1
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
2
|
Astrinidis A, Li C, Zhang EY, Zhao X, Zhao S, Guo M, Olatoke T, Mattam U, Huang R, Zhang AG, Pitstick L, Kopras EJ, Gupta N, Jandarov R, Smith EP, Fugate E, Lindquist D, Markiewski MM, Karbowniczek M, Wikenheiser-Brokamp KA, Setchell KDR, McCormack FX, Xu Y, Yu JJ. Upregulation of acid ceramidase contributes to tumor progression in tuberous sclerosis complex. JCI Insight 2023; 8:e166850. [PMID: 36927688 PMCID: PMC10243802 DOI: 10.1172/jci.insight.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell-derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1-hyperactive neoplasms, including TSC and LAM.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chenggang Li
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erik Y. Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xueheng Zhao
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuyang Zhao
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Minzhe Guo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tasnim Olatoke
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ushodaya Mattam
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rong Huang
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alan G. Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lori Pitstick
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth J. Kopras
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nishant Gupta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Roman Jandarov
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric P. Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth Fugate
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Diana Lindquist
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine; Division of Pulmonary Medicine; and Division of Pulmonary Biology, Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth D. R. Setchell
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Francis X. McCormack
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yan Xu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jane J. Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Fidalgo da Silva E, Fong J, Roye-Azar A, Nadi A, Drouillard C, Pillon A, Porter LA. Beyond Protein Synthesis; The Multifaceted Roles of Tuberin in Cell Cycle Regulation. Front Cell Dev Biol 2022; 9:806521. [PMID: 35096832 PMCID: PMC8795880 DOI: 10.3389/fcell.2021.806521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to sense diverse environmental signals, including nutrient availability and conditions of stress, is critical for both prokaryotes and eukaryotes to mount an appropriate physiological response. While there is a great deal known about the different biochemical pathways that can detect and relay information from the environment, how these signals are integrated to control progression through the cell cycle is still an expanding area of research. Over the past three decades the proteins Tuberin, Hamartin and TBC1D7 have emerged as a large protein complex called the Tuberous Sclerosis Complex. This complex can integrate a wide variety of environmental signals to control a host of cell biology events including protein synthesis, cell cycle, protein transport, cell adhesion, autophagy, and cell growth. Worldwide efforts have revealed many molecular pathways which alter Tuberin post-translationally to convey messages to these important pathways, with most of the focus being on the regulation over protein synthesis. Herein we review the literature supporting that the Tuberous Sclerosis Complex plays a critical role in integrating environmental signals with the core cell cycle machinery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - L. A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
4
|
Yang Y, Cai Z, Pan Z, Liu F, Li D, Ji Y, Zhong J, Luo H, Hu S, Song L, Yu S, Li T, Li J, Ma X, Zhang W, Zhou Z, Liu F, Zhang J. Rheb1 promotes glucose-stimulated insulin secretion in human and mouse β-cells by upregulating GLUT expression. Metabolism 2021; 123:154863. [PMID: 34375645 DOI: 10.1016/j.metabol.2021.154863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
Reduced β-cell mass and impaired β-cell function are primary causes of all types of diabetes. However, the intrinsic molecular mechanism that regulates β-cell growth and function remains elusive. Here, we demonstrate that the small GTPase Rheb1 is a critical regulator of glucose-stimulated insulin secretion (GSIS) in β-cells. Rheb1 was highly expressed in mouse and human islets. In addition, β-cell-specific knockout of Rheb1 reduced the β-cell size and mass by suppressing β-cell proliferation and increasing β-cell apoptosis. However, tamoxifen-induced deletion of Rheb1 in β-cells had no significant effect on β-cell mass and size but significantly impaired GSIS. Rheb1 facilitates GSIS in human or mouse islets by upregulating GLUT1 or GLUT2 expression, respectively, in a mTORC1 signaling pathway-dependent manner. Our findings reveal a critical role of Rheb1 in regulating GSIS in β-cells and identified a new target for the therapeutic treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhenhong Pan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiequn Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Rezaei Adariani S, Kazemein Jasemi NS, Bazgir F, Wittich C, Amin E, Seidel CAM, Dvorsky R, Ahmadian MR. A comprehensive analysis of RAS-effector interactions reveals interaction hotspots and new binding partners. J Biol Chem 2021; 296:100626. [PMID: 33930461 PMCID: PMC8163975 DOI: 10.1016/j.jbc.2021.100626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
RAS effectors specifically interact with GTP-bound RAS proteins to link extracellular signals to downstream signaling pathways. These interactions rely on two types of domains, called RAS-binding (RB) and RAS association (RA) domains, which share common structural characteristics. Although the molecular nature of RAS-effector interactions is well-studied for some proteins, most of the RA/RB-domain-containing proteins remain largely uncharacterized. Here, we searched through human proteome databases, extracting 41 RA domains in 39 proteins and 16 RB domains in 14 proteins, each of which can specifically select at least one of the 25 members in the RAS family. We next comprehensively investigated the sequence–structure–function relationship between different representatives of the RAS family, including HRAS, RRAS, RALA, RAP1B, RAP2A, RHEB1, and RIT1, with all members of RA domain family proteins (RASSFs) and the RB-domain-containing CRAF. The binding affinity for RAS-effector interactions, determined using fluorescence polarization, broadly ranged between high (0.3 μM) and very low (500 μM) affinities, raising interesting questions about the consequence of these variable binding affinities in the regulation of signaling events. Sequence and structural alignments pointed to two interaction hotspots in the RA/RB domains, consisting of an average of 19 RAS-binding residues. Moreover, we found novel interactions between RRAS1, RIT1, and RALA and RASSF7, RASSF9, and RASSF1, respectively, which were systematically explored in sequence–structure–property relationship analysis, and validated by mutational analysis. These data provide a set of distinct functional properties and putative biological roles that should now be investigated in the cellular context.
Collapse
Affiliation(s)
- Soheila Rezaei Adariani
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Ehsan Amin
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany; Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Claus A M Seidel
- Chair of Molecular Physical Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Radovan Dvorsky
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Qiu Z, Ye B, Zhao S, Li X, Li L, Mo X, Li W. Non-canonical Raf-1/p70S6K signalling in non-small-cell lung cancer. J Cell Mol Med 2019; 23:7632-7640. [PMID: 31541523 PMCID: PMC6815804 DOI: 10.1111/jcmm.14636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death globally, with non-small-cell lung cancer (NSCLC) being the predominant subtype. Overall survival remains low for NSCLC patients, and novel targets are needed to improve outcome. Raf-1 is a key component of the Ras/Raf/MEK signalling pathway, but its role and downstream targets in NSCLC are not completely understood. Our previous study indicated a possible correlation between Raf-1 levels and ribosomal protein S6 kinase (p70S6K) function. In this study, we aimed to investigate whether p70S6K is a downstream target of Raf-1 in NSCLC. Raf-1 was silenced in NSCLC cell lines by using small hairpin RNA, and Raf-1 and p70S6K protein levels were measured via Western blot. p70S6K was then overexpressed following Raf-1 knock-down; then, cell proliferation, apoptosis and the cell cycle in NSCLC cell lines were examined. Tumour xenografts with NSCLC cells were then transplanted for in vivo study. Tumours were measured and weighed, and Raf-1 and p70S6K expression, cell proliferation and apoptosis were examined in tumour tissues by Western blot, Ki-67 staining and TUNEL staining, respectively. When Raf-1 was silenced, p70S6K protein levels were markedly decreased in the A549 and H1299 NSCLC cell lines. A significant decrease in NSCLC cell proliferation, a profound increase in apoptosis and cell cycle arrest were observed in vitro following Raf-1 knock-down. Overexpression of p70S6K after Raf-1 depletion effectively reversed these effects. Xenograft studies confirmed these results in vivo. In conclusion, Raf-1 targets p70S6K as its downstream effector to regulate NSCLC tumorigenicity, making Raf-1/p70S6K signalling a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Zhixin Qiu
- Department of Respiratory and Critical Care MedicineWest China HospitalSichuan UniversityChengduChina
| | - Bingwei Ye
- Georgia Cancer CenterAugusta UniversityAugustaGAUSA
| | - Shuang Zhao
- Department of Respiratory and Critical Care MedicineWest China HospitalSichuan UniversityChengduChina
| | - Xin Li
- Georgia Cancer CenterAugusta UniversityAugustaGAUSA,Department of Biochemistry and Molecular BiologyMedical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Lei Li
- Department of Respiratory and Critical Care MedicineWest China HospitalSichuan UniversityChengduChina
| | - Ximing Mo
- Laboratory of Stem Cell BiologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Weimin Li
- Department of Respiratory and Critical Care MedicineWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
McClatchy DB, Yu NK, Martínez-Bartolomé S, Patel R, Pelletier AR, Lavalle-Adam M, Powell SB, Roberto M, Yates JR. Structural Analysis of Hippocampal Kinase Signal Transduction. ACS Chem Neurosci 2018; 9:3072-3085. [PMID: 30053369 PMCID: PMC6374210 DOI: 10.1021/acschemneuro.8b00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kinases are a major clinical target for human diseases. Identifying the proteins that interact with kinases in vivo will provide information on unreported substrates and will potentially lead to more specific methods for therapeutic kinase regulation. Here, endogenous immunoprecipitations of evolutionally distinct kinases (i.e., Akt, ERK2, and CAMK2) from rodent hippocampi were analyzed by mass spectrometry to generate three highly confident kinase protein-protein interaction networks. Proteins of similar function were identified in the networks, suggesting a universal model for kinase signaling complexes. Protein interactions were observed between kinases with reported symbiotic relationships. The kinase networks were significantly enriched in genes associated with specific neurodevelopmental disorders providing novel structural connections between these disease-associated genes. To demonstrate a functional relationship between the kinases and the network, pharmacological manipulation of Akt in hippocampal slices was shown to regulate the activity of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel(HCN1), which was identified in the Akt network. Overall, the kinase protein-protein interaction networks provide molecular insight of the spatial complexity of in vivo kinase signal transduction which is required to achieve the therapeutic potential of kinase manipulation in the brain.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Nam-Kyung Yu
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Salvador Martínez-Bartolomé
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Reesha Patel
- Department of Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Alexander R Pelletier
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology , University of Ottawa , Ottawa , ON K1H 8M5 , Canada
| | - Mathieu Lavalle-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology , University of Ottawa , Ottawa , ON K1H 8M5 , Canada
| | - Susan B Powell
- Department of Psychiatry , UCSD , La Jolla , California 92093 , United States
| | - Marisa Roberto
- Department of Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - John R Yates
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
8
|
Wang X, Gao Y, Gao J, Li M, Zhou M, Wang J, Pang Y, Cheng H, Yuan C, Chu Y, Jiang Y, Zhou J, Luo HR, Ju Z, Cheng T, Yuan W. Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation in vivo. Haematologica 2018; 104:245-255. [PMID: 30262562 PMCID: PMC6355497 DOI: 10.3324/haematol.2018.194811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells constitute a unique subpopulation of blood cells that can give rise to all types of mature cells in response to physiological demands. However, the intrinsic molecular machinery that regulates this transformative property remains elusive. In this paper, we demonstrate that small GTPase Rheb1 is a critical regulator of proliferation and differentiation of hematopoietic stem cells in vivo Rheb1 deletion led to increased phenotypic hematopoietic stem cell/hematopoietic progenitor cell proliferation under a steady state condition. Over-proliferating Rheb1-deficient hematopoietic stem cells were severely impaired in functional repopulation assays, and they failed to regenerate the blood system when challenged with hematopoietic ablation by sublethal irradiation. In addition, it was discovered that Rheb1 loss resulted in a lack of maturation of neutrophils / caused neutrophil immaturation by reducing mTORC1 activity, and that activation of the mTORC1 signaling pathway by mTOR activator 3BDO partially restored the maturation of Rheb1-deficient neutrophils. Rheb1 deficiency led to a progressive enlargement of the hematopoietic stem cell population and an eventual excessive myeloproliferation in vivo, including an overproduction of peripheral neutrophils and an excessive expansion of extramedullary hematopoiesis. Moreover, low RHEB expression was correlated with poor survival in acute myeloid leukemia patients with normal karyotype. Our results, therefore, demonstrate a critical and unique role for Rheb1 in maintaining proper hematopoiesis and myeloid differentiation.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yanan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Minghao Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chase Yuan
- College of Arts and Sciences, University of North Carolina at Chapel Hill, NC, USA
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo R Luo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Zhenyu Ju
- Institute of Aging, Hangzhou Normal University, Hangzhou, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
9
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
10
|
Heard JJ, Phung I, Potes MI, Tamanoi F. An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation. BMC Cancer 2018; 18:69. [PMID: 29320991 PMCID: PMC5763582 DOI: 10.1186/s12885-017-3938-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB. Methods To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays. Results We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines. Conclusions RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling. Electronic supplementary material The online version of this article (10.1186/s12885-017-3938-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey J Heard
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA
| | - Ivy Phung
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA
| | - Mark I Potes
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA. .,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Nelson N, Clark GJ. Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling. Oncotarget 2017; 7:33821-31. [PMID: 27034171 PMCID: PMC5085121 DOI: 10.18632/oncotarget.8447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.
Collapse
Affiliation(s)
- Nicholas Nelson
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Geoffrey J Clark
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
12
|
Notch transactivates Rheb to maintain the multipotency of TSC-null cells. Nat Commun 2017; 8:1848. [PMID: 29184052 PMCID: PMC5705704 DOI: 10.1038/s41467-017-01845-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Differentiation abnormalities are a hallmark of tuberous sclerosis complex (TSC) manifestations; however, the genesis of these abnormalities remains unclear. Here we report on mechanisms controlling the multi-lineage, early neuronal progenitor and neural stem-like cell characteristics of lymphangioleiomyomatosis (LAM) and angiomyolipoma cells. These mechanisms include the activation of a previously unreported Rheb-Notch-Rheb regulatory loop, in which the cyclic binding of Notch1 to the Notch-responsive elements (NREs) on the Rheb promoter is a key event. This binding induces the transactivation of Rheb. The identified NRE2 and NRE3 on the Rheb promoter are important to Notch-dependent promoter activity. Notch cooperates with Rheb to block cell differentiation via similar mechanisms in mouse models of TSC. Cell-specific loss of Tsc1 within nestin-expressing cells in adult mice leads to the formation of kidney cysts, renal intraepithelial neoplasia, and invasive papillary renal carcinoma. Tuberous sclerosis complex (TSC) is a rare genetic condition causing tumours with differentiation abnormalities; however the molecular mechanisms causing these defects are unclear. Here the authors show that Notch cooperates with Rheb to block cell differentiation forming a regulatory loop that could underlie TSC tumorigenesis.
Collapse
|
13
|
Potheraveedu VN, Schöpel M, Stoll R, Heumann R. Rheb in neuronal degeneration, regeneration, and connectivity. Biol Chem 2017; 398:589-606. [PMID: 28212107 DOI: 10.1515/hsz-2016-0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/02/2017] [Indexed: 01/31/2023]
Abstract
The small GTPase Rheb was originally detected as an immediate early response protein whose expression was induced by NMDA-dependent synaptic activity in the brain. Rheb's activity is highly regulated by its GTPase activating protein (GAP), the tuberous sclerosis complex protein, which stimulates the conversion from the active, GTP-loaded into the inactive, GDP-loaded conformation. Rheb has been established as an evolutionarily conserved molecular switch protein regulating cellular growth, cell volume, cell cycle, autophagy, and amino acid uptake. The subcellular localization of Rheb and its interacting proteins critically regulate its activity and function. In stem cells, constitutive activation of Rheb enhances differentiation at the expense of self-renewal partially explaining the adverse effects of deregulated Rheb in the mammalian brain. In the context of various cellular stress conditions such as oxidative stress, ER-stress, death factor signaling, and cellular aging, Rheb activation surprisingly enhances rather than prevents cellular degeneration. This review addresses cell type- and cell state-specific function(s) of Rheb and mainly focuses on neurons and their surrounding glial cells. Mechanisms will be discussed in the context of therapy that interferes with Rheb's activity using the antibiotic rapamycin or low molecular weight compounds.
Collapse
Affiliation(s)
- Veena Nambiar Potheraveedu
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| | - Miriam Schöpel
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| |
Collapse
|
14
|
Li C, Liu X, Liu Y, Zhang E, Medepalli K, Masuda K, Li N, Wikenheiser-Brokamp KA, Osterburg A, Borchers MT, Kopras EJ, Plas DR, Sun J, Franz DN, Capal JK, Mays M, Sun Y, Kwiatkowski DJ, Alayev A, Holz MK, Krueger DA, Siroky BJ, Yu JJ. Tuberin Regulates Prostaglandin Receptor-Mediated Viability, via Rheb, in mTORC1-Hyperactive Cells. Mol Cancer Res 2017; 15:1318-1330. [PMID: 28710231 DOI: 10.1158/1541-7786.mcr-17-0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
Abstract
Tuberous sclerosis complex (TSC) is a tumor-suppressor syndrome affecting multiple organs, including the brain, skin, kidneys, heart, and lungs. TSC is associated with mutations in TSC1 or TSC2, resulting in hyperactivation of mTOR complex 1 (mTORC1). Clinical trials demonstrate that mTORC1 inhibitors decrease tumor volume and stabilize lung function in TSC patients; however, mTOR inhibitors are cytostatic not cytocidal, and long-term benefits and toxicities are uncertain. Previously, we identified rapamycin-insensitive upregulation of cyclooxygenase 2 (PTGS2/COX2) and prostaglandin E2 (PGE2) production in TSC2-deficient cells and postulated that the action of excess PGE2 and its cognate receptors (EP) contributes to cell survival. In this study, we identify upregulation of EP3 (PTGER3) expression in TSC2-deficient cells, TSC renal angiomyolipomas, lymphangioleiomyomatosis lung nodules, and epileptic brain tubers. TSC2 negatively regulated EP3 expression via Rheb in a rapamycin-insensitive manner. The EP3 antagonist, L-798106, selectively suppressed the viability of TSC2-deficient cells in vitro and decreased the lung colonization of TSC2-deficient cells. Collectively, these data reveal a novel function of TSC2 and Rheb in the regulation of EP3 expression and cell viability.Implications: Therapeutic targeting of an aberrant PGE2-EP3 signaling axis may have therapeutic benefit for TSC patients and for other mTOR-hyperactive neoplasms. Mol Cancer Res; 15(10); 1318-30. ©2017 AACR.
Collapse
Affiliation(s)
- Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xiaolei Liu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Scientific Research Center for Translational Medicine, Dalian, China
| | - Erik Zhang
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kantha Medepalli
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Kouhei Masuda
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Na Li
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kathryn A Wikenheiser-Brokamp
- Pathology and Laboratory Medicine and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Osterburg
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael T Borchers
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elizabeth J Kopras
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R Plas
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julia Sun
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David N Franz
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jamie K Capal
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maxwell Mays
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts
| | | | - Anya Alayev
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, New York, New York
| | - Marina K Holz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, New York, New York
| | - Darcy A Krueger
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brian J Siroky
- Division of Nephrology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jane J Yu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio. .,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Abstract
Mechanistic target of rapamycin controls cell growth, metabolism, and aging in response to nutrients, cellular energy stage, and growth factors. In cancers including breast cancer, mechanistic target of rapamycin is frequently upregulated. Blocking mechanistic target of rapamycin with rapamycin, first-generation and second-generation mechanistic target of rapamycin inhibitors, called rapalogs, have shown potent reduction of breast cancer tumor growth in preclinical models and clinical trials. In this review, we summarize the fundamental role of the mechanistic target of rapamycin pathway in driving breast tumors. Moreover, we also review key molecules involved with aberrant mechanistic target of rapamycin pathway activation in breast cancer and current efforts to target these components for therapeutic gain. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the mechanistic target of rapamycin pathway.
Collapse
Affiliation(s)
- Jia Liu
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Hui-Qing Li
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Fu-Xia Zhou
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Jie-Wen Yu
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Ling Sun
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Zhong-Hou Han
- Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| |
Collapse
|
16
|
Darvishi B, Farahmand L, Eslami-S Z, Majidzadeh-A K. NF-κB as the main node of resistance to receptor tyrosine kinase inhibitors in triple-negative breast cancer. Tumour Biol 2017; 39:1010428317706919. [DOI: 10.1177/1010428317706919] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Eslami-S
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran
| |
Collapse
|
17
|
Sahrawat TR, Chawla P. Identification of Potential Off-Targets of Chemotherapeutic Agent Sorafenib: A Molecular Docking Approach. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.56431/p-q473hz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
B-Raf is a multi- drug target serine/threonine protein kinase, involved in the transduction of mitogenic signals from the cell membrane to the nucleus. Mutated B-Raf causes overactive downstream signaling via MEK and ERK, leading to excessive cell proliferation and survival, independent of growth factors causing cancers such as Pancreatic carcinoma. A novel bi-aryl urea- Sorafenib, is a potent inhibitor of Raf-1 that has been approved for the treatment of a number of cancers including pancreatic cancer. The present investigation was designed to identify the potential off-targets of Sorafenib which could be responsible for its reported undesirable side effects. Molecular docking was used to test the efficacy of structural analogs of Sorafenib against B-Raf using FlexX and it was found that the analog with CID:10151557 had a high potency with minimum number of clashes, low lipophilic score and high match score, similar to Sorafenib. To identify the potential off-target/s of Sorafenib, macromolecular surface similarity detection software MEDIT SA MED-SuMo was used and the results obtained were validated through literature. The possible off-targets obtained belonged to the family of protein tyrosine kinases i.e. VEGFR-2, VEGFR-3, platelet-derived growth factor receptor beta, Flt-3, and c-KIT, each of which were docked with Sorafenib. Based on high docking scores and similarity with B-Raf for its binding site interacting residues, it was concluded that Vascular endothelial growth factor tyrosine kinase receptor (VEGFR) is a potential off-target of anti-cancer chemotherapeutic agent Sorafenib.
Collapse
|
18
|
Sahrawat TR, Chawla P. Identification of Potential Off-Targets of Chemotherapeutic Agent Sorafenib: A Molecular Docking Approach. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.18052/www.scipress.com/ilns.51.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
B-Raf is a multi- drug target serine/threonine protein kinase, involved in the transduction of mitogenic signals from the cell membrane to the nucleus. Mutated B-Raf causes overactive downstream signaling via MEK and ERK, leading to excessive cell proliferation and survival, independent of growth factors causing cancers such as Pancreatic carcinoma. A novel bi-aryl urea- Sorafenib, is a potent inhibitor of Raf-1 that has been approved for the treatment of a number of cancers including pancreatic cancer. The present investigation was designed to identify the potential off-targets of Sorafenib which could be responsible for its reported undesirable side effects. Molecular docking was used to test the efficacy of structural analogs of Sorafenib against B-Raf using FlexX and it was found that the analog with CID:10151557 had a high potency with minimum number of clashes, low lipophilic score and high match score, similar to Sorafenib. To identify the potential off-target/s of Sorafenib, macromolecular surface similarity detection software MEDIT SA MED-SuMo was used and the results obtained were validated through literature. The possible off-targets obtained belonged to the family of protein tyrosine kinases i.e. VEGFR-2, VEGFR-3, platelet-derived growth factor receptor beta, Flt-3, and c-KIT, each of which were docked with Sorafenib. Based on high docking scores and similarity with B-Raf for its binding site interacting residues, it was concluded that Vascular endothelial growth factor tyrosine kinase receptor (VEGFR) is a potential off-target of anti-cancer chemotherapeutic agent Sorafenib.
Collapse
|
19
|
Zhang Y, Zheng Y, Faheem A, Sun T, Li C, Li Z, Zhao D, Wu C, Liu J. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type. Oncol Lett 2016; 11:1685-1692. [PMID: 26998062 PMCID: PMC4774473 DOI: 10.3892/ol.2016.4111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022] Open
Abstract
Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type.
Collapse
Affiliation(s)
- Yuncheng Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ali Faheem
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Tiantong Sun
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Chunyou Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhe Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Diantang Zhao
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chao Wu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
20
|
Patel B, Patel J, Cho JH, Manne S, Bonala S, Henske E, Roegiers F, Markiewski M, Karbowniczek M. Exosomes mediate the acquisition of the disease phenotypes by cells with normal genome in tuberous sclerosis complex. Oncogene 2015; 35:3027-36. [DOI: 10.1038/onc.2015.358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 01/14/2023]
|
21
|
Harari S, Torre O, Cassandro R, Moss J. The changing face of a rare disease: lymphangioleiomyomatosis. Eur Respir J 2015; 46:1471-85. [PMID: 26405290 DOI: 10.1183/13993003.00412-2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/11/2015] [Indexed: 12/18/2022]
Abstract
Lymphangioleiomyomatosis is a rare disease characterised by cystic destruction of the lung, lymphatic abnormalities and abdominal tumours. It affects almost exclusively females and can occur sporadically or in patients with tuberous sclerosis complex. In the past decade remarkable progress has been made in understanding of the pathogenesis of this disease leading to a new therapeutic approach. This review summarises recent advances regarding pathogenic mechanisms and clinical manifestations, and highlights the current and the most promising future therapeutic strategies.
Collapse
Affiliation(s)
- Sergio Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy Both authors contributed equally
| | - Olga Torre
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy Both authors contributed equally
| | - Roberto Cassandro
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica IRCCS, Milan, Italy
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MA, USA
| |
Collapse
|
22
|
Cohen JD, Labenski M, Mastrandrea NJ, Canatsey RD, Monks TJ, Lau SS. Transcriptional and post-translational modifications of B-Raf in quinol-thioether induced tuberous sclerosis renal cell carcinoma. Mol Carcinog 2015; 55:1243-50. [PMID: 26333016 DOI: 10.1002/mc.22366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 06/05/2015] [Accepted: 06/26/2015] [Indexed: 11/12/2022]
Abstract
Increased activity of B-Raf has been identified in approximately 7% of human cancers. Treatment of Eker rats (Tsc-2(EK/+) ), bearing a mutation in one allele of the tuberous sclerosis-2 (Tsc-2) gene, with the nephrocarcinogen 2,3,5-tris-(glutathion-S-yl) hydroquinone (TGHQ) results in loss of the wild-type allele of Tsc-2 in renal preneoplastic lesions and tumors. These tumors have increased protein expression of B-Raf, C-Raf (Raf-1), and increased expression and activity of ERK kinase. Similar changes are observed in Raf kinases following TGHQ-mediated transformation of primary renal epithelial cells derived from Tsc-2(EK/+) rats (QTRRE cells), cells that are also null for tuberin. Herein, we utilized LC-MS/MS to identify constitutive phosphorylation of S345 and S483 in both 100- and 95-kDa forms of B-Raf in QTRRE cells. Using microRotofor liquid-phase isoelectric focusing, we identified four fractions of B-Raf that contain different post-translational modification profiles in QTRRE cells. Amplification of the kinase domain of B-Raf from QTRRE cells, outer-stripe of the outer medulla of 8-month TGHQ- or vehicle-treated Tsc-2(+/+) and Tsc-2(EK/+) rats, as well as tumors excised from 8-month TGHQ-treated Tsc-2(EK/+) rats revealed three splice variants of B-Raf within the kinase domain. These splice variants differed by approximately 340, 544, and 600 bp; confirmed by sequencing. No point mutations within the kinase domain of B-Raf were identified. In addition, B-Raf/Raf-1/14-3-3 complex formation in the QTRRE cells was decreased by sorafenib, with concomitant selective decreases in p-ERK levels. Transcriptional and post-translational characterization of critical kinases, such as B-Raf, may contribute to the progression of tuberous sclerosis RCC. (246/250) © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona
| | - Matthew Labenski
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona
| | - Nicholas J Mastrandrea
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona
| | - Ryan D Canatsey
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona
| | - Terrence J Monks
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona
| | - Serrine S Lau
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona
| |
Collapse
|
23
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Mol Cancer Res 2015; 13:1265-73. [PMID: 26085527 PMCID: PMC4572916 DOI: 10.1158/1541-7786.mcr-15-0165] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
KRAS4B is a highly oncogenic splice variant of the KRAS isoform. It is the only isoform associated with initiation of adenocarcinomas. Insight into why and how KRAS4B can mediate ductal adenocarcinomas, particularly of the pancreas, is vastly important for its therapeutics. Here we point out the overlooked critical role of calmodulin (CaM). Calmodulin selectively binds to GTP-bound K-Ras4B; but not to other Ras isoforms. Cell proliferation and growth require the MAPK (Raf/MEK/ERK) and PI3K/Akt pathways. We propose that Ca(2+)/calmodulin promote PI3Kα/Akt signaling, and suggest how. The elevated calcium levels clinically observed in adenocarcinomas may explain calmodulin's involvement in recruiting and stimulating PI3Kα through interaction with its n/cSH2 domains as well as K-Ras4B; importantly, it also explains why K-Ras4B specifically is a key player in ductal carcinomas, such as pancreatic (PDAC), colorectal (CRC), and lung cancers. We hypothesize that calmodulin recruits and helps activate PI3Kα at the membrane, and that this is the likely reason for Ca(2+)/calmodulin dependence in adenocarcinomas. Calmodulin can contribute to initiation/progression of ductal cancers via both PI3Kα/Akt and Raf/MEK/ERK pathways. Blocking the K-Ras4B/MAPK pathway and calmodulin/PI3Kα binding in a K-Ras4B/calmodulin/PI3Kα trimer could be a promising adenocarcinoma-specific therapeutic strategy.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
24
|
Armijo ME, Campos T, Fuentes-Villalobos F, Palma ME, Pincheira R, Castro AF. Rheb signaling and tumorigenesis: mTORC1 and new horizons. Int J Cancer 2015; 138:1815-23. [PMID: 26234902 DOI: 10.1002/ijc.29707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/05/2023]
Abstract
Rheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected. Here, we will review the main work on the identification of the role of Rheb in cell growth, and on the relevance of Rheb in proliferative disorders, including cancer. We will also review the Rheb functions that could explain tumor resistance to therapies with mTORC1 inhibitors, and will mainly focus our discussion on mTORC1-independent Rheb functions that could also be implicated in cancer cell survival and tumorigenesis. The current progress on the understanding of the noncanonical Rheb functions prompts future studies to establish their relevance in cancer and in the context of current cancer therapies.
Collapse
Affiliation(s)
- Marisol E Armijo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Tania Campos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Francisco Fuentes-Villalobos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Mario E Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| |
Collapse
|
25
|
Sun Y, Gallacchi D, Zhang EY, Reynolds SB, Robinson L, Malinowska IA, Chiou TT, Pereira AM, Li C, Kwiatkowski DJ, Lee PS, Yu JJ. Rapamycin-resistant poly (ADP-ribose) polymerase-1 overexpression is a potential therapeutic target in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2015; 51:738-49. [PMID: 24874429 DOI: 10.1165/rcmb.2014-0033oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a female-predominant cystic lung disease that can lead to respiratory failure. LAM cells typically have inactivating tuberous sclerosis complex 2 (TSC2) mutations and mammalian target of rapamycin (mTOR) complex (mTORC) 1 activation. Clinical response to the mTORC1 inhibitors has been limited, prompting a search for additional therapy for LAM. In this study, we investigated the impact of TSC2 on the expression of poly (ADP-ribose) polymerase (PARP)-1 that initiates the DNA repair pathway, and tested the efficacy of PARP1 inhibitors in the survival of TSC2-deficient (TSC2(-)) cells. We analyzed publicly available expression arrays of TSC2(-) cells and validated the findings using real-time RT-PCR, immunoblotting, and immunohistochemistry. We examined the impact of rapamycin and Torin 1 on PARP1 expression. We also tested the effect of PARP1 inhibitors, 8-hydroxy-2-methylquinazoline-4-one and 3,4-dihydro-5[4-(1-piperindinyl)butoxy]-1(2H)-isoquinoline, on the survival of TSC2(-) cells. We identified the up-regulation of PARP1 in TSC2(-) cells relative to cells in which wild-type TSC2 has been reintroduced (TSC2-addback [TSC2(+)] cells). The transcript levels of PARP1 in TSC2(-) cells were not affected by rapamycin. PARP1 levels were increased in TSC2(-) cells, xenograft tumors of rat-derived TSC2(-) cells, renal cystadenomas from Tsc2(+/-) mice, and human LAM nodules. RNA interference of mTOR failed to reduce PARP1 levels. Proliferation and survival of TSC2(-) cells was reduced in response to PARP1 inhibitor treatment, more so than TSC2(+) cells. TSC2(-) cells exhibit higher levels of PARP1 relative to TSC2(+) cells in an mTOR-insensitive manner. PARP1 inhibitors selectively suppress the growth and induce apoptosis of TSC2(-) cells from patients with LAM. Targeting PARP1 may be beneficial in the treatment of LAM and other neoplasm with mTORC1 activation.
Collapse
Affiliation(s)
- Yang Sun
- Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li C, Zhang E, Sun Y, Lee PS, Zhan Y, Guo Y, Osorio JC, Rosas IO, Xu KF, Kwiatkowski DJ, Yu JJ. Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis. PLoS One 2014; 9:e104809. [PMID: 25347447 PMCID: PMC4210122 DOI: 10.1371/journal.pone.0104809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022] Open
Abstract
Tuberous sclerosis syndrome (TSC) is an autosomal dominant tumor suppressor gene syndrome affecting multiple organs, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM). LAM is a female-predominant interstitial lung disease characterized by the progressive cyst formation and respiratory failure, which is also seen in sporadic patients without TSC. Mutations in TSC1 or TSC2 cause TSC, result in hyperactivation of mammalian target of rapamycin (mTOR), and are also seen in LAM cells in sporadic LAM. We recently reported that prostaglandin biosynthesis and cyclooxygenase-2 were deregulated in TSC and LAM. Phospholipase A2 (PLA2) is the rate-limiting enzyme that catalyzes the conversion of plasma membrane phospholipids into prostaglandins. In this study, we identified upregulation of adipocyte AdPLA2 (PLA2G16) in LAM nodule cells using publicly available expression data. We showed that the levels of AdPLA2 transcript and protein were higher in LAM lungs compared with control lungs. We then showed that TSC2 negatively regulates the expression of AdPLA2, and loss of TSC2 is associated with elevated production of prostaglandin E2 (PGE2) and prostacyclin (PGI2) in cell culture models. Mouse model studies also showed increased expression of AdPLA2 in xenograft tumors, estrogen-induced lung metastatic lesions of Tsc2 null leiomyoma-derived cells, and spontaneous renal cystadenomas from Tsc2+/- mice. Importantly, rapamycin treatment did not affect the expression of AdPLA2 and the production of PGE2 by TSC2-deficient mouse embryonic fibroblast (Tsc2-/-MEFs), rat uterine leiomyoma-derived ELT3 cells, and LAM patient-associated renal angiomyolipoma-derived "mesenchymal" cells. Furthermore, methyl arachidonyl fluorophosphate (MAFP), a potent irreversible PLA2 inhibitor, selectively suppressed the growth and induced apoptosis of TSC2-deficient LAM patient-derived cells relative to TSC2-addback cells. Our findings suggest that AdPLA2 plays an important role in promoting tumorigenesis and disease progression by modulating the production of prostaglandins and may serve as a potential therapeutic target in TSC and LAM.
Collapse
Affiliation(s)
- Chenggang Li
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Zhang
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Sun
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Po-Shun Lee
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Yanan Guo
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan C. Osorio
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivan O. Rosas
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kai-Feng Xu
- Peking Union Medical College, Beijing, China
| | - David J. Kwiatkowski
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jane J. Yu
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
New strategies to overcome resistance to mammalian target of rapamycin inhibitors in breast cancer. Curr Opin Oncol 2014; 25:587-93. [PMID: 24097108 DOI: 10.1097/cco.0000000000000014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To review the studies addressing mammalian target of rapamycin (mTOR) inhibitors in breast cancer and resistance to rapalogs. Preclinical and clinical studies have suggested mTOR inhibitors may help overcome the resistance to endocrine therapy and trastuzumab. Despite much interest, knowledge of the mechanism and molecular response to mTOR inhibitors is incomplete. RECENT FINDINGS Resistance to mTOR inhibitors has been explored in preclinical studies and can be defined as primary, associated with amplifications or mutations of different kinases, or secondary, in which rapalog activates the feedback loops involving the insulin-like growth factor I receptor (IGF-IR), platelet-derived growth factor receptor and mitogen-activated protein kinase (MAPK) pathway. Current clinical trials are testing the combinations of rapamycin with other kinase inhibitors including IGF-IR, phosphoinositide 3-kinase and MAPK-extracellular signal-regulated kinase inhibitors. SUMMARY Recent findings on the resistance to rapalogs have stimulated the assessment of combinations of inhibitors in clinical trials. This review summarizes the current knowledge of primary and secondary rapalog resistance, and the current efforts to overcome this resistance.
Collapse
|
28
|
Fujita Y, Komatsu N, Matsuda M, Aoki K. Fluorescence resonance energy transfer based quantitative analysis of feedforward and feedback loops in epidermal growth factor receptor signaling and the sensitivity to molecular targeting drugs. FEBS J 2014; 281:3177-92. [PMID: 24848561 DOI: 10.1111/febs.12852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 12/24/2022]
Abstract
The Ras-ERK and PI3K-mTOR pathways are hyperactivated in various malignant tumors. Feedforward (FF) and feedback (FB) regulations between the Ras-ERK and the PI3K-mTOR pathways have been suggested to attenuate sensitivity to drugs targeting these pathways and confer tumor resistance to therapies. However, because analyses of such regulations require measurements and perturbations with high temporal resolution, the quantitative roles played by FF and FB regulations in the intrinsic resistance to molecular targeting drugs still remain unclear. To address this issue, we quantified FF and FB regulations of the epidermal growth factor receptor (EGFR) signaling pathway by Förster/fluorescence resonance energy transfer (FRET) imaging. EGF-induced activation of EGFR, Ras, extracellular-signal-regulated kinase and S6K with or without inhibitors was measured by FRET imaging, and analyzed by semi-automatic image processing. Based on the imaging data set and kinetic parameters determined by our previous studies, we identified the roles played by a coherent FF regulation and two negative FB regulations, one of which was not recognized previously. The systems analyses revealed how these FF and FB regulations shape the temporal dynamics of extracellular-signal-regulated kinase activity upon EGF stimulation. Furthermore, the simulation model predicts the response of molecular targeting drugs applied solely or in combination with each other to BRaf- or KRas-mutated cancer cell lines, indicating the validity of a quantitative model integrating FF and FB regulations.
Collapse
Affiliation(s)
- Yoshihisa Fujita
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
29
|
Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Cell Death Dis 2014; 5:e1114. [PMID: 24625973 PMCID: PMC3973233 DOI: 10.1038/cddis.2014.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/22/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022]
Abstract
The serine/threonine kinase AKT is generally accepted as a promising anticancer therapeutic target. However, the relief of feedback inhibition and enhancement of other survival pathways often attenuate the anticancer effects of AKT inhibitors. These compensatory mechanisms are very complicated and remain poorly understood. In the present study, we found a novel 2-pyrimidyl-5-amidothiazole compound, DC120, as an ATP competitive AKT kinase inhibitor that suppressed proliferation and induced apoptosis in liver cancer cells both in vitro and in vivo. DC120 blocked the phosphorylation of downstream molecules in the AKT signal pathway in dose- and time-dependent manners both in vitro and in vivo. However, unexpectedly, DC120 activated mammalian target of rapamycin complex 1 (mTORC1) pathway that was suggested by increased phosphorylation of 70KD ribosomal protein S6 kinase (P70S6K) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The activated mTORC1 signal was because of increase of intracellular Ca(2+) via Ca(2+)/calmodulin (CaM)/ signaling to human vacuolar protein sorting 34 (hVps34) upon AKT inhibition. Meanwhile, DC120 attenuated the inhibitory effect of AKT on CRAF by decreasing phosphorylation of CRAF at Ser259 and thus activated the mitogen-activated protein kinase (MAPK) pathway. The activation of the mTORC1 and MAPK pathways by DC120 was not mutually dependent, and the combination of DC120 with mTORC1 inhibitor and/or MEK inhibitor induced significant apoptosis and growth inhibition both in vitro and in vivo. Taken together, the combination of AKT, mTORC1 and/or MEK inhibitors would be a promising therapeutic strategy for liver cancer treatment.
Collapse
|
30
|
Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci U S A 2013; 110:14960-5. [PMID: 23983265 DOI: 10.1073/pnas.1309110110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a destructive lung disease of women associated with the metastasis of tuberin-null cells with hyperactive mammalian target of rapamycin complex 1 (mTORC1) activity. Clinical trials with the mTORC1 inhibitor rapamycin have revealed partial efficacy but are not curative. Pregnancy appears to exacerbate LAM, suggesting that estrogen (E2) may play a role in the unique features of LAM. Using a LAM patient-derived cell line (bearing biallelic Tuberin inactivation), we demonstrate that E2 stimulates a robust and biphasic activation of ERK2 and transcription of the late response-gene Fra1 associated with epithelial-to-mesenchymal transition. In a carefully orchestrated collaboration, activated mTORC1/S6K1 signaling enhances the efficiency of Fra1 translation of Fra1 mRNA transcribed by the E2-ERK2 pathway, through the phosphorylation of the S6K1-dependent eukaryotic translation initiation factor 4B. Our results indicate that targeting the E2-ERK pathway in combination with the mTORC1 pathway may be an effective combination therapy for LAM.
Collapse
|
31
|
Baljuls A, Kholodenko BN, Kolch W. It takes two to tango--signalling by dimeric Raf kinases. MOLECULAR BIOSYSTEMS 2013; 9:551-8. [PMID: 23212737 DOI: 10.1039/c2mb25393c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Raf kinases function downstream of Ras proteins to activate the MEK-ERK pathway which is deregulated in a large number of human cancers. Raf inhibitors are clinically highly effective for the treatment of cancer and melanoma in particular, but have unexpected side effects that include a paradoxical activation of the ERK pathway. These effects seem to be related to the heterodimerization of Raf-1 and B-Raf kinases. Here, we discuss the role of Raf dimerization as part of the physiological activation mechanism of Raf kinases, the mechanism of Raf dimerization induced by drugs, and the implications of dimerization for drug therapies targeting Raf kinases.
Collapse
Affiliation(s)
- Angela Baljuls
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| | | | | |
Collapse
|
32
|
Morgillo F, Sasso FC, Della Corte CM, Festino L, Manzo A, Martinelli E, Troiani T, Capuano A, Ciardiello F. Metformin in lung cancer: rationale for a combination therapy. Expert Opin Investig Drugs 2013; 22:1401-9. [PMID: 23937224 DOI: 10.1517/13543784.2013.828691] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Metformin is a widely used antidiabetic drug, which also displays significant growth inhibitory and proapoptotic effects in several cancer models, including lung cancer, alone or in combination with chemotherapeutic drugs. AREAS COVERED The role of metformin as a chemopreventive drug in lung cancer is still an object of debate as epidemiological studies have shown contrasting results. More preclinical data support its role as an adjuvant drug in the treatment of lung cancer, in combination with chemotherapy or targeted molecular drugs, although the complete mechanism of action of metformin is still unclear, and potentially may exert unexpected effects with contradictory clinical implications. EXPERT OPINION Future perspective studies are required in nonsmall-cell lung cancer (NSCLC) patients to better investigate the effect of metformin action on the RAS/RAF/MAPK pathway and the best context in which to use metformin in combination with molecularly targeted agents.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Medicina Interna , Via S. Pansini 5, 80131 Napoli , Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D'Aiuto E, Troiani T, Martinelli E, De Vita F, Orditura M, De Palma R, Ciardiello F. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res 2013; 19:3508-19. [PMID: 23695170 DOI: 10.1158/1078-0432.ccr-12-2777] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE EGF receptor (EGFR) tyrosine kinase inhibitors (TKI) have been found to be effective against lung cancer, but clinical resistance to these agents has developed as their usage has increased. Metformin is a widely used antidiabetic drug and also displays significant growth-inhibitory and proapoptotic effects in several cancer models, alone or in combination with chemotherapeutic drugs. EXPERIMENTAL DESIGN The effects of gefitinib, a selective EGFR-TKI, and metformin on a panel of non-small cell lung cancer (NSCLC) cell lines were assessed by using MTT, bromide assay, flow cytometry, anchorage-independent growth, coimmunoprecipitation, and Western blot analysis. RESULTS The combination of metformin with gefitinib induced a strong antiproliferative and proapoptotic effect in NSCLC cell lines that harbored wild-type LKB1 gene. Treatment with metformin as single agent, however, induced an activation and phosphorylation of mitogen-activated protein kinase (MAPK) through an increased C-RAF/B-RAF heterodimerization. The inhibition of EGFR phosphorylation and of downstream signaling by adding gefitinib to metformin treatment abrogated this phenomenon and induced a strong apoptotic effect in vitro and in vivo. CONCLUSIONS Metformin and gefitinib are synergistic in LKB1 wild-type NSCLC cells. However, further studies are required to investigate better the effect of metformin action on the RAS/RAF/MAPK pathway and the best context in which to use metformin in combination with molecular targeted agents.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale F. Magrassi e A. Lanzara, Seconda Università degli Studi di Napoli, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, Rossignol R, Bénard G. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17:719-30. [PMID: 23602449 DOI: 10.1016/j.cmet.2013.03.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/09/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
Mitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate. Upon high oxidative phosphorylation activity, we found that the small GTPase Rheb is recruited to the mitochondrial outer membrane. This mitochondrial localization of Rheb promotes mitophagy through a physical interaction with the mitochondrial autophagic receptor Nix and the autophagosomal protein LC3-II. Thus, Rheb-dependent mitophagy contributes to the maintenance of optimal mitochondrial energy production. Our data suggest that mitochondrial degradation contributes to a bulk renewal of the organelle in order to prevent mitochondrial aging and to maintain the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Su Melser
- EA4576, Maladies Rares: Génétique et Métabolisme, 33000 Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 2013; 39:935-46. [PMID: 23643661 DOI: 10.1016/j.ctrv.2013.03.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022]
Abstract
Alterations of signal transduction pathways leading to uncontrolled cellular proliferation, survival, invasion, and metastases are hallmarks of the carcinogenic process. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and the Raf/mitogen-activated and extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways are critical for normal human physiology, and also commonly dysregulated in several human cancers, including breast cancer (BC). In vitro and in vivo data suggest that the PI3K/AKT/mTOR and Raf/MEK/ERK cascades are interconnected with multiple points of convergence, cross-talk, and feedback loops. Raf/MEK/ERK and PI3K/AKT/mTOR pathway mutations may co-exist. Inhibition of one pathway can still result in the maintenance of signaling via the other (reciprocal) pathway. The existence of such "escape" mechanisms implies that dual targeting of these pathways may lead to superior efficacy and better clinical outcome in selected patients. Several clinical trials targeting one or both pathways are already underway in BC patients. The toxicity profile of this novel approach of dual pathway inhibition needs to be closely monitored, given the important physiological role of PI3K/AKT/mTOR and Raf/MEK/ERK signaling. In this article, we present a review of the current relevant pre-clinical and clinical data and discuss the rationale for dual inhibition of these pathways in the treatment of BC patients.
Collapse
Affiliation(s)
- Kamal S Saini
- Breast International Group, Brussels, Belgium; Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Henske EP, McCormack FX. Lymphangioleiomyomatosis - a wolf in sheep's clothing. J Clin Invest 2012; 122:3807-16. [PMID: 23114603 DOI: 10.1172/jci58709] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive lung disease of women. LAM is caused by mutations in the tuberous sclerosis genes, resulting in activation of the mTOR complex 1 signaling network. Over the past 11 years, there has been remarkable progress in the understanding of LAM and rapid translation of this knowledge to an effective therapy. LAM pathogenic mechanisms mirror those of many forms of human cancer, including mutation, metabolic reprogramming, inappropriate growth and survival, metastasis via blood and lymphatic circulation, infiltration/invasion, sex steroid sensitivity, and local and remote tissue destruction. However, the smooth muscle cell that metastasizes, infiltrates, and destroys the lung in LAM arises from an unknown source and has an innocent histological appearance, with little evidence of proliferation. Thus, LAM is as an elegant, monogenic model of neoplasia, defying categorization as either benign or malignant.
Collapse
Affiliation(s)
- Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Dilling DF, Gilbert ER, Picken MM, Eby JM, Love RB, Le Poole IC. A current viewpoint of lymphangioleiomyomatosis supporting immunotherapeutic treatment options. Am J Respir Cell Mol Biol 2012; 46:1-5. [PMID: 21940815 DOI: 10.1165/rcmb.2011-0215tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) leads to hyperproliferation of abnormal smooth muscle cells in the lungs, associated with diffuse pulmonary parenchymal cyst formation and progressive dyspnea on exertion. The disease targets women of child-bearing age. Complications include pneumothoraces and chylous pleural effusions. Ten-year survival is estimated at 70%, and lung transplantation remains the only validated treatment. It has been observed that LAM cells express markers associated with melanocytic differentiation, including gp100 and MART-1. Other melanocytic markers have also been observed. The same proteins are targeted by T cells infiltrating melanoma tumors as well as by T cells infiltrating autoimmune vitiligo skin, and these antigens are regarded as relatively immunogenic. Consequently, vaccines have been developed for melanoma targeting these and other immunogenic melanocyte differentiation proteins. Preliminary data showing susceptibility of LAM cells to melanoma derived T cells suggest that vaccines targeting melanosomal antigens can be successful in treating LAM.
Collapse
Affiliation(s)
- Daniel F Dilling
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
38
|
Chévere-Torres I, Kaphzan H, Bhattacharya A, Kang A, Maki JM, Gambello MJ, Arbiser JL, Santini E, Klann E. Metabotropic glutamate receptor-dependent long-term depression is impaired due to elevated ERK signaling in the ΔRG mouse model of tuberous sclerosis complex. Neurobiol Dis 2011; 45:1101-10. [PMID: 22198573 DOI: 10.1016/j.nbd.2011.12.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/08/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022] Open
Abstract
Tuberous sclerosis complex (TSC) and fragile X syndrome (FXS) are caused by mutations in negative regulators of translation. FXS model mice exhibit enhanced metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). Therefore, we hypothesized that a mouse model of TSC, ΔRG transgenic mice, also would exhibit enhanced mGluR-LTD. We measured the impact of TSC2-GAP mutations on the mTORC1 and ERK signaling pathways and protein synthesis-dependent hippocampal synaptic plasticity in ΔRG transgenic mice. These mice express a dominant/negative TSC2 that binds to TSC1, but has a deletion and substitution mutation in its GAP-domain, resulting in inactivation of the complex. Consistent with previous studies of several other lines of TSC model mice, we observed elevated S6 phosphorylation in the brains of ΔRG mice, suggesting upregulated translation. Surprisingly, mGluR-LTD was not enhanced, but rather was impaired in the ΔRG transgenic mice, indicating that TSC and FXS have divergent synaptic plasticity phenotypes. Similar to patients with TSC, the ΔRG transgenic mice exhibit elevated ERK signaling. Moreover, the mGluR-LTD impairment displayed by the ΔRG transgenic mice was rescued with the MEK-ERK inhibitor U0126. Our results suggest that the mGluR-LTD impairment observed in ΔRG mice involves aberrant TSC1/2-ERK signaling.
Collapse
|
39
|
Tomek K, Wagner R, Varga F, Singer CF, Karlic H, Grunt TW. Blockade of Fatty Acid Synthase Induces Ubiquitination and Degradation of Phosphoinositide-3-Kinase Signaling Proteins in Ovarian Cancer. Mol Cancer Res 2011; 9:1767-79. [DOI: 10.1158/1541-7786.mcr-10-0467] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 2011; 3:189-200. [PMID: 21412983 PMCID: PMC3377068 DOI: 10.1002/emmm.201100131] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/10/2023] Open
Abstract
The protein products of the tuberous sclerosis complex (TSC) genes, TSC1 and TSC2, form a complex, which inhibits the small G-protein, Ras homolog enriched in brain (Rheb). The vast majority of research regarding these proteins has focused on mammalian Target of Rapamycin (mTOR), a target of Rheb. Here, we propose that there are clinically relevant functions and targets of TSC1, TSC2 and Rheb, which are independent of mTOR. We present evidence that such non-canonical functions of the TSC-Rheb signalling network exist, propose a standard of evidence for these non-canonical functions, and discuss their potential clinical and therapeutic implications for patients with TSC and lymphangioleiomyomatosis (LAM).
Collapse
Affiliation(s)
- Nicole A Neuman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
42
|
Karassek S, Berghaus C, Schwarten M, Goemans CG, Ohse N, Kock G, Jockers K, Neumann S, Gottfried S, Herrmann C, Heumann R, Stoll R. Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J Biol Chem 2010; 285:33979-91. [PMID: 20685651 PMCID: PMC2962498 DOI: 10.1074/jbc.m109.095968] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 07/19/2010] [Indexed: 12/18/2022] Open
Abstract
Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.
Collapse
Affiliation(s)
| | | | | | | | - Nadine Ohse
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | - Christian Herrmann
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Rolf Heumann
- From the Departments of Molecular Neurobiochemistry
| | | |
Collapse
|
43
|
Habib SL, Bhandari BK, Sadek N, Abboud-Werner SL, Abboud HE. Novel mechanism of regulation of the DNA repair enzyme OGG1 in tuberin-deficient cells. Carcinogenesis 2010; 31:2022-30. [PMID: 20837600 DOI: 10.1093/carcin/bgq189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tuberin (protein encodes by tuberous sclerosis complex 2, Tsc2) deficiency is associated with the decrease in the DNA repair enzyme 8-oxoG-DNA glycosylase (OGG1) in tumour kidney of tuberous sclerosis complex (TSC) patients. The purpose of this study was to elucidate the mechanisms by which tuberin regulates OGG1. The partial deficiency in tuberin expression that occurs in the renal proximal tubular cells and kidney cortex of the Eker rat is associated with decreased activator protein 4 (AP4) and OGG1 expression. A complete deficiency in tuberin is associated with loss of AP4 and OGG1 expression in kidney tumour from Eker rats and the accumulation of significant levels of 8-oxo-deoxyguanosine. Knockdown of tuberin expression in human renal epithelial cells (HEK293) with small interfering RNA (siRNA) also resulted in a marked decrease in the expression of AP4 and OGG1. In contrast, overexpression of tuberin in HEK293 cells increased the expression of AP4 and OGG1 proteins. Downregulation of AP4 expression using siRNA resulted in a significant decrease in the protein expression of OGG1. Immunoprecipitation studies show that AP4 is associated with tuberin in cells. Gel shift analysis and chromatin immunoprecipitation identified the transcription factor AP4 as a positive regulator of the OGG1 promoter. AP4 DNA-binding activity is significantly reduced in Tsc2(-/-) as compared with Tsc2(+/+) cells. Transcriptional activity of the OGG1 promoter is also decreased in tuberin-null cells compared with wild-type cells. These data indicate a novel role for tuberin in the regulation of OGG1 through the transcription factor AP4. This regulation may be important in the pathogenesis of kidney tumours in patients with TSC disease.
Collapse
Affiliation(s)
- Samy L Habib
- Department of Geriatrics, Geriatric Research, Education, and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
44
|
Mammalian target of rapamycin signaling and autophagy: roles in lymphangioleiomyomatosis therapy. Ann Am Thorac Soc 2010; 7:48-53. [PMID: 20160148 DOI: 10.1513/pats.200909-104js] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pace of progress in lymphangioleiomyomatosis (LAM) is remarkable. In the year 2000, TSC2 gene mutations were found in LAM cells; in 2001 the tuberous sclerosis complex (TSC) genes were discovered to regulate cell size in Drosophila via the kinase TOR (target of rapamycin); and in 2008 the results were published of a clinical trial of rapamycin, a specific inhibitor of TOR, in patients with TSC and LAM with renal angiomyolipomas. This interval of just 8 years between a genetic discovery for which the relevant signaling pathway was as yet unknown, to the initiation, completion, and publication of a clinical trial, is an almost unparalleled accomplishment in modern biomedical research. This robust foundation of basic, translational, and clinical research in TOR, TSC, and LAM is now poised to optimize and validate effective therapeutic strategies for LAM. An immediate challenge is to deduce the mechanisms underlying the partial response of renal angiomyolipomas to rapamycin, and thereby guide the design of combinatorial approaches. TOR complex 1 (TORC1), which is known to be active in LAM cells, is a key inhibitor of autophagy. One hypothesis, which will be explored here, is that low levels of autophagy in TSC2-null LAM cells limits their survival under conditions of bioenergetic stress. A corollary of this hypothesis is that rapamycin, by inducing autophagy, promotes the survival of LAM cells, while simultaneously arresting their growth. If this hypothesis proves to be correct, then combining TORC1 inhibition with autophagy inhibition may represent an effective clinical strategy for LAM.
Collapse
|
45
|
Abstract
The protein mammalian target of rapamycin (mTOR) plays a central role in cell growth and proliferation. Excessive mTOR activity is a prominent feature of many neoplasms and hamartoma syndromes, including lymphangioleiomyomatosis (LAM), a destructive lung disease that causes progressive respiratory failure in women. Although pharmacological inhibitors of mTOR should directly target the pathogenesis of these disorders, their clinical efficacy has been suboptimal. Recent scientific findings reviewed here have greatly improved our understanding of mTOR signaling mechanisms, provided new insights into the control of cell growth and proliferation, and facilitated the development of new therapeutic approaches in LAM, as well as other neoplastic disorders that exhibit excessive mTOR activity.
Collapse
Affiliation(s)
- Arnold S Kristof
- Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
46
|
Abstract
Rheb belongs to a unique family within the Ras superfamily of G-proteins. Although initially identified in rat brain, this G-protein is highly conserved from yeast to human. While only one Rheb is present in lower eukaryotes, two Rheb proteins exist in mammalian cells. A number of studies establish that one of the functions of Rheb is to activate mTOR leading to growth. In particular, the ability of Rheb to activate mTORC1 in vitro points to direct interaction of Rheb with the mTORC1 complex. Additional functions of Rheb that are independent of mTOR have also been suggested.
Collapse
Affiliation(s)
- Nitika Parmar
- Biology Program, California State University Channel Islands, 1 University Drive, Camarillo, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
47
|
Karbowniczek M, Zitserman D, Khabibullin D, Hartman T, Yu J, Morrison T, Nicolas E, Squillace R, Roegiers F, Henske EP. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2009; 120:93-102. [PMID: 20038815 DOI: 10.1172/jci40221] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/21/2009] [Indexed: 01/30/2023] Open
Abstract
Mutations in either of the genes encoding the tuberous sclerosis complex (TSC), TSC1 and TSC2, result in a multisystem tumor disorder characterized by lesions with unusual lineage expression patterns. How these unusual cell-fate determination patterns are generated is unclear. We therefore investigated the role of the TSC in the Drosophila external sensory organ (ESO), a classic model of asymmetric cell division. In normal development, the sensory organ precursor cell divides asymmetrically through differential regulation of Notch signaling to produce a pIIa and a pIIb cell. We report here that inactivation of Tsc1 and overexpression of the Ras homolog Rheb each resulted in duplication of the bristle and socket cells, progeny of the pIIa cell, and loss of the neuronal cell, a product of pIIb cell division. Live imaging of ESO development revealed this cell-fate switch occurred at the pIIa-pIIb 2-cell stage. In human angiomyolipomas, benign renal neoplasms often found in tuberous sclerosis patients, we found evidence of Notch receptor cleavage and Notch target gene activation. Further, an angiomyolipoma-derived cell line carrying biallelic TSC2 mutations exhibited TSC2- and Rheb-dependent Notch activation. Finally, inhibition of Notch signaling using a gamma-secretase inhibitor suppressed proliferation of Tsc2-null rat cells in a xenograft model. Together, these data indicate that the TSC and Rheb regulate Notch-dependent cell-fate decision in Drosophila and Notch activity in mammalian cells and that Notch dysregulation may underlie some of the distinctive clinical and pathologic features of TSC.
Collapse
Affiliation(s)
- Magdalena Karbowniczek
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yasuda S, Kai M, Imai SI, Takeishi K, Taketomi A, Toyota M, Kanoh H, Sakane F. Diacylglycerol kinase eta augments C-Raf activity and B-Raf/C-Raf heterodimerization. J Biol Chem 2009; 284:29559-70. [PMID: 19710016 DOI: 10.1074/jbc.m109.043604] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ras/B-Raf/C-Raf/MEK/ERK signaling cascade is critical for the control of many fundamental cellular processes, including proliferation, survival, and differentiation. This study demonstrated that small interfering RNA-dependent knockdown of diacylglycerol kinase eta (DGKeta) impaired the Ras/B-Raf/C-Raf/MEK/ERK pathway activated by epidermal growth factor (EGF) in HeLa cells. Conversely, the overexpression of DGKeta1 could activate the Ras/B-Raf/C-Raf/MEK/ERK pathway in a DGK activity-independent manner, suggesting that DGKeta serves as a scaffold/adaptor protein. By determining the activity of all the components of the pathway in DGKeta-silenced HeLa cells, this study revealed that DGKeta activated C-Raf but not B-Raf. Moreover, this study demonstrated that DGKeta enhanced EGF-induced heterodimerization of C-Raf with B-Raf, which transmits the signal to C-Raf. DGKeta physically interacted with B-Raf and C-Raf, regulating EGF-induced recruitment of B-Raf and C-Raf from the cytosol to membranes. The DGKeta-dependent activation of C-Raf occurred downstream or independently of the already known C-Raf modifications, such as dephosphorylation at Ser-259, phosphorylation at Ser-338, and interaction with 14-3-3 protein. Taken together, the results obtained strongly support that DGKeta acts as a novel critical regulatory component of the Ras/B-Raf/C-Raf/MEK/ERK signaling cascade via a previously unidentified mechanism.
Collapse
Affiliation(s)
- Satoshi Yasuda
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 2009; 21:827-35. [PMID: 19166929 DOI: 10.1016/j.cellsig.2009.01.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/02/2009] [Indexed: 01/16/2023]
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is implicated in the pathogenesis of a number of cancers and inherited hamartoma syndromes which have led to mTOR inhibitors, such as rapamycin, being tested in clinical trials. Knowledge of the mTOR pathway is rapidly expanding. This review provides an update on the most recent additions to the mTOR pathway with particular emphasis on mTORC1 signalling. mTORC1 signalling is classically known for its role in regulating cell growth and proliferation through modulation of protein synthesis. Recent research has identified novel mTORC1 cell signalling mechanisms that modulate mitochondrial biogenesis, hypoxia signalling and cell cycle progression and uncovered novel mTORC1 targets; YY1, HIF and SGK1. It is unsurprising that regulation of mTORC1 is multifaceted with many positive and negative signalling inputs. We discuss the recent advances that have been made to determine the upstream mechanisms that control mTORC1 through hypoxia, energy sensing and nutrient signalling. Also discussed are current findings that have unravelled a series of novel mTORC1-associated proteins that directly control the activity of mTORC1 and include PRAS40, FKBP38, Rag GTPases and RalA.
Collapse
Affiliation(s)
- E A Dunlop
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, Wales, UK
| | | |
Collapse
|
50
|
Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R, Nagata M, Yokono K. Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes 2009; 58:1321-32. [PMID: 19258434 PMCID: PMC2682691 DOI: 10.2337/db08-0519] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Components of insulin/IGF-1 receptor-mediated signaling pathways in pancreatic beta-cells have been implicated in the development of diabetes, in part through the regulation of beta-cell mass in vivo. Studies in vitro have shown that the protein Ras homolog enriched in brain (Rheb) plays a key role as a positive upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1) pathway in integrating inputs from nutrients and growth factors for cell growth. Our objective was to investigate the role of the mTORC1 pathway in the regulation of beta-cell mass in vivo. RESEARCH DESIGN AND METHODS We generated transgenic mice that overexpress Rheb in beta-cells. We examined the activation of the mTORC1 pathway and its effects on beta-cell mass, on glucose metabolism, and on protection against hyperglycemia. RESULTS Immunoblots of islet extracts revealed that the phosphorylation levels of ribosomal protein S6 and eukaryotic initiation factor 4E binding protein 1, downstream effectors for mTORC1, were upregulated in transgenic beta-cells. Immunostaining of the pancreatic sections with anti-phospho-S6 antibody confirmed upregulation of the mTORC1 pathway in beta-cells in vivo. The mice showed improved glucose tolerance with higher insulin secretion. This arose from increased beta-cell mass accompanied by increased cell size. The mice also exhibited resistance to hyperglycemia induced by streptozotocin and obesity. CONCLUSIONS Activation of the mTORC1 pathway by Rheb led to increased beta-cell mass in this mouse model without producing obvious unfavorable effects, giving a potential approach for the treatment of beta-cell failure and diabetes.
Collapse
Affiliation(s)
- Suirin Hamada
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenta Hara
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Corresponding author: Kenta Hara,
| | - Takeshi Hamada
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hisafumi Yasuda
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Moriyama
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rika Nakayama
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN, Kobe, Japan
| | - Masao Nagata
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Yokono
- Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|