1
|
Ruchiy Y, Tsea I, Preka E, Verhoeven BM, Olsen TK, Mei S, Sinha I, Blomgren K, Carlson LM, Dyberg C, Johnsen JI, Baryawno N. Genomic tumor evolution dictates human medulloblastoma progression. Neurooncol Adv 2024; 6:vdae172. [PMID: 39659836 PMCID: PMC11629688 DOI: 10.1093/noajnl/vdae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background Medulloblastoma (MB) is the most common high-grade pediatric brain tumor, comprised of 4 main molecular subgroups-sonic-hedgehog (SHH), Wnt, Group 3, and Group 4. Group 3 and Group 4 tumors are the least characterized MB subgroups, despite Group 3 having the worst prognosis (~50% survival rate), and Group 4 being the most prevalent. Such poor characterization can be attributed to high levels of inter- and intratumoral heterogeneity, making it difficult to identify common therapeutic targets. Methods In this study, we generated single-cell sequencing data from 14 MB patients spanning all subgroups that we complemented with publicly available single-cell data from Group 3 patients. We used a ligand-receptor analysis tool (CellChat), expression- and allele-based copy-number variation (CNV) detection methods, and RNA velocity analysis to characterize tumor cell-cell interactions, established a connection between CNVs and temporal tumor progression, and unraveled tumor evolution. Results We show that MB tumor cells follow a temporal trajectory from those with low CNV levels to those with high CNV levels, allowing us to identify early and late markers for SHH, Group 3, and Group 4 MBs. Our study also identifies SOX4 upregulation as a major event in later tumor clones for Group 3 and Group 4 MBs, suggesting it as a potential therapeutic target for both subgroups. Conclusion Taken together, our findings highlight MB's inherent tumor heterogeneity and offer promising insights into potential drivers of MB tumor evolution particularly in Group 3 and Group 4 MBs.
Collapse
Affiliation(s)
- Yana Ruchiy
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ioanna Tsea
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Efthalia Preka
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Klas Blomgren
- Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lena-Maria Carlson
- Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
KLF5-mediated COX2 upregulation contributes to tumorigenesis driven by PTEN deficiency. Cell Signal 2020; 75:109767. [PMID: 32890667 DOI: 10.1016/j.cellsig.2020.109767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Tumor suppressor gene PTEN is frequently mutated in a wide variety of cancers. However, the downstream targets or signal transduction pathways of PTEN remain not fully understood. By analyzing Pten-null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts, we showed that loss of PTEN led to increased cyclooxygenase2 (COX2) expression in an AKT-independent manner. Moreover, we demonstrated that PTEN deficiency promotes the transcription of COX2 via upregulation of the transcription factor Krüppel-like factor 5 (KLF5). Knocked down the expression of COX2 suppressed proliferation, migration and tumoral growth of Pten-null cells. Further experiments revealed that COX2 enhanced Pten-null MEFs growth and migration through upregulation of NADPH oxidase 4 (NOX4). In addition, MK-2206, a specific inhibitor of AKT, in combination with celecoxib, a COX2 inhibitor, strongly inhibited Pten-deficient cell growth. We concluded that KLF5/COX2/NOX4 signaling pathway is critical for cell growth and migration caused by the loss of PTEN, and the combination of MK-2206 and celecoxib may be an effective new approach to treating PTEN deficiency related tumors.
Collapse
|
3
|
Xi G, Demambro VE, D’Costa S, Xia SK, Cox ZC, Rosen CJ, Clemmons DR. Estrogen Stimulation of Pleiotrophin Enhances Osteoblast Differentiation and Maintains Bone Mass in IGFBP-2 Null Mice. Endocrinology 2020; 161:5805123. [PMID: 32168373 PMCID: PMC7069688 DOI: 10.1210/endocr/bqz007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor binding protein-2 (IGFBP-2) stimulates osteoblast differentiation but only male Igfbp2 null mice have a skeletal phenotype. The trophic actions of IGFBP-2 in bone are mediated through its binding to receptor tyrosine phosphatase beta (RPTPβ). Another important ligand for RPTPβ is pleiotrophin (PTN), which also stimulates osteoblast differentiation. We determined the change in PTN and RPTPβ in Igfbp2-/- mice. Analysis of whole bone mRNA in wild-type and knockout mice revealed increased expression of Ptn. Rptpβ increased in gene-deleted animals with females having greater expression than males. Knockdown of PTN expression in osteoblasts in vitro inhibited differentiation, and addition of PTN to the incubation medium rescued the response. Estradiol stimulated PTN secretion and PTN knockdown blocked estradiol-stimulated differentiation. PTN addition to IGFBP-2 silenced osteoblast stimulated differentiation, and an anti-fibronectin-3 antibody, which inhibits PTN binding to RPTPβ, inhibited this response. Estrogen stimulated PTN secretion and downstream signaling in the IGFBP-2 silenced osteoblasts and these effects were inhibited with anti-fibronectin-3. Administration of estrogen to wild-type and Igfbp2-/- male mice stimulated an increase in both areal bone mineral density and trabecular bone volume fraction but the increase was significantly greater in the Igfbp2-/- animals. Estrogen also stimulated RPTPβ expression in the null mice. We conclude that loss of IGFBP-2 expression is accompanied by upregulation of PTN and RPTPβ expression in osteoblasts, that the degree of increase is greater in females due to estrogen secretion, and that this compensatory change may account for some component of the maintenance of normal bone mass in female mice.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | | | - Susan D’Costa
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | - Shalier K Xia
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | - Zach C Cox
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | | | - David R Clemmons
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
- Correspondence: David R. Clemmons, MD, CB#7170, 8024 Burnett-Womack, Division of Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7170. E-mail:
| |
Collapse
|
4
|
Abstract
The tumor suppressor phosphatase and tension homolog (PTEN) is frequently mutated in human cancers, and it functions in multiple ways to safeguard cells from tumorigenesis. In the cytoplasm, PTEN antagonizes the PI3K/AKT pathway and suppresses cellular proliferation and survival. In the nucleus, PTEN is indispensable for the maintenance of genomic stability. In addition, PTEN loss leads to extensive changes in gene expression at the transcriptional level. The linker histone H1, generally considered as a transcriptional repressor, binds to the nucleosome to form a structure named the chromatosome. The dynamics between H1 and chromatin play an important role in determining gene expression. Here, we summarize the current understanding of roles of PTEN in controlling chromatin dynamics and global gene expression, which is crucial function of nuclear PTEN. We will also introduce the recent discovery of the PTEN family members and their functions.
Collapse
Affiliation(s)
- Jingyi Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Zhou J, Yang Y, Zhang Y, Liu H, Dou Q. A meta-analysis on the role of pleiotrophin (PTN) as a prognostic factor in cancer. PLoS One 2018; 13:e0207473. [PMID: 30427932 PMCID: PMC6235361 DOI: 10.1371/journal.pone.0207473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Background Some researchers reported that pleiotrophin (PTN) is associated with the development and metastasis of various tumors and it is a poor prognostic factor for the tumor patients. However, the results of other researches are inconsistent with them. It is obliged to do a meta-analysis to reach a definite conclusion. Methods The published studies relevant to PTN were searched in the databases including PubMed, Embase and Web of Science until March 20, 2018. A meta-analysis was conducted to evaluate the role of PTN in clinicopathological characteristics and overall survival (OS) of cancer patients. Results Our meta-analysis indicated that the high expression of PTN was remarkably associated with advanced TNM stage (OR = 2.79, 95%CI: 1.92–4.06, P<0.00001) and poor OS (HR = 1.77, 95%CI: 1.41–2.22, P<0.00001) in tumor patients. The expression of PTN was not associated with tumor size (OR = 1.12, 95% CI: 0.55–2.26, P = 0.76), lymph node metastasis (LNM) (OR = 1.95, 95%CI: 0.62–6.12, P = 0.25), distant metastasis (DM) (OR = 2.78, 95%CI: 0.72–10.74, P = 0.14) and histological grade (OR = 1.95, 95%CI: 0.98–3.87, P = 0.06). Conclusion The high expression of PTN is significantly relevant to the advanced TNM stage and poor OS in tumor patients. PTN can serve as a promising biomarker to predict unfavorable survival outcomes, and it may be a potential target for tumor treatment.
Collapse
Affiliation(s)
- Jiupeng Zhou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
- * E-mail:
| | - Yuanli Yang
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| | | | - Heng Liu
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| | - Quanli Dou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
6
|
Zhang L, Liu X, Liu J, Zhou Z, Song Y, Cao B, An X. miR-182 aids in receptive endometrium development in dairy goats by down-regulating PTN expression. PLoS One 2017; 12:e0179783. [PMID: 28678802 PMCID: PMC5497977 DOI: 10.1371/journal.pone.0179783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/04/2017] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has shown that miRNAs play important roles in endometrium development during the menstrual cycle in humans and many other animals. Our previous data indicated that miR-182 levels increase 15.55-fold and pleiotrophin (PTN) levels decrease 20.97-fold in the receptive endometrium (RE, D15) compared with the pre-receptive endometrium (PE, D5) in dairy goats. The present study shows that miR-182 is widely expressed in different tissues of dairy goats and that its expression levels are regulated by E2 and P4 in endometrial epithelium cells (EECs). We confirmed that PTN is a target of miR-182 and that miR-182 regulates the protein levels of AKT, Bcl-2, FAS, MAPK, Caspase-3 and SP1 in EECs. Furthermore, miR-182 up-regulates or maintains the expression levels of osteopontin (OPN), cyclooxygenase-2 (COX-2) and prolactin receptor (PRLR) in EECs, suggesting that miR-182 is an important regulatory factor in the construction of endometrial receptivity in dairy goats. In conclusion, miR-182 participates in the development of endometrial receptivity by down-regulating PTN and affecting the expression of select apoptosis-related genes and increasing or maintaining the expression levels of OPN, COX-2 and PRLR in the EECs of dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Junze Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Rauvala H, Paveliev M, Kuja-Panula J, Kulesskaya N. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regen Res 2017; 12:687-691. [PMID: 28616017 PMCID: PMC5461598 DOI: 10.4103/1673-5374.206630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans (CSPGs) inhibit plasticity and regeneration in the adult central nervous system (CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule (HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate (CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma (PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord.
Collapse
Affiliation(s)
- Heikki Rauvala
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | | | - Natalia Kulesskaya
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Papadimitriou E, Pantazaka E, Castana P, Tsalios T, Polyzos A, Beis D. Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:252-265. [DOI: 10.1016/j.bbcan.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
|
9
|
Yu S, Yang F, Shen WH. Genome maintenance in the context of 4D chromatin condensation. Cell Mol Life Sci 2016; 73:3137-50. [PMID: 27098512 PMCID: PMC4956502 DOI: 10.1007/s00018-016-2221-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission.
Collapse
Affiliation(s)
- Sonia Yu
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Fan Yang
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Martin NE, Gerke T, Sinnott JA, Stack EC, Andrén O, Andersson SO, Johansson JE, Fiorentino M, Finn S, Fedele G, Stampfer M, Kantoff PW, Mucci LA, Loda M. Measuring PI3K Activation: Clinicopathologic, Immunohistochemical, and RNA Expression Analysis in Prostate Cancer. Mol Cancer Res 2015; 13:1431-40. [PMID: 26124442 DOI: 10.1158/1541-7786.mcr-14-0569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/12/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Assessing the extent of PI3K pathway activity in cancer is vital to predicting sensitivity to PI3K-targeting drugs, but the best biomarker of PI3K pathway activity in archival tumor specimens is unclear. Here, PI3K pathway activation was assessed, in clinical tissue from 1,021 men with prostate cancers, using multiple pathway nodes that include PTEN, phosphorylated AKT (pAKT), phosphorylated ribosomal protein S6 (pS6), and stathmin. Based on these markers, a 9-point score of PI3K activation was created using the combined intensity of the 4-markers and analyzed its association with proliferation (Ki67), apoptosis (TUNEL), and androgen receptor (AR) status, as well as pathologic features and cancer-specific outcomes. In addition, the PI3K activation score was compared with mRNA expression profiling data for a large subset of men. Interestingly, those tumors with higher PI3K activation scores also had higher Gleason grade (P = 0.006), increased AR (r = 0.37; P < 0.001) and Ki67 (r = 0.24; P < 0.001), and decreased TUNEL (r = -0.12; P = 0.003). Although the PI3K activation score was not associated with an increased risk of lethal outcome, a significant interaction between lethal outcome, Gleason and high PI3K score (P = 0.03) was observed. Finally, enrichment of PI3K-specific pathways was found in the mRNA expression patterns differentiating the low and high PI3K activation scores; thus, the 4-marker IHC score of PI3K pathway activity correlates with features of PI3K activation. IMPLICATIONS The relationship of this activation score to sensitivity to anti-PI3K agents remains to be tested but may provide more precision guidance when selecting patients for these therapies.
Collapse
Affiliation(s)
- Neil E Martin
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Travis Gerke
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Jennifer A Sinnott
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward C Stack
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ove Andrén
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Swen-Olof Andersson
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Jan-Erik Johansson
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Michelangelo Fiorentino
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Pathology Unit, Addarii Institute, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Stephen Finn
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Trinity College, Dublin, Ireland
| | - Giuseppe Fedele
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Meir Stampfer
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Massimo Loda
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Wang K, Wang B, Xing AY, Xu KS, Li GX, Yu ZH. Prognostic significance of SERPINE2 in gastric cancer and its biological function in SGC7901 cells. J Cancer Res Clin Oncol 2015; 141:805-12. [PMID: 25359682 DOI: 10.1007/s00432-014-1858-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/16/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE Altered expression of serine protease inhibitor peptidase inhibitor clade E member 2 (SERPINE2) associates with human cancer development and progression; thus, this study investigated SERPINE2 expression in gastric cancer tissues for association with clinicopathological and survival data from the patients and then investigated the role of SERPINE2 in gastric cancer cells in vitro. METHODS The levels of SERPINE2 mRNA in 243 gastric cancer tissues and paired non-cancerous mucosa were determined using quantitative PCR. Inhibition of SERPINE2 expression by small interfering RNA (siRNA) was detected by Western blotting. tetrazolium, soft agar, and transwell assays were performed to evaluate the proliferation, anchorage-independent growth, and motility of gastric cancer SGC7901 cells transfected with SERPINE2 siRNA. RESULTS Compared with the normal mucosa, SERPINE2 mRNA was increased in gastric cancer tissues and cells. Analysis of the 243 matched specimens showed that high SERPINE2 levels were associated with lymph node metastasis, distant metastasis, and clinical stage. Patients with high SERPINE2 mRNA levels had poorer survival compared with patients with low SERPINE2 mRNA levels. In vitro, SERPINE2 inhibited anchorage-independent growth, migration, and invasion of SGC7901 cells, but not proliferation. CONCLUSIONS Our findings indicate that upregulated SERPINE2 may contribute to the aggressive phenotype of gastric cancer and suggest that SERPINE2 can be used as a novel prognostic factor and anticancer target in patients with gastric cancer.
Collapse
Affiliation(s)
- Kun Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, 16766 Jing Shi Road, Jinan, 250014, China
| | | | | | | | | | | |
Collapse
|
12
|
PTEN interacts with histone H1 and controls chromatin condensation. Cell Rep 2014; 8:2003-2014. [PMID: 25199838 DOI: 10.1016/j.celrep.2014.08.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/05/2014] [Accepted: 08/05/2014] [Indexed: 01/16/2023] Open
Abstract
Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development, and metabolism. Here, we report on the interplay of PTEN, histone H1, and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may reduce chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling.
Collapse
|
13
|
Lau FH, Xia F, Kaplan A, Cerrato F, Greene AK, Taghinia A, Cowan CA, Labow BI. Expression analysis of macrodactyly identifies pleiotrophin upregulation. PLoS One 2012; 7:e40423. [PMID: 22848377 PMCID: PMC3407187 DOI: 10.1371/journal.pone.0040423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/05/2012] [Indexed: 11/18/2022] Open
Abstract
Macrodactyly is a rare family of congenital disorders characterized by the diffuse enlargement of 1 or more digits. Multiple tissue types within the affected digits are involved, but skeletal patterning and gross morphological features are preserved. Not all tissues are equally involved and there is marked heterogeneity with respect to clinical phenotype. The molecular mechanisms responsible for these growth disturbances offer unique insight into normal limb growth and development, in general. To date, no genes or loci have been implicated in the development of macrodactyly. In this study, we performed the first transcriptional profiling of macrodactyly tissue. We found that pleiotrophin (PTN) was significantly overexpressed across all our macrodactyly samples. The mitogenic functions of PTN correlate closely with the clinical characteristics of macrodactyly. PTN thus represents a promising target for further investigation into the etiology of overgrowth phenotypes.
Collapse
Affiliation(s)
- Frank H. Lau
- Center for Regenerative Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Plastic and Oral Surgery, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Fang Xia
- Center for Regenerative Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Adam Kaplan
- Center for Regenerative Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Felecia Cerrato
- Department of Plastic and Oral Surgery, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Arin K. Greene
- Department of Plastic and Oral Surgery, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Amir Taghinia
- Department of Plastic and Oral Surgery, Children’s Hospital Boston, Boston, Massachusetts, United States of America
| | - Chad A. Cowan
- Center for Regenerative Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian I. Labow
- Department of Plastic and Oral Surgery, Children’s Hospital Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Pleiotrophin is a potential colorectal cancer prognostic factor that promotes VEGF expression and induces angiogenesis in colorectal cancer. Int J Colorectal Dis 2012; 27:287-98. [PMID: 22065111 DOI: 10.1007/s00384-011-1344-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE Pleiotrophin (PTN) is an important developmental secretory cytokine expressed in many types of cancer and involved in angiogenesis and tumor growth; however, the significance of PTN expression in colorectal cancer (CRC) has not been established. METHODS Immunohistochemistry, western blot, and enzyme-linked immunosorbent assay were used to detect PTN expression in CRC patients. The relationship between PTN expression and clinicopathological characteristics and survival time was statistically analyzed, and the relationship between PTN and vascular endothelial growth factor (VEGF) in tumor angiogenesis was further analyzed. RESULTS Of CRC tissues, 74.70% (62/83) stained positive, with a strong positive ratio of 60.24% (50/83). The expression of PTN in CRC tissues was much higher than in normal colorectal tissues. PTN serum levels in CRC patients (mean = 254.59 ± 261.76 pg/ml) were significantly higher than those of normal volunteers (mean = 115.23 ± 79.53 pg/ml; p < 0.001). PTN expression was related to CRC differentiation and TNM staging. High level of PTN is a predictor of a poor prognosis and high expression of PTN is accompanied by high expression of VEGF in CRC patients. Investigation of the relationship between PTN and VEGF revealed that PTN, through the PTN/RPTPβ/ζ signaling pathway, increased tyrosine phosphorylation of β-catenin, leading to an increase in VEGF. CONCLUSIONS Our study identifies PTN as an essential growth factor for CRC. PTN promotes VEGF expression and cooperates with VEGF in promoting CRC angiogenesis. PTN could serve as a prognostic factor for this cancer. Considering that PTN shows very limited expression in normal tissue, it may represent an attractive new target for CRC therapy.
Collapse
|
15
|
Yu C, Wang P, Li S, Wang X, Yu Z, Wang Z. The Protective Effect of Cu/Zn-SOD Against Oxidative Stress After PTEN Deletion. Cancer Invest 2011; 29:253-6. [DOI: 10.3109/07357907.2011.554478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Bergeron S, Lemieux E, Durand V, Cagnol S, Carrier JC, Lussier JG, Boucher MJ, Rivard N. The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis. Mol Cancer 2010; 9:271. [PMID: 20942929 PMCID: PMC2967542 DOI: 10.1186/1476-4598-9-271] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 10/13/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Among the most harmful of all genetic abnormalities that appear in colorectal cancer (CRC) development are mutations of KRAS and its downstream effector BRAF as they result in abnormal extracellular signal-related kinase (ERK) signaling. In a previous report, we had shown that expression of a constitutive active mutant of MEK1 (caMEK) in normal rat intestinal epithelial cells (IECs) induced morphological transformation associated with epithelial to mesenchymal transition, growth in soft agar, invasion and metastases in nude mice. Results from microarrays comparing control to caMEK-expressing IECs identified the gene encoding for serpinE2, a serine protease inhibitor, as a potential target of activated MEK1. RESULTS 1- RT-PCR and western blot analyses confirmed the strong up-regulation of serpinE2 expression and secretion by IECs expressing oncogenic MEK, Ras or BRAF. 2- Interestingly, serpinE2 mRNA and protein were also markedly enhanced in human CRC cells exhibiting mutation in KRAS and BRAF. 3- RNAi directed against serpinE2 in caMEK-transformed rat IECs or in human CRC cell lines HCT116 and LoVo markedly decreased foci formation, anchorage-independent growth in soft agarose, cell migration and tumor formation in nude mice. 4- Treatment of CRC cell lines with U0126 markedly reduced serpinE2 mRNA levels, indicating that expression of serpinE2 is likely dependent of ERK activity. 5- Finally, Q-PCR analyses demonstrated that mRNA levels of serpinE2 were markedly increased in human adenomas in comparison to healthy adjacent tissues and in colorectal tumors, regardless of tumor stage and grade. CONCLUSIONS Our data indicate that serpinE2 is up-regulated by oncogenic activation of Ras, BRAF and MEK1 and contributes to pro-neoplastic actions of ERK signaling in intestinal epithelial cells. Hence, serpinE2 may be a potential therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Sébastien Bergeron
- Department of Anatomy and Cellular Biology, CIHR Team on Digestive Epithelium, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rahal OM, Simmen RCM. PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis 2010; 31:1491-500. [PMID: 20554748 DOI: 10.1093/carcin/bgq123] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressors phosphatase and tensin homologue deleted on chromosome ten (PTEN) and p53 are closely related to the pathogenesis of breast cancer, yet pathway-specific mechanisms underlying their participation in mediating the protective actions of dietary bioactive components on breast cancer risk are poorly understood. We recently showed that dietary exposure to the soy isoflavone genistein (GEN) induced PTEN expression in mammary epithelial cells in vivo and in vitro, consistent with the breast cancer preventive effects of soy food consumption. Here, we evaluated PTEN and p53 functional interactions in the nuclear compartment of mammary epithelial cells as a mechanism for mammary tumor protection by GEN. Using the non-tumorigenic human mammary epithelial cells MCF10-A, we demonstrate that GEN increased PTEN expression and nuclear localization. We show that increased nuclear PTEN levels initiated an autoregulatory loop involving PTEN-dependent increases in p53 nuclear localization, PTEN-p53 physical association, PTEN-p53 co-recruitment to the PTEN promoter region and p53 transactivation of PTEN promoter activity. The PTEN-p53 cross talk induced by GEN resulted in increased cell cycle arrest; decreased pro-proliferative cyclin D1 and pleiotrophin gene expression and the early formation of mammary acini, indicative of GEN promotion of lobuloalveolar differentiation. Our findings provide support to GEN-induced PTEN as both a target and regulator of p53 action and offer a mechanistic basis for PTEN pathway activation to underlie the antitumor properties of dietary factors, with important implications for reducing breast cancer risk.
Collapse
Affiliation(s)
- Omar M Rahal
- University of Arkansas for Medical Sciences, USA
| | | |
Collapse
|
18
|
Abstract
A screen for increased longevity in Caenorhabditis elegans has identified a transcription factor that programs cells for resistance to oxidative stress, DNA repair and cell cycle control. The mammalian orthologs of this factor are referred to as 'Foxo' for 'Forkhead box', with the second 'o' in the name denoting a subfamily of four members related by sequence. This family of factors is regulated by growth factors, oxidative stress or nutrient deprivation. Thus, it might readily control the inflammatory conflagration associated with infection-driven lymphocyte proliferation. Surprisingly, the first insights into Foxo-mediated immune regulation have instead revealed direct control of highly specialized genes of the adaptive immune system.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Section of Molecular Biology and Department of Cellular and Molecular Medicine, The University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
19
|
Polytarchou C, Hatziapostolou M, Poimenidi E, Mikelis C, Papadopoulou A, Parthymou A, Papadimitriou E. Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase β/ζ. Int J Cancer 2009; 124:1785-93. [DOI: 10.1002/ijc.24084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N, Papadimitriou E. Integrin alpha(v)beta(3) is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase beta/zeta. FASEB J 2009; 23:1459-69. [PMID: 19141530 DOI: 10.1096/fj.08-117564] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that the angiogenic growth factor pleiotrophin (PTN) induces migration of endothelial cells through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). In this study, we show that a monoclonal antibody against alpha(nu)beta(3) but not alpha(5)beta(1) integrin abolished PTN-induced human endothelial cell migration in a concentration-dependent manner. Integrin alpha(nu)beta(3) was found to directly interact with PTN in an RGD-independent manner, whereas a synthetic peptide corresponding to the specificity loop of the beta(3) integrin extracellular domain ((177)CYDMKTTC(184)) inhibited PTN-alpha(nu)beta(3) interaction and totally abolished PTN-induced endothelial cell migration. Interestingly, alpha(nu)beta(3) was also found to directly interact with RPTPbeta/zeta, and PTN-induced Y773 phosphorylation of beta(3) integrin was dependent on both RPTPbeta/zeta and the downstream c-src kinase activation. Midkine was found to interact with RPTPbeta/zeta, but not with alpha(nu)beta(3), and caused a small but statistically significant decrease in cell migration. In the same line, PTN decreased migration of different glioma cell lines that express RPTPbeta/zeta but do not express alpha(nu)beta(3), while it stimulated migration of U87MG cells that express alpha(nu)beta(3) on their cell membrane. Overexpression or down-regulation of beta(3) stimulated or abolished, respectively, the effect of PTN on cell migration. Collectively, these data suggest that alpha(nu)beta(3) is a key molecule that determines the stimulatory or inhibitory effect of PTN on cell migration.
Collapse
Affiliation(s)
- Constantinos Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR 26504, Greece
| | | | | | | | | |
Collapse
|
21
|
Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 2008; 113:1992-2002. [PMID: 19060246 DOI: 10.1182/blood-2008-02-133751] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Enhanced angiogenesis is a hallmark of cancer. Pleiotrophin (PTN) is an angiogenic factor that is produced by many different human cancers and stimulates tumor blood vessel formation when it is expressed in malignant cancer cells. Recent studies show that monocytes may give rise to vascular endothelium. In these studies, we show that PTN combined with macrophage colony-stimulating factor (M-CSF) induces expression of vascular endothelial cell (VEC) genes and proteins in human monocyte cell lines and monocytes from human peripheral blood (PB). Monocytes induce VEC gene expression and develop tube-like structures when they are exposed to serum or cultured with bone marrow (BM) from patients with multiple myeloma (MM) that express PTN, effects specifically blocked with antiPTN antibodies. When coinjected with human MM cells into severe combined immunodeficient (SCID) mice, green fluorescent protein (GFP)-marked human monocytes were found incorporated into tumor blood vessels and expressed human VEC protein markers and genes that were blocked by anti-PTN antibody. Our results suggest that vasculogenesis in human MM may develop from tumoral production of PTN, which orchestrates the transdifferentiation of monocytes into VECs.
Collapse
|
22
|
Seandel M, Falciatori I, Shmelkov SV, Kim J, James D, Rafii S. Niche players: spermatogonial progenitors marked by GPR125. Cell Cycle 2008; 7:135-40. [PMID: 18256534 PMCID: PMC2951313 DOI: 10.4161/cc.7.2.5248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines.
Collapse
Affiliation(s)
- Marco Seandel
- Ansary Center for Stem Cell Therapeutics, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York USA
- Division of Medical Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York USA
| | - Ilaria Falciatori
- Ansary Center for Stem Cell Therapeutics, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York USA
| | - Sergey V. Shmelkov
- Ansary Center for Stem Cell Therapeutics, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York USA
| | - Jiyeon Kim
- Ansary Center for Stem Cell Therapeutics, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York USA
| | - Daylon James
- Ansary Center for Stem Cell Therapeutics, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York USA
| | - Shahin Rafii
- Ansary Center for Stem Cell Therapeutics, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, New York USA
| |
Collapse
|
23
|
Davé V, Wert SE, Tanner T, Thitoff AR, Loudy DE, Whitsett JA. Conditional deletion of Pten causes bronchiolar hyperplasia. Am J Respir Cell Mol Biol 2007; 38:337-45. [PMID: 17921358 DOI: 10.1165/rcmb.2007-0182oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.
Collapse
Affiliation(s)
- Vrushank Davé
- Division of Pulmonary Biology, 4403, Cincinnati Children's Hospital Research Foundation, University of Cincinnati Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, Golub T, Mellinghoff IK, Davis RJ, Wu H, Sawyers CL. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 2007; 11:555-69. [PMID: 17560336 DOI: 10.1016/j.ccr.2007.04.021] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 02/14/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.
Collapse
Affiliation(s)
- Igor Vivanco
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peria FM, Neder L, Marie SKN, Rosemberg S, Oba-Shinjo SM, Colli BO, Gabbai AA, Malheiros SMF, Zago MA, Panepucci RA, Moreira-Filho CA, Okamoto OK, Carlotti CG. Pleiotrophin expression in astrocytic and oligodendroglial tumors and it’s correlation with histological diagnosis, microvascular density, cellular proliferation and overall survival. J Neurooncol 2007; 84:255-61. [PMID: 17443289 DOI: 10.1007/s11060-007-9379-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Pleiotrophin (PTN) is a secreted cytokine with several properties related with tumor development, including differentiation, angiogenesis, invasion, apoptosis and metastasis. There is evidence that PTN has also a relevant role in primary brain neoplasms and its inactivation could be important to treatment response. Astrocytic and oligodendroglial tumors are the most frequent primary brain neoplasms. Astrocytic tumors are classified as pilocytic astrocytoma (PA), diffuse astrocytoma (DA), anaplastic astrocytoma (AA) and glioblastoma (GBM). Oligodendroglial tumors are classified as oligodendroglioma (O) and anaplastic oligodendroglioma (AO). The aim of the present study was to compare PTN expression, in astrocytomas and oligodendrogliomas and its association with the histological diagnosis, microvascular density, proliferate potential and clinical outcome. METHODS Seventy-eight central nervous system tumors were analyzed. The histological diagnosis in accordance with WHO classification was: 13PA, 18DA, 8AA, 15GBM, 16O and 8AO. Immunohistochemistry was realized with these specific antibodies: pleiotrophin, CD31 to microvascular density and Ki-67 to cell proliferation. RESULTS PTN expression was significantly higher in GBM and AA when compared to PA and higher in GBM compared to DA. PTN expression did not differ between O and AO. Proliferate index and microvascular density were evaluated only in high grade tumors (AA, GBM and AO) divided in three groups according to PTN expression (low, intermediate and high). These results showed no statistical difference between PTN expression and index of cellular proliferation and neither to PTN expression and microvascular density. Overall survival (OS) analysis (months) showed similar results in high grade gliomas with different levels of PTN expression. CONCLUSIONS Our results suggest that PTN expression is associated with histopathological grade of astrocytomas. Proliferation rate, microvascular density and overall survival do not seem to be associated with PTN expression.
Collapse
Affiliation(s)
- Fernanda M Peria
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto of University of São Paulo (USP), Hospital das Clínicas da FMRP-USP, Campus Universitário da USP, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen H, Gordon MS, Campbell RA, Li M, Wang CS, Lee HJ, Sanchez E, Manyak SJ, Gui D, Shalitin D, Said J, Chang Y, Deuel TF, Baritaki S, Bonavida B, Berenson JR. Pleiotrophin is highly expressed by myeloma cells and promotes myeloma tumor growth. Blood 2007; 110:287-95. [PMID: 17369488 DOI: 10.1182/blood-2006-08-042374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pleiotrophin (PTN) is an important developmental cytokine that is highly expressed during embryogenesis but shows very limited expression in adult tissues, where it is largely restricted to the brain. High PTN serum levels are associated with a variety of solid tumors. We recently showed that patients with multiple myeloma (MM) also have elevated serum levels of this protein and the amount of PTN correlated with the patients' disease status and response to treatment. In this study, we demonstrate that MM cell lines and the malignant cells from MM patients' bone marrow produced PTN and secreted PTN protein into the supernatants during short-term culture. Moreover, Ptn gene expression correlated with the patients' disease status. Inhibition of PTN with a polyclonal anti-PTN antibody reduced growth and enhanced apoptosis of MM cell lines and freshly isolated bone marrow tumor cells from MM patients in vitro. Importantly, this antibody also markedly suppressed the growth of MM in vivo using a severe combined immunodeficiency (SCID)-hu murine model. This represents the first study showing the importance of PTN in the growth of any hematological disorder. Because the expression of this protein is very limited in normal adult tissues, PTN may represent a new target for the treatment of MM.
Collapse
Affiliation(s)
- Haiming Chen
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA 90069, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Robles AI, Varticovski L. Harnessing genetically engineered mouse models for preclinical testing. Chem Biol Interact 2007; 171:159-64. [PMID: 17362899 DOI: 10.1016/j.cbi.2007.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 11/21/2006] [Accepted: 01/28/2007] [Indexed: 11/30/2022]
Abstract
Recent studies cast doubt on the value of traditionally used models as tools for testing therapies for human cancer. Although the standard practice of xenografting tumors into immunocompromised mice generates reproducible tumors, drug testing in these models has low predictive power when compared to the clinical responses in Phase II trials. The use of tumor-bearing genetically engineered mouse models holds promise for improving preclinical testing. These models recapitulate specific molecular pathways in tumor initiation or progression and provide a biological system in which to study the disease process for assessing efficacy of new therapies and proof-of-principle for testing molecularly targeted drugs. In this review, we discuss the advantages and limitations of genetically engineered mice and plausible solutions for adapting these valuable tumors for wider use in preclinical testing by transplantation into naïve recipients. We also provide examples of comparative molecular analysis of mammary tumors from MMTV-Polyoma Middle-T antigen and MMTV-wnt1 models as tools for finding clinical correlates, validating existing models and guiding the development of new genetically engineered mouse models for cancer.
Collapse
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, 37 Convent Drive, Room 3060, Bethesda, MD 20892, United States
| | | |
Collapse
|
28
|
Gu D, Yu B, Zhao C, Ye W, Lv Q, Hua Z, Ma J, Zhang Y. The effect of pleiotrophin signaling on adipogenesis. FEBS Lett 2007; 581:382-8. [PMID: 17239862 DOI: 10.1016/j.febslet.2006.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/15/2006] [Accepted: 12/19/2006] [Indexed: 11/30/2022]
Abstract
Pleiotrophin (PTN) plays diverse roles in cell growth and differentiation. In this investigation, we demonstrate that PTN plays a negative role in adipogensis and that glycogen synthase kinase 3beta (GSK-3beta) and beta-catenin are involved in the regulation of PTN-mediated preadipocyte differentiation. Knocking down the expression of PTN using siRNA resulted in an increase in phospho-GSK-3beta expression, and the accumulation of nuclear beta-catenin, which are critical downstream signaling proteins for both the PTN and Wnt signaling pathways. Our investigation suggests that there is a PTN/PI3K/AKT/GSK-3beta/beta-catenin signaling pathway, which cross-talks with the Wnt/Fz/GSK-3beta/beta-catenin pathway and negatively regulates adipogenesis.
Collapse
Affiliation(s)
- Dayong Gu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Room 407, Building L, Tsinghua Campus, University Town, Shenzhen, Guangdong 518055, PR China
| | | | | | | | | | | | | | | |
Collapse
|