53 transactivation was measured after transient transfection of a luciferase reporter plasmid that contains a p53 cis-acting enhancer element. Overexpression of SLK in COS-1 cells and cotransfection of SLK and p53-wild type (wt) cDNAs in glomerular epithelial cells (GECs) stimulated p53 transactivational activity, as measured by a p53 response element-driven luciferase reporter. In GECs, chemical anoxia followed by glucose reexposure (in vitro ischemia-reperfusion) increased p53 reporter activity, and this increase was amplified by overexpression of SLK. Expression of SLK induced p53 phosphorylation on serine (S)-33 and S315. In GECs, cotransfection of SLK with p53-wt, p53-S33A, p53-S315A, or p53-S33A+S315A mutants showed that only the double mutation abolished the SLK-induced increase in p53 reporter activity. SLK-induced stimulation of p53 reporter activity was attenuated by inhibition of JNK. Overexpression of SLK amplified apoptosis induced by subjecting cells to in vitro ischemia-reperfusion injury, while ectopic expression of a dominant negative SLK mutant attenuated the ischemia-reperfusion-induced apoptosis. The p53 transactivation inhibitor pifithrin-α significantly attenuated the amount of apoptosis after ischemia-reperfusion and SLK overexpression. Thus SLK induces p53 phosphorylation and transactivation, which enhances apoptosis after in vitro ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Rildo A. Volpini
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - John A. Di Battista
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Simon K, Mukundan A, Dewundara S, Van Remmen H, Dombkowski AA, Cabelof DC. Transcriptional profiling of the age-related response to genotoxic stress points to differential DNA damage response with age. Mech Ageing Dev 2009; 130:637-47. [PMID: 19679149 PMCID: PMC3285901 DOI: 10.1016/j.mad.2009.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 11/30/2022]
Abstract
The p53 DNA damage response attenuated with age and we have evaluated downstream factors in the DNA damage response. In old animals p21 protein accumulates in the whole cell fraction but significantly declines in the nucleus, which may alter cell cycle and apoptotic programs in response to DNA damage. We evaluated the transcriptional response to DNA damage in young and old and find 2692 genes are differentially regulated in old compared to young in response to oxidative stress (p<0.005). As anticipated, the transcriptional profile of young mice is consistent with DNA damage induced cell cycle arrest while the profile of old mice is consistent with cell cycle progression in the presence of DNA damage, suggesting the potential for catastrophic accumulation of DNA damage at the replication fork. Unique sets of DNA repair genes are induced in response to damage in old and young, suggesting the types of damage accumulating differs between young and old. The DNA repair genes upregulated in old animals point to accumulation of replication-dependent DNA double strand breaks (DSB). Expression data is consistent with loss of apoptosis following DNA damage in old animals. These data suggest DNA damage responses differ greatly in young and old animals.
Collapse
Affiliation(s)
- Kirk Simon
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48084, United States
| | | | | | | | | | | |
Collapse
|
36
|
Roovers K, Wagner S, Storbeck CJ, O'Reilly P, Lo V, Northey JJ, Chmielecki J, Muller WJ, Siegel PM, Sabourin LA. The Ste20-like kinase SLK is required for ErbB2-driven breast cancer cell motility. Oncogene 2009; 28:2839-48. [PMID: 19525980 DOI: 10.1038/onc.2009.146] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ste20-like kinase, SLK, is involved in the control of cell motility through its effects on actin reorganization and focal adhesion turnover. Here we investigated the role of SLK in chemotaxis downstream of the tyrosine kinase receptor, HER2/ErbB2/Neu, which is frequently overexpressed in human breast cancers. Our results show that SLK is required for the efficient cell migration of human and mouse mammary epithelial cell lines in the presence of the Neu activator, heregulin, as a chemoattractant. SLK activity is stimulated by heregulin treatment or by overexpression of activated Neu. Phosphorylation of tyrosine 1201 or tyrosines 1226/7 on Neu is a key event for SLK activation and cell migration, and cancer cell invasion mediated by these tyrosines is inhibited by kinase-inactive SLK. Signaling pathway inhibitors show that Neu-mediated SLK activation is dependent on MEK, PI3K, PLCgamma and Shc signaling. Furthermore, heregulin-stimulated SLK activity requires signals from the focal adhesion proteins, FAK and src. Finally, phospho-FAK analysis shows that SLK is required for Neu-dependent focal adhesion turnover. Together, these studies define an interaction between Neu and SLK signaling in the regulation of cancer cell motility.
Collapse
Affiliation(s)
- K Roovers
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wagner SM, Sabourin LA. A novel role for the Ste20 kinase SLK in adhesion signaling and cell migration. Cell Adh Migr 2009; 3:182-4. [PMID: 19262175 DOI: 10.4161/cam.3.2.7229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
With over 60 members, the Sterile 20 family of kinases has been implicated in numerous biological processes, including growth, survival, apoptosis and cell migration. Recently, we have shown that, in addition to cell death, the Ste20-like kinase SLK is required for efficient cell migration in fibroblasts. We have observed that SLK is involved in cell motility through its effect on actin reorganization and microtubule-induced focal adhesion turnover. Scratch wounding of confluent monolayers results in SLK activation. The induction of SLK kinase activity requires the scaffold FAK and a MAPK-dependent pathway. However, its recruitment to the leading edge of migrating fibroblasts requires the activity of the Src family kinases. Since SLK is microtubule-associated, it may represent one of the signals delivered to focal contacts that induces adhesions turnover. A speculative model is proposed to illustrate the mechanism of SLK activation and recruitment at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Simona M Wagner
- Department of Cellular and Molecular Medicine, University of Ottawa and Cancer Therapeutics, Ottawa Health Research Institute, ON, CA.
| | | |
Collapse
|
38
|
Zhang Z, Xing J, Ma L, Gong R, Chin YE, Zhuang S. Transglutaminase-1 regulates renal epithelial cell proliferation through activation of Stat-3. J Biol Chem 2009; 284:3345-3353. [PMID: 19049964 PMCID: PMC2631946 DOI: 10.1074/jbc.m808396200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Indexed: 01/21/2023] Open
Abstract
Transglutaminase-1 (TGase-1) is a Ca(2+)-dependent enzyme capable of cross-linking a variety of proteins and promoting wound healing in the skin. In this study, we examined the role of TGase-1 in proliferation of renal proximal tubular cells (RPTC). TGase-1, but not TGase-2, -5, and -7, was expressed in RPTC. Treatment with monodansylcadarevine (MDC), a selective TGase inhibitor or down-regulation of TGase-1 with small interfering RNA (siRNA) decreased RPTC proliferation. Proliferation of RPTC was accompanied by activation of Akt and Stat-3 (signal transducer and activator of transcription-3). Treatment with MDC or TGase-1 siRNA decreased Stat-3 but not Akt phosphorylation. Further studies showed that the Janus-activated kinase 2 (JAK2) mediates phosphorylation of Stat-3, and knockdown of either JAK2 or Stat-3 by siRNA decreased RPTC proliferation. However, inhibition of TGase-1 decreased phosphorylation of Stat-3 but not JAK2. Overexpression of Stat-3, JAK2, and/or TGase-1 in RPTC revealed that JAK2 is indispensable for TGase-1 to induce Stat-3 phosphorylation and TGase-1 potentiates JAK2-induced Stat-3 phosphorylation. Consistent with these observations, we found that inhibition of TGase-1 and the JAK2-Stat-3 signaling pathway decreased the transcriptional activity of Stat-3 and expression of the Stat-3-targeted genes, cyclin D1 and cyclin E. Conversely, overexpresssion of TGase-1 enhanced the JAK2-dependent transcriptional activity of Stat-3. Finally, TGase-1 was found to interact with JAK2, and this interaction was inhibited by MDC. These results demonstrate that TGase-1 plays an important role in regulation of renal epithelial cell proliferation through the JAK2-Stat-3 signaling pathway.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903
| | - Jingping Xing
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903
| | - Li Ma
- Department of Surgery, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903
| | - Rujun Gong
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903
| | - Y Eugene Chin
- Department of Surgery, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903
| | - Shougang Zhuang
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence, Rhode Island 02903.
| |
Collapse
|
39
|
Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB. The PI(3,5)P2 and PI(4,5)P2 Interactomes. J Proteome Res 2008; 7:5295-313. [DOI: 10.1021/pr800540h] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Schieber
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melanie Condron
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Heather Patsiouras
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lisa Connolly
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Catimel
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edouard C. Nice
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Antony W. Burgess
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew B. Holmes
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville Victoria 3052, Australia, and School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
40
|
Tsutsumi T, Kosaka T, Ushiro H, Kimura K, Honda T, Kayahara T, Mizoguchi A. PASK (proline-alanine-rich Ste20-related kinase) binds to tubulin and microtubules and is involved in microtubule stabilization. Arch Biochem Biophys 2008; 477:267-78. [PMID: 18675246 DOI: 10.1016/j.abb.2008.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/01/2008] [Accepted: 07/13/2008] [Indexed: 11/17/2022]
Abstract
Proline-alanine-rich Ste20-related kinase (PASK, also referred to as SPAK) has been linked to ion transport regulation. Here, we report two novel activities of PASK: binding to tubulin and microtubules and the promotion of microtubule assembly. Tubulin binding assay showed that full-length PASK and its kinase domain bound to purified tubulin whereas the N-terminal or C-terminal non-catalytic domains of PASK did not. The full-length PASK and its kinase domain were sedimented with paclitaxel-stabilized microtubules by ultracentrifugation. These results indicate that the kinase domain of PASK can interact directly with both microtubules and soluble tubulin in vitro. Truncated PASK lacking the N-terminal non-catalytic domain promoted microtubule assembly at a subcritical concentration of purified tubulin. FLAG-PASK expressed in COS-7 cells translocated to the cytoskeleton when the cells were stimulated with hypertonic sodium chloride, and stabilized microtubules against depolymerization by nocodazole. Our findings suggest that PASK may regulate the cytoskeleton by modulating microtubule stability.
Collapse
Affiliation(s)
- Tomonari Tsutsumi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Wagner S, Storbeck CJ, Roovers K, Chaar ZY, Kolodziej P, McKay M, Sabourin LA. FAK/src-family dependent activation of the Ste20-like kinase SLK is required for microtubule-dependent focal adhesion turnover and cell migration. PLoS One 2008; 3:e1868. [PMID: 18382658 PMCID: PMC2270904 DOI: 10.1371/journal.pone.0001868] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/15/2008] [Indexed: 11/19/2022] Open
Abstract
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.
Collapse
Affiliation(s)
- Simona Wagner
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chris J. Storbeck
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Kristin Roovers
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Ziad Y. Chaar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Piotr Kolodziej
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Marlene McKay
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Luc A. Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Burakov AV, Zhapparova ON, Kovalenko OV, Zinovkina LA, Potekhina ES, Shanina NA, Weiss DG, Kuznetsov SA, Nadezhdina ES. Ste20-related protein kinase LOSK (SLK) controls microtubule radial array in interphase. Mol Biol Cell 2008; 19:1952-61. [PMID: 18287541 DOI: 10.1091/mbc.e06-12-1156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Interphase microtubules are organized into a radial array with centrosome in the center. This organization is a subject of cellular regulation that can be driven by protein phosphorylation. Only few protein kinases that regulate microtubule array in interphase cells have been described. Ste20-like protein kinase LOSK (SLK) was identified as a microtubule and centrosome-associated protein. In this study we have shown that the inhibition of LOSK activity by dominant-negative mutant K63R-DeltaT or by LOSK depletion with RNAi leads to unfocused microtubule arrangement. Microtubule disorganization is prominent in Vero, CV-1, and CHO-K1 cells but less distinct in HeLa cells. The effect is a result neither of microtubule stabilization nor of centrosome disruption. In cells with suppressed LOSK activity centrosomes are unable to anchor or to cap microtubules, though they keep nucleating microtubules. These centrosomes are depleted of dynactin. Vero cells overexpressing K63R-DeltaT have normal dynactin "comets" at microtubule ends and unaltered morphology of Golgi complex but are unable to polarize it at the wound edge. We conclude that protein kinase LOSK is required for radial microtubule organization and for the proper localization of Golgi complex in various cell types.
Collapse
Affiliation(s)
- Anton V Burakov
- Institute of Protein Research, Russian Academy of Science, 142290 Pushchino, Moscow Region, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pike ACW, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J 2008; 27:704-14. [PMID: 18239682 PMCID: PMC2239268 DOI: 10.1038/emboj.2008.8] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/09/2008] [Indexed: 12/31/2022] Open
Abstract
Protein kinase autophosphorylation of activation segment residues is a common regulatory mechanism in phosphorylation-dependent signalling cascades. However, the molecular mechanisms that guarantee specific and efficient phosphorylation of these sites have not been elucidated. Here, we report on three novel and diverse protein kinase structures that reveal an exchanged activation segment conformation. This dimeric arrangement results in an active kinase conformation in trans, with activation segment phosphorylation sites in close proximity to the active site of the interacting protomer. Analytical ultracentrifugation and chemical cross-linking confirmed the presence of dimers in solution. Consensus substrate sequences for each kinase showed that the identified activation segment autophosphorylation sites are non-consensus substrate sites. Based on the presented structural and functional data, a model for specific activation segment phosphorylation at non-consensus substrate sites is proposed that is likely to be common to other kinases from diverse subfamilies.
Collapse
Affiliation(s)
- Ashley C W Pike
- Structural Genomics Consortium, Botnar Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yan Y, Tulasne D, Browaeys E, Cailliau K, Khayath N, Pierce RJ, Trolet J, Fafeur V, Ben Younes A, Dissous C. Molecular cloning and characterisation of SmSLK, a novel Ste20-like kinase in Schistosoma mansoni. Int J Parasitol 2007; 37:1539-50. [PMID: 17651740 DOI: 10.1016/j.ijpara.2007.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 11/25/2022]
Abstract
Serine/threonine kinases of the Ste20 group play important roles in various cellular functions such as growth, apoptosis and morphogenesis. This family includes p21-Activated Kinases (PAKs) and Germinal Center Kinases (GCKs) families which contain their kinase domain in the C-terminal and N-terminal position, respectively. Here, we report the characterisation of a novel Ste20-like kinase (SLK) in the helminth parasite Schistosoma mansoni (SmSLK). SmSLK belongs to the GCK subfamily and contains a conserved N-terminal Ste20-like catalytic domain and C-terminal coiled-coil structures homologous to mammalian Lymphocyte Oriented Kinase (LOK) and SLK kinases and described as regulatory domains in these proteins. Gene assembly was performed using S. mansoni sequences available from genomic databases and indicated that SmSLK is composed of 18 exons and present in one copy in the S. mansoni genome. RT-PCR experiments demonstrated an alternative splicing of SmSLK in the exon 9 encoding the hinge region between kinase and coiled-coil domains of SmSLK and showed the expression of both transcript isoforms (SmSLK and SmSLK-S in which exon 9 is deleted) in all the S. mansoni parasite stages. Most of the Ste20-related proteins are active kinases known to regulate mitogen-activated protein kinase (MAPK) cascades. We demonstrated the kinase activity of SmSLK and SmSLK-S and their capacity to activate the MAPK/Jun N-terminal kinase (JNK) pathway in human embryonic kidney (HEK) cells as well as in Xenopus oocytes. Immunofluorescence studies indicated that SmSLK proteins were abundant in the tegument of adult schistosomes. Therefore, these results indicate that SmSLK is a new member of the GCK protein family that could participate in the regulation of MAPK cascade activation during host-parasite interactions.
Collapse
|
45
|
Rossi P, Lolicato F, Grimaldi P, Dolci S, Di Sauro A, Filipponi D, Geremia R. Transcriptome analysis of differentiating spermatogonia stimulated with kit ligand. Gene Expr Patterns 2007; 8:58-70. [PMID: 18036996 DOI: 10.1016/j.modgep.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/02/2007] [Accepted: 10/17/2007] [Indexed: 01/15/2023]
Abstract
Kit ligand (KL) is a survival factor and a mitogenic stimulus for differentiating spermatogonia. However, it is not known whether KL also plays a role in the differentiative events that lead to meiotic entry of these cells. We performed a wide genome analysis of difference in gene expression induced by treatment with KL of spermatogonia from 7-day-old mice, using gene chips spanning the whole mouse genome. The analysis revealed that the pattern of RNA expression induced by KL is compatible with the qualitative changes of the cell cycle that occur during the subsequent cell divisions in type A and B spermatogonia, i.e. the progressive lengthening of the S phase and the shortening of the G2/M transition. Moreover, KL up-regulates in differentiating spermatogonia the expression of early meiotic genes (for instance: Lhx8, Nek1, Rnf141, Xrcc3, Tpo1, Tbca, Xrcc2, Mesp1, Phf7, Rtel1), whereas it down-regulates typical spermatogonial markers (for instance: Pole, Ptgs2, Zfpm2, Egr2, Egr3, Gsk3b, Hnrpa1, Fst, Ptch2). Since KL modifies the expression of several genes known to be up-regulated or down-regulated in spermatogonia during the transition from the mitotic to the meiotic cell cycle, these results are consistent with a role of the KL/kit interaction in the induction of their meiotic differentiation.
Collapse
Affiliation(s)
- Pellegrino Rossi
- Dipartimento di Sanita' Pubblica e Biologia Cellulare, Universita' degli Studi di Roma Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Cybulsky AV, Takano T, Papillon J, Hao W, Mancini A, Di Battista JA, Cybulsky MI. The 3′-untranslated region of the Ste20-like kinase SLK regulates SLK expression. Am J Physiol Renal Physiol 2007; 292:F845-52. [PMID: 17003224 DOI: 10.1152/ajprenal.00234.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ste20-like kinase, SLK, a germinal center kinase found in kidney epithelial cells, signals to promote apoptosis. Expression of SLK mRNA and protein and kinase activity are increased during kidney development and recovery from ischemic acute renal failure. The 3′-untranslated region (3′-UTR) of SLK mRNA contains multiple adenine and uridine-rich elements, suggesting that 3′-UTR may regulate mRNA stability. This was confirmed in COS cell transient transfection studies, which showed that expression of the SLK open-reading frame plus 3′-UTR mRNA was reduced by 35% relative to the open-reading frame alone. To further characterize the SLK-3′-UTR, this nucleotide sequence was subcloned downstream of enhanced green fluorescent protein (EGFP) cDNA. In COS, 293T, and glomerular epithelial cells, expression of EGFP mRNA and protein was markedly reduced in the presence of the SLK-3′-UTR. After transfection and subsequent addition of actinomycin D, EGFP mRNA remained stable in cells for at least 6 h, whereas EGFP-SLK-3′-UTR mRNA decayed with a half-life of ∼4 h. A region containing five AUUUA motifs within the SLK-3′-UTR destabilized EGFP mRNA. Deletion of this region from the SLK-3′-UTR, in part, restored mRNA stability. By UV cross-linking and SDS-PAGE, the SLK-3′-UTR bound to protein(s) of ∼30 kDa in extracts of COS cells, glomerular epithelial cells, and kidney. Cotransfection of HuR (a RNA binding protein of ∼30 kDa) increased the steady-state mRNA level of EGFP-SLK-3′-UTR but not EGFP. Thus the SLK-3′-UTR may interact with kidney RNA-binding proteins to regulate expression of SLK mRNA during kidney development and after ischemic injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|