1
|
Khan S, Gaivin RJ, Liu Z, Li V, Samuels I, Son J, Osei-Owusu P, Garvin JL, Accili D, Schelling JR. Fatty Acid Transport Protein-2 (FATP2) Inhibition Enhances Glucose Tolerance through α-Cell-mediated GLP-1 Secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635976. [PMID: 39975070 PMCID: PMC11838418 DOI: 10.1101/2025.01.31.635976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 2 diabetes affects more than 30 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Direct evidence of FATP2KO-induced α-cell-mediated GLP-1 secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine β-cell insulin release. Graphical abstract
Collapse
|
2
|
Cao Y, Su H, Zeng J, Xie Y, Liu Z, Liu F, Qiu Y, Yi F, Lin J, Hammes HP, Zhang C. Integrin β8 prevents pericyte-myofibroblast transition and renal fibrosis through inhibiting the TGF-β1/TGFBR1/Smad3 pathway in diabetic kidney disease. Transl Res 2024; 265:36-50. [PMID: 37931653 DOI: 10.1016/j.trsl.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Diabetic kidney disease (DKD) is one of the leading causes to develop end-stage kidney disease worldwide. Pericytes are implicated in the development of tissue fibrosis. However, the underlying mechanisms of pericytes in DKD remain largely unknown. We isolated and cultured primary pericytes and rat mesangial cells (HBZY-1). Western blot and qRT-PCR analysis were used to explore the role and regulatory mechanism of Integrin β8/transforming growth factor beta 1 (TGF-β1) pathway. We also constructed pericyte-specific Integrin β8 knock-in mice as the research objects to determine the role of Integrin β8 in vivo. We discovered that reduced Integrin β8 expression was closely associated with pericyte transition in DKD. Overexpressed Integrin β8 in pericytes dramatically suppressed TGF-β1/TGF beta receptor 1 (TGFBR1)/Smad3 signaling pathway and protected glomerular endothelial cells (GECs) in vitro. In vivo, pericyte-specific Integrin β8 knock-in ameliorated pericyte transition, endothelium injury and renal fibrosis in STZ-induced diabetic mice. Mechanistically, Murine double minute 2 (MDM2) was found to increase the degradation of Integrin β8 and caused TGF-β1 release and activation. Knockdown MDM2 could partly reverse the decline of Integrin β8 and suppress pericytes transition. In conclusion, the present findings suggested that upregulated MDM2 expression contributes to the degradation of Integrin β8 and activation of TGF-β1/TGFBR1/Smad3 signaling pathway, which ultimately leads to pericyte transition during DKD progression. These results indicate MDM2/Integrin β8 might be considered as therapeutic targets for DKD.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zezhou Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Lv J, Liu X, Zhou Y, Cheng F, Chen H, Li S, Wang D, Zhou L, Wang Z, Zhou N, Chen J, Huang B. YAP Inactivation by Soft Mechanotransduction Relieves MAFG for Tumor Cell Dedifferentiation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0215. [PMID: 37614365 PMCID: PMC10443527 DOI: 10.34133/research.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Solid tumor cells live in a highly dynamic mechanical microenvironment. How the extracellular-matrix-generated mechanotransduction regulates tumor cell development and differentiation remains an enigma. Here, we show that a low mechanical force generated from the soft matrix induces dedifferentiation of moderately stiff tumor cells to soft stem-cell-like cells. Mechanistically, integrin β8 was identified to transduce mechano-signaling to trigger tumor cell dedifferentiation by recruiting RhoGDI1 to inactivate RhoA and subsequently Yes-associated protein (YAP). YAP inactivation relieved the inhibition of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), allowing MAFG to transactivate the stemness genes NANOG, SOX2, and NESTIN. Inactivation also restored β8 expression, thereby forming a closed mechanical loop. Importantly, MAFG expression is correlated with worse prognosis. Our findings provide mechanical insights into the regulation of tumor cell dedifferentiation, which has therapeutic implications for exploring innovative strategies to attack malignancies.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Xiaohan Liu
- Department of Histology and Embryology, Basic Medical College,
China Medical University, Shenyang, Liaoning 110122, China
| | - Yabo Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Feiran Cheng
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Haoran Chen
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology, Basic Medical College,
China Medical University, Shenyang, Liaoning 110122, China
| | - Dianheng Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Zhenfeng Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Nannan Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Jie Chen
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
- Department of Biochemistry & Molecular Biology, Tongji Medical College,
Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
4
|
McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020; 133:133/12/jcs239434. [PMID: 32540905 DOI: 10.1242/jcs.239434] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvβ8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Neurosurgery, Brain Tumor Center, M.D. Anderson Cancer Center, 6767 Bertner Avenue, Unit 1004, Houston, TX 77030, USA
| |
Collapse
|
5
|
Su H, Ye C, Lei CT, Tang H, Zeng JY, Yi F, Zhang C. Subcellular trafficking of tubular MDM2 implicates in acute kidney injury to chronic kidney disease transition during multiple low-dose cisplatin exposure. FASEB J 2019; 34:1620-1636. [PMID: 31914692 DOI: 10.1096/fj.201901412r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/25/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is the leading cause of renal failure, and quite a few patients will advance to chronic kidney disease (CKD) in the long term. Here, we explore the roles and mechanisms of tubular epithelial cells (TECs) during repeated cisplatin (CP) induced AKI to CKD transition (AKI-CKD). Previously, we reported that murine double minute 2 (MDM2), an E3-ubiquitin ligase, is involved in tubulointerstitial fibrosis. However, whether tubular MDM2 is implicated in AKI-CKD is undefined. Currently, we confirmed that during AKI-CKD, MDM2 shifts from nucleus to cell membrane in TECs both in vivo and in vitro. Whereas regulating MDM2 distribution chemically or genetically has a prominent impact on tubular disorders. And then we investigated the mechanisms of the above findings. First, in the nucleus, repeated CP administration leads to MDM2 reduction with escalated p53 and cell cycle G2/M arrest. On the other hand, multiple CP treatment increases the level of membranous MDM2 with ensuing integrin β8 degradation and TGF-β1 activation. More interestingly, anchoring MDM2 on cell membranes can mimic the reduction of integrin β8 arousing by repeated CP exposure. Collectively, our findings provided the evidence that tubular MDM2 subcellular shuttling is involved in AKI-CKD through p53-G2/M arrest and integrin β8 mediated TGF-β1 activation.
Collapse
Affiliation(s)
- Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Yu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
de Gooijer MC, Guillén Navarro M, Bernards R, Wurdinger T, van Tellingen O. An Experimenter's Guide to Glioblastoma Invasion Pathways. Trends Mol Med 2018; 24:763-780. [PMID: 30072121 DOI: 10.1016/j.molmed.2018.07.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor that is characterized by its unparalleled invasiveness. Invasive glioblastoma cells not only escape surgery and focal therapies but also are more resistant to current radio- and chemo-therapeutic approaches. Thus, any curative therapy for this deadly disease likely should include treatment strategies that interfere with glioblastoma invasiveness. Understanding glioblastoma invasion mechanisms is therefore critical. We discuss the strengths and weaknesses of various glioblastoma invasion models and conclude that robust experimental evidence has been obtained for a pro-invasive role of Ephrin receptors, Rho GTPases, and casein kinase 2 (CK2). Extensive interplay occurs between these proteins, suggesting the existence of a glioblastoma invasion signaling network that comprises several targets for therapy.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; These authors contributed equally to this work
| | - Miriam Guillén Navarro
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; These authors contributed equally to this work
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8. Proc Natl Acad Sci U S A 2017; 114:E10161-E10168. [PMID: 29109269 DOI: 10.1073/pnas.1710680114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human regulatory T cells (Tregs) suppress other T cells by converting the latent, inactive form of TGF-β1 into active TGF-β1. In Tregs, TGF-β1 activation requires GARP, a transmembrane protein that binds and presents latent TGF-β1 on the surface of Tregs stimulated through their T cell receptor. However, GARP is not sufficient because transduction of GARP in non-Treg T cells does not induce active TGF-β1 production. RGD-binding integrins were shown to activate TGF-β1 in several non-T cell types. Here we show that αVβ8 dimers are present on stimulated human Tregs but not in other T cells, and that antibodies against αV or β8 subunits block TGF-β1 activation in vitro. We also show that αV and β8 interact with GARP/latent TGF-β1 complexes in human Tregs. Finally, a blocking antibody against β8 inhibited immunosuppression by human Tregs in a model of xenogeneic graft-vs.-host disease induced by the transfer of human T cells in immunodeficient mice. These results show that TGF-β1 activation on the surface of human Tregs implies an interaction between the integrin αVβ8 and GARP/latent TGF-β1 complexes. Immunosuppression by human Tregs can be inhibited by antibodies against GARP or against the integrin β8 subunit. Such antibodies may prove beneficial against cancer or chronic infections.
Collapse
|
8
|
Chen YW, Gregory C, Ye F, Harafuji N, Lott D, Lai SH, Mathur S, Scarborough M, Gibbs P, Baligand C, Vandenborne K. Molecular signatures of differential responses to exercise trainings during rehabilitation. ACTA ACUST UNITED AC 2017; 2. [PMID: 28845464 PMCID: PMC5568829 DOI: 10.15761/bgg.1000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The loss and recovery of muscle mass and function following injury and during rehabilitation varies among individuals. While recent expression profiling studies have illustrated transcriptomic responses to muscle disuse and remodeling, how these changes contribute to the physiological responses are not clear. In this study, we quantified the effects of immobilization and subsequent rehabilitation training on muscle size and identified molecular pathways associated with muscle responsiveness in an orthopaedic patient cohort study. The injured leg of 16 individuals with ankle injury was immobilized for a minimum of 4 weeks, followed by a 6-week rehabilitation program. The maximal cross-sectional area (CSA) of the medial gastrocnemius muscle of the immobilized and control legs were determined by T1-weighted axial MRI images. Genome-wide mRNA profiling data were used to identify molecular signatures that distinguish the patients who responded to immobilization and rehabilitation and those who were considered minimal responders. RESULTS: Using 6% change as the threshold to define responsiveness, a greater degree of changes in muscle size was noted in high responders (−14.9 ± 3.6%) compared to low responders (0.1 ± 0.0%) during immobilization. In addition, a greater degree of changes in muscle size was observed in high responders (20.5 ± 3.2%) compared to low responders (2.5 ± 0.9%) at 6-week rehabilitation. Microarray analysis showed a higher number of genes differentially expressed in the responders compared to low responders in general; with more expression changes observed at the acute stage of rehabilitation in both groups. Pathways analysis revealed top molecular pathways differentially affected in the groups, including genes involved in mitochondrial function, protein turn over, integrin signaling and inflammation. This study confirmed the extent of muscle atrophy due to immobilization and recovery by exercise training is associated with distinct remodeling signature, which can potentially be used for evaluating and predicting clinical outcomes.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, George Washington University, Washington DC, USA
| | - Chris Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Fan Ye
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Naoe Harafuji
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Donovan Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - San-Huei Lai
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, USA
| | - Mark Scarborough
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Parker Gibbs
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Celine Baligand
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Kumar V, Soni UK, Maurya VK, Singh K, Jha RK. Integrin beta8 (ITGB8) activates VAV-RAC1 signaling via FAK in the acquisition of endometrial epithelial cell receptivity for blastocyst implantation. Sci Rep 2017; 7:1885. [PMID: 28507287 PMCID: PMC5432530 DOI: 10.1038/s41598-017-01764-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/06/2017] [Indexed: 12/02/2022] Open
Abstract
Integrin beta8 (ITGB8) is involved in the endometrial receptivity. The blastocyst first interacts with the luminal endometrial epithelial cells during its implantation; therefore, we have investigated the signaling of ITGB8 via FAK and VAV-RAC1 in the endometrial epithelial cells. Integrin beta8 was found elevated in epithelial cells at late-pre-receptive (day4, 1600 h) and receptive (day5, 0500 h) stages of endometrial receptivity period in the mouse. Integrins downstream molecule FAK has demonstrated an increased expression and phosphorylation (Y397) in the endometrium as well as in the isolated endometrial epithelial cells during receptive and post-receptive stages. Integrin beta8 can functionally interact with FAK, VAV and RAC1 as the levels of phosphorylated-FAK, and VAV along with the RAC-GTP form was reduced after ITGB8 knockdown in the endometrial epithelial cells and uterus. Further, VAV and RAC1 were seen poorly active in the absence of FAK activity, suggesting a crosstalk of ITGB8 and FAK for VAV and RAC1 activation in the endometrial epithelial cells. Silencing of ITGB8 expression and inhibition of FAK activity in the Ishikawa cells rendered poor attachment of JAr spheroids. In conclusion, ITGB8 activates VAV-RAC1 signaling axis via FAK to facilitate the endometrial epithelial cell receptivity for the attachment of blastocyst.
Collapse
Affiliation(s)
- Vijay Kumar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Upendra Kumar Soni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Vineet Kumar Maurya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University (BHU), Varanasi, UP, India
| | - Rajesh Kumar Jha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
10
|
Zhang J, Li T, Ji W, Yu Y, Tan T. Rho GDIalpha Modulates Rabbit Trophoblast Stem Cell Survival and Migration. Biol Reprod 2015; 93:144. [PMID: 26559677 DOI: 10.1095/biolreprod.115.132019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023] Open
Abstract
Trophoblast stem cells differentiate into different trophoblast cell populations that are indispensable for successful pregnancy through interactions with the maternal uterine decidua. Rho GTPases play an important role in the regulation of trophoblast stem cell (TSC) self-renewal and differentiation; however, the role of Rho GDP-dissociation inhibitors (Rho GDIs) remains unclear. Here we report that overexpression of Rho GDIalpha resulted in rapid apoptosis of TSCs, while its knockdown promoted proliferation. Moreover, Rho GDIalpha knockdown also enhanced TSC invasion. Collectively, these results establish a potential mechanism whereby TSCs can balance growth and apoptosis, and thus ensure normal fetal development.
Collapse
Affiliation(s)
- Jinjuan Zhang
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan, China
| | - Tianjie Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan, China
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan, China
| |
Collapse
|
11
|
Protein tyrosine phosphatase-PEST and β8 integrin regulate spatiotemporal patterns of RhoGDI1 activation in migrating cells. Mol Cell Biol 2015; 35:1401-13. [PMID: 25666508 DOI: 10.1128/mcb.00112-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.
Collapse
|
12
|
Lakhe-Reddy S, Li V, Arnold TD, Khan S, Schelling JR. Mesangial cell αvβ8-integrin regulates glomerular capillary integrity and repair. Am J Physiol Renal Physiol 2014; 306:F1400-9. [PMID: 24740792 DOI: 10.1152/ajprenal.00624.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
αvβ8-Integrin is most abundantly expressed in the kidney, brain, and female reproductive organs, and its cognate ligand is latent transforming growth factor (LTGF)-β. Kidney αvβ8-integrin localizes to mesangial cells, and global β8-integrin gene (Itgb8) deletion results in embryonic lethality due to impaired placentation and cerebral hemorrhage. To circumvent the lethality and better define kidney αvβ8-integrin function, Cre-lox technology was used to generate mesangial-specific Itgb8-null mice. Platelet-derived growth factor-β receptor (PDGFBR)-Cre mice crossed with a reporter strain revealed functional Cre recombinase activity in a predicted mesangial pattern. However, mating between two different PDGFBR-Cre or Ren1(d)-Cre strains with Itgb8 (flox/-) mice consistently resulted in incomplete recombination, with no renal phenotype in mosaic offspring. Induction of a renal phenotype with Habu snake venom, a reversible mesangiolytic agent, caused exaggerated glomerular capillary microaneurysms and delayed recovery in Cre(+/-) PDGFRB (flox/-) mice compared with Cre(+/-) PDGFRB (flox/+) control mice. To establish the mechanism, in vitro experiments were conducted in Itgb8-null versus Itgb8-expressing mesangial cells and fibroblasts, which revealed β8-integrin-regulated adhesion to Arg-Gly-Asp (RGD) peptides within a mesangial-conditioned matrix as well as β8-integrin-dependent migration on RGD-containing LTGF-β or vitronectin matrices. We speculate that kidney αvβ8-integrin indirectly controls glomerular capillary integrity through mechanical tension generated by binding RGD peptides in the mesangial matrix, and healing after glomerular injury may be facilitated by mesangial cell migration, which is guided by transient β8-integrin interactions with RGD ligands.
Collapse
Affiliation(s)
- Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| | - Vincent Li
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, California
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| |
Collapse
|
13
|
Giusti B, Margheri F, Rossi L, Lapini I, Magi A, Serratì S, Chillà A, Laurenzana A, Magnelli L, Calorini L, Bianchini F, Fibbi G, Abbate R, Rosso MD. Desmoglein-2-integrin Beta-8 interaction regulates actin assembly in endothelial cells: deregulation in systemic sclerosis. PLoS One 2013; 8:e68117. [PMID: 23874518 PMCID: PMC3708925 DOI: 10.1371/journal.pone.0068117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022] Open
Abstract
Background The inability of endothelial cells of patients affected by the diffuse form of Systemic sclerosis (SSc) to perform angiogenesis is a marker of the disease. We previously demonstrated that desmoglein-2 reduction is a major difference between (SSc)-microvascular endothelial cells (MVECs) and normal (N)-MVECs. Here we investigated the role of desmoglein-2 in human N-MVECs and SSc-MVECs angiogenesis. Methodology/principal findings Angiogenesis was studied by Matrigel invasion, capillary morphogenesis in vitro and Matrigel plug assay in vivo. Gene profiling was studied by Affymetrix technology and signal transduction by Western blotting. Colocalization was validated by immunoprecipitation and confocal microscopy. SiRNAs were used to validate the roles of specific molecules. We observed that desmoglein-2 co-localizes with integrin-beta8 in N-MVECs. This complex is required to signal through Rac, FAK, SMAD1/5 and MAP-kinases, promoting an angiogenic program. Inhibition of desmoglein-2 by DSG2-siRNA impaired actin stress fibres formation, capillary morphogenesis in vitro and angiogenesis in vivo. Transcriptome profiling after DSG2 inhibition revealed alterations of several genes involved in actin organization. siRNA inhibition of integrin-beta8 and RAC2 also resulted into capillary morphogenesis impairment in N-MVECs, due to reduced expression of the same actin-assembly genes that were down-regulated by DSG2 silencing. SSc-MVECs showed down-regulation of the same genes in DSG2-siRNA treated N-MVECs, suggesting that impairment of desmoglein-2/integrin-beta8 complex contributes to angiogenesis derangement in SSc. Transfection of DSG2 in SSc-MVEC partially restored their angiogenic properties in vitro. Conclusions/significance We have shown that impairment of actin assembly as a result of desmoglein-2/integrin-beta8 complex formation is a major factor contributing to angiogenesis deregulation in Systemic sclerosis.
Collapse
Affiliation(s)
- Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Luciana Rossi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ilaria Lapini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simona Serratì
- National Cancer Research Centre “Giovanni Paolo II,” Department of Clinical and Neoplastic Experimental Oncology, Haematology Unit, Advanced Cellular Therapy Centre, Bari, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
- * E-mail: (MDR); GF
| | - Rosanna Abbate
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Istituto Toscano Tumori, Florence, Italy
- * E-mail: (MDR); GF
| |
Collapse
|
14
|
Curnis F, Sacchi A, Longhi R, Colombo B, Gasparri A, Corti A. IsoDGR-tagged albumin: a new αvβ3 selective carrier for nanodrug delivery to tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:673-678. [PMID: 23143930 DOI: 10.1002/smll.201202310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Indexed: 06/01/2023]
Abstract
A new cyclic peptide containing the isoDGR motif that, after coupling to albumin, selectively binds αvβ3, an integrin overexpressed in the tumor vasculature. IsoDGR-tagged albumin binds tumor vessels and can be exploited as a carrier for the preparation of tumor vasculature-selective nanomedicines, such as gold nanoparticles (Au) carrying tumor necrosis factor α (TNF), a potent vascular damaging agent.
Collapse
Affiliation(s)
- Flavio Curnis
- Division of Molecular Oncology, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Reyes SB, Narayanan AS, Lee HS, Tchaicha JH, Aldape KD, Lang FF, Tolias KF, McCarty JH. αvβ8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 activation and drive glioblastoma cell invasion. Mol Biol Cell 2013; 24:474-82. [PMID: 23283986 PMCID: PMC3571870 DOI: 10.1091/mbc.e12-07-0521] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experiments with human cancer glioblastoma multiforme cell lines, primary patient samples, and preclinical mouse models are performed to show that αvβ8 integrin and RhoGDI1 are components of a signaling axis that drives brain tumor cell invasion via regulation of Rho GTPase activation. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin–RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvβ8 integrin–RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.
Collapse
Affiliation(s)
- Steve B Reyes
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β. J Neurosci 2012; 32:1197-206. [PMID: 22279205 DOI: 10.1523/jneurosci.5648-11.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes. We further show that Itgb8 deletion in the entire retina severely perturbs development of the murine retinal vasculature, elevating vascular branch point density and vascular coverage in the superficial vascular plexus, while severely impairing formation of the deep vascular plexus. The stability of the mutant vasculature is also impaired as assessed by the presence of hemorrhage and vascular basal lamina sleeves lacking endothelial cells. Specific deletion of Itgb8 in Müller glia and neurons, but not deletion in astrocytes, recapitulates the phenotype observed following Itgb8 in the entire retina. Consistent with αVβ8's role in TGFβ1 activation, we show that retinal deletion of Tgfb1 results in very similar retinal vascular abnormalities. The vascular deficits appear to reflect impaired TGFβ signaling in vascular endothelial cells because retinal deletion of Itgb8 reduces phospho-SMAD3 in endothelial cells and endothelial cell-specific deletion of the TGFβRII gene recapitulates the major deficits observed in the Itgb8 and TGFβ1 mutants. Of special interest, the retinal vascular phenotypes observed in each mutant are remarkably similar to those of others following inhibition of neuropilin-1, a receptor previously implicated in TGFβ activation and signaling.
Collapse
|
17
|
Borza CM, Pozzi A. The role of cell-extracellular matrix interactions in glomerular injury. Exp Cell Res 2012; 318:1001-10. [PMID: 22417893 DOI: 10.1016/j.yexcr.2012.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/24/2012] [Indexed: 01/09/2023]
Abstract
Glomerulosclerosis is characterized by excessive deposition of extracellular matrix within the glomeruli of the kidney, glomerular cell death, and subsequent loss of functional glomeruli. While in physiological situations the levels of extracellular matrix components are kept constant by a tight balance between formation and degradation, in the case of injury that results in fibrosis there is increased matrix deposition relative to its breakdown. Multiple factors control matrix synthesis and degradation, thus contributing to the development of glomerulosclerosis. This review focuses primarily on the role of cell-matrix interactions, which play a critical role in governing glomerular cell cues in both healthy and diseased kidneys. Cell-extracellular matrix interactions are made possible by various cellular receptors including integrins, discoidin domain receptors, and dystroglycan. Upon binding to a selective extracellular matrix protein, these receptors activate intracellular signaling pathways that can either downregulate or upregulate matrix synthesis and deposition. This, together with the observation that changes in the expression levels of matrix receptors have been documented in glomerular disease, clearly emphasizes the contribution of cell-matrix interactions in glomerular injury. Understanding the molecular mechanisms whereby extracellular matrix receptors regulate matrix homeostasis in the course of glomerular injury is therefore critical for devising more effective therapies to treat and ideally prevent glomerulosclerosis.
Collapse
Affiliation(s)
- Corina M Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
18
|
Lee SKW, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y, Zhang M, Lam DSC, Yam GHF, Pang CP. MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One 2011; 6:e21249. [PMID: 21701675 PMCID: PMC3119052 DOI: 10.1371/journal.pone.0021249] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/25/2011] [Indexed: 01/05/2023] Open
Abstract
Background Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium. Methodology/Principal Findings Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary CEPCs. Conclusion/Significance We found expression of miR-143/145 cluster in human corneal epithelium. Our results also showed that miR-145 regulated the corneal epithelium formation and maintenance of epithelial integrity, via ITGB8 targeting.
Collapse
Affiliation(s)
- Sharon Ka-Wai Lee
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Khan S, Lakhe-Reddy S, McCarty JH, Sorenson CM, Sheibani N, Reichardt LF, Kim JH, Wang B, Sedor JR, Schelling JR. Mesangial cell integrin αvβ8 provides glomerular endothelial cell cytoprotection by sequestering TGF-β and regulating PECAM-1. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:609-20. [PMID: 21281793 DOI: 10.1016/j.ajpath.2010.10.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/17/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Integrins are heterodimeric receptors that regulate cell adhesion, migration, and apoptosis. Integrin αvβ8 is most abundantly expressed in kidney and brain, and its major ligand is latent transforming growth factor-β (TGF-β). Kidney αvβ8 localizes to mesangial cells, which appose glomerular endothelial cells and maintain glomerular capillary structure by mechanical and poorly understood paracrine mechanisms. To establish kidney αvβ8 function, mice with homozygous Itgb8 deletion (Itgb8(-/-)) were generated on outbred and C57BL/6 congenic backgrounds. Most Itgb8(-/-) mice died in utero, and surviving Itgb8(-/-) mice failed to gain weight, and rarely survived beyond 6 weeks. A renal glomerular phenotype included azotemia and albuminuria, as well as increased platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, which was surprisingly not associated with conventional functions, such as endothelial cell hyperplasia, hypertrophy, or perivascular inflammation. Itgb8(-/-) mesangial cells demonstrated reduced latent TGF-β binding, resulting in bioactive TGF-β release, which stimulated glomerular endothelial cell apoptosis. Using PECAM-1 gain and loss of function strategies, we show that PECAM-1 provides endothelial cytoprotection against mesangial cell TGF-β. These results clarify a singular mechanism of mesangial-to-endothelial cell cross-talk, whereby mesangial cell αvβ8 homeostatically arbitrates glomerular microvascular integrity by sequestering TGF-β in its latent conformation. Under pathological conditions associated with decreased mesangial cell αvβ8 expression and TGF-β secretion, compensatory PECAM-1 modulation facilitates glomerular endothelial cell survival.
Collapse
Affiliation(s)
- Shenaz Khan
- Department of Medicine, Case Western Reserve University and Rammelkamp Center for Research and Education, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marek I, Volkert G, Jahn A, Fahlbusch F, Zürn C, Ozcan Z, Goppelt-Struebe M, Hilgers KF, Rascher W, Hartner A. Lack of α8 integrin leads to morphological changes in renal mesangial cells, but not in vascular smooth muscle cells. BMC Cell Biol 2010; 11:102. [PMID: 21194485 PMCID: PMC3022721 DOI: 10.1186/1471-2121-11-102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/31/2010] [Indexed: 11/21/2022] Open
Abstract
Background Extracellular matrix receptors of the integrin family are known to regulate cell adhesion, shape and functions. The α8 integrin chain is expressed in glomerular mesangial cells and in vascular smooth muscle cells. Mice deficient for α8 integrin have structural alterations in glomeruli but not in renal arteries. For this reason we hypothesized that mesangial cells and vascular smooth muscle cells differ in their respective capacity to compensate for the lack of α8 integrin. Results Wild type and α8 integrin-deficient mesangial cells varied markedly in cell morphology and expression or localization of cytoskeletal molecules. In α8 integrin-deficient mesangial cells α-smooth muscle actin and CTGF were downregulated. In contrast, there were no comparable differences between α8 integrin-deficient and wild type vascular smooth muscle cells. Expression patterns of integrins were altered in α8 integrin-deficient mesangial cells compared to wild type mesangial cells, displaying a prominent overexpression of α2 and α6 integrins, while expression patterns of the these integrins were not different between wild type and α8 integrin-deficient vascular smooth muscle cells, respectively. Cell proliferation was augmented in α8 integrin-deficient mesangial cells, but not in vascular smooth muscle cells, compared to wild type cells. Conclusions Our findings suggest that α8 integrin deficiency has differential effects in mesangial cells and vascular smooth muscle cells. While the phenotype of vascular smooth muscle cells lacking α8 integrin is not altered, mesangial cells lacking α8 integrin differ considerably from wild type mesangial cells which might be a consequence of compensatory changes in the expression patterns of other integrins. This could result in glomerular changes in α8 integrin-deficient mice, while the vasculature is not affected in these mice.
Collapse
Affiliation(s)
- Ines Marek
- Hospital for Children and Adolescents, Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang C, Wei D, Luo Z, Liu Y, Liao T, Zhang C. Synthetic Peptide Coupled to KLH Elicits Antibodies Against β8 Integrin. Hybridoma (Larchmt) 2010; 29:361-6. [PMID: 20715996 DOI: 10.1089/hyb.2010.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Chenyang Zhang
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University, Chengdu, China
| | - Dapeng Wei
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University, Chengdu, China
| | - Zhijuan Luo
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University, Chengdu, China
| | - Yanjun Liu
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University, Chengdu, China
| | - Tingting Liao
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University, Chengdu, China
| | - Chongjie Zhang
- Department of Immunology, School of Preclinical and Forensic Medicine, West China Medical Centre, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Markovics JA, Araya J, Cambier S, Jablons D, Hill A, Wolters PJ, Nishimura SL. Transcription of the transforming growth factor beta activating integrin beta8 subunit is regulated by SP3, AP-1, and the p38 pathway. J Biol Chem 2010; 285:24695-706. [PMID: 20519498 DOI: 10.1074/jbc.m110.113977] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrin alphavbeta8 is a critical regulator of transforming growth factor beta activation in vasculogenesis during development, immune regulation, and endothelial/epithelial-mesenchymal homeostasis. Recent studies have suggested roles for integrin beta8 in the pathogenesis of chronic obstructive pulmonary disease, brain arteriovenous malformations, and select cancers (Araya, J., Cambier, S., Markovics, J. A., Wolters, P., Jablons, D., Hill, A., Finkbeiner, W., Jones, K., Broaddus, V. C., Sheppard, D., Barzcak, A., Xiao, Y., Erle, D. J., and Nishimura, S. L. (2007) J. Clin. Invest. 117, 3551-3562; Su, H., Kim, H., Pawlikowska, L., Kitamura, H., Shen, F., Cambier, S., Markovics, J., Lawton, M. T., Sidney, S., Bollen, A. W., Kwok, P. Y., Reichardt, L., Young, W. L., Yang, G. Y., and Nishimura, S. L. (2010) Am. J. Pathol. 176, 1018-1027; Culhane, A. C., and Quackenbush, J. (2009) Cancer Res. 69, 7480-7485; Cambier, S., Mu, D. Z., O'Connell, D., Boylen, K., Travis, W., Liu, W. H., Broaddus, V. C., and Nishimura, S. L. (2000) Cancer Res. 60, 7084-7093). Here we report the first identification and characterization of the promoter for ITGB8. We show that a SP binding site and a cyclic AMP response element (CRE) in the ITGB8 core promoter are required for its expression and that Sp1, Sp3, and several AP-1 transcription factors form a complex that binds to these sites in a p38-dependent manner. Furthermore, we demonstrate the requirement for Sp3, ATF-2, and p38 for the transcription and protein expression of integrin beta8. Additionally, reduction of SP3 or inhibition of p38 blocks alphavbeta8-mediated transforming growth factor beta activation. These results place integrin beta8 expression and activity under the control of ubiquitous transcription factors in a stress-activated and pro-inflammatory pathway.
Collapse
Affiliation(s)
- Jennifer A Markovics
- Department of Pathology, Pulmonary Division, School of Medicine, University of California, San Francisco, California 94110, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Spreafico A, Chellini F, Frediani B, Bernardini G, Niccolini S, Serchi T, Collodel G, Paffetti A, Fossombroni V, Galeazzi M, Marcolongo R, Santucci A. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem 2009; 108:1153-65. [DOI: 10.1002/jcb.22344] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Abstract
Chronic kidney disease may be stimulated by many different etiologies, but its progression involves a common, yet complex, series of events that lead to the replacement of normal tissue with scar. These events include altered physiology within the kidney leading to abnormal hemodynamics, chronic hypoxia, inflammation, cellular dysfunction, and activation of fibrogenic biochemical pathways. The end result is the replacement of normal structures with extracellular matrix. Treatments presently are focused on delaying or preventing such progression, and are largely nonspecific. In pediatrics, such therapy is complicated further by pathophysiological issues that render children a unique population.
Collapse
|
25
|
Bielek H, Anselmo A, Dermardirossian C. Morphological and proliferative abnormalities in renal mesangial cells lacking RhoGDI. Cell Signal 2009; 21:1974-83. [PMID: 19765647 DOI: 10.1016/j.cellsig.2009.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 11/28/2022]
Abstract
The regulation of Rho GTPase activities and expression is critical in the development and function of the kidney. Rho GTPase activities and cytosol-membrane cycling are regulated by Rho GDP Dissociation Inhibitor (RhoGDI), and RhoGDI knockout mice develop defects in kidney structure and function that lead to death due to renal failure. It is therefore important to understand the changes in RhoGDI-regulated Rho GTPase activities and cell morphology that lead to kidney failure in RhoGDI (-/-) mice. Here, we characterize a renal mesangial cell line derived from the RhoGDI (-/-) mouse in which we verify the absence of GDI proteins. In the absence of RhoGDI, we show an increase in the specific activity of Rac1, and to a lesser extent, RhoA and Cdc42 GTPases in these cells. This is accompanied by a compensatory decrease in the steady-state protein levels of Rho GTPases. Morphological analysis of RhoGDI (-/-) mesangial cells reveals a decrease in cell spreading and in focal contacts compared to wild-type cells. Finally, RhoGDI (-/-) mesangial cells show a decreased ability to proliferate and survive. These functional and structural changes are likely to contribute to the defects in renal architecture and function observed in the RhoGDI (-/-) mouse.
Collapse
Affiliation(s)
- Heike Bielek
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) neurovascular units are multicellular complexes consisting of neurons and astrocytes, vascular endothelial cells and pericytes, as well as an assortment of growth factors and extracellular matrix (ECM) proteins. Here, I will discuss the current knowledge of signaling networks essential for the development and physiology of CNS neurovascular units, particularly in the brain. RECENT FINDINGS Molecular genetic studies have identified various signaling proteins that regulate the formation and function of CNS neurovascular units. These include members of the integrin family of ECM adhesion receptors, ECM proteins such as Wnts and latent transforming growth factor betas, and various transcriptional regulators, including beta-catenin and the inhibitors of DNA binding (Ids). SUMMARY Neurovascular units are the cellular and molecular interfaces between the circulatory system and the CNS. Recent molecular genetic analyses in mice and other model organisms have revealed the first mechanisms underlying bidirectional communication between neural and vascular components. In particular, ECM-mediated adhesion and signaling pathways have been identified as essential for neurovascular development and physiology. Understanding how these various gene products normally control neurovascular unit formation and function will lend new insights into the causes and possible treatments of debilitating neurovascular-related diseases such as birth defects, stroke, and age-related dementia.
Collapse
|
27
|
Nyström J, Fierlbeck W, Granqvist A, Kulak SC, Ballermann BJ. A human glomerular SAGE transcriptome database. BMC Nephrol 2009; 10:13. [PMID: 19500374 PMCID: PMC2709617 DOI: 10.1186/1471-2369-10-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 06/05/2009] [Indexed: 11/10/2022] Open
Abstract
Background To facilitate in the identification of gene products important in regulating renal glomerular structure and function, we have produced an annotated transcriptome database for normal human glomeruli using the SAGE approach. Description The database contains 22,907 unique SAGE tag sequences, with a total tag count of 48,905. For each SAGE tag, the ratio of its frequency in glomeruli relative to that in 115 non-glomerular tissues or cells, a measure of transcript enrichment in glomeruli, was calculated. A total of 133 SAGE tags representing well-characterized transcripts were enriched 10-fold or more in glomeruli compared to other tissues. Comparison of data from this study with a previous human glomerular Sau3A-anchored SAGE library reveals that 47 of the highly enriched transcripts are common to both libraries. Among these are the SAGE tags representing many podocyte-predominant transcripts like WT-1, podocin and synaptopodin. Enrichment of podocyte transcript tags SAGE library indicates that other SAGE tags observed at much higher frequencies in this glomerular compared to non-glomerular SAGE libraries are likely to be glomerulus-predominant. A higher level of mRNA expression for 19 transcripts represented by glomerulus-enriched SAGE tags was verified by RT-PCR comparing glomeruli to lung, liver and spleen. Conclusion The database can be retrieved from, or interrogated online at http://cgap.nci.nih.gov/SAGE. The annotated database is also provided as an additional file with gene identification for 9,022, and matches to the human genome or transcript homologs in other species for 1,433 tags. It should be a useful tool for in silico mining of glomerular gene expression.
Collapse
Affiliation(s)
- Jenny Nyström
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
28
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
29
|
Landemaine T, Jackson A, Bellahcène A, Rucci N, Sin S, Abad BM, Sierra A, Boudinet A, Guinebretière JM, Ricevuto E, Noguès C, Briffod M, Bièche I, Cherel P, Garcia T, Castronovo V, Teti A, Lidereau R, Driouch K. A six-gene signature predicting breast cancer lung metastasis. Cancer Res 2008; 68:6092-9. [PMID: 18676831 DOI: 10.1158/0008-5472.can-08-0436] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lungs are a frequent target of metastatic breast cancer cells, but the underlying molecular mechanisms are unclear. All existing data were obtained either using statistical association between gene expression measurements found in primary tumors and clinical outcome, or using experimentally derived signatures from mouse tumor models. Here, we describe a distinct approach that consists of using tissue surgically resected from lung metastatic lesions and comparing their gene expression profiles with those from nonpulmonary sites, all coming from breast cancer patients. We show that the gene expression profiles of organ-specific metastatic lesions can be used to predict lung metastasis in breast cancer. We identified a set of 21 lung metastasis-associated genes. Using a cohort of 72 lymph node-negative breast cancer patients, we developed a 6-gene prognostic classifier that discriminated breast primary cancers with a significantly higher risk of lung metastasis. We then validated the predictive ability of the 6-gene signature in 3 independent cohorts of breast cancers consisting of a total of 721 patients. Finally, we show that the signature improves risk stratification independently of known standard clinical variables and a previously established lung metastasis signature based on an experimental breast cancer metastasis model.
Collapse
Affiliation(s)
- Thomas Landemaine
- Centre René Huguenin, Fédération Nationale des Centres de Lutte Contre le Cancer and Institut National de la Sante et de la Recherche Medicale, U735, Saint-Cloud, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sati L, Seval Y, Yasemin Demir A, Kosanke G, Kohnen G, Demir R. Cellular diversity of human placental stem villi: an ultrastructural and immunohistochemical study. Acta Histochem 2007; 109:468-79. [PMID: 17570474 DOI: 10.1016/j.acthis.2007.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 11/22/2022]
Abstract
The aim of the study was to investigate the distribution and differentiation of cell types in the stroma of human placental stem villi (SV). A total of 14 human term placental tissues were studied. Double immunolabeling was performed for desmin-vimentin, desmin-alpha-smooth actin and vimentin-alpha-smooth actin. Cytokeratin 7, proliferating cell nuclear antigen immunolabeling was also performed. Parallel tissue samples were examined by transmission electron microscopy. HSCORE was performed for the semi-quantitative analysis of distribution of cells in the stroma of SV. Vimentin-labeled cells were mostly distributed in the subtrophoblastic area. Desmin-vimentin double immunolabeling was mainly localized in the triangular area and to a lesser degree in the perivascular area and vessel walls (p=or<0.001). However, desmin-alpha smooth actin labeling was observed predominantly in the vessel wall and perivascular area. Vimentin-alpha smooth actin immunoreactivity was significantly stronger in the triangular and perivascular areas compared to the vessel walls (p=0.003). Ultrastructurally, cells in the stroma of SV were mesenchyme cells, reticulum cells, fibroblasts, myofibroblasts, smooth muscle cells, and Hofbauer cells, filamented and vacuolated cells. The differentiation of myofibroblasts in the triangular and perivascular areas may play a role in maturation of SV and villous contractility, modulation of the intervillous space and this may have effects on maternofetal placental circulation.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Campus, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
31
|
Pontow S, Harmon B, Campbell N, Ratner L. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay. Virology 2007; 368:1-6. [PMID: 17640696 PMCID: PMC2174213 DOI: 10.1016/j.virol.2007.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/15/2007] [Accepted: 06/13/2007] [Indexed: 01/14/2023]
Abstract
A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.
Collapse
Affiliation(s)
- Suzanne Pontow
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
32
|
Knezevic N, Roy A, Timblin B, Konstantoulaki M, Sharma T, Malik AB, Mehta D. GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability. Mol Cell Biol 2007; 27:6323-33. [PMID: 17636025 PMCID: PMC2099605 DOI: 10.1128/mcb.00523-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified the GDI-1-regulated mechanism of RhoA activation from the Rho-GDI-1 complex and its role in mediating increased endothelial permeability. Thrombin stimulation failed to induce RhoA activation and actin stress fiber formation in human pulmonary arterial endothelial cells transduced with full-length GDI-1. Expression of a GDI-1 mutant form (C-GDI) containing the C terminus (aa 69 to 204) also prevented RhoA activation, whereas further deletions failed to alter RhoA activation. We observed that protein kinase Calpha-mediated phosphorylation of the C terminus of GDI-1 at Ser96 reduced the affinity of GDI-1 for RhoA and thereby enabled RhoA activation. Rendering GDI-1 phosphodefective with a Ser96 --> Ala substitution rescued the inhibitory activity of GDI-1 toward RhoA but did not alter the thrombin-induced activation of other Rho GTPases, i.e., Rac1 and Cdc42. Phosphodefective mutant GDI-1 also suppressed myosin light chain phosphorylation, actin stress fiber formation, and the increased endothelial permeability induced by thrombin. In contrast, expressing the phospho-mimicking mutant S96D-GDI-1 protein induced RhoA activity and increased endothelial permeability independently of thrombin stimulation. These results demonstrate the crucial role of the phosphorylation of the C terminus of GDI-1 at S96 in selectively activating RhoA. Inhibiting GDI-1 phosphorylation at S96 is a potential therapeutic target for modulating RhoA activity and thus preventing the increase in endothelial permeability associated with vascular inflammation.
Collapse
Affiliation(s)
- Nebojsa Knezevic
- Department of Pharmacology, College of Medicine, The University of Illinois, 835 S Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen X, Abair TD, Ibanez MR, Su Y, Frey MR, Dise RS, Polk DB, Singh AB, Harris RC, Zent R, Pozzi A. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol Cell Biol 2007; 27:3313-26. [PMID: 17339338 PMCID: PMC1899972 DOI: 10.1128/mcb.01476-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin alpha1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by alpha1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin alpha1-null mesangial cells produce excessive ROS. Integrin alpha1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in alpha1-null mesangial cells. Thus, our study demonstrates that integrin alpha1beta1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.
Collapse
Affiliation(s)
- Xiwu Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mondin M, Moreau V, Genot E, Combe C, Ripoche J, Dubus I. Alterations in cytoskeletal protein expression by mycophenolic acid in human mesangial cells requires Rac inactivation. Biochem Pharmacol 2006; 73:1491-8. [PMID: 17258688 DOI: 10.1016/j.bcp.2006.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
In response to glomerular injury, mesangial cells are activated into myofibroblasts, which contribute to the physiopathology of glomerulosclerosis. We have previously shown that chronic treatment of cultured human mesangial cells with mycophenolic acid (MPA), a specific inhibitor of guanosine nucleotide synthesis, prevents their activation and alters cytoskeleton protein expression and associated functions, such as contractility and migratory capacity. The aim of the present study was to explore the mechanisms underlying MPA-induced mesangial cytoskeleton alterations. We therein show that coincubation with guanosine (100 microM) compensates for the effects of MPA on mesangial cell proliferation and migration, and prevents MPA-induced overexpression of alpha-smooth muscle actin (SMA) and basic calponin (b-calp), indicating that guanylates are involved in mesangial responses to MPA. MPA decreased the GTP-bound (active) form of both RhoA, Rac1 and Cdc42, and specifically altered the expression level of Rac1. Pharmacological inhibition of RhoA activity reduced expression of both SMA and calponin, whereas overexpression of a dominant-negative form of Rac1 increased SMA expression. Conversely, overexpression of constitutively active Rac1 resulted in SMA and b-calp down-regulation, and fully prevented their stimulation by MPA, indicating that Rac inactivation is responsible for MPA effects on mesangial cytoskeletal expression. These results show that in human mesangial cells, RhoA and Rac1 exert opposite effects on the expression of two major cytoskeletal proteins: SMA and basic calponin. Moreover, these data highlight for the first time an integrated mechanism whereby MPA regulates mesangial phenotype, which is mediated by loss of Rac activity.
Collapse
|