1
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
3
|
Kato K, Kawaguchi A, Nagata K. Template activating factor-I epigenetically regulates the TERT transcription in human cancer cells. Sci Rep 2021; 11:17726. [PMID: 34489496 PMCID: PMC8421516 DOI: 10.1038/s41598-021-97009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Telomere, the terminus of linear chromosome in eukaryotes, is composed of specific repeat DNA which is mainly synthesized by a protein complex called telomerase. The maintenance of telomere DNA is important for unlimited proliferative capacity of cancer cells. The telomerase activity is controlled by the expression level of telomerase reverse transcriptase (TERT), a catalytic unit of telomerase, in some species including human. Therefore, to reveal the regulatory mechanisms of the transcription of TERT gene is important for understanding the tumor development. We found that template activating factor-I (TAF-I), a multifunctional nuclear protein, is involved in the transcriptional activation of TERT for the maintenance of telomere DNA in HeLa cells. TAF-I maintains the histone H3 modifications involved in transcriptional activation and hypomethylated cytosines in CpG dinucleotides around the transcription start site (TSS) in the TERT gene locus. Collectively, TAF-I is involved in the maintenance of telomere DNA through the regulation of TERT transcription, then consequently the occurrence and/or recurrence of cancer cells.
Collapse
Affiliation(s)
- Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Carlone DL, Riba-Wolman RD, Deary LT, Tovaglieri A, Jiang L, Ambruzs DM, Mead BE, Shah MS, Lengner CJ, Jaenisch R, Breault DT. Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells. Stem Cells 2021; 39:296-305. [PMID: 33438789 PMCID: PMC7986156 DOI: 10.1002/stem.3318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self‐renewing tissues. Here we investigated the role of mTert‐expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert‐GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert‐expressing cells are a distinct SSC population with enriched colony‐forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage‐tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone‐forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.
Collapse
Affiliation(s)
- Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Rebecca D Riba-Wolman
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luke T Deary
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lijie Jiang
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dana M Ambruzs
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Benjamin E Mead
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Ye J, Wang Z, Chen X, Jiang X, Dong Z, Hu S, Li W, Liu Y, Liao B, Han W, Shen J, Xiao M. YTHDF1-enhanced iron metabolism depends on TFRC m 6A methylation. Am J Cancer Res 2020; 10:12072-12089. [PMID: 33204330 PMCID: PMC7667694 DOI: 10.7150/thno.51231] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Among head and neck squamous cell carcinomas (HNSCCs), hypopharyngeal squamous cell carcinoma (HPSCC) has the worst prognosis. Iron metabolism, which plays a crucial role in tumor progression, is mainly regulated by alterations to genes and post-transcriptional processes. The recent discovery of the N6-methyladenosine (m6A) modification has expanded the realm of previously undiscovered post-transcriptional gene regulation mechanisms in eukaryotes. Many studies have demonstrated that m6A methylation represents a distinct layer of epigenetic deregulation in carcinogenesis and tumor proliferation. However, the status of m6A modification and iron metabolism in HPSCC remains unknown. Methods: Bioinformatics analysis, sample analysis, and transcriptome sequencing were performed to evaluate the correlation between m6A modification and iron metabolism. Iron metabolic and cell biological analyses were conducted to evaluate the effect of the m6A reader YTHDF1 on HPSCC proliferation and iron metabolism. Transcriptome-wide m6A-seq and RIP-seq data were mapped to explore the molecular mechanism of YTHDF1 function in HPSCC. Results: YTHDF1 was found to be closely associated with ferritin levels and intratumoral iron concentrations in HPSCC patients at Sir Run Run Shaw Hospital. YTHDF1 induced-HPSCC tumorigenesis depends on iron metabolism in vivo in vitro. Mechanistically, YTHDF1 methyltransferase domain interacts with the 3'UTR and 5'UTR of TRFC mRNA, then further positively regulates translation of m6A-modified TFRC mRNA. Gain-of-function and loss-of-function analyses validated the finding showing that TFRC is a crucial target gene for YTHDF1-mediated increases in iron metabolism. Conclusion: YTHDF1 enhanced TFRC expression in HPSCC through an m6A-dependent mechanism. From a therapeutic perspective, targeting YTHDF1 and TFRC-mediated iron metabolism may be a promising strategy for HPSCC.
Collapse
|
6
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
7
|
Brittain AL, Basu R, Qian Y, Kopchick JJ. Growth Hormone and the Epithelial-to-Mesenchymal Transition. J Clin Endocrinol Metab 2017; 102:3662-3673. [PMID: 28938477 DOI: 10.1210/jc.2017-01000] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Previous studies have implicated growth hormone (GH) in the progression of several cancers, including breast, colorectal, and pancreatic. A mechanism by which GH may play this role in cancer is through the induction of the epithelial-to-mesenchymal transition (EMT). During the EMT process, epithelial cells lose their defining phenotypes, causing loss of cellular adhesion and increased cell migration. This review aims to carefully summarize the previous two decades of research that points to GH as an initiator of EMT, in both cancerous and noncancerous tissues. EVIDENCE ACQUISITION Sources were collected using PubMed and Google Scholar search engines by using specific GH- and/or EMT-related terms. Identified manuscripts were selected for further analysis based on presentation of GH-induced molecular markers of the EMT process in vivo or in vitro. EVIDENCE SYNTHESIS Cellular mechanisms involved in GH-induced EMT are the focus of this review, both in cancerous and noncancerous epithelial cells. CONCLUSIONS Our findings suggest that a myriad of molecular mechanisms are induced by GH that cause EMT and may point to potential therapeutic use of GH antagonists or any downregulator of GH action in EMT-related disease.
Collapse
Affiliation(s)
- Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701
| |
Collapse
|
8
|
Pu M, Li C, Qi X, Chen J, Wang Y, Gao L, Miao L, Ren J. MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth. PLoS Genet 2017; 13:e1006896. [PMID: 28749936 PMCID: PMC5549757 DOI: 10.1371/journal.pgen.1006896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/08/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, which direct post-transcriptional gene silencing (PTGS) and function in a vast range of biological events including cancer development. Most miRNAs pair to the target sites through seed region near the 5’ end, leading to mRNA cleavage and/or translation repression. Here, we demonstrated a miRNA-induced dual regulation of heme oxygenase-1 (HO-1) via seed region and non-seed region, consequently inhibited tumor growth of NSCLC. We identified miR-1254 as a negative regulator inhibiting HO-1 translation by directly targeting HO-1 3’UTR via its seed region, and suppressing HO-1 transcription via non-seed region-dependent inhibition of transcriptional factor AP-2 alpha (TFAP2A), a transcriptional activator of HO-1. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Consistently with the in vitro studies, mouse xenograft studies validated that miR-1254 suppressed NSCLC tumor growth in vivo. Moreover, we found that HO-1 expression was inversely correlated with miR-1254 level in human NSCLC tumor samples and cell lines. Overall, these findings identify the dual inhibition of HO-1 by miR-1254 as a novel functional mechanism of miRNA, which results in a more effective inhibition of oncogenic mRNA, and leads to a tumor suppressive effect. It is generally accepted that miRNAs bind to 3`UTR of target mRNAs and direct post-transcriptional gene silencing (PTGS) via its seed sequence. Here we report a new dual regulatory mechanism of miRNA. We described that miR-1254 repressed HO-1 at post-transcriptional level by directly targeting HO-1 3’UTR via its seed sequence and also inhibited HO-1 transcription by suppressing the transcriptional factor AP-2 alpha (TFAP2A) via its non-seed sequence. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Moreover, in vivo mouse xenograft studies also supported the inhibitory effect of miR-1254 on NSCLC growth. These findings identify the dual regulation of miR-1254 on HO-1 as a novel functional mechanism of miRNA, which results in a more effective inhibition on the oncogenic mRNA, and leads to a suppressive effect on NSCLC growth, thus significantly advance our understanding of miRNA-directed gene regulation.
Collapse
Affiliation(s)
- Mengfan Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lulu Gao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Miao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LM); (JR)
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LM); (JR)
| |
Collapse
|
9
|
Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of Growth Hormone in Breast Cancer. Endocrinology 2017; 158:1543-1555. [PMID: 28379395 DOI: 10.1210/en.2016-1928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the most common cancers diagnosed in women. Approximately two-thirds of all breast cancers diagnosed are classified as hormone dependent, which indicates that hormones are the key factors that drive the growth of these breast cancers. Ovarian and pituitary hormones play a major role in the growth and development of normal mammary glands and breast cancer. In particular, the effect of the ovarian hormone estrogen has received much attention in regard to breast cancer. Pituitary hormones prolactin and growth hormone have also been associated with breast cancer. Although the role of these pituitary hormones in breast cancers has been studied, it has not been investigated extensively. In this review, we attempt to compile basic information from most of the currently available literature to understand and demonstrate the significance of growth hormone in breast cancer. Based on the available literature, it is clear that growth hormone plays a significant role in the development, progression, and metastasis of breast cancer by influencing tumor angiogenesis, stemness, and chemoresistance.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Sushmita B Nandy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| |
Collapse
|
10
|
Tariq S, Nurulain SM, Rashed H, Lotfy M, Emerald SB, Koturan S, Tekes K, Adeghate E. Diabetes-induced changes in the morphology and nociceptinergic innervation of the rat uterus. J Mol Histol 2016; 47:21-33. [PMID: 26589323 DOI: 10.1007/s10735-015-9643-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
The prevalence of diabetes mellitus (DM) is about 6% across the globe. This prevalence has been reported to increase in the near future. This means that the number of women with DM who would like to get pregnant and have children will also increase. The present study is aimed at investigating the morphological changes observed in the uterus after the onset of DM. The study also examined the pattern of distribution of nociceptin (NC), a neuropeptide involved in the regulation of pain, a major physiological factor during parturition. The study shows a severe atrophy of uteri as early as 15 days post DM and continued until the termination of the eight-week study. This atrophy was confirmed by light microscopy. Electron microscopy study showed atrophy of the columnar cells of the endometrium, reduced myofibril number and destruction of smooth muscle cells in the myometrium of diabetic rats compared to control. Immunofluorescence and immunoelectron microscopy studies clearly demonstrated the presence of NC in the endometrium, myometrium and on the myofibrils of the smooth muscles of both control and diabetic rat uteri. In addition, NC-positive neurons and varicose fibres were observed in the myometrium of both normal and diabetic rats. However, the expression of NC decreased after the onset of DM. Morphometric analysis showed that the number of NC-labeled cells was significantly (p < 0.05) lower in diabetic rat uteri compared to those of control. In conclusion, DM-induced uterine atrophy is associated with a decrease in the expression of NC in cells, neurons and myofibrils of the rat uterus.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hameed Rashed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Starling Bright Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Surya Koturan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
11
|
Zhang W, Qian P, Zhang X, Zhang M, Wang H, Wu M, Kong X, Tan S, Ding K, Perry JK, Wu Z, Cao Y, Lobie PE, Zhu T. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer. J Biol Chem 2015; 290:13812-29. [PMID: 25873390 PMCID: PMC4447958 DOI: 10.1074/jbc.m115.653261] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/11/2015] [Indexed: 12/28/2022] Open
Abstract
Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.
Collapse
Affiliation(s)
- Weijie Zhang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Pengxu Qian
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiao Zhang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Zhang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Hong Wang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mingming Wu
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangjun Kong
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Sheng Tan
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Keshuo Ding
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jo K Perry
- the Liggins Institute and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1023, New Zealand
| | - Zhengsheng Wu
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Department of Pathology, Anhui Medical University, Hefei, Anhui 230027, China, and
| | - Yuan Cao
- the Department of Pathology, Anhui Medical University, Hefei, Anhui 230027, China, and
| | - Peter E Lobie
- the Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599, Singapore
| | - Tao Zhu
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China,
| |
Collapse
|
12
|
Tariq S, Rashed H, Nurulain SM, Emerald BS, Koturan S, Tekes K, Adeghate E. Distribution of nociceptin in pancreatic islet cells of normal and diabetic rats. Pancreas 2015; 44:602-7. [PMID: 25875798 DOI: 10.1097/mpa.0000000000000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Nociceptin has been reported to play an important role in the regulation of pancreatic exocrine secretion. Most of the studies performed on nociceptin are mainly physiological rather than morphological in nature. The present study investigated the pattern of distribution of nociceptin in the endocrine pancreas of normal and diabetic rats. METHODS Immunohistochemistry, immunofluorescence, Western blot, and double-labeled immunoelectron microscopy were used in this study. Diabetes was induced using streptozotocin (60 mg/kg body weight). RESULTS Nociceptin-immunoreactive cells were observed in the central and peripheral regions of the islets of both normal and diabetic rat pancreas. The number of nociceptin-positive cells was significantly (P < 0.05) lower in the islet of diabetic rats compared with the control. Immunofluorescence study showed that nociceptin colocalizes with insulin in pancreatic β-cells. The degree of colocalization of nociceptin with insulin was severely deranged after the onset of diabetes. Moreover, immunogold particles conjugated with either nociceptin or insulin were observed on the granules of pancreatic β-cell. The number of nociceptin-labeled colloidal gold particles was significantly lower after the onset of diabetes. CONCLUSIONS Nociceptin is present in pancreatic islets cells and colocalizes with insulin. Nociceptin may have a physiological role in the metabolism of insulin.
Collapse
Affiliation(s)
- Saeed Tariq
- From the Departments of *Anatomy, and †Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; and ‡Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang B, Chen J, Cheng ASL, Ko BCB. Depletion of sirtuin 1 (SIRT1) leads to epigenetic modifications of telomerase (TERT) gene in hepatocellular carcinoma cells. PLoS One 2014; 9:e84931. [PMID: 24416313 PMCID: PMC3885646 DOI: 10.1371/journal.pone.0084931] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that is implicated in plethora of biological processes, including metabolism, aging, stress response, and tumorigenesis. Telomerase (TERT) is essential for telomere maintenance. Activation of TERT is considered a crucial step in tumorigenesis, and therefore it is a potential therapeutic target against cancer. We have recently found that SIRT1 expression is highly elevated in hepatocellular carcinoma, and the depletion of SIRT1 leads to substantial reduction in TERT mRNA and protein expression. However, the underlying molecular mechanism of SIRT1-dependent TERT expression remains uncharacterized. Here, we elucidated if SIRT1 regulates TERT expression via transcriptional, epigenetic and post-transcriptional mechanisms. We report that depletion of SIRT1 does not lead to significant change in transcriptional activity and CpG methylation patterns of the TERT promoter, nor does it affect mRNA stability or 3′-UTR regulation of TERT. Intriguingly, depletion of SIRT1 is associated with substantial induction of acetylated histone H3-K9 and reduction of trimethyl H3-K9 at the TERT gene, which are known to be associated with gene activation. Our data revealed that SIRT1 regulates histone acetylation and methylation at the TERT promoter. We postulated that SIRT1 may regulate TERT expression via long-range interaction, or via yet unidentified histone modifications.
Collapse
Affiliation(s)
- Bin Zhang
- Departments of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Alfred S. L. Cheng
- Institute of Digestive diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben C. B. Ko
- The Hong Kong Polytechnic University Shenzhen Research Institute, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- * E-mail:
| |
Collapse
|
14
|
Zekri A, Ghaffari SH, Yousefi M, Ghanizadeh-Vesali S, Mojarrad M, Alimoghaddam K, Ghavamzadeh A. Autocrine human growth hormone increases sensitivity of mammary carcinoma cell to arsenic trioxide-induced apoptosis. Mol Cell Endocrinol 2013; 377:84-92. [PMID: 23851143 DOI: 10.1016/j.mce.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Human growth hormone (hGH) has been increasingly implicated in a variety of cancers; its up-regulation is observed in breast cancer and correlates with a poor outcome. Autocrine hGH promotes mammary carcinoma cell survival, proliferation, immortalization; it confers an invasive phenotype as a result of an epithelial-mesenchymal transition and contributes to chemoresistance and radioresistance. Arsenic trioxide (ATO) is being successfully used as a first and second line therapy for the treatment of patients with acute promyelocytic leukemia. It also inhibits tumor cell growth and induces apoptosis in a broad range of solid tumors. In the present study, we investigated the effect of hGH on sensitivity of a mammary adenocarcinoma cell to ATO, using a stable hGH-transfectant MCF-7 cell line, MCF7-hGH. Our results demonstrated for the first time that the overexpression of hGH increased sensitivity of the breast cancer cell line MCF-7 to ATO through apoptotic and anti-proliferative mechanisms. The effect of ATO on the transcriptional level of genes involved in survival (Bcl-2, Bax and Survivin), self-sufficiency in growth signals (c-Myc, ARF, Cdc25A, p53 and Bax), immortalization (hTERT) and invasion and metastasis (MMP-2 and MMP-9, uPA and uPAR and E-cadherin) was more pronounced in MCF7-hGH compared with its parental MCF-7 line. Our study may highlight the potential application of ATO for the treatment of patients with breast cancer, especially in those who have metastatic and chemoresistant tumor phenotype possibly due to the over expression of hGH.
Collapse
Affiliation(s)
- Ali Zekri
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
15
|
Nakonechnaya AO, Jefferson HS, Chen X, Shewchuk BM. Differential effects of exogenous and autocrine growth hormone on LNCaP prostate cancer cell proliferation and survival. J Cell Biochem 2013; 114:1322-35. [DOI: 10.1002/jcb.24473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
|
16
|
Bougen NM, Steiner M, Pertziger M, Banerjee A, Brunet-Dunand SE, Zhu T, Lobie PE, Perry JK. Autocrine human GH promotes radioresistance in mammary and endometrial carcinoma cells. Endocr Relat Cancer 2012; 19:625-44. [PMID: 22807498 DOI: 10.1530/erc-12-0042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although recent advances in breast cancer treatment regimes have improved patient prognosis, resistance to breast cancer therapies, such as radiotherapy, is still a major clinical challenge. In the current study, we have investigated the role of autocrine human GH (hGH) in resistance to ionising radiation (IR)-based therapy. Cell viability and total cell number assays demonstrated that autocrine hGH promoted cell regrowth in the mammary carcinoma cell lines, MDA-MB-435S and T47D, and the endometrial carcinoma cell line, RL95-2, following treatment with IR. In addition, autocrine hGH enhanced MDA-MB-435S and T47D cell clonogenic survival following radiation exposure. The enhanced clonogenic survival afforded by autocrine hGH was mediated by JAK2 and Src kinases. Investigation into the DNA repair capacity demonstrated that autocrine hGH reduced IR-induced DNA damage in MDA-MB-435S and T47D cells. Functional antagonism of hGH increased RL95-2 sensitivity to IR in cell viability and total cell number assays, reduced clonogenic survival and enhanced the induction of DNA damage. Thus, autocrine hGH reduced sensitivity to treatment with IR in mammary and endometrial carcinoma cell lines in vitro, while functional antagonism of hGH sensitised endometrial carcinoma cells to IR. Functional antagonism of hGH, used in conjunction with radiotherapy, may therefore enhance treatment efficacy and improve the prognosis of patients with breast and endometrial cancer.
Collapse
Affiliation(s)
- Nicola M Bougen
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene. PLoS One 2010; 5:e8569. [PMID: 20052289 PMCID: PMC2797294 DOI: 10.1371/journal.pone.0008569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/11/2009] [Indexed: 01/07/2023] Open
Abstract
Background Increased levels of interferon (IFN)-inducible IFI16 protein (encoded by the IFI16 gene located at 1q22) in human normal prostate epithelial cells and diploid fibroblasts (HDFs) are associated with the onset of cellular senescence. However, the molecular mechanisms by which the IFI16 protein contributes to cellular senescence-associated cell growth arrest remain to be elucidated. Here, we report that increased levels of IFI16 protein in normal HDFs and in HeLa cells negatively regulate the expression of human telomerase reverse transcriptase (hTERT) gene. Methodology/Principal Findings We optimized conditions for real-time PCR, immunoblotting, and telomere repeat amplification protocol (TRAP) assays to detect relatively low levels of hTERT mRNA, protein, and telomerase activity that are found in HDFs. Using the optimized conditions, we report that treatment of HDFs with inhibitors of cell cycle progression, such as aphidicolin or CGK1026, which resulted in reduced steady-state levels of IFI16 mRNA and protein, was associated with increases in hTERT mRNA and protein levels and telomerase activity. In contrast, knockdown of IFI16 expression in cells increased the expression of c-Myc, a positive regulator of hTERT expression. Additionally, over-expression of IFI16 protein in cells inhibited the c-Myc-mediated stimulation of the activity of hTERT-luc-reporter and reduced the steady-state levels of c-Myc and hTERT. Conclusions/Significance These data demonstrated that increased levels of IFI16 protein in HDFs down-regulate the expression of hTERT gene. Our observations will serve basis to understand how increased cellular levels of the IFI16 protein may contribute to certain aging-dependent diseases.
Collapse
|
18
|
Kakiuchi Y, Oyama M, Nakatake M, Okamoto Y, Kai H, Arima H, Murofushi H, Murakami-Murofushi K. Inhibition of Human Tumor Cell Proliferation by the Telomerase Inhibitor TELIN. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Mika Oyama
- Department of Biology, Faculty of Science, Ochanomizu University
| | - Mayuka Nakatake
- Department of Biology, Faculty of Science, Ochanomizu University
| | - Yayoi Okamoto
- Department of Biology, Faculty of Science, Ochanomizu University
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Pharmaceutical Sciences, Kumamoto University
| | - Hidetoshi Arima
- Department of Physical Pharmaceutics, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Hiromu Murofushi
- Department of Physics, Biology and Informatics, Faculty of Science, Yamaguchi University
| | | |
Collapse
|
19
|
Kim WC, Lee CH. The role of mammalian ribonucleases (RNases) in cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:99-113. [PMID: 19463900 DOI: 10.1016/j.bbcan.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Ribonucleases (RNases) are a group of enzymes that cleave RNAs at phosphodiester bonds resulting in remarkably diverse biological consequences. This review focuses on mammalian RNases that are capable of, or potentially capable of, cleaving messenger RNA (mRNA) as well as other RNAs in cells and play roles in the development of human cancers. The aims of this review are to provide an overview of the roles of currently known mammalian RNases, and the evidence that associate them as regulators of tumor development. The roles of these RNases as oncoproteins and/or tumor suppressors in influencing cell growth, apoptosis, angiogenesis, and other cellular hallmarks of cancer will be presented and discussed. The RNases under discussion include RNases from the conventional mRNA decay pathways, RNases that are activated under cellular stress, RNases from the miRNA pathway, and RNases with multifunctional activity.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | |
Collapse
|
20
|
NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 2009; 83:6446-56. [PMID: 19369336 DOI: 10.1128/jvi.02556-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 protein induces telomerase activity through transcriptional activation of hTERT, the catalytic subunit of telomerase. HPV type 16 (HPV16) E6 interacts with two splice variants of NFX1 to increase hTERT expression. NFX1-91 is a transcriptional repressor of hTERT that is polyubiquitinated and targeted for degradation by HPV16 E6 in concert with E6-associated protein. We previously showed that NFX1-123 augments hTERT expression through binding to cytoplasmic poly(A) binding proteins (PABPCs). In this study, we determined that unlike NFX1-91, NFX1-123 is a cytoplasmic protein that colocalized with PABPCs but does not shuttle with PABPCs between the nucleus and cytoplasm. NFX1-123 requires both its PAM2 motif, with which it binds PABPCs, and its R3H domain, which has putative nucleic acid binding capabilities, to increase hTERT mRNA levels and telomerase activity in keratinocytes expressing HPV16 E6. In keratinocytes expressing HPV16 E6 and overexpressing NFX1-123, there was increased protein expression from in vitro-transcribed RNA fused with the 5' untranslated region (5' UTR) of hTERT. This posttranscriptional increase in expression required the PAM2 motif and R3H domain of NFX1-123 as well as the coexpression of HPV16 E6. NFX1-123 bound endogenous hTERT mRNA and increased its stability in HPV16 E6-expressing human foreskin keratinocytes, and NFX1-123 increased the stability of in vitro-transcribed RNA fused with the 5' UTR of hTERT. Together, these studies describe the first evidence of posttranscriptional regulation of hTERT, through the direct interaction of the cytoplasmic protein NFX1-123 with hTERT mRNA, in HPV16 E6-expressing keratinocytes.
Collapse
|
21
|
Chen LC, Liu HP, Li HP, Hsueh C, Yu JS, Liang CL, Chang YS. Thymidine phosphorylase mRNA stability and protein levels are increased through ERK-mediated cytoplasmic accumulation of hnRNP K in nasopharyngeal carcinoma cells. Oncogene 2009; 28:1904-15. [DOI: 10.1038/onc.2009.55] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology 2008; 384:324-34. [PMID: 19081593 DOI: 10.1016/j.virol.2008.11.017] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/03/2008] [Indexed: 02/07/2023]
Abstract
The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.
Collapse
Affiliation(s)
- Heather L Howie
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | |
Collapse
|
23
|
Du Z, Fenn S, Tjhen R, James TL. Structure of a construct of a human poly(C)-binding protein containing the first and second KH domains reveals insights into its regulatory mechanisms. J Biol Chem 2008; 283:28757-66. [PMID: 18701464 PMCID: PMC2568903 DOI: 10.1074/jbc.m803046200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/01/2008] [Indexed: 11/06/2022] Open
Abstract
Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.
Collapse
Affiliation(s)
- Zhihua Du
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
24
|
Pandey V, Perry JK, Mohankumar KM, Kong XJ, Liu SM, Wu ZS, Mitchell MD, Zhu T, Lobie PE. Autocrine human growth hormone stimulates oncogenicity of endometrial carcinoma cells. Endocrinology 2008; 149:3909-19. [PMID: 18450952 PMCID: PMC2488240 DOI: 10.1210/en.2008-0286] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent published data have demonstrated elevated levels of human GH (hGH) in endometriosis and endometrial adenocarcinoma. Herein, we demonstrate that autocrine production of hGH can enhance the in vitro and in vivo oncogenic potential of endometrial carcinoma cells. Forced expression of hGH in endometrial carcinoma cell lines RL95-2 and AN3 resulted in an increased total cell number through enhanced cell cycle progression and decreased apoptotic cell death. In addition, autocrine hGH expression in endometrial carcinoma cells promoted anchorage-independent growth and increased cell migration/invasion in vitro. In a xenograft model of human endometrial carcinoma, autocrine hGH enhanced tumor size and progression. Changes in endometrial carcinoma cell gene expression stimulated by autocrine hGH was consistent with the altered in vitro and in vivo behavior. Functional antagonism of hGH in wild-type RL95-2 cells significantly reduced cell proliferation, cell survival, and anchorage-independent cell growth. These studies demonstrate a functional role for autocrine hGH in the development and progression of endometrial carcinoma and indicate potential therapeutic relevance of hGH antagonism in the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Vijay Pandey
- Liggins Institute and National Research Centre for Growth and Development, University of Auckland, 2-6 Park Avenue, Private Bag 92019 Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Perry JK, Mohankumar KM, Emerald BS, Mertani HC, Lobie PE. The contribution of growth hormone to mammary neoplasia. J Mammary Gland Biol Neoplasia 2008; 13:131-45. [PMID: 18253708 PMCID: PMC2665193 DOI: 10.1007/s10911-008-9070-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022] Open
Abstract
While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer.
Collapse
Affiliation(s)
- Jo K Perry
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - Kumarasamypet M Mohankumar
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - B Starling Emerald
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - Hichem C Mertani
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois
43, Bvd du 11 Novembre 1918
69622 VILLEURBANNE CEDEX,FR
| | - Peter E Lobie
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
- Department of Molecular Medicine and Pathology
University of AucklandFaculty of Medical and Health Sciences, Private Bag 92019, Auckland, New Zealand,NZ
- * Correspondence should be adressed to: Peter E Lobie
| |
Collapse
|