1
|
Kim H, Bell T, Lee K, Jeong J, Bardwell JCA, Lee C. Identification of host genetic factors modulating β-lactam resistance in Escherichia coli harbouring plasmid-borne β-lactamase through transposon-sequencing. Emerg Microbes Infect 2025; 14:2493921. [PMID: 40231449 PMCID: PMC12024506 DOI: 10.1080/22221751.2025.2493921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Since β-lactam antibiotics are widely used, emergence of bacteria with resistance to them poses a significant threat to society. In particular, acquisition of genes encoding β-lactamase, an enzyme that degrades β-lactam antibiotics, has been a major contributing factor in the emergence of bacteria that are resistant to β-lactam antibiotics. However, relatively few genetic targets for killing these resistant bacteria have been identified to date. Here, we used a systematic approach called transposon-sequencing (Tn-Seq), to screen the Escherichia coli genome for host genetic factors that, when mutated, affect resistance to ampicillin, one of the β-lactam antibiotics, in a strain carrying a plasmid that encodes β-lactamase. This approach enabled not just the isolation of genes previously known to affect β-lactam resistance, but the additional loci skp, gshA, phoPQ and ypfN. Individual mutations in these genes modestly but consistently affected antibiotic resistance. We have identified that these genes are not only implicated in β-lactam resistance by itself but also play a crucial role in conditions associated with the expression of β-lactamase. GshA and phoPQ appear to contribute to β-lactam resistance by regulating membrane integrity. Notably, the overexpression of the uncharacterized membrane-associated protein, ypfN, has been shown to significantly enhance β-lactam resistance. We applied the genes identified from the screening into Salmonella Typhimurium and Pseudomonas aeruginosa strains, both critical human pathogens with antibiotic resistance, and observed their significant impact on β-lactam resistance. Therefore, these genes can potentially be utilized as therapeutic targets to control the survival of β-lactamase-producing bacteria.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Research Institute of Basic Sciences, Ajou University, Suwon, South Korea
| | - Travis Bell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeongyun Jeong
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - James C. A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Wang Y, Jiao R, Zhang X, Ren Y, Zhao W, Ye Y. OmpR-mediated activation of the type Vl secretion system drives enhanced acid tolerance in Cronobacter. J Dairy Sci 2025; 108:3390-3403. [PMID: 39890079 DOI: 10.3168/jds.2024-25685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
Cronobacter (7 species) are prevalent foodborne pathogens with a remarkable capacity to adapt to acidic environments. This resilience enables them to persist in both food matrices and host organisms. Here we investigated the role of the 2-component system response regulator OmpR in the acid tolerance of Cronobacter. Under acid stress, Cronobacter malonaticus demonstrated significantly elevated expression of ompR and type VI secretion system (T6SS) genes, as well as a marked decrease in the survival of OmpR or T6SS structure gene mutants, indicating the pivotal role of OmpR and T6SS in acid tolerance. Notably, OmpR markedly enhanced the T6SS expression by binding specifically to its promoter, and the activated T6SS expedited adaptation to acidic environments and facilitated biofilm formation, thereby aiding Cronobacter's survival under acidic conditions. Moreover, knocking out ompR in 6 additional Cronobacter species resulted in decreased T6SS expression and tolerance to acid stress than their wild-type strains, which further solidifies the widespread nature of the acid tolerance mechanism predicated on the activation of T6SS by OmpR in Cronobacter spp. A comprehensive understanding of the adaptation mechanisms employed by Cronobacter spp. in acidic conditions will provide a theoretical foundation for managing their contamination in acidic food matrices and preventing infection outbreaks in the infant gastrointestinal tract.
Collapse
Affiliation(s)
- Yang Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Yuwei Ren
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Wenhua Zhao
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, China.
| |
Collapse
|
3
|
Gama-Martínez Y, Hernández VM, Encarnación-Guevara S, Martínez-Batallar Á, Hernández-Lucas I. The LysR-type transcriptional regulator STY2660 is involved in outer membrane protein synthesis, bile resistance and motility in Salmonella enterica serovar Typhi. Front Microbiol 2025; 16:1554102. [PMID: 40083782 PMCID: PMC11904634 DOI: 10.3389/fmicb.2025.1554102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever in humans, contains 44 LysR-type transcriptional regulators (LTTRs), most of which are annotated as hypothetical proteins whose roles are not yet described. In this work we demonstrated by mutants, growth evaluation in bile salts, transcriptional fusions, EMSAs, outer membrane protein profiles and motility assays, that the S. Typhi LTTR STY2660 is involved in two regulatory networks: FNR-STY2660-OmpR-OmpC for porin synthesis and bile resistance and FNR-STY2660-OmpR-FliD for motility. Thus, the LTTR STY2660 is able to establish genetic communication with master regulatory proteins to promote and efficiently respond to adverse conditions present in the host.
Collapse
Affiliation(s)
- Yitzel Gama-Martínez
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | - Victor M. Hernández
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Programa de Genomica Funcional de Procariotes, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | - Ángel Martínez-Batallar
- Programa de Genomica Funcional de Procariotes, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | - Ismael Hernández-Lucas
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| |
Collapse
|
4
|
Fayoud H, Belousov MV, Antonets KS, Nizhnikov AA. Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2107-2132. [PMID: 39865026 DOI: 10.1134/s0006297924120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025]
Abstract
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity. Recent studies have shown that, beside their commonly known activity, amyloids may be involved in the spatial regulation of proteome by modulating aggregation of other amyloidogenic proteins with multiple functional or pathological effects. Although the studies on the role of microbiome-produced amyloids in the development of amyloidoses in humans and animals have only been started, it is clear that humans as holobionts contain amyloids encoded not only by the host genome, but also by microorganisms that constitute the microbiome. Amyloids acquired from external sources (e.g., food) can interact with holobiont amyloids and modulate the effects of bacterial and host amyloids, thus adding another level of complexity to the holobiont-associated amyloid network. In this review, we described bacterial amyloids directly or indirectly involved in disease pathogenesis in humans and discussed the significance of bacterial amyloids in the three-component network of holobiont-associated amyloids.
Collapse
Affiliation(s)
- Haidar Fayoud
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Mikhail V Belousov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Kirill S Antonets
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Anton A Nizhnikov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8)
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| |
Collapse
|
5
|
Zhao Y, Xu H, Wang H, Wang P, Chen S. Multidrug resistance in Pseudomonas aeruginosa: genetic control mechanisms and therapeutic advances. MOLECULAR BIOMEDICINE 2024; 5:62. [PMID: 39592545 PMCID: PMC11599538 DOI: 10.1186/s43556-024-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen, and its complex mechanisms of antibiotic resistance pose a challenge to modern medicine. This literature review explores the advancements made from 1979 to 2024 in understanding the regulatory networks of antibiotic resistance genes in Pseudomonas aeruginosa, with a particular focus on the molecular underpinnings of these resistance mechanisms. The review highlights four main pathways involved in drug resistance: reducing outer membrane permeability, enhancing active efflux systems, producing antibiotic-inactivating enzymes, and forming biofilms. These pathways are intricately regulated by a combination of genetic regulation, transcriptional regulators, two-component signal transduction, DNA methylation, and small RNA molecules. Through an in-depth analysis and synthesis of existing literature, we identify key regulatory elements mexT, ampR, and argR as potential targets for novel antimicrobial strategies. A profound understanding of the core control nodes of drug resistance offers a new perspective for therapeutic intervention, suggesting that modulating these elements could potentially reverse resistance and restore bacterial susceptibility to antibiotics. The review looks forward to future research directions, proposing the use of gene editing and systems biology to further understand resistance mechanisms and to develop effective antimicrobial strategies against Pseudomonas aeruginosa. This review is expected to provide innovative solutions to the problem of drug resistance in infectious diseases.
Collapse
Affiliation(s)
- Yuanjing Zhao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Haoran Xu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hui Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Simin Chen
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
6
|
Gaddy KE, Bensch EM, Cavanagh J, Milton ME. Insights into DNA-binding motifs and mechanisms of Francisella tularensis novicida two-component system response regulator proteins QseB, KdpE, and BfpR. Biochem Biophys Res Commun 2024; 722:150150. [PMID: 38805787 DOI: 10.1016/j.bbrc.2024.150150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Two component system bacterial response regulators are typically DNA-binding proteins which enable the genetic regulation of many adaptive bacterial behaviors. Despite structural similarity across response regulator families, there is a diverse array of DNA-binding mechanisms. Bacteria usually encode several dozen two-component system response regulators, but Francisella tularensis only encodes three. Due to their simplified response regulatory network, Francisella species are a model for studying the role of response regulator proteins in virulence. Here, we show that Francisella response regulators QseB, KdpE, and BfpR all utilize different DNA-binding mechanisms. Our evidence suggests that QseB follows a simple mechanism whereby it binds a single inverted repeat sequence with a higher affinity upon phosphorylation. This behavior is independent of whether QseB is a positive or negative regulator of the gene as demonstrated by qseB and priM promoter sequences, respectively. Similarly, KdpE binds DNA more tightly upon phosphorylation, but also exhibits a cooperative binding isotherm. While we propose a KdpE binding site, it is possible that KdpE has a complex DNA-binding mechanism potentially involving multiple copies of KdpE being recruited to a promoter region. Finally, we show that BfpR appears to bind a region of its own promoter sequence with a lower affinity upon phosphorylation. Further structural and enzymatic work will need to be performed to deconvolute the KdpE and BfpR binding mechanisms.
Collapse
Affiliation(s)
- Keegan E Gaddy
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Elody M Bensch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Morgan E Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
7
|
Strahilevitz J, Motro Y, Temper V, Merezhko D, Ayalon O, Bar Moshe Y, Lam MMC, Holt KE, Moran-Gilad J. In vivo selection of carbapenem resistance during persistent Klebsiella pneumoniae sequence type 395 bloodstream infection due to OmpK36 deletion. Antimicrob Agents Chemother 2024; 68:e0066324. [PMID: 38990012 PMCID: PMC11304683 DOI: 10.1128/aac.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Non-carbapenemase-producing carbapenem-resistant Enterobacterales (non-CP CRE) may be associated with a grave outcome. The common underlying mechanism is beta-lactamases and mutations in outer membrane porins. We report a case of a deep-seated infection caused by Klebsiella pneumoniae ST395 not amenable to source control, involving recurrent bloodstream infection, resulting in in vivo selection of carbapenem resistance under therapy. Three consecutive K. pneumoniae blood isolates were studied using short- and long-read sequencing. The genomes were subject to resistome and virulome, phylogenetic, and plasmid analyses. ompK36 porins were analyzed at the nucleotide and amino acid levels. Genomes were compared to 297 public ST395 K. pneumoniae genomes using cgMLST, resistome, and porin analyses and the EuSCAPE project. Relevant ompK36 and micF sequences were extracted and analyzed as above. The three sequential K. pneumoniae blood isolates belonged to the same clone. Subsequent CR isolates revealed a new large deletion of the ompK36 gene also involving the upstream region (deletion of micF). Comparison with public ST395 genomes revealed the study isolates belonged to clade B, representing a separate clone. N-terminal large ompK36 truncations were uncommon in both public data sets. In vivo selection of non-CP CRE K. pneumoniae could have substantial clinical implications. Such selection should be scrutinized through repeated cultures and frequent susceptibility testing during antimicrobial treatment, especially in the context of persistent or recurrent bloodstream infections and when adequate source control cannot be achieved. The occurrence of an unusually large deletion involving the ompK36 locus and upstream micF should be further studied.
Collapse
Affiliation(s)
- Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University, Jerusalem, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Violeta Temper
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University, Jerusalem, Israel
| | - Diana Merezhko
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Oshrat Ayalon
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University, Jerusalem, Israel
| | | | - Margaret M. C. Lam
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacob Moran-Gilad
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University, Jerusalem, Israel
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
8
|
Brödel AK, Charpenay LH, Galtier M, Fuche FJ, Terrasse R, Poquet C, Havránek J, Pignotti S, Krawczyk A, Arraou M, Prevot G, Spadoni D, Yarnall MTN, Hessel EM, Fernandez-Rodriguez J, Duportet X, Bikard D. In situ targeted base editing of bacteria in the mouse gut. Nature 2024; 632:877-884. [PMID: 38987595 PMCID: PMC11338833 DOI: 10.1038/s41586-024-07681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Microbiome research is now demonstrating a growing number of bacterial strains and genes that affect our health1. Although CRISPR-derived tools have shown great success in editing disease-driving genes in human cells2, we currently lack the tools to achieve comparable success for bacterial targets in situ. Here we engineer a phage-derived particle to deliver a base editor and modify Escherichia coli colonizing the mouse gut. Editing of a β-lactamase gene in a model E. coli strain resulted in a median editing efficiency of 93% of the target bacterial population with a single dose. Edited bacteria were stably maintained in the mouse gut for at least 42 days following treatment. This was achieved using a non-replicative DNA vector, preventing maintenance and dissemination of the payload. We then leveraged this approach to edit several genes of therapeutic relevance in E. coli and Klebsiella pneumoniae strains in vitro and demonstrate in situ editing of a gene involved in the production of curli in a pathogenic E. coli strain. Our work demonstrates the feasibility of modifying bacteria directly in the gut, offering a new avenue to investigate the function of bacterial genes and opening the door to the design of new microbiome-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Bikard
- Eligo Bioscience, Paris, France.
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France.
| |
Collapse
|
9
|
Wang Y, Ling N, Jiao R, Zhang X, Ren Y, Zhao W, Chen H, Ye Y. A universal mechanism on desiccation tolerance of Cronobacter based on intracellular trehalose accumulation regulated by EnvZ/OmpR. Food Microbiol 2024; 119:104455. [PMID: 38225055 DOI: 10.1016/j.fm.2023.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Cronobacter (seven species) can survive in dry powdered infant formula for a long time, but the thorough molecular mechanism of resistance to desiccation remains elusive. Here we examine the regulation mechanism of Cronobacter's tolerance to desiccation by the typical two-component system (TCS) EnvZ/OmpR. When exposed to desiccation conditions, Cronobacter showed higher survival than other pathogens, as well as significantly up-regulated expression of ompR and otsAB genes with markedly decreased survival of their mutants, suggesting their relationship with desiccation tolerance. OmpR directly binds to the promoter of trehalose biosynthesis operon otsBA, significantly enhancing their expression, and boosting the trehalose levels. The ompR-deletion in other six species further confirmed its positive regulation in desiccation tolerance. Our data present a hypothesis that EnvZ/OmpR increases intracellular trehalose levels against damage to the cells, which prompts Cronobacter to survive in desiccation conditions. This study reveals a universal molecular mechanism for desiccation resistance in Cronobacter species.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuwei Ren
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenhua Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hanfang Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.
| |
Collapse
|
10
|
Deschner F, Risch T, Baier C, Schlüter D, Herrmann J, Müller R. Nitroxoline resistance is associated with significant fitness loss and diminishes in vivo virulence of Escherichia coli. Microbiol Spectr 2024; 12:e0307923. [PMID: 38063385 PMCID: PMC10782962 DOI: 10.1128/spectrum.03079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Antimicrobial resistance (AMR) poses a global threat and requires the exploration of underestimated treatment options. Nitroxoline, an effective broad-spectrum antibiotic, does not suffer from high resistance rates in the clinics but surprisingly, it is not heavily used yet. Our findings provide compelling evidence that Nitroxoline resistance renders bacteria unable to cause an infection in vivo, thereby reinvigorating the potential of Nitroxoline in combating AMR.
Collapse
Affiliation(s)
- Felix Deschner
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Timo Risch
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Claas Baier
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Dirk Schlüter
- German Centre for Infection Research (DZIF), Braunschweig, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Jennifer Herrmann
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
11
|
Belousov MV, Kosolapova AO, Fayoud H, Sulatsky MI, Sulatskaya AI, Romanenko MN, Bobylev AG, Antonets KS, Nizhnikov AA. OmpC and OmpF Outer Membrane Proteins of Escherichia coli and Salmonella enterica Form Bona Fide Amyloids. Int J Mol Sci 2023; 24:15522. [PMID: 37958507 PMCID: PMC10649029 DOI: 10.3390/ijms242115522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Outer membrane proteins (Omps) of Gram-negative bacteria represent porins involved in a wide range of virulence- and pathogenesis-related cellular processes, including transport, adhesion, penetration, and the colonization of host tissues. Most outer membrane porins share a specific spatial structure called the β-barrel that provides their structural integrity within the membrane lipid bilayer. Recent data suggest that outer membrane proteins from several bacterial species are able to adopt the amyloid state alternative to their β-barrel structure. Amyloids are protein fibrils with a specific spatial structure called the cross-β that gives them an unusual resistance to different physicochemical influences. Various bacterial amyloids are known to be involved in host-pathogen and host-symbiont interactions and contribute to colonization of host tissues. Such an ability of outer membrane porins to adopt amyloid state might represent an important mechanism of bacterial virulence. In this work, we investigated the amyloid properties of the OmpC and OmpF porins from two species belonging to Enterobacteriaceae family, Escherichia coli, and Salmonella enterica. We demonstrated that OmpC and OmpF of E. coli and S. enterica form toxic fibrillar aggregates in vitro. These aggregates exhibit birefringence upon binding Congo Red dye and show characteristic reflections under X-ray diffraction. Thus, we confirmed amyloid properties for OmpC of E. coli and demonstrated bona fide amyloid properties for three novel proteins: OmpC of S. enterica and OmpF of E. coli and S. enterica in vitro. All four studied porins were shown to form amyloid fibrils at the surface of E. coli cells in the curli-dependent amyloid generator system. Moreover, we found that overexpression of recombinant OmpC and OmpF in the E. coli BL21 strain leads to the formation of detergent- and protease-resistant amyloid-like aggregates and enhances the birefringence of bacterial cultures stained with Congo Red. We also detected detergent- and protease-resistant aggregates comprising OmpC and OmpF in S. enterica culture. These data are important in the context of understanding the structural dualism of Omps and its relation to pathogenesis.
Collapse
Affiliation(s)
- Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Haidar Fayoud
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (A.I.S.)
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (A.I.S.)
| | - Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
12
|
Tsai MJ, Zambrano RA, Susas JL, Silva L, Takahashi MK. Identifying Antisense Oligonucleotides to Disrupt Small RNA Regulated Antibiotic Resistance via a Cell-Free Transcription-Translation Platform. ACS Synth Biol 2023; 12:2245-2251. [PMID: 37540186 PMCID: PMC10443041 DOI: 10.1021/acssynbio.3c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 08/05/2023]
Abstract
Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells, including antibiotic resistance and virulence genes, through base-pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits the permeability of antibiotics. Here we devised a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF. ASOs were then ordered as peptide nucleic acids conjugated to cell-penetrating peptides (CPP-PNA) to allow for effective delivery into bacteria. Subsequent minimum inhibitory concentration (MIC) assays demonstrated that simultaneously targeting the regions of MicF responsible for sequestering the start codon and the Shine-Dalgarno sequence of ompF with two different CPP-PNAs synergistically reduced the MIC for a set of antibiotics. This investigation offers a TX-TL-based approach to identify novel therapeutic candidates to combat intrinsic sRNA-mediated antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Min Jen Tsai
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| | - Raphael Angelo
I. Zambrano
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
- Department
of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, United States
| | - Jeremiah Lyn Susas
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| | - Lizette Silva
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| | - Melissa K. Takahashi
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| |
Collapse
|
13
|
Canals A, Pieretti S, Muriel-Masanes M, El Yaman N, Plecha SC, Thomson JJ, Fàbrega-Ferrer M, Pérez-Luque R, Krukonis ES, Coll M. ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites. Proc Natl Acad Sci U S A 2023; 120:e2304378120. [PMID: 37428913 PMCID: PMC10629549 DOI: 10.1073/pnas.2304378120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
ToxR, a Vibrio cholerae transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in V. cholerae, here we present the crystal structures of the ToxR cytoplasmic domain bound to DNA at the toxT and ompU promoters. The structures confirm some predicted interactions, yet reveal other unexpected promoter interactions with implications for other potential regulatory roles for ToxR. We show that ToxR is a versatile virulence regulator that recognizes diverse and extensive, eukaryotic-like regulatory DNA sequences, that relies more on DNA structural elements than specific sequences for binding. Using this topological DNA recognition mechanism, ToxR can bind both in tandem and in a twofold inverted-repeat-driven manner. Its regulatory action is based on coordinated multiple binding to promoter regions near the transcription start site, which can remove the repressing H-NS proteins and prepares the DNA for optimal interaction with the RNA polymerase.
Collapse
Affiliation(s)
- Albert Canals
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Simone Pieretti
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Mireia Muriel-Masanes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Nour El Yaman
- Department of Biology, University of Detroit Mercy, Detroit, MI48221
| | - Sarah C. Plecha
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI48208
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI48208
| | - Montserrat Fàbrega-Ferrer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Rosa Pérez-Luque
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Eric S. Krukonis
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI48208
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| |
Collapse
|
14
|
Tsai MJ, Zambrano RAI, Susas JL, Silva L, Takahashi MK. Identifying antisense oligonucleotides to disrupt small RNA regulated antibiotic resistance via a cell-free transcription-translation platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537543. [PMID: 37131760 PMCID: PMC10153260 DOI: 10.1101/2023.04.19.537543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells including antibiotic resistance and virulence genes through base pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits permeability of antibiotics. Here, we devise a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF. ASOs were then ordered as peptide nucleic acids conjugated to cell-penetrating peptides (CPP-PNA) to allow for effective delivery into bacteria. Subsequent minimum inhibitory concentration (MIC) assays demonstrated that simultaneously targeting the regions of MicF responsible for sequestering the start codon and the Shine-Dalgarno sequence of ompF with two different CPP-PNAs synergistically reduced the MIC for a set of antibiotics. This investigation offers a TX-TL based approach to identify novel therapeutic candidates to combat intrinsic sRNA-mediated antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Min Jen Tsai
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Raphael Angelo I. Zambrano
- Department of Biology, California State University Northridge, Northridge, CA 91330
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Jeremiah Lyn Susas
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Lizette Silva
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Melissa K. Takahashi
- Department of Biology, California State University Northridge, Northridge, CA 91330
| |
Collapse
|
15
|
Sano K, Kobayashi H, Chuta H, Matsuyoshi N, Kato Y, Ogasawara H. CsgI (YccT) Is a Novel Inhibitor of Curli Fimbriae Formation in Escherichia coli Preventing CsgA Polymerization and Curli Gene Expression. Int J Mol Sci 2023; 24:ijms24054357. [PMID: 36901788 PMCID: PMC10002515 DOI: 10.3390/ijms24054357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.
Collapse
Affiliation(s)
- Kotaro Sano
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroaki Kobayashi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hirotaka Chuta
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Nozomi Matsuyoshi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Renaissance Center for Applied Microbiology, Shinshu University, Nagano-shi, Nagano 380-8553, Japan
- Correspondence: ; Tel.: +81-268-21-5803
| |
Collapse
|
16
|
Gebremichael Y, Crandall J, Mukhopadhyay R, Xu F. Salmonella Subpopulations Identified from Human Specimens Express Heterogenous Phenotypes That Are Relevant to Clinical Diagnosis. Microbiol Spectr 2023; 11:e0167922. [PMID: 36507668 PMCID: PMC9927314 DOI: 10.1128/spectrum.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clonal bacterial cells can give rise to functionally heterogeneous subpopulations. This diversification is considered an adaptation strategy that has been demonstrated for several bacterial species, including Salmonella enterica serovar Typhimurium. In previous studies on mouse models infected orally with pure Salmonella cultures, derived bacterial cells collected from animal tissues were found to express heterogenous phenotypes. Here, we show mixed Salmonella populations, apparently derived from the same progenitor, present in human specimens collected at a single disease time point, and in a long-term-infected patient, these Salmonella were no longer expressing surface-exposed antigen epitopes by isolates collected at earlier days of the disease. The subpopulations express different phenotypes related to cell surface antigen expression, motility, biofilm formation, biochemical metabolism, and antibiotic resistance, which can all contribute to pathogenicity. Some of the phenotypes correlate with single nucleotide polymorphisms or other sequence changes in bacterial genomes. These genetic variations can alter synthesis of cell membrane-associated molecules such as lipopolysaccharides and lipoproteins, leading to changes in bacterial surface structure and function. This study demonstrates the limitation of Salmonella diagnostic methods that are based on a single-cell population which may not represent the heterogenous bacterial community in infected humans. IMPORTANCE In animal model systems, heterogenous Salmonella phenotypes were found previously to regulate bacterial infections. We describe in this communication that different Salmonella phenotypes also exist in infected humans at a single disease time point and that their phenotypic and molecular traits are associated with different aspects of pathogenicity. Notably, variation in genes encoding antibiotic resistance and two-component systems were observed from the subpopulations of a patient suffering from persistent salmonellosis. Therefore, clinical and public health interventions of the disease that are based on diagnosis of a single-cell population may miss other subpopulations that can cause residual human infections.
Collapse
Affiliation(s)
- Yismashoa Gebremichael
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - John Crandall
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Rituparna Mukhopadhyay
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Fengfeng Xu
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
17
|
The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms 2022; 11:microorganisms11010035. [PMID: 36677326 PMCID: PMC9861516 DOI: 10.3390/microorganisms11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Acidithiobacillus spp. are prevalent in acid mine drainage, and they have been widely used in biomining for extracting nonferrous metals from ores. The osmotic stress generated by elevated concentrations of inorganic ions is a severe challenge for the growth of Acidithiobacillus spp. in the bioleaching process; however, the adaptation mechanism of these bacteria to high osmotic pressure remains unclear. In this study, bioinformatics analysis indicated that the osmotic stress response two-component system EnvZ-OmpR is widely distributed in Acidithiobacillus spp., while OmpRs from Acidithiobacillus spp. exhibited a far more evolutionary relationship with the well-studied OmpRs in E. coli and Salmonella typhimurium. The growth measurement of an Acidithiobacillus caldus (A. caldus) ompR-knockout strain demonstrated that OmpR is essential in the adaptation of this bacterium to high osmotic stress. The overall impact of OmpR on the various metabolic and regulatory systems of A. caldus was revealed by transcriptome analysis. The OmpR binding sequences of differentially expressed genes (DEGs) were predicted, and the OmpR box motif in A. caldus was analysed. The direct and negative regulation of EnvZ-OmpR on the tetrathionate-metabolic (tetH) cluster in A. caldus was discovered for the first time, and a co-regulation mode mediated by EnvZ-OmpR and RsrS-RsrR for the tetrathionate intermediate thiosulfate-oxidizing (S4I) pathway in this microorganism was proposed. This study reveals that EnvZ-OmpR is an indispensable regulatory system for the ability of A. caldus to cope with high osmotic stress and the significance of EnvZ-OmpR on the regulation of sulfur metabolism in A. caldus adapting to the high-salt environment.
Collapse
|
18
|
Trebosc V, Lucchini V, Narwal M, Wicki B, Gartenmann S, Schellhorn B, Schill J, Bourotte M, Frey D, Grünberg J, Trauner A, Ferrari L, Felici A, Champion OL, Gitzinger M, Lociuro S, Kammerer RA, Kemmer C, Pieren M. Targeting virulence regulation to disarm Acinetobacter baumannii pathogenesis. Virulence 2022; 13:1868-1883. [PMID: 36261919 PMCID: PMC9586577 DOI: 10.1080/21505594.2022.2135273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of anti-virulence drug therapy against Acinetobacter baumannii infections would provide an alternative to traditional antibacterial therapy that are increasingly failing. Here, we demonstrate that the OmpR transcriptional regulator plays a pivotal role in the pathogenesis of diverse A. baumannii clinical strains in multiple murine and G. mellonella invertebrate infection models. We identified OmpR-regulated genes using RNA sequencing and further validated two genes whose expression can be used as robust biomarker to quantify OmpR inhibition in A. baumannii. Moreover, the determination of the structure of the OmpR DNA binding domain of A. baumannii and the development of in vitro protein-DNA binding assays enabled the identification of an OmpR small molecule inhibitor. We conclude that OmpR is a valid and unexplored target to fight A. baumannii infections and we believe that the described platform combining in silico methods, in vitro OmpR inhibitory assays and in vivo G. mellonella surrogate infection model will facilitate future drug discovery programs.
Collapse
Affiliation(s)
| | - Valentina Lucchini
- BioVersys AG, Basel, Switzerland.,Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Daniel Frey
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Livia Ferrari
- Microbiology Discovery, Aptuit Srl, an Evotec Company, Verona, Italy
| | - Antonio Felici
- Microbiology Discovery, Aptuit Srl, an Evotec Company, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Duck infectious serositis, also known as Riemerella anatipestifer disease, infects domestic ducks, geese, and turkeys and wild birds. However, the regulatory mechanism of its pathogenicity remains unclear. The PhoPR two-component system (TCS) was first reported in Gram-negative bacteria in our previous research and was demonstrated to be involved in virulence and gene expression. Here, DNA affinity purification sequencing (DAP-seq) was applied to further explore the regulation of PhoPR in relation to pathogenicity in R. anatipestifer. A conserved motif was identified upstream of 583 candidate target genes which were directly regulated by PhoP. To further confirm the genes which are regulated by PhoR and PhoP, single-gene-deletion strains were constructed. The results of transcriptome analysis using next-generation RNA sequencing showed 136 differentially expressed genes (DEGs) between the ΔphoP strain and the wild type (WT) and 183 DEGs between the ΔphoR strain and the WT. The candidate target genes of PhoP were further identified by combining transcriptome analysis and DAP-seq, which revealed that the main direct regulons of PhoP are located on the membrane and PhoP is involved in regulating aerotolerance. Using the in vivo duck model, the pathogenicity of ΔphoP and ΔphoR mutants was found to be significantly lower than that of the WT. Together, our findings provide insight into the direct regulation of PhoP and suggest that phoPR is essential for the pathogenicity of R. anatipestifer. The gene deletion strains are expected to be candidate live vaccine strains of R. anatipestifer which can be used as ideal genetic engineering vector strains for the expression of foreign antigens. IMPORTANCE Riemerella anatipestifer is a significant pathogen with high mortality in the poultry industry that causes acute septicemia and infectious polyserositis in ducks, chickens, geese, and other avian species. Previously, we characterized the two-component system encoded by phoPR and found that R. anatipestifer almost completely lost its pathogenicity for ducklings when phoPR was deleted. However, the mechanism of PhoPR regulation of virulence in R. anatipestifer had not been deeply explored. In this study, we utilized DAP-seq to explore the DNA-binding sites of PhoP as a response regulator in the global genome. Furthermore, phoP and phoR were deleted separately, and transcriptomics analysis of the corresponding gene deletion strains was performed. We identified a series of directly regulated genes of the PhoPR two-component system. The duckling model showed that both PhoP and PhoR are essential virulence-related factors in R. anatipestifer.
Collapse
|
20
|
Trampari E, Zhang C, Gotts K, Savva GM, Bavro VN, Webber M. Cefotaxime Exposure Selects Mutations within the CA-Domain of envZ Which Promote Antibiotic Resistance but Repress Biofilm Formation in Salmonella. Microbiol Spectr 2022; 10:e0214521. [PMID: 35475640 PMCID: PMC9241649 DOI: 10.1128/spectrum.02145-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Cephalosporins are important beta lactam antibiotics, but resistance can be mediated by various mechanisms including production of beta lactamase enzymes, changes in membrane permeability or active efflux. We used an evolution model to study how Salmonella adapts to subinhibitory concentrations of cefotaxime in planktonic and biofilm conditions and characterized the mechanisms underpinning this adaptation. We found that Salmonella rapidly adapts to subinhibitory concentrations of cefotaxime via selection of multiple mutations within the CA-domain region of EnvZ. We showed that changes in this domain affect the ATPase activity of the enzyme and in turn impact OmpC, OmpF porin expression and hence membrane permeability leading to increased tolerance to cefotaxime and low-level resistance to different classes of antibiotics. Adaptation to cefotaxime through EnvZ also resulted in a significant cost to biofilm formation due to downregulation of curli. We assessed the role of the mutations identified on the activity of EnvZ by genetic characterization, biochemistry and in silico analysis and confirmed that they are responsible for the observed phenotypes. We observed that sublethal cefotaxime exposure selected for heterogeneity in populations with only a subpopulation carrying mutations within EnvZ and being resistant to cefotaxime. Population structure and composition dynamically changed depending on the presence of the selection pressure, once selected, resistant subpopulations were maintained even in extended passage without drug. IMPORTANCE Understanding mechanisms of antibiotic resistance is crucial to guide how best to use antibiotics to minimize emergence of resistance. We used a laboratory evolution system to study how Salmonella responds to cefotaxime in both planktonic and biofilm conditions. In both contexts, we observed rapid selection of mutants within a single hot spot within envZ. The mutations selected altered EnvZ which in turn triggers changes in porin production at the outer membrane. Emergence of mutations within this region was repeatedly observed in parallel lineages in different conditions. We used a combination of genetics, biochemistry, phenotyping and structural analysis to understand the mechanisms. This data show that the changes we observe provide resistance to cefotaxime but come at a cost to biofilm formation and the fitness of mutants changes greatly depending on the presence or absence of a selective drug. Studying how resistance emerges can inform selective outcomes in the real world.
Collapse
Affiliation(s)
| | - Chuanzhen Zhang
- Quadram Institute Bioscience, Norwich, United Kingdom
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kathryn Gotts
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Vassiliy N. Bavro
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Mark Webber
- Quadram Institute Bioscience, Norwich, United Kingdom
- Medical School, University of East Anglia, Norfolk, United Kingdom
| |
Collapse
|
21
|
Kong L, Su M, Sang J, Huang S, Wang M, Cai Y, Xie M, Wu J, Wang S, Foster SJ, Zhang J, Han A. The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in Streptococcus mutans. Front Microbiol 2022; 13:820089. [PMID: 35558126 PMCID: PMC9087282 DOI: 10.3389/fmicb.2022.820089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.
Collapse
Affiliation(s)
- Lingyuan Kong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanshan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Min Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingquan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shida Wang
- State Key Laboratory for Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, The Florey Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
In-Human Multiyear Evolution of Carbapenem-Resistant Klebsiella pneumoniae Causing Chronic Colonization and Intermittent Urinary Tract Infections: A Case Study. mSphere 2022; 7:e0019022. [PMID: 35531657 PMCID: PMC9241548 DOI: 10.1128/msphere.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a frequent pathogen of the urinary tract, but how CRKP adapts in vivo over time is unclear. We examined 10 CRKP strains from a patient who experienced chronic colonization and recurrent urinary tract infections over a period of 4.5 years. We performed whole-genome sequencing and phenotypic assays to compare isolates that had evolved relative to the first isolate collected and to correlate genetic and phenotypic changes over time with the meropenem-containing regimen received. Phylogenetic analysis indicated that all 10 strains originated from the same sequence type 258 (ST258) clone and that three sublineages (SL) evolved over time; strains from two dominant sublineages were selected for detailed analysis. Up to 60 new mutations were acquired progressively in genes related to antibiotic resistance, cell metabolism, and biofilm production over time. Doubling of meropenem MICs, increases in biofilm production and blaKPC expression, and altered carbon metabolism occurred in the latter strains from the last sublineage compared to the initial strain. Subinhibitory meropenem exposure in vitro significantly induced or maintained high levels of biofilm production in colonizing isolates, but isolates causing infection were unaffected. Despite acquiring different mutations that affect carbon metabolism, overall carbon utilization was maintained across different strains. Together, these data showed that isolated urinary CRKP evolved through multiple adaptations affecting carbon metabolism, carbapenem resistance, and biofilm production to support chronic colonization and intermittent urinary tract infections. Our findings highlight the pliability of CRKP in adapting to repeated antibiotic exposure and should be considered when developing novel therapeutic and stewardship strategies. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) can cause a variety of infections such as recurrent urinary tract infections (rUTI) with the ability to change with the host environment over time. However, it is unclear how CRKP adapts to the urinary tract during chronic infections and colonization. Here, we studied the evolution of CRKP strains from a patient who experienced chronic colonization and recurrent UTIs over a period of 4.5 years despite multiple treatment courses with meropenem-containing regimens. Our findings show the flexibility of CRKP strains in developing changes in carbapenem resistance, biofilm production, and carbon metabolism over time, which could facilitate their persistence in the human body for long periods of time in spite of repeated antibiotic therapy.
Collapse
|
23
|
Lawrence JM, Yin Y, Bombelli P, Scarampi A, Storch M, Wey LT, Climent-Catala A, PixCell iGEM Team, Baldwin GS, O’Hare D, Howe CJ, Zhang JZ, Ouldridge TE, Ledesma-Amaro R. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. SCIENCE ADVANCES 2022; 8:eabm5091. [PMID: 35507663 PMCID: PMC9067924 DOI: 10.1126/sciadv.abm5091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yutong Yin
- Department of Bioengineering, Imperial College London, London, UK
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Alberto Scarampi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Storch
- London DNA Foundry, Imperial College Translation and Innovation Hub, London, UK
| | - Laura T. Wey
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Geoff S. Baldwin
- Department of Life Sciences, Imperial College London, London, UK
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Jenny Z. Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, UK
- Corresponding author.
| |
Collapse
|
24
|
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR. Int J Mol Sci 2022; 23:ijms23094758. [PMID: 35563149 PMCID: PMC9100119 DOI: 10.3390/ijms23094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS.
Collapse
|
25
|
Padgett-Pagliai KA, Pagliai FA, da Silva DR, Gardner CL, Lorca GL, Gonzalez CF. Osmotic stress induces long-term biofilm survival in Liberibacter crescens. BMC Microbiol 2022; 22:52. [PMID: 35148684 PMCID: PMC8832773 DOI: 10.1186/s12866-022-02453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Citrus greening, also known as Huanglongbing (HLB), is a devastating citrus plant disease caused predominantly by Liberibacter asiaticus. While nearly all Liberibacter species remain uncultured, here we used the culturable L. crescens BT-1 as a model to examine physiological changes in response to the variable osmotic conditions and nutrient availability encountered within the citrus host. Similarly, physiological responses to changes in growth temperature and dimethyl sulfoxide concentrations were also examined, due to their use in many of the currently employed therapies to control the spread of HLB. Sublethal heat stress was found to induce the expression of genes related to tryptophan biosynthesis, while repressing the expression of ribosomal proteins. Osmotic stress induces expression of transcriptional regulators involved in expression of extracellular structures, while repressing the biosynthesis of fatty acids and aromatic amino acids. The effects of osmotic stress were further evaluated by quantifying biofilm formation of L. crescens in presence of increasing sucrose concentrations at different stages of biofilm formation, where sucrose-induced osmotic stress delayed initial cell attachment while enhancing long-term biofilm viability. Our findings revealed that exposure to osmotic stress is a significant contributing factor to the long term survival of L. crescens and, possibly, to the pathogenicity of other Liberibacter species.
Collapse
Affiliation(s)
- Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Danilo R da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA.
| |
Collapse
|
26
|
Medina-Aparicio L, Rodriguez-Gutierrez S, Rebollar-Flores JE, Martínez-Batallar ÁG, Mendoza-Mejía BD, Aguirre-Partida ED, Vázquez A, Encarnación S, Calva E, Hernández-Lucas I. The CRISPR-Cas System Is Involved in OmpR Genetic Regulation for Outer Membrane Protein Synthesis in Salmonella Typhi. Front Microbiol 2021; 12:657404. [PMID: 33854491 PMCID: PMC8039139 DOI: 10.3389/fmicb.2021.657404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-Cas cluster is found in many prokaryotic genomes including those of the Enterobacteriaceae family. Salmonella enterica serovar Typhi (S. Typhi) harbors a Type I-E CRISPR-Cas locus composed of cas3, cse1, cse2, cas7, cas5, cas6e, cas1, cas2, and a CRISPR1 array. In this work, it was determined that, in the absence of cas5 or cas2, the amount of the OmpC porin decreased substantially, whereas in individual cse2, cas6e, cas1, or cas3 null mutants, the OmpF porin was not observed in an electrophoretic profile of outer membrane proteins. Furthermore, the LysR-type transcriptional regulator LeuO was unable to positively regulate the expression of the quiescent OmpS2 porin, in individual S. Typhi cse2, cas5, cas6e, cas1, cas2, and cas3 mutants. Remarkably, the expression of the master porin regulator OmpR was dependent on the Cse2, Cas5, Cas6e, Cas1, Cas2, and Cas3 proteins. Therefore, the data suggest that the CRISPR-Cas system acts hierarchically on OmpR to control the synthesis of outer membrane proteins in S. Typhi.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sarahí Rodriguez-Gutierrez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Blanca D Mendoza-Mejía
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eira D Aguirre-Partida
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandra Vázquez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
27
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Diversification of OmpA and OmpF of Yersinia ruckeri is independent of the underlying species phylogeny and evidence of virulence-related selection. Sci Rep 2021; 11:3493. [PMID: 33568758 PMCID: PMC7876001 DOI: 10.1038/s41598-021-82925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) which causes economically significant losses in farmed salmonids, especially Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). However, very little is known about the genetic relationships of disease-causing isolates in these two host species or about factors responsible for disease. Phylogenetic analyses of 16 representative isolates based on the nucleotide sequences of 19 housekeeping genes suggests that pathogenic Atlantic salmon and rainbow trout isolates represent distinct host-specific lineages. However, the apparent phylogenies of certain isolates has been influenced by horizontal gene transfer and recombinational exchange. Splits decomposition analysis demonstrated a net-like phylogeny based on the housekeeping genes, characteristic of recombination. Comparative analysis of the distribution of individual housekeeping gene alleles across the isolates demonstrated evidence of genomic mosaicism and recombinational exchange involving certain Atlantic salmon and rainbow trout isolates. Comparative nucleotide sequence analysis of the key outer membrane protein genes ompA and ompF revealed that the corresponding gene trees were both non-congruent with respect to the housekeeping gene phylogenies providing evidence that horizontal gene transfer has influenced the evolution of both these surface protein-encoding genes. Analysis of inferred amino acid sequence variation in OmpA identified a single variant, OmpA.1, that was present in serotype O1 and O8 isolates representing typical pathogenic strains in rainbow trout and Atlantic salmon, respectively. In particular, the sequence of surface-exposed loop 3 differed by seven amino acids to that of other Y. ruckeri isolates. These findings suggest that positive selection has likely influenced the presence of OmpA.1 in these isolates and that loop 3 may play an important role in virulence. Amino acid sequence variation of OmpF was greater than that of OmpA and was similarly restricted mainly to the surface-exposed loops. Two OmpF variants, OmpF.1 and OmpF.2, were associated with pathogenic rainbow trout and Atlantic salmon isolates, respectively. These OmpF proteins had very similar amino acid sequences suggesting that positive evolutionary pressure has also favoured the selection of these variants in pathogenic strains infecting both species.
Collapse
|
29
|
Structural basis for promoter DNA recognition by the response regulator OmpR. J Struct Biol 2020; 213:107638. [PMID: 33152421 DOI: 10.1016/j.jsb.2020.107638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022]
Abstract
OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR-DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc-DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this "druggable" target.
Collapse
|
30
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
31
|
Ali MM, Provoost A, Mijnendonckx K, Van Houdt R, Charlier D. DNA-Binding and Transcription Activation by Unphosphorylated Response Regulator AgrR From Cupriavidus metallidurans Involved in Silver Resistance. Front Microbiol 2020; 11:1635. [PMID: 32765465 PMCID: PMC7380067 DOI: 10.3389/fmicb.2020.01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Even though silver and silver nanoparticles at low concentrations are considered safe for human health, their steadily increasing use and associated release in nature is not without risk since it may result in the selection of silver-resistant microorganisms, thus impeding the utilization of silver as antimicrobial agent. Furthermore, increased resistance to metals may be accompanied by increased antibiotic resistance. Inactivation of the histidine kinase and concomitant upregulation of the cognate response regulator (RR) of the AgrRS two-component system was previously shown to play an important role in the increased silver resistance of laboratory adapted mutants of Cupriavidus metallidurans. However, binding of AgrR, a member of the OmpR/PhoP family of RRs with a conserved phosphoreceiver aspartate residue, to potential target promoters has never been demonstrated. Here we identify differentially expressed genes in the silver-resistant mutant NA4S in non-selective conditions by RNA-seq and demonstrate sequence-specific binding of AgrR to six selected promoter regions of upregulated genes and divergent operons. We delimit binding sites by DNase I and in gel copper-phenanthroline footprinting of AgrR-DNA complexes, and establish a high resolution base-specific contact map of AgrR-DNA interactions using premodification binding interference techniques. We identified a 16-bp core AgrR binding site (AgrR box) arranged as an imperfect inverted repeat of 6 bp (ATTACA) separated by 4 bp variable in sequence (6-4-6). AgrR interacts with two major groove segments and the intervening minor groove, all aligned on one face of the helix. Furthermore, an additional in phase imperfect direct repeat of the half-site may be observed slightly up and/or downstream of the inverted repeat at some operators. Mutant studies indicated that both inverted and direct repeats contribute to AgrR binding in vitro and AgrR-mediated activation in vivo. From the position of the AgrR box it appears that AgrR may act as a Type II activator for most investigated promoters, including positive autoregulation. Furthermore, we show in vitro binding and in vivo activation with dephosphomimetic AgrR mutant D51A, indicating that unphosphorylated AgrR is the active form of the RR in mutant NA4S.
Collapse
Affiliation(s)
- Md Muntasir Ali
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ann Provoost
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Lembke M, Höfler T, Walter AN, Tutz S, Fengler V, Schild S, Reidl J. Host stimuli and operator binding sites controlling protein interactions between virulence master regulator ToxR and ToxS in Vibrio cholerae. Mol Microbiol 2020; 114:262-278. [PMID: 32251547 PMCID: PMC7496328 DOI: 10.1111/mmi.14510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Protein-protein interactions (PPIs) are key mechanisms in the maintenance of biological regulatory networks. Herein, we characterize PPIs within ToxR and its co-activator, ToxS, to understand the mechanisms of ToxR transcription factor activation. ToxR is a key transcription activator that is supported by ToxS for virulence gene regulation in Vibrio cholerae. ToxR comprises a cytoplasmic DNA-binding domain that is linked by a transmembrane domain to a periplasmic signal receiver domain containing two cysteine residues. ToxR-ToxR and ToxR-ToxS PPIs were detected using an adenylate-cyclase-based bacterial two-hybrid system approach in Escherichia coli. We found that the ToxR-ToxR PPIs are significantly increased in response to ToxR operators, the co-activator ToxS and bile salts. We suggest that ToxS and bile salts promote the interaction between ToxR molecules that ultimately results in dimerization. Upon binding of operators, ToxR-ToxR PPIs are found at the highest frequency. Moreover, disulfide-bond-dependent interaction in the periplasm results in homodimer formation that is promoted by DNA binding. The formation of these homodimers and the associated transcriptional activity of ToxR were strongly dependent on the oxidoreductases DsbA/DsbC. These findings show that protein and non-protein partners, that either transiently or stably interact with ToxR, fine-tune ToxR PPIs, and its associated transcriptional activity in changing environments.
Collapse
Affiliation(s)
- Mareike Lembke
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Sarah Tutz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vera Fengler
- Division of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,BioHealth, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
33
|
Sher Y, Olm MR, Raveh-Sadka T, Brown CT, Sher R, Firek B, Baker R, Morowitz MJ, Banfield JF. Combined analysis of microbial metagenomic and metatranscriptomic sequencing data to assess in situ physiological conditions in the premature infant gut. PLoS One 2020; 15:e0229537. [PMID: 32130257 PMCID: PMC7055874 DOI: 10.1371/journal.pone.0229537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/09/2020] [Indexed: 12/29/2022] Open
Abstract
Microbes alter their transcriptomic profiles in response to the environment. The physiological conditions experienced by a microbial community can thus be inferred using meta-transcriptomic sequencing by comparing transcription levels of specifically chosen genes. However, this analysis requires accurate reference genomes to identify the specific genes from which RNA reads originate. In addition, such an analysis should avoid biases in transcript counts related to differences in organism abundance. In this study we describe an approach to address these difficulties. Sample-specific meta-genomic assembled genomes (MAGs) were used as reference genomes to accurately identify the origin of RNA reads, and transcript ratios of genes with opposite transcription responses were compared to eliminate biases related to differences in organismal abundance, an approach hereafter named the "diametric ratio" method. We used this approach to probe the environmental conditions experienced by Escherichia spp. in the gut of 4 premature infants, 2 of whom developed necrotizing enterocolitis (NEC), a severe inflammatory intestinal disease. We analyzed twenty fecal samples taken from four premature infants (4-6 time points from each infant), and found significantly higher diametric ratios of genes associated with low oxygen levels in samples of infants later diagnosed with NEC than in samples without NEC. We also show this method can be used for examining other physiological conditions, such as exposure to nitric oxide and osmotic pressure. These study results should be treated with caution, due to the presence of confounding factors that might also distinguish between NEC and control infants. Nevertheless, together with benchmarking analyses, we show here that the diametric ratio approach can be applied for evaluating the physiological conditions experienced by microbes in situ. Results from similar studies can be further applied for designing diagnostic methods to detect NEC in its early developmental stages.
Collapse
Affiliation(s)
- Yonatan Sher
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| | - Matthew R. Olm
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Tali Raveh-Sadka
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Christopher T. Brown
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ruth Sher
- Enview, Inc., San Francisco, California, United States of America
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robyn Baker
- Magee-Womens Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
34
|
Abstract
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.
Collapse
|
35
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
36
|
Shaku M, Park JH, Inouye M, Yamaguchi Y. Identification of MazF Homologue in Legionella pneumophila Which Cleaves RNA at the AACU Sequence. J Mol Microbiol Biotechnol 2019; 28:269-280. [PMID: 30893701 DOI: 10.1159/000497146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022] Open
Abstract
MazF is a sequence-specific endoribonuclease that is widely conserved in bacteria and archaea. Here, we found an MazF homologue (MazF-lp; LPO-p0114) in Legionella pneumophila. The mazF-lp gene overlaps 14 base pairs with the upstream gene mazE-lp (MazE-lp; LPO-p0115). The induction of mazF-lp caused cell growth arrest, while mazE-lp co-induction recovered cell growth in Escherichia coli. In vivo and in vitro primer extension experiments showed that MazF-lp is a sequence-specific endoribonuclease cleaving RNA at AACU. The endoribonuclease activity of purified MazF-lp was inhibited by purified MazE-lp. We found that MazE-lp and the MazEF-lp complex specifically bind to the palindromic sequence present in the 5'-untranslated region of the mazEF-lp operon. MazE-lp and MazEF-lp both likely function as a repressor for the mazEF-lp operon and for other genes, including icmR, whose gene product functions as a secretion chaperone for the IcmQ pore-forming protein, by specifically binding to the palindromic sequence in 5'-UTR of these genes.
Collapse
Affiliation(s)
- Mao Shaku
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan, .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan,
| |
Collapse
|
37
|
Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. mBio 2019; 10:mBio.02637-18. [PMID: 30647159 PMCID: PMC6336426 DOI: 10.1128/mbio.02637-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences. The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity.
Collapse
|
38
|
Lin TH, Chen Y, Kuo JT, Lai YC, Wu CC, Huang CF, Lin CT. Phosphorylated OmpR Is Required for Type 3 Fimbriae Expression in Klebsiella pneumoniae Under Hypertonic Conditions. Front Microbiol 2018; 9:2405. [PMID: 30369914 PMCID: PMC6194325 DOI: 10.3389/fmicb.2018.02405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022] Open
Abstract
OmpR/EnvZ is a two-component system that senses osmotic signals and controls downstream gene expression in many species of Enterobacteriaceae. However, the role of OmpR/EnvZ in Klebsiella pneumoniae remains unknown. In this study, we found that production of MrkA, the major subunit of type 3 fimbriae, was decreased under hypertonic conditions. A deletion mutant of ompR and a site-directed mutant with a single amino acid substitution of aspartate 55 to alanine (D55A), which mimics the unphosphorylated form of OmpR, markedly reduced MrkA production under hypertonic conditions. These results indicate that K. pneumoniae type 3 fimbriae expression is activated by the phosphorylated form of OmpR (OmpR∼P). Although no typical OmpR∼P binding site was found in the PmrkA sequence, mrkA mRNA levels and PmrkA activity were decreased in the ΔompR and ompRD55A strains compared with the wild type (WT) strain, indicating that OmpR∼P mediates type 3 fimbriae expression at the transcriptional level. Previous reports have demonstrated that a cyclic-di-GMP (c-di-GMP) related gene cluster, mrkHIJ, regulates the expression of type 3 fimbriae. We found that both the ompR and ompRD55A mutants exhibited decreased mrkHIJ mRNA levels, intracellular c-di-GMP concentration, and bacterial biofilm amount, but increased total intracellular phosphodiesterase activity in response to hypertonic conditions. These results indicate that OmpR∼P regulates type 3 fimbriae expression to influence K. pneumoniae biofilm formation via MrkHIJ and modulation of intracellular c-di-GMP levels. Taken together, we herein provide evidence that OmpR∼P acts as a critical factor in the regulation of the c-di-GMP signaling pathway, type 3 fimbriae expression, and biofilm amount in K. pneumoniae in response to osmotic stresses.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Department of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualian, Taiwan
| | - Yeh Chen
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Yi-Chyi Lai
- Department of Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
Ca 2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2018; 200:JB.00538-17. [PMID: 29263098 DOI: 10.1128/jb.00538-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.
Collapse
|
40
|
Duval V, Foster K, Brewster J, Levy SB. A Novel Regulatory Cascade Involving BluR, YcgZ, and Lon Controls the Expression of Escherichia coli OmpF Porin. Front Microbiol 2017; 8:1148. [PMID: 28713335 PMCID: PMC5491885 DOI: 10.3389/fmicb.2017.01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli, OmpF is an important outer membrane protein, which serves as a passive diffusion pore for small compounds including nutrients, antibiotics, and toxic compounds. OmpF expression responds to environmental changes such as temperature, osmolarity, nutrients availability, and toxic compounds via complex regulatory pathways involving transcriptional and post-transcriptional regulation. Our study identified a new regulatory cascade that controls the expression of OmpF porin. This pathway involves BluR, a transcriptional regulator repressing the expression of the ycgZ-ymgABC operon. We showed that BluR was responsible for the temperature-dependent regulation of the ycgZ-ymgABC operon. Furthermore, our results showed that independent expression of YcgZ led to a decreased activity of the ompF promoter, while YmgA, YmgB, and YmgC expression had no effect. We also determined that YcgZ accumulates in the absence of the Lon protease. Thus, mutation in bluR leads to de-repression of ycgZ-ymgABC transcription. With a second mutation in lon, YcgZ protein accumulates to reach levels that do not allow increased expression of OmpF under growth conditions that usually would, i.e., low temperature. With BluR responding to blue-light and temperature, this study sheds a new light on novel signals able to regulate OmpF porin.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| | - Kimberly Foster
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| | - Jennifer Brewster
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| | - Stuart B Levy
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| |
Collapse
|
41
|
Seo SW, Gao Y, Kim D, Szubin R, Yang J, Cho BK, Palsson BO. Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Sci Rep 2017; 7:2181. [PMID: 28526842 PMCID: PMC5438342 DOI: 10.1038/s41598-017-02110-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.
Collapse
Affiliation(s)
- Sang Woo Seo
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul, 08826, Republic of Korea. .,Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ye Gao
- Division of Biological Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jina Yang
- School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA. .,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
42
|
Baron F, Bonnassie S, Alabdeh M, Cochet MF, Nau F, Guérin-Dubiard C, Gautier M, Andrews SC, Jan S. Global Gene-expression Analysis of the Response of Salmonella Enteritidis to Egg White Exposure Reveals Multiple Egg White-imposed Stress Responses. Front Microbiol 2017; 8:829. [PMID: 28553268 PMCID: PMC5428311 DOI: 10.3389/fmicb.2017.00829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42°C, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism of egg white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45°C) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilization genes, despite no evidence indicating the presence of these substrates in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- Science de la Vie et de la Terre, Université de Rennes IRennes, France
| | - Mariah Alabdeh
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Marie-Françoise Cochet
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | | | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| |
Collapse
|
43
|
Park DM, Overton KW, Liou MJ, Jiao Y. Identification of a U/Zn/Cu responsive global regulatory two-component system in Caulobacter crescentus. Mol Microbiol 2017; 104:46-64. [PMID: 28035693 DOI: 10.1111/mmi.13615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 01/18/2023]
Abstract
Despite the well-known toxicity of uranium (U) to bacteria, little is known about how cells sense and respond to U. The recent finding of a U-specific stress response in Caulobacter crescentus has provided a foundation for studying the mechanisms of U- perception in bacteria. To gain insight into this process, we used a forward genetic screen to identify the regulatory components governing expression of the urcA promoter (PurcA ) that is strongly induced by U. This approach unearthed a previously uncharacterized two-component system, named UzcRS, which is responsible for U-dependent activation of PurcA . UzcRS is also highly responsive to zinc and copper, revealing a broader specificity than previously thought. Using ChIP-seq, we found that UzcR binds extensively throughout the genome in a metal-dependent manner and recognizes a noncanonical DNA-binding site. Coupling the genome-wide occupancy data with RNA-seq analysis revealed that UzcR is a global regulator of transcription, predominately activating genes encoding proteins that are localized to the cell envelope; these include metallopeptidases, multidrug-resistant efflux (MDR) pumps, TonB-dependent receptors and many proteins of unknown function. Collectively, our data suggest that UzcRS couples the perception of U, Zn and Cu with a novel extracytoplasmic stress response.
Collapse
Affiliation(s)
- Dan M Park
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - K Wesley Overton
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Megan J Liou
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Yongqin Jiao
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
44
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
45
|
Bai X, Yuan X, Wen A, Li J, Bai Y, Shao T. Efficient expression and characterization of a cold-active endo-1, 4-β-glucanase from Citrobacter farmeri by co-expression of Myxococcus xanthus protein S. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Pavez M, Vieira C, de Araujo MR, Cerda A, de Almeida LM, Lincopan N, Mamizuka EM. Molecular mechanisms of membrane impermeability in clinical isolates of Enterobacteriaceae exposed to imipenem selective pressure. Int J Antimicrob Agents 2016; 48:78-85. [DOI: 10.1016/j.ijantimicag.2016.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/08/2023]
|
47
|
Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S. Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Front Microbiol 2016; 7:768. [PMID: 27252687 PMCID: PMC4877379 DOI: 10.3389/fmicb.2016.00768] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Bacillus cereus is a food contaminant with greatly varying enteropathogenic potential. Almost all known strains harbor the genes for at least one of the three enterotoxins Nhe, Hbl, and CytK. While some strains show no cytotoxicity, others have caused outbreaks, in rare cases even with lethal outcome. The reason for these differences in cytotoxicity is unknown. To gain insight into the origin of enterotoxin expression heterogeneity in different strains, the architecture and role of 5′ intergenic regions (5′ IGRs) upstream of the nhe and hbl operons was investigated. In silico comparison of 142 strains of all seven phylogenetic groups of B. cereus sensu lato proved the presence of long 5′ IGRs upstream of the nheABC and hblCDAB operons, which harbor recognition sites for several transcriptional regulators, including the virulence regulator PlcR, redox regulators ResD and Fnr, the nutrient-sensitive regulator CodY as well as the master regulator for biofilm formation SinR. By determining transcription start sites, unusually long 5′ untranslated regions (5′ UTRs) upstream of the nhe and hbl start codons were identified, which are not present upstream of cytK-1 and cytK-2. Promoter fusions lacking various parts of the nhe and hbl 5′ UTR in B. cereus INRA C3 showed that the entire 331 bp 5′ UTR of nhe is necessary for full promoter activity, while the presence of the complete 606 bp hbl 5′ UTR lowers promoter activity. Repression was caused by a 268 bp sequence directly upstream of the hbl transcription start. Luciferase activity of reporter strains containing nhe and hbl 5′ IGR lux fusions provided evidence that toxin gene transcription is upregulated by the depletion of free amino acids. Electrophoretic mobility shift assays showed that the branched-chain amino acid sensing regulator CodY binds to both nhe and hbl 5′ UTR downstream of the promoter, potentially acting as a nutrient-responsive roadblock repressor of toxin gene transcription. PlcR binding sites are highly conserved among all B. cereus sensu lato strains, indicating that this regulator does not significantly contribute to the heterogeneity in virulence potentials. The CodY recognition sites are far less conserved, perhaps conferring varying strengths of CodY binding, which might modulate toxin synthesis in a strain-specific manner.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Viktoria M Krey
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| | - Nadja Jeßberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim Germany
| | - Elrike Frenzel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising Germany
| |
Collapse
|
48
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
49
|
Shimada T, Takada H, Yamamoto K, Ishihama A. Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells 2015; 20:915-31. [PMID: 26332955 DOI: 10.1111/gtc.12282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
The two-component system (TCS) is a sophisticated bacterial signal transduction system for regulation of genome transcription in response to environmental conditions. The EnvZ-OmpR system is one of the well-characterized TCS of Escherichia coli, responding to changes in environmental osmolality. Regulation has largely focused on the differential expression of two porins, OmpF and OmpC, which transport small molecules across the outer membrane. Recently, it has become apparent that OmpR serves a more global regulatory role and regulates additional targets. To identify the entire set of regulatory targets of OmpR, we performed the genomic SELEX screening of OmpR-binding sites along the E. coli genome. As a result, more than 30 novel genes have been identified to be under the direct control of OmpR. One abundant group includes the genes encoding a variety of membrane-associated transporters that mediate uptake or efflux of small molecules, while another group encodes a set of transcription regulators, raising a concept that OmpR is poised to control a diverse set of responses by altering downstream transcriptional regulators.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan.,Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, 226-8503, Japan
| | - Hiraku Takada
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan.,Department of Frontier Bioscience, Hosei University, Koganai, Tokyo, 184-8584, Japan
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganai, Tokyo, 184-8584, Japan.,Department of Frontier Bioscience, Hosei University, Koganai, Tokyo, 184-8584, Japan
| |
Collapse
|
50
|
Katsir G, Jarvis M, Phillips M, Ma Z, Gunsalus RP. The Escherichia coli NarL receiver domain regulates transcription through promoter specific functions. BMC Microbiol 2015; 15:174. [PMID: 26307095 PMCID: PMC4549865 DOI: 10.1186/s12866-015-0502-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background The Escherichia coli response regulator NarL controls transcription of genes involved in nitrate respiration during anaerobiosis. NarL consists of two domains joined by a linker that wraps around the interdomain interface. Phosphorylation of the NarL N-terminal receiver domain (RD) releases the, otherwise sequestered, C-terminal output domain (OD) that subsequently binds specific DNA promoter sites to repress or activate gene expression. The aim of this study is to investigate the extent to which the NarL OD and RD function independently to regulate transcription, and the affect of the linker on OD function. Results NarL OD constructs containing different linker segments were examined for their ability to repress frdA-lacZ or activate narG-lacZ reporter fusion genes. These in vivo expression assays revealed that the NarL OD, in the absence or presence of linker helix α6, constitutively repressed frdA-lacZ expression regardless of nitrate availability. However, the presence of the linker loop α5-α6 reversed this repression and also showed impaired DNA binding in vitro. The OD alone could not activate narG-lacZ expression; this activity required the presence of the NarL RD. A footprint assay demonstrated that the NarL OD only partially bound recognition sites at the narG promoter, and the binding affinity was increased by the presence of the phosphorylated RD. Analytical ultracentrifugation used to examine domain oligomerization showed that the NarL RD forms dimers in solution while the OD is monomeric. Conclusions The NarL RD operates as an on-off switch to occlude or release the OD in a nitrate-responsive manner, but has additional roles to directly stimulate transcription at promoters for which the OD lacks independent function. One such role of the RD is to enhance the DNA binding affinity of the OD to target promoter sites. The data also imply that NarL phosphorylation results in RD dimerization and in the separation of the entire linker region from the OD. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0502-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Galit Katsir
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Present address: San Jose City College, San Jose, CA, USA
| | - Michael Jarvis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA.,Present address: Ambry Genetics, Aliso Viejo, CA, USA
| | - Martin Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Zhongcai Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA.,Present address: NeuroInDx, Inc, Signal Hill, CA, USA
| | - Robert P Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA. .,Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|