1
|
Novikov B, Boland DJ, Mertsalov I, Scott H, Dauletbayeva S, Monagas-Valentin P, Panin V. CMP-sialic acid synthetase in Drosophila requires N-glycosylation of a noncanonical site. J Biol Chem 2025; 301:108483. [PMID: 40204091 DOI: 10.1016/j.jbc.2025.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Sialylation plays important roles in animals, affecting numerous molecular and cell interactions. In Drosophila, sialylation regulates neural transmission and mediates communication between neurons and glia. Drosophila CMP-sialic acid synthetase (CSAS), a key enzyme of the sialylation pathway, is localized to the Golgi and modified by N-glycosylation, suggesting that this modification can affect CSAS function. Here, we tested this hypothesis using in vitro and in vivo approaches. We found that CSAS proteins from divergent Drosophila species have two conserved N-glycosylation sites, including the rarely glycosylated noncanonical N-X-C sequon. We investigated CSAS glycosylation by generating CSAS "glycomutants" lacking glycosylation sites and analyzing them in vivo in transgenic rescue assays. The removal of noncanonical glycosylation significantly decreased CSAS activity, while the canonical site mutation did not affect CSAS function. Although all glycomutants were similarly localized to the Golgi, the non-canonical glycosylation, unlike the canonical one, affected CSAS stability in vivo and in vitro. Our results suggested that CSAS functions as a dimer, which was also supported by protein structure predictions that produced a dimer recapitulating the crystal structures of mammalian and bacterial counterparts, highlighting the evolutionary conservation of the CSAS structure-function relationship. This conclusion was supported by the rescue of CSAS mutants using the human ortholog. The noncanonical CSAS glycosylation was discussed in terms of a potential mechanism of temperature-dependent regulation of sialylation in poikilotherms that modulates neural activity in heat shock conditions. Taken together, we uncovered an important regulation of sialylation in Drosophila, highlighting a novel interplay between glycosylation pathways in neural regulation.
Collapse
Affiliation(s)
- Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Devon J Boland
- Texas A&M Institute of Genome Sciences & Society, Texas A&M University, College Station, Texas, USA
| | - Ilya Mertsalov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Hilary Scott
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Saniya Dauletbayeva
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA; Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
2
|
Xu T, Tong L, Zhang Z, Zhou H, Zheng P. Glycosylation in Drosophila S2 cells. Biotechnol Bioeng 2024; 121:3672-3683. [PMID: 39140464 DOI: 10.1002/bit.28827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In recent years, there has been a remarkable surge in the approval of therapeutic protein drugs, particularly recombinant glycoproteins. Drosophila melanogaster S2 cells have become an appealing platform for the production of recombinant proteins due to their simplicity and low cost in cell culture. However, a significant limitation associated with using the S2 cell expression system is its propensity to introduce simple paucimannosidic glycosylation structures, which differs from that in the mammalian expression system. It is well established that the glycosylation patterns of glycoproteins have a profound impact on the physicochemical properties, bioactivity, and immunogenicity. Therefore, understanding the mechanisms behind these glycosylation modifications and implementing measures to address it has become a subject of considerable interest. This review aims to comprehensively summarize recent advancements in glycosylation modification in S2 cells, with a particular focus on comparing the glycosylation patterns among S2, other insect cells, and mammalian cells, as well as developing strategies for altering the glycosylation patterns of recombinant glycoproteins.
Collapse
Affiliation(s)
- Tingting Xu
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Lixiang Tong
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Zhifu Zhang
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Hairong Zhou
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Peilin Zheng
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
3
|
Kanack AJ, Prodoehl E, Ishihara-Aoki M, Aoki K, Dahms NM. Glycosphingolipids and their impact on platelet activity in a murine model of fabry disease. Sci Rep 2024; 14:29488. [PMID: 39604471 PMCID: PMC11603304 DOI: 10.1038/s41598-024-80633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by deficiency of the lysosomal enzyme ⍺-galactosidase-A (⍺-Gal A), resulting in widespread accumulation of terminal galactose-containing glycosphingolipids (GSLs) and the impairment of multiple organ systems. Thrombotic events are common in Fabry patients, with strokes and heart attacks being significant contributors to a shortened lifespan in patients of both genders. Previously, we developed an ⍺-Gal A-knockout (KO) murine model that recapitulates most Fabry symptomologies and demonstrated that platelets from KO males become sensitized to agonist-mediated activation. In the current report, we used mass spectrometry, platelet-based assays and histology to define further the mechanisms linking GSL accumulation with thrombotic phenotypes in both sexes. Sera and platelets from ⍺-Gal A-KO females have elevated levels of Fabry-associated GSLs relative to wild-type females, but accumulated less of these GSLs than KO males. Correspondingly, KO females demonstrate a less severe thrombotic phenotypes than KO males. Notably, treatment of platelets from wild-type animals with globotriaosylceramide (Gb3) increased baseline platelet activation and aggregation. In contrast, several control GSLs did not stimulate platelet responses. These data suggest that chronically high concentrations of the Fabry-associated GSL, Gb3, contributes to the prothrombotic phenotypes experienced by Fabry patients by directly stimulating platelet activation.
Collapse
Affiliation(s)
- Adam J Kanack
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA.
| | - Eve Prodoehl
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mayumi Ishihara-Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kazuhiro Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Sung HH, Li H, Huang YC, Ai CL, Hsieh MY, Jan HM, Peng YJ, Lin HY, Yeh CH, Lin SY, Yeh CY, Cheng YJ, Khoo KH, Lin CH, Chien CT. Galectins induced from hemocytes bridge phosphatidylserine and N-glycosylated Drpr/CED-1 receptor during dendrite pruning. Nat Commun 2024; 15:7402. [PMID: 39191750 DOI: 10.1038/s41467-024-51581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
During neuronal pruning, phagocytes engulf shed cellular debris to avoid inflammation and maintain tissue homeostasis. How phagocytic receptors recognize degenerating neurites had been unclear. Here, we identify two glucosyltransferases Alg8 and Alg10 of the N-glycosylation pathway required for dendrite fragmentation and clearance through genetic screen. The scavenger receptor Draper (Drpr) is N-glycosylated with complex- or hybrid-type N-glycans that interact specifically with galectins. We also identify the galectins Crouching tiger (Ctg) and Hidden dragon (Hdg) that interact with N-glycosylated Drpr and function in dendrite pruning via the Drpr pathway. Ctg and Hdg are required in hemocytes for expression and function, and are induced during dendrite injury to localize to injured dendrites through specific interaction with exposed phosphatidylserine (PS) on the surface membrane of injured dendrites. Thus, the galectins Ctg and Hdg bridge the interaction between PS and N-glycosylated Drpr, leading to the activation of phagocytosis.
Collapse
Affiliation(s)
- Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Lu Ai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsuan Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Yen Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
He Y, Miao C, Yang S, Xu C, Liu Y, Zhu X, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Lang Y, Zhao S, Wang Y, Han X, Cao S, Hu Y, Du S. Sialic acids as attachment factors in mosquitoes mediating Japanese encephalitis virus infection. J Virol 2024; 98:e0195923. [PMID: 38634598 PMCID: PMC11092328 DOI: 10.1128/jvi.01959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.
Collapse
Affiliation(s)
- Yi He
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiping Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changhao Xu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yifei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yajie Hu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
6
|
Helali Y, Delporte C. Updates of the current strategies of labeling for N-glycan analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124068. [PMID: 38484674 DOI: 10.1016/j.jchromb.2024.124068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024]
Abstract
This mini review summarizes the current methods used for screening N-glycosylation of glycoproteins, with a specific focus on therapeutic proteins and on techniques involving the release of N-glycans. With the continuous development of biopharmaceuticals, particularly monoclonal antibodies (mAbs), which are N-glycosylated proteins, monitoring has gained importance in recent decades. Glycosylation of therapeutic glycoproteins is considered a critical quality attribute because it can impact the efficacy and safety of these therapeutic drugs. The protocols and instrumentation have evolved with the advancement of technologies. Nowadays, methods are becoming increasingly robust, rapid, and sensitive. For the release of N-glycans, the most commonly used method is enzymatic release using PNGase F. The latter is discussed in light of the advent of rapid release that is now possible. The strategy for separating N-glycans using either liquid chromatography (LC) with hydrophilic interaction liquid chromatography (HILIC) chemistry or capillary electrophoresis will be discussed. The selection of the labeling agent is a crucial step in sample preparation for the analysis of released N-glycans. This review also discusses labeling agents that are compatible with and dependent on the separation and detection techniques employed. The emergence of multiplex labeling agents is also summarized. The latter enables the analysis of multiple samples in a single run, but it requires MS analysis.
Collapse
Affiliation(s)
- Yosra Helali
- RD3-Pharmacognosis, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Delporte
- RD3-Pharmacognosis, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
7
|
Paschinger K, Vanbeselaere J, Wilson IBH. Analysis of Caenorhabditis Protein Glycosylation. Methods Mol Biol 2024; 2762:123-138. [PMID: 38315363 DOI: 10.1007/978-1-0716-3666-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Glycoproteins result from post-translational modification of proteins by glycans attached to certain side chains, with possible heterogeneity due to different structures being possible at the same glycosylation site.In contrast to the mammalian systems, analysis of invertebrate glycans presents a challenge in analysis as there exist unfamiliar epitopes and a high degree of structural and isomeric variation between different species-Caenorhabditis elegans is no exception. Simple screening using lectins and antibodies can yield hints regarding which glycan epitopes are present in wild-type and mutant strains, but detailed analysis is necessary for determining more exact glycomic information. Here, our analytical approach is to analyze N- and O-glycans involving "off-line" RP-HPLC MALDI-TOF MS/MS. Enrichment and labeling steps facilitate the analysis of single structures and provide isomeric separation. Thereby, the "simple" worm expresses over 200 N-glycan structures varying depending on culture conditions or the genetic background.
Collapse
Affiliation(s)
- Katharina Paschinger
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Vienna, Austria
| | - Jorick Vanbeselaere
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Vienna, Austria
| | - Iain B H Wilson
- Institut für Biochemie, Department für Chemie, Universität für Bodenkultur, Vienna, Austria.
| |
Collapse
|
8
|
Dookwah M, Wagner SK, Ishihara M, Yu SH, Ulrichs H, Kulik MJ, Zeltner N, Dalton S, Strauss KA, Aoki K, Steet R, Tiemeyer M. Neural-specific alterations in glycosphingolipid biosynthesis and cell signaling associated with two human ganglioside GM3 synthase deficiency variants. Hum Mol Genet 2023; 32:3323-3341. [PMID: 37676252 PMCID: PMC10695682 DOI: 10.1093/hmg/ddad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.
Collapse
Affiliation(s)
- Michelle Dookwah
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Shannon K Wagner
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Seok-Ho Yu
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, United States
| | - Heidi Ulrichs
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Michael J Kulik
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Stephen Dalton
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30602, United States
| | - Kevin A Strauss
- Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, United States
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| | - Richard Steet
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States
| |
Collapse
|
9
|
Tan L, Ishihara M, Black I, Glushka J, Heiss C, Azadi P. Duckweed pectic-arabinogalactan-proteins can crosslink through borate diester bonds. Carbohydr Polym 2023; 319:121202. [PMID: 37567699 DOI: 10.1016/j.carbpol.2023.121202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Material containing pectin and arabinogalactan-protein (AGP) was released and purified from Spirodela alcohol insoluble residues. Results of carbohydrate analyses and two-dimensional NMR spectroscopy suggest that this material is composed of apiogalacturonan and rhamnogalacturonan-I covalently attached to AGPs. 11B NMR spectroscopy indicated that some of the glycoses in this complex exist as their boric acid monoesters. Borate diesters were formed when the pectic-AGPs were allowed to react at pH above 6.2 with the boron-depleted pectic-AGPs, suggesting that in vitro two pectic-AGP molecules can crosslink to one another through borate. Borate diesters also formed when the pectic-AGPs were incubated with monomeric rhamnogalacturonan-II in the presence of Pb2+ ion at pH 9.2. This data presents evidence of the first wall polymer after rhamnogalacturonan-II to crosslink through borate diesters. We suggest that the formation of these borate-crosslinks may help Spirodela respond to high-pH condition.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America.
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| |
Collapse
|
10
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
11
|
Hollenhorst MA, Tiemeyer KH, Mahoney KE, Aoki K, Ishihara M, Lowery SC, Rangel-Angarita V, Bertozzi CR, Malaker SA. Comprehensive analysis of platelet glycoprotein Ibα ectodomain glycosylation. J Thromb Haemost 2023; 21:995-1009. [PMID: 36740532 PMCID: PMC10065957 DOI: 10.1016/j.jtha.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Platelet glycoprotein (GP) Ibα is the major ligand-binding subunit of the GPIb-IX-V complex that binds von Willebrand factor. GPIbα is heavily glycosylated, and its glycans have been proposed to play key roles in platelet clearance, von Willebrand factor binding, and as target antigens in immune thrombocytopenia syndromes. Despite its importance in platelet biology, the glycosylation profile of GPIbα is not well characterized. OBJECTIVES The aim of this study was to comprehensively analyze GPIbα amino acid sites of glycosylation (glycosites) and glycan structures. METHODS GPIbα ectodomain that was recombinantly expressed or that was purified from human platelets was analyzed by Western blot, mass spectrometry glycomics, and mass spectrometry glycopeptide analysis to define glycosites and the structures of the attached glycans. RESULTS We identified a diverse repertoire of N- and O-glycans, including sialoglycans, Tn antigen, T antigen, and ABO(H) blood group antigens. In the analysis of the recombinant protein, we identified 62 unique O-glycosites. In the analysis of the endogenous protein purified from platelets, we identified 48 unique O-glycosites and 1 N-glycosite. The GPIbα mucin domain is densely O-glycosylated. Glycosites are also located within the macroglycopeptide domain and mechanosensory domain. CONCLUSIONS This comprehensive analysis of GPIbα glycosylation lays the foundation for further studies to determine the functional and structural roles of GPIbα glycans.
Collapse
Affiliation(s)
- Marie A Hollenhorst
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Pathology, Stanford University, Stanford, California, USA; Department of Medicine, Division of Hematology, Stanford University, Stanford, California, USA. https://twitter.com/HollenhorstM
| | | | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Kazuhiro Aoki
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mayumi Ishihara
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah C Lowery
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | | | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
12
|
Scott H, Novikov B, Ugur B, Allen B, Mertsalov I, Monagas-Valentin P, Koff M, Baas Robinson S, Aoki K, Veizaj R, Lefeber DJ, Tiemeyer M, Bellen H, Panin V. Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila. eLife 2023; 12:e78280. [PMID: 36946697 PMCID: PMC10110239 DOI: 10.7554/elife.78280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Berrak Ugur
- Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Brooke Allen
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Ilya Mertsalov
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Melissa Koff
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Sarah Baas Robinson
- Complex Carbohydrate Research Center, University of GeorgiaAthensUnited States
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of GeorgiaAthensUnited States
| | - Raisa Veizaj
- Translational Metabolic Laboratory, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenNetherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenNetherlands
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of GeorgiaAthensUnited States
| | - Hugo Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
13
|
Yang Q, Smagghe G, Staes A, Gevaert K, De Schutter K. α-1,6-fucosyltransferase plays a critical role during embryogenesis of the hemimetabolous insect Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 154:103918. [PMID: 36758646 DOI: 10.1016/j.ibmb.2023.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, modulating the properties of proteins. In insects, α-1,6-fucosyltransferase (FucT6) is an important enzyme in the glycosylation pathway, modifying the core structure of N-glycans on glycoproteins with the addition of a fucose residue. In our previous study, RNAi-mediated silencing of FucT6 in the third-instar nymphs of Nilaparvata lugens caused a failure of the ecdysis process during nymphal development, leading to high mortality. These results suggested the requirement of FucT6 during nymphal development in N. lugens. In this study, RNAi-mediated gene silencing of FucT6 in adults did not cause lethality. However, parental RNAi of FucT6 led to full failure in the hatching of eggs, and this effect was maternally mediated. Interestingly, gene expression levels of FucT6 in the eggs peaked at the katatrepsis event, where the embryo rotates 180° resulting in the head pointing towards the anterior side of the egg. Proteome analysis showed significant differences in the abundance of proteins between different embryonal developmental stages, suggesting the crucial role of FucT6 mediated core N-fucosylation in embryonal development. Therefore, correct α-1,6-fucosylation of glycoproteins is important for N. lugens during embryonic development and this study provides new insights into the role of N-glycosylation in embryogenesis in insects.
Collapse
Affiliation(s)
- Qun Yang
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Burock R, Cajic S, Hennig R, Buettner FFR, Reichl U, Rapp E. Reliable N-Glycan Analysis-Removal of Frequently Occurring Oligosaccharide Impurities by Enzymatic Degradation. Molecules 2023; 28:molecules28041843. [PMID: 36838829 PMCID: PMC9967028 DOI: 10.3390/molecules28041843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glycosylation, especially N-glycosylation, is one of the most common protein modifications, with immense importance at the molecular, cellular, and organismal level. Thus, accurate and reliable N-glycan analysis is essential in many areas of pharmaceutical and food industry, medicine, and science. However, due to the complexity of the cellular glycosylation process, in-depth glycoanalysis is still a highly challenging endeavor. Contamination of samples with oligosaccharide impurities (OSIs), typically linear glucose homo-oligomers, can cause further complications. Due to their physicochemical similarity to N-glycans, OSIs produce potentially overlapping signals, which can remain unnoticed. If recognized, suspected OSI signals are usually excluded in data evaluation. However, in both cases, interpretation of results can be impaired. Alternatively, sample preparation can be repeated to include an OSI removal step from samples. However, this significantly increases sample amount, time, and effort necessary. To overcome these issues, we investigated the option to enzymatically degrade and thereby remove interfering OSIs as a final sample preparation step. Therefore, we screened ten commercially available enzymes concerning their potential to efficiently degrade maltodextrins and dextrans as most frequently found OSIs. Of these enzymes, only dextranase from Chaetomium erraticum and glucoamylase P from Hormoconis resinae enabled a degradation of OSIs within only 30 min that is free of side reactions with N-glycans. Finally, we applied the straightforward enzymatic degradation of OSIs to N-glycan samples derived from different standard glycoproteins and various stem cell lysates.
Collapse
Affiliation(s)
- Robert Burock
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - Samanta Cajic
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - René Hennig
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
- Correspondence:
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Udo Reichl
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- MPI for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| |
Collapse
|
15
|
Wang BX, Takagi J, McShane A, Park JH, Aoki K, Griffin C, Teschler J, Kitts G, Minzer G, Tiemeyer M, Hevey R, Yildiz F, Ribbeck K. Host-derived O-glycans inhibit toxigenic conversion by a virulence-encoding phage in Vibrio cholerae. EMBO J 2023; 42:e111562. [PMID: 36504455 PMCID: PMC9890226 DOI: 10.15252/embj.2022111562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Microbiology and ImmunologyStanford UniversityStanfordCAUSA
| | - Julie Takagi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Abigail McShane
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jin Hwan Park
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGAUSA
| | - Catherine Griffin
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Jennifer Teschler
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Giordan Kitts
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Giulietta Minzer
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Michael Tiemeyer
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGAUSA
| | - Rachel Hevey
- Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Fitnat Yildiz
- Department of Microbiology and Environmental ToxicologyUniversity of CaliforniaSanta CruzCAUSA
| | - Katharina Ribbeck
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
16
|
Oka N, Mori S, Ikegaya M, Park EY, Miyazaki T. Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family. Glycobiology 2022; 32:1153-1163. [PMID: 36106687 DOI: 10.1093/glycob/cwac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
N-glycans are modified by glycosyltransferases in the endoplasmic reticulum and Golgi apparatus. N-acetylglucosaminyltransferase IV (GnT-IV) is a Golgi-localized glycosyltransferase that synthesizes complex-type N-glycans in vertebrates. This enzyme attaches N-acetylglucosamine (GlcNAc) to the α-1,3-linked mannose branch of the N-glycan core structure via a β-1,4 linkage. Deficiency of this enzyme is known to cause abnormal cellular functions, making it a vital enzyme for living organisms. However, there has been no report on its 3-dimensional structure to date. Here, we demonstrated that the C-terminal regions (named CBML) of human GnT-IVa and Bombyx mori ortholog have the ability to bind β-N-acetylglucosamine. In addition, we determined the crystal structures of human CBML, B. mori CBML, and its complex with β-GlcNAc at 1.97, 1.47, and 1.15 Å resolutions, respectively, and showed that they adopt a β-sandwich fold, similar to carbohydrate-binding module family 32 (CBM32) proteins. The regions homologous to CBML (≥24% identity) were found in GnT-IV isozymes, GnT-IVb, and GnT-IVc (known as GnT-VI), and the structure of B. mori CBML in complex with β-GlcNAc indicated that the GlcNAc-binding residues were highly conserved among these isozymes. These residues are also conserved with the GlcNAc-binding CBM32 domain of β-N-acetylhexosaminidase NagH from Clostridium perfringens despite the low sequence identity (<20%). Taken together with the phylogenetic analysis, these findings indicate that these CBMLs may be novel CBM family proteins with GlcNAc-binding ability.
Collapse
Affiliation(s)
- Nozomi Oka
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Sota Mori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
17
|
Batson BD, Zorn BT, Radicioni G, Livengood SS, Kumagai T, Dang H, Ceppe A, Clapp PW, Tunney M, Elborn JS, McElvaney NG, Muhlebach MS, Boucher RC, Tiemeyer M, Wolfgang MC, Kesimer M. Cystic Fibrosis Airway Mucus Hyperconcentration Produces a Vicious Cycle of Mucin, Pathogen, and Inflammatory Interactions that Promotes Disease Persistence. Am J Respir Cell Mol Biol 2022; 67:253-265. [PMID: 35486871 PMCID: PMC9348562 DOI: 10.1165/rcmb.2021-0359oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
The dynamics describing the vicious cycle characteristic of cystic fibrosis (CF) lung disease, initiated by stagnant mucus and perpetuated by infection and inflammation, remain unclear. Here we determine the effect of the CF airway milieu, with persistent mucoobstruction, resident pathogens, and inflammation, on the mucin quantity and quality that govern lung disease pathogenesis and progression. The concentrations of MUC5AC and MUC5B were measured and characterized in sputum samples from subjects with CF (N = 44) and healthy subjects (N = 29) with respect to their macromolecular properties, degree of proteolysis, and glycomics diversity. These parameters were related to quantitative microbiome and clinical data. MUC5AC and MUC5B concentrations were elevated, 30- and 8-fold, respectively, in CF as compared with control sputum. Mucin parameters did not correlate with hypertonic saline, inhaled corticosteroids, or antibiotics use. No differences in mucin parameters were detected at baseline versus during exacerbations. Mucin concentrations significantly correlated with the age and sputum human neutrophil elastase activity. Although significantly more proteolytic cleavages were detected in CF mucins, their macromolecular properties (e.g., size and molecular weight) were not significantly different than control mucins, likely reflecting the role of S-S bonds in maintaining multimeric structures. No evidence of giant mucin macromolecule reflecting oxidative stress-induced cross-linking was found. Mucin glycomic analysis revealed significantly more sialylated glycans in CF, and the total abundance of nonsulfated O-glycans correlated with the relative abundance of pathogens. Collectively, the interaction of mucins, pathogens, epithelium, and inflammatory cells promotes proteomic and glycomic changes that reflect a persistent mucoobstructive, infectious, and inflammatory state.
Collapse
Affiliation(s)
- Bethany D. Batson
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| | - Bryan T. Zorn
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giorgia Radicioni
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| | - Stephanie S. Livengood
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Agathe Ceppe
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | - Michael Tunney
- Queen’s University, Belfast, Northern Ireland, United Kingdom; and
| | - J. Stuart Elborn
- Queen’s University, Belfast, Northern Ireland, United Kingdom; and
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Pathology and Laboratory Medicine
| |
Collapse
|
18
|
Takagi J, Aoki K, Turner BS, Lamont S, Lehoux S, Kavanaugh N, Gulati M, Valle Arevalo A, Lawrence TJ, Kim CY, Bakshi B, Ishihara M, Nobile CJ, Cummings RD, Wozniak DJ, Tiemeyer M, Hevey R, Ribbeck K. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity. Nat Chem Biol 2022; 18:762-773. [PMID: 35668191 PMCID: PMC7613833 DOI: 10.1038/s41589-022-01035-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Mucins are large gel-forming polymers inside the mucus barrier that inhibit the yeast-to-hyphal transition of Candida albicans, a key virulence trait of this important human fungal pathogen. However, the molecular motifs in mucins that inhibit filamentation remain unclear despite their potential for therapeutic interventions. Here, we determined that mucins display an abundance of virulence-attenuating molecules in the form of mucin O-glycans. We isolated and cataloged >100 mucin O-glycans from three major mucosal surfaces and established that they suppress filamentation and related phenotypes relevant to infection, including surface adhesion, biofilm formation and cross-kingdom competition between C. albicans and the bacterium Pseudomonas aeruginosa. Using synthetic O-glycans, we identified three structures (core 1, core 1 + fucose and core 2 + galactose) that are sufficient to inhibit filamentation with potency comparable to the complex O-glycan pool. Overall, this work identifies mucin O-glycans as host molecules with untapped therapeutic potential to manage fungal pathogens.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Bradley S Turner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sabrina Lamont
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, USA
| | - Nicole Kavanaugh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Molecular Cell, Cell Press, Cambridge, MA, USA
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, USA
| | - Travis J Lawrence
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Colin Y Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bhavya Bakshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, USA
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Clinical impact of glycans in platelet and megakaryocyte biology. Blood 2022; 139:3255-3263. [PMID: 35015813 PMCID: PMC9164739 DOI: 10.1182/blood.2020009303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Humans produce and remove 1011 platelets daily to maintain a steady-state platelet count. The tight regulation of platelet production and removal from the blood circulation prevents anomalies in both processes from resulting in reduced or increased platelet count, often associated with the risk of bleeding or overt thrombus formation, respectively. This review focuses on the role of glycans, also known as carbohydrates or oligosaccharides, including N- and O-glycans, proteoglycans, and glycosaminoglycans, in human and mouse platelet and megakaryocyte physiology. Based on recent clinical observations and mouse models, we focused on the pathologic aspects of glycan biosynthesis and degradation and their effects on platelet numbers and megakaryocyte function.
Collapse
|
20
|
Temporal analysis of N-acetylglucosamine extension of N-glycans in the middle silk gland of silkworm Bombyx mori. J Biosci Bioeng 2022; 133:533-540. [PMID: 35397991 DOI: 10.1016/j.jbiosc.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022]
Abstract
N-glycosylation of proteins is an important post-translational modification in eukaryotic cells. One of the key modifications in protein N-glycosylation is N-acetylglucosamine (GlcNAc) extension mediated by N-acetylglucosaminyltransferase I (GNTI), which triggers N-glycan maturation from high-mannose-type to hybrid- and complex-type structures in Golgi. However, the temporal contributions of GNTI to GlcNAc extension and the resultant N-glycan structures in insects have not been analyzed. Here, focusing on GlcNAc extension of N-glycan in the silkworm Bombyx mori, we analyzed the temporal N-glycan alterations in the middle silk gland (MSG) and characterized the property of key enzyme for complex-type N-glycan biosynthesis, B. mori GNTI (BmGNTI). N-glycan analysis of N-glycoproteins in the MSG demonstrated that BmGNTI identified and characterized in this study consistently contributed to GlcNAc extension of N-glycans, which led to the accumulation of GlcNAc-extended N-glycans as predominant structures throughout the MSG development. The expression profile of GlcNAc extension-related genes revealed that the enzymes contributing to the hydrolysis of GlcNAc showed stage-specific expressions, thereby resulting in accumulations of the end product N-glycans of the enzyme. These results lead to the speculation that not BmGNTI but rather glycosylhydrolases critically influenced the structural formations and the changes in the ratio of N-glycans with GlcNAc residue(s) in MSG.
Collapse
|
21
|
Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Adv Drug Deliv Rev 2022; 184:114182. [PMID: 35278522 PMCID: PMC9068269 DOI: 10.1016/j.addr.2022.114182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
The secreted mucus layer that lines and protects epithelial cells is conserved across diverse species. While the exact composition of this protective layer varies between organisms, certain elements are conserved, including proteins that are heavily decorated with N-acetylgalactosamine-based sugars linked to serines or threonines (O-linked glycosylation). These heavily O-glycosylated proteins, known as mucins, exist in many forms and are able to form hydrated gel-like structures that coat epithelial surfaces. In vivo studies in diverse organisms have highlighted the importance of both the mucin proteins as well as their constituent O-glycans in the protection and health of internal epithelia. Here, we summarize in vivo approaches that have shed light on the synthesis and function of these essential components of mucus.
Collapse
Affiliation(s)
- Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States.
| |
Collapse
|
22
|
Yang Q, De Schutter K, Chen P, Van Damme EJM, Smagghe G. RNAi of the N-glycosylation-related genes confirms their importance in insect development and α-1,6-fucosyltransferase plays a role in the ecdysis event for the hemimetabolous pest insect Nilaparvata lugens. INSECT SCIENCE 2022; 29:91-99. [PMID: 33860636 DOI: 10.1111/1744-7917.12920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/16/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Recently N-glycosylation was found to be required for the postembryonic development and metamorphosis of the holometabolous beetle Tribolium castaneum. However, the role of N-glycosylation in the development of hemimetabolous insects is unknown. To further elucidate the role of N-glycosylation in the development of insects, a functional characterization of the N-glycosylation-related genes (NGRGs) was performed in a model insect for hemimetabolous development, namely the brown planthopper Nilaparvata lugens. In this project, we report the effects of RNAi-mediated silencing of 15 NGRGs on the postembryonic development of N. lugens. Two major observations were made. First, interruption of the early steps of N-glycan processing led to a lethal phenotype during the transition from nymph to adult as was observed in T. castaneum. Second, we report here on an essential function for the α-1,6-fucosyl transferase in the ecdysis event of N. lugens between nymphal instars, since gene-silencing by RNAi led to failure of ecdysis and subsequent mortality of the treated insect.
Collapse
Affiliation(s)
- Qun Yang
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Pengyu Chen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
| |
Collapse
|
23
|
Aoki K, Kumagai T, Ranzinger R, Bergmann C, Camus A, Tiemeyer M. Serum N-Glycome Diversity in Teleost and Chondrostrean Fishes. Front Mol Biosci 2021; 8:778383. [PMID: 34859056 PMCID: PMC8631502 DOI: 10.3389/fmolb.2021.778383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in carbohydrate chemistry, chemical biology, and mass spectrometric techniques have opened the door to rapid progress in uncovering the function and diversity of glycan structures associated with human health and disease. These strategies can be equally well applied to advance non-human health care research. To date, the glycomes of only a handful of non-human, non-domesticated vertebrates have been analyzed in depth due to the logistic complications associated with obtaining or handling wild-caught or farm-raised specimens. In contrast, the last 2 decades have seen advances in proteomics, glycoproteomics, and glycomics that have significantly advanced efforts to identify human serum/plasma biomarkers for various diseases. In this study, we investigated N-glycan structural diversity in serum harvested from five cultured fish species. This biofluid is a useful starting point for glycomic analysis because it is rich in glycoproteins, can be acquired in a sustainable fashion, and its contents reflect dynamic physiologic changes in the organism. Sera acquired from two chondrostrean fish species, the Atlantic sturgeon and shortnose sturgeon, and three teleost fish species, the Atlantic salmon, Arctic char, and channel catfish, were delipidated by organic extraction and the resulting protein-rich preparations sequentially treated with trypsin and PNGaseF to generate released N-glycans for structural analysis. Released N-glycans were analyzed as their native or permethylated forms by nanospray ionization mass spectrometry in negative or positive mode. While the basic biosynthetic pathway that initiates the production of glycoprotein glycan core structures is well-conserved across the teleost fish species examined in this study, species-specific structural differences were detected across the five organisms in terms of their monosaccharide composition, sialylation pattern, fucosylation, and degree of O-acetylation. Our methods and results provide new contributions to a growing library of datasets describing fish N-glycomes that can eventually establish species-normative baselines for assessing N-glycosylation dynamics associated with pathogen invasion, environmental stress, and fish immunologic responses.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Procter & Gamble, Takasaki, Japan
| | - René Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Carl Bergmann
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Alvin Camus
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
24
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
25
|
Yun J, Jo JY, Tuomivaara ST, Lim JM. Isotope labeling strategies of glycans for mass spectrometry-based quantitative glycomics. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Maghodia AB, Geisler C, Jarvis DL. A New Bacmid for Customized Protein Glycosylation Pathway Engineering in the Baculovirus-Insect Cell System. ACS Chem Biol 2021; 16:1941-1950. [PMID: 33596046 DOI: 10.1021/acschembio.0c00974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One attractive feature of the baculovirus-insect cell system (BICS) is the baculoviral genome has a large capacity for genetic cargo. This enables construction of viral vectors designed to accept multigene insertions, which has facilitated efforts to produce recombinant multisubunit protein complexes. However, the large genetic capacity of baculovirus vectors has not yet been exploited for multistep pathway engineering. Therefore, we created PolyBac, which is a novel baculovirus shuttle vector, or bacmid, that can be used for this purpose. PolyBac was designed to accept multiple transgene insertions by three different mechanisms at three different sites within the baculovirus genome. After constructing and characterizing PolyBac, we used it to isolate nine derivatives encoding various combinations of up to eight different protein N-glycosylation pathway functions, or glycogenes. We then used these derivatives, which were designed to progressively extend the endogenous insect cell pathway, to assess PolyBac's utility for protein glycosylation pathway engineering. This assessment was enabled by engineering each derivative to produce a recombinant influenza hemagglutinin (rH5), which was used to probe the impact of each glycoengineered PolyBac derivative on the endogenous insect cell pathway. Genetic analyses of these derivatives confirmed PolyBac can accept large DNA insertions. Biochemical analyses of the rH5 products showed each had distinct N-glycosylation profiles. Finally, the major N-glycan on each rH5 product was the predicted end product of the engineered N-glycosylation pathways encoded by each PolyBac derivative. These results generally indicate that PolyBac has utility for multistep metabolic pathway engineering and directly demonstrate that this new bacmid can be used for customized protein glycosylation pathway engineering in the BICS.
Collapse
Affiliation(s)
| | | | - Donald L. Jarvis
- GlycoBac, LLC, Laramie, Wyoming 82072, United States
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
27
|
Perez-Gelvez YNC, Camus AC, Bridger R, Wells L, Rhodes OE, Bergmann CW. Effects of chronic exposure to low levels of IR on Medaka ( Oryzias latipes): a proteomic and bioinformatic approach. Int J Radiat Biol 2021; 97:1485-1501. [PMID: 34355643 DOI: 10.1080/09553002.2021.1962570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Chronic exposure to ionizing radiation (IR) at low doses (<100 mGy) has been insufficiently studied to understand fully the risk to health. Relatively little knowledge exists regarding how species and healthy tissues respond at the protein level to chronic exposure to low doses of IR, and mass spectrometric-based profiling of protein expression is a powerful tool for studying changes in protein abundance. MATERIALS AND METHODS SDS gel electrophoresis, LC-MS/MS mass spectrometry-based approaches and bioinformatic data analytics were used to detect proteomic changes following chronic exposure to moderate/low doses of radiation in adults and normally developed Medaka fish (Oryzias latipes). RESULTS Significant variations in the abundance of proteins involved in thyroid hormone signaling and lipid metabolism were detected, which could be related to the gonadal regression phenotype observed after 21.04 mGy and 204.3 mGy/day exposure. The global proteomic change was towards overexpression of proteins in muscle and skin, while the opposite effect was observed in internal organs. CONCLUSION The present study provides information on the impacts of biologically relevant low doses of IR, which will be useful in future research for the identification of potential biomarkers of IR exposure and allow for a better assessment of radiation biosafety regulations.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Alvin C Camus
- College of Veterinary Medicine, Department of Pathology, The University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Lance Wells
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Kanack AJ, Aoki K, Tiemeyer M, Dahms NM. Platelet and myeloid cell phenotypes in a rat model of Fabry disease. FASEB J 2021; 35:e21818. [PMID: 34320241 DOI: 10.1096/fj.202001727rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022]
Abstract
Fabry disease results from a deficiency of the lysosomal enzyme ⍺-Galactosidase-A (⍺-Gal A) and is estimated to occur in approximately 1:4100 live births. Characteristic of the disease is the accumulation of α-Gal-A substrates, primarily the glycosphingolipids (GSLs) globotriaosylceramide and globotriaosylsphingosine. Thrombotic events are a significant concern for Fabry patients, with strokes contributing to a significant decrease in overall lifespan. Currently, the mechanisms underlying the increased risk of thrombotic events experienced by Fabry patients are incompletely defined. Using a rat model of Fabry disease, we provide an improved understanding of the mechanisms linking GSL accumulation to thrombotic risk. We found that ⍺-Gal A-deficient rats accumulate myeloid-derived leukocytes at sites of GSL accumulation, including in the bone marrow and circulation, and that myeloid-derived leukocyte and megakaryocyte populations were prominent among cell types that accumulated GSLs. In the circulation, ⍺-Gal A-deficient rats had increases in cytokine-producing cell types and a corresponding elevation of pro-inflammatory cytokines. Lastly, circulating platelets from ⍺-Gal A-deficient rats accumulated a similar set of ⍺-Galactosidase-A substrates as was observed in megakaryocytes in the bone marrow, and exhibited increased platelet binding to fibrinogen in microfluidic and flow cytometric assays.
Collapse
Affiliation(s)
- Adam J Kanack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
29
|
Talabnin K, Talabnin C, Khiaowichit J, Sutatum N, Asavaritikrai P, Suksaweang S, Tongtawee T, Ishihara M, Azadi P, Sripa B. High expression of tissue O-linked glycans is associated with a malignant phenotype of cholangiocarcinoma. J Int Med Res 2021; 49:300060520976864. [PMID: 33535865 PMCID: PMC7869157 DOI: 10.1177/0300060520976864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective This study aimed to investigate the expression of O-linked
glycoprotein glycans in tissue of patients with cholangiocarcinoma compared
with adjacent normal tissue. Methods Sixty patients with cholangiocarcinoma were included in the study.
Permethylated O-linked glycans from intrahepatic
cholangiocarcinoma tissue and adjacent normal tissue were analyzed using
nano-spray ionization-linear ion trap mass spectrometry. Histochemistry of
peanut agglutinin lectin was used for detection and localization of
galactose (Gal) 1, N-acetyl-galactosamine (GalNAc) 1. Results O-linked glycans from patients with cholangiocarcinoma were
composed of di- to hexa-saccharides with a terminal galactose and sialic
acids (N-acetylneuraminic acid [NeuAc]). A total of eight
O-linked glycan structures were detected. Gal1GalNAc1 and
Gal2 N-acetyl-glucosamine 1 GalNAc1 expression was significantly higher in
tissue from patients with cholangiocarcinoma compared with adjacent normal
tissue, while NeuAc1Gal1GalNAc1 expression was significantly lower. High
Gal1GalNAc1 expression was significantly associated with the late stage of
cholangiocarcinoma (stages II–IV), lymphatic invasion, and vascular
invasion. Conclusion Our study shows expression of O-linked glycans in
progression of cholangiocarcinoma and highlights the association of
Gal1GalNAc1 with lymphatic and vascular invasion of cholangiocarcinoma.
Collapse
Affiliation(s)
- Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chutima Talabnin
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Juthamas Khiaowichit
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nuchanard Sutatum
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pundit Asavaritikrai
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sanong Suksaweang
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Taweesak Tongtawee
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
30
|
Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang G, Kizuka Y, Mizumoto S, Tiemeyer M, Gao XD, Aoki-Kinoshita KF, Fujita M. Global mapping of glycosylation pathways in human-derived cells. Dev Cell 2021; 56:1195-1209.e7. [PMID: 33730547 PMCID: PMC8086148 DOI: 10.1016/j.devcel.2021.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023]
Abstract
Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sachiko Akase
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kiyoko F Aoki-Kinoshita
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan; Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
31
|
Qu Y, Dubiak KM, Peuchen EH, Champion MM, Zhang Z, Hebert AS, Wright S, Coon JJ, Huber PW, Dovichi NJ. Quantitative capillary zone electrophoresis-mass spectrometry reveals the N-glycome developmental plan during vertebrate embryogenesis. Mol Omics 2021; 16:210-220. [PMID: 32149324 DOI: 10.1039/d0mo00005a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycans are known to be involved in many biological processes, while little is known about the expression of N-glycans during vertebrate development. We now report the first quantitative studies of both the expression of N-linked glycans at six early development stages and the expression of N-glycosylated peptides at two early development stages in Xenopus laevis, the African clawed frog. N-Glycans were labeled with isobaric tandem mass tags, pooled, separated by capillary electrophoresis, and characterized using tandem mass spectrometry. We quantified 110 N-glycan compositions that spanned four orders of magnitude in abundance. Capillary electrophoresis was particularly useful in identifying charged glycans; over 40% of the observed glycan compositions were sialylated. The glycan expression was relatively constant until the gastrula-neurula transition (developmental stage 13), followed by massive reprogramming. An increase in oligomannosidic and a decrease in the paucimannosidic and phosphorylated oligomannosidic glycans were observed at the late tailbud stage (developmental stage 41). Two notable and opposing regulation events were detected for sialylated glycans. LacdiNAc and Lewis antigen features distinguished down-regulated sialylation from up-regulated species. The level of Lewis antigen decreased at later stages, which was validated by Aleuria aurantia lectin (AAL) and Ulex europaeus lectin (UEA-I) blots. We also used HPLC coupled with tandem mass spectrometry to identify 611 N-glycosylation sites on 350 N-glycoproteins at the early stage developmental stage 1 (fertilized egg), and 1682 N-glycosylation sites on 1023 N-glycoproteins at stage 41 (late tailbud stage). Over two thirds of the N-glycoproteins identified in the late tailbud stage are associated with neuron projection morphogenesis, suggesting a vital role of the N-glycome in neuronal development.
Collapse
Affiliation(s)
- Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alex S Hebert
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Sarah Wright
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Joshua J Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
32
|
Ng'ang'a PN, Siukstaite L, Lang AE, Bakker H, Römer W, Aktories K, Schmidt G. Involvement of N-glycans in binding of Photorhabdus luminescens Tc toxin. Cell Microbiol 2021; 23:e13326. [PMID: 33720490 DOI: 10.1111/cmi.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Photorhabdus luminescens Tc toxins are large tripartite ABC-type toxin complexes, composed of TcA, TcB and TcC proteins. Tc toxins are widespread and have shown a tropism for a variety of targets including insect, mammalian and human cells. However, their receptors and the specific mechanisms of uptake into target cells remain unknown. Here, we show that the TcA protein TcdA1 interacts with N-glycans, particularly Lewis X/Y antigens. This is confirmed using N-acetylglucosamine transferase I (Mgat1 gene product)-deficient Chinese hamster ovary (CHO) Lec1 cells, which are highly resistant to intoxication by the Tc toxin complex most likely due to the absence of complex N-glycans. Restoring Mgat1 gene activity, and hence complex N-glycan biosynthesis, recapitulated the sensitivity of these cells to the toxin. Exogenous addition of Lewis X trisaccharide partially inhibits intoxication in wild-type cells. Additionally, sialic acid also largely reduced binding of the Tc toxin. Moreover, proteolytic activation of TcdA1 alters glycan-binding and uptake into target cells. The data suggest that TcdA1-binding is most likely multivalent, and carbohydrates probably work cooperatively to facilitate binding and intoxication.
Collapse
Affiliation(s)
- Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Bakker
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, MHH, Hannover, Germany
| | - Winfried Römer
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Kim JY, Joo WH, Shin DS, Lee YI, Teo CF, Lim JM. Metabolic labeling of glycans with isotopic glucose for quantitative glycomics in yeast. Anal Biochem 2021; 621:114152. [PMID: 33726981 DOI: 10.1016/j.ab.2021.114152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Changes in glycan levels could directly affect the biochemical properties of glycoproteins and thus influence their physiological functions. In order to decode the correlation of glycan prevalence with their physiological contribution, many mass spectrometry (MS) and stable isotope labeling-based methods have been developed for the relative quantification of glycans. In this study, we expand the quantitative glycomic toolbox with the addition of optimized Metabolic Isotope Labeling of Polysaccharides with Isotopic Glucose (MILPIG) approach in baker's yeast (Saccharomyces cerevisiae). We demonstrate that culturing baker's yeast in the presence of carbon-13 labeled glucose (1-13C1) leads to effective incorporation of carbon-13 to both N-linked and O-linked glycans. We established that metabolic incorporation of isotope-labeled glucose at a concentration of 5 mg/mL for three days is required for an accurate quantitative analysis with optimal isotopic cluster distribution of glycans. To validate the robustness of the method, we performed the analysis by 1:1 mixing of normal and isotope-labeled glycans, and obtained excellent linear calibration curves from various analytes. Finally, we quantitated the inhibitory effect of tunicamycin, a N-linked glycosylation inhibitor, to glycan expression profile in yeast.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Woo Hong Joo
- Department of Biology, Changwon National University, Changwon, 51140, Republic of Korea
| | - Dong-Soo Shin
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Chin Fen Teo
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jae-Min Lim
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea.
| |
Collapse
|
34
|
Bombyx mori β1,4-N-acetylgalactosaminyltransferase possesses relaxed donor substrate specificity in N-glycan synthesis. Sci Rep 2021; 11:5505. [PMID: 33750826 PMCID: PMC7943597 DOI: 10.1038/s41598-021-84771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-Glycosylation is one of the most important post-translational protein modifications in eukaryotic cells. Although more than 200 N-glycogenes contributing to N-glycan biosynthesis have been identified and characterized, the information on insect N-glycosylation is still limited. Here, focusing on insect N-glycosylation, we characterized Bombyx mori N-acetylgalactosaminyltransferase (BmGalNAcT) participating in complex N-glycan biosynthesis in mammals. BmGalNAcT localized at the Golgi and was ubiquitously expressed in every organ and in the developmental stage of the middle silk gland of fifth instar larvae. Analysis of recombinant BmGalNAcT expressed in Sf9 cells showed that BmGalNAcT transferred GalNAc to non-reducing terminals of GlcNAcβ1,2-R with β1,4-linkage. In addition, BmGalNAcT mediated transfer of galactose and N-acetylglucosamine residues but not transfer of either glucose or glucuronic acid from the UDP-sugar donor substrate to the N-glycan. Despite this tri-functional sugar transfer activity, however, most of the endogenous glycoproteins of insect cells were present without GalNAc, Gal, or GlcNAc residues at the non-reducing terminal of β1,2-GlcNAc residue(s). Moreover, overexpression of BmGalNAcT in insect cells had no effect on N-acetylgalactosaminylation, galactosylation, or N-acetylglucosaminylation of the major N-glycan during biosynthesis. These results suggested that B. mori has a novel multifunctional glycosyltransferase, but the N-glycosylation is highly and strictly regulated by the endogenous N-glycosylation machineries.
Collapse
|
35
|
Kurz S, Sheikh MO, Lu S, Wells L, Tiemeyer M. Separation and Identification of Permethylated Glycan Isomers by Reversed Phase NanoLC-NSI-MS n. Mol Cell Proteomics 2021; 20:100045. [PMID: 33376194 PMCID: PMC8724860 DOI: 10.1074/mcp.ra120.002266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
HPLC has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line multidimensional ion fragmentation (MSn) to assign structural features independent of standards, would significantly enhance the depth of knowledge obtainable from biological samples. Here, we report an optimized workflow for LC-MS analysis of permethylated glycans that includes sample preparation, mobile phase optimization, and MSn method development to resolve structural isomers on-the-fly. We report baseline separation and MSn of isomeric N- and O-glycan structures, aided by supplementing mobile phases with Li+, which simplifies adduct heterogeneity and facilitates cross-ring fragmentation to obtain valuable monosaccharide linkage information. Our workflow has been adapted from standard proteomics-based workflows and, therefore, provides opportunities for laboratories with expertise in proteomics to acquire glycomic data with minimal deviation from existing buffer systems, chromatography media, and instrument configurations. Furthermore, our workflow does not require a mass spectrometer with high-resolution/accurate mass capabilities. The rapidly evolving appreciation of the biological significance of glycans for human health and disease requires the implementation of high-throughput methods to identify and quantify glycans harvested from sample sets of sufficient size to achieve appropriately powered statistical significance. The LC-MSn approach we report generates glycan isomeric separations and robust structural characterization and is amenable to autosampling with associated throughput enhancements.
Collapse
Affiliation(s)
- Simone Kurz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
36
|
Perez-Gelvez YNC, Unger S, Kurz S, Rosenbalm K, Wright WM, Rhodes OE, Tiemeyer M, Bergmann CW. Chronic exposure to low doses of ionizing radiation impacts the processing of glycoprotein N-linked glycans in Medaka ( Oryzias latipes). Int J Radiat Biol 2021; 97:401-420. [PMID: 33346724 DOI: 10.1080/09553002.2021.1864500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Ionizing radiation is found naturally in the environment. Low doses of IR may have beneficial applications, yet there is also potential for detrimental long-term health effects. Impacts following exposure to low levels of IR have been refractory to identification and quantification. Glycoprotein glycosylation is vital to cell-cell communication and organismal function, and sensitive to changes in an organism's macro- and cellular environment. We investigated whether accumulated low doses of IR (LoDIR) affect the N-linked glycoprotein glycans using Medaka fish (Oryzias latipes). MATERIALS AND METHODS State-of-the-art methods in radiation exposure and glycan analysis were applied to study N-glycan changes after 190 day exposure at three different rates of gamma irradiation (2.25, 21.01, and 204.3 mGy/day) in wild-type adult Medaka. Tissue N-glycans were analyzed following enzymatic release from extracted proteins. RESULTS N-linked glycan profiles are dominated by complex type N-glycans modified with terminal sialic acid and core fucose. Fucosylation and sialylation of N-linked glycoprotein glycans are affected by LoDIR and a subset of N-glycans are involved in the organismal radio-response. CONCLUSION This is the first indication that the glycome can be interrogated for biomarkers that report the impact of chronic exposure to environmental stressors, such as low-level IR.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Shem Unger
- Savannah River Ecology Laboratory, The University of Georgia, Aiken, GA, USA
| | - Simone Kurz
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Katelyn Rosenbalm
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | | | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Michael Tiemeyer
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020; 28:586-601.e6. [PMID: 32841605 PMCID: PMC7443692 DOI: 10.1016/j.chom.2020.08.004] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn E Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Benjamin P Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, CA 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Nakamura S, Miyazaki T, Park EY. α-L-Fucosidase from Bombyx mori has broad substrate specificity and hydrolyzes core fucosylated N-glycans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103427. [PMID: 32561391 DOI: 10.1016/j.ibmb.2020.103427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
N-glycans play a role in physiological functions, including glycoprotein conformation, signal transduction, and antigenicity. Insects display both α-1,6- and α-1,3-linked fucose residues bound to the innermost N-acetylglucosamine of N-glycans whereas core α-1,3-fucosylated N-glycans are not found in mammals. Functions of insect core-fucosylated glycans are not clear, and no α-L-fucosidase related to the N-glycan degradation has been identified. In the genome of the domestic silkworm, Bombyx mori, a gene for a protein, BmFucA, belonging to the glycoside hydrolase family 29 is a candidate for an α-L-fucosidase gene. In this study, BmFucA was cloned and recombinantly expressed as a glutathione-S-transferase tagged protein (GST-BmFucA). Recombinant GST-BmFucA exhibited broad substrate specificity and hydrolyzed p-nitrophenyl α-L-fucopyranoside, 2'-fucosyllactose, 3-fucosyllactose, 3-fucosyl-N,N'-diacetylchitobiose, and 6-fucosyl-N,N'-diacetylchitobiose. Further, GST-BmFucA released fucose from both pyridylaminated complex-type and paucimannose-type glycans that were core-α-1,6-fucosylated. GST-BmFucA also shows hydrolysis activity for core-fucosylated glycans attached to phospholipase A2 from bee venom. BmFucA may be involved in the catabolism of core-fucosylated N-glycans in B. mori.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
39
|
Mondragon-Shem K, Wongtrakul-Kish K, Kozak RP, Yan S, Wilson IBH, Paschinger K, Rogers ME, Spencer DIR, Acosta-Serrano A. Insights into the salivary N-glycome of Lutzomyia longipalpis, vector of visceral leishmaniasis. Sci Rep 2020; 10:12903. [PMID: 32737362 PMCID: PMC7395719 DOI: 10.1038/s41598-020-69753-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.
Collapse
Affiliation(s)
- Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine Wongtrakul-Kish
- Ludger Ltd., Culham Science Centre, Oxfordshire, OX14 3EB, UK
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, Australia
| | | | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, A-1210, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Matthew E Rogers
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
40
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.25.172403. [PMID: 32743578 PMCID: PMC7386495 DOI: 10.1101/2020.06.25.172403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Jeremy L. Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Oliver C. Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Katelyn E. Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin P. Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, California, 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
41
|
Wang S, Voronin Y, Zhao P, Ishihara M, Mehta N, Porterfield M, Chen Y, Bartley C, Hu G, Han D, Wells L, Tiemeyer M, Lu S. Glycan Profiles of gp120 Protein Vaccines from Four Major HIV-1 Subtypes Produced from Different Host Cell Lines under Non-GMP or GMP Conditions. J Virol 2020; 94:e01968-19. [PMID: 31941770 PMCID: PMC7081908 DOI: 10.1128/jvi.01968-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is an important target for the development of an HIV vaccine. Extensive glycosylation of Env is an important feature that both protects the virus from antibody responses and serves as a target for some highly potent broadly neutralizing antibodies. Therefore, analysis of glycans on recombinant Env proteins is highly significant. Here, we present glycosylation profiles of recombinant gp120 proteins from four major clades of HIV-1 (A, B, C, and AE), produced either as research-grade material in 293 and CHO cells or as two independent lots of clinical material under good manufacturing practice (GMP) conditions. Almost all potential N-linked glycosylation sites were at least partially occupied in all proteins. The occupancy rates were largely consistent among proteins produced under different conditions, although a few sites showed substantial variability even between the two GMP lots. Our data confirmed previous studies in the field, showing an abundance of oligomannose on Env protein, with 40 to 50% of glycans being Man5 to Man9 on all four proteins under all production conditions. Overall, the differences in occupancy and glycan forms among different Env subtypes produced under different conditions were less dramatic than anticipated, and antigenicity analysis with a panel of six monoclonal antibodies, including antibodies that recognize glycan forms, showed that all four gp120s maintained their antibody-binding profiles. Such findings have major implications for the final production of a clinical HIV vaccine with Env glycoprotein components.IMPORTANCE HIV-1 Env protein is a major target for the development of an HIV-1 vaccine. Env is covered with a large number of sugar-based glycan forms; about 50% of the Env molecular weight is composed of glycans. Glycan analysis of recombinant Env is important for understanding its roles in viral pathogenesis and immune responses. The current report presents the first extensive comparison of glycosylation patterns of recombinant gp120 proteins from four major clades of HIV-1 produced in two different cell lines, grown either under laboratory conditions or at 50-liter GMP scale in different lots. Information learned in this study is valuable for the further design and production of HIV-1 Env proteins as the critical components of HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Worcester HIV Vaccine, Inc., Worcester, Massachusetts, USA
| | - Yegor Voronin
- Worcester HIV Vaccine, Inc., Worcester, Massachusetts, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Nickita Mehta
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mindy Porterfield
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Guangnan Hu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dong Han
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Scheys F, Van Damme EJM, Pauwels J, Staes A, Gevaert K, Smagghe G. N-glycosylation Site Analysis Reveals Sex-related Differences in Protein N-glycosylation in the Rice Brown Planthopper ( Nilaparvata lugens). Mol Cell Proteomics 2020; 19:529-539. [PMID: 31924694 PMCID: PMC7050106 DOI: 10.1074/mcp.ra119.001823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/08/2020] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is a common modification of proteins and critical for a wide range of biological processes. Differences in protein glycosylation between sexes have already been observed in humans, nematodes and trematodes, and have recently also been reported in the rice pest insect Nilaparvata lugens Although protein N-glycosylation in insects is nowadays of high interest because of its potential for exploitation in pest control strategies, the functionality of differential N-glycosylation between sexes is yet unknown. In this study, therefore, the occurrence and role of sex-related protein N-glycosylation in insects were examined. A comprehensive investigation of the N-glycosylation sites from the adult stages of N. lugens was conducted, allowing a qualitative and quantitative comparison between sexes at the glycopeptide level. N-glycopeptide enrichment via lectin capturing using the high mannose/paucimannose-binding lectin Concanavalin A, or the Rhizoctonia solani agglutinin which interacts with complex N-glycans, resulted in the identification of over 1300 N-glycosylation sites derived from over 600 glycoproteins. Comparison of these N-glycopeptides revealed striking differences in protein N-glycosylation between sexes. Male- and female-specific N-glycosylation sites were identified, and some of these sex-specific N-glycosylation sites were shown to be derived from proteins with a putative role in insect reproduction. In addition, differential glycan composition between males and females was observed for proteins shared across sexes. Both lectin blotting experiments as well as transcript expression analyses with complete insects and insect tissues confirmed the observed differences in N-glycosylation of proteins between sexes. In conclusion, this study provides further evidence for protein N-glycosylation to be sex-related in insects. Furthermore, original data on N-glycosylation sites of N. lugens adults are presented, providing novel insights into planthopper's biology and information for future biological pest control strategies.
Collapse
Affiliation(s)
- Freja Scheys
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
43
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
44
|
Weatherly DB, Arpinar FS, Porterfield M, Tiemeyer M, York WS, Ranzinger R. GRITS Toolbox-a freely available software for processing, annotating and archiving glycomics mass spectrometry data. Glycobiology 2020; 29:452-460. [PMID: 30913289 DOI: 10.1093/glycob/cwz023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 11/14/2022] Open
Abstract
Mass spectrometry (MS) is one of the most effective techniques for high-throughput, high-resolution characterization of glycan structures. Although many software applications have been developed over the last decades for the interpretation of MS data of glycan structures, only a few are capable of dealing with the large data sets produced by glycomics analysis. Furthermore, these applications utilize databases that can lead to redundant glycan annotations and do not support post-processing of the data within the software or by third party applications. To address the needs, we present GRITS Toolbox, a freely-available, platform-independent software application capable of storing and processing glycomics MS data along with associated metadata. GRITS Toolbox automatically annotates MS data using an integrated glycan identification module that references manually curated databases of mammalian glycans (provided with the software) or any user-defined databases. Extensive display routines are provided to post-process the data and refine the automated annotation using expert knowledge of the user. The software also allows side by side comparison of annotations from different MS runs or samples and exporting of annotations into Excel format.
Collapse
Affiliation(s)
- D Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - F Sena Arpinar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melody Porterfield
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
45
|
Paschinger K, Wilson IBH. Anionic and zwitterionic moieties as widespread glycan modifications in non-vertebrates. Glycoconj J 2020; 37:27-40. [PMID: 31278613 PMCID: PMC6994554 DOI: 10.1007/s10719-019-09874-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Glycan structures in non-vertebrates are highly variable; it can be assumed that this is a product of evolution and speciation, not that it is just a random event. However, in animals and protists, there is a relatively limited repertoire of around ten monosaccharide building blocks, most of which are neutral in terms of charge. While two monosaccharide types in eukaryotes (hexuronic and sialic acids) are anionic, there are a number of organic or inorganic modifications of glycans such as sulphate, pyruvate, phosphate, phosphorylcholine, phosphoethanolamine and aminoethylphosphonate that also confer a 'charged' nature (either anionic or zwitterionic) to glycoconjugate structures. These alter the physicochemical properties of the glycans to which they are attached, change their ionisation when analysing them by mass spectrometry and result in different interactions with protein receptors. Here, we focus on N-glycans carrying anionic and zwitterionic modifications in protists and invertebrates, but make some reference to O-glycans, glycolipids and glycosaminoglycans which also contain such moieties. The conclusion is that 'charged' glycoconjugates are a widespread, but easily overlooked, feature of 'lower' organisms.
Collapse
Affiliation(s)
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, 1190, Wien, Austria.
| |
Collapse
|
46
|
Vanbeselaere J, Jin C, Eckmair B, Wilson IBH, Paschinger K. Sulfated and sialylated N-glycans in the echinoderm Holothuria atra reflect its marine habitat and phylogeny. J Biol Chem 2020; 295:3159-3172. [PMID: 31969392 DOI: 10.1074/jbc.ra119.011701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/17/2020] [Indexed: 01/14/2023] Open
Abstract
Among the earliest deuterostomes, the echinoderms are an evolutionary important group of ancient marine animals. Within this phylum, the holothuroids (sea cucumbers) are known to produce a wide range of glycoconjugate biopolymers with apparent benefits to health; therefore, they are of economic and culinary interest throughout the world. Other than their highly modified glycosaminoglycans (e.g. fucosylated chondroitin sulfate and fucoidan), nothing is known about their protein-linked glycosylation. Here we used multistep N-glycan fractionation to efficiently separate anionic and neutral N-glycans before analyzing the N-glycans of the black sea cucumber (Holothuria atra) by MS in combination with enzymatic and chemical treatments. These analyses showed the presence of various fucosylated, phosphorylated, sialylated, and multiply sulfated moieties as modifications of oligomannosidic, hybrid, and complex-type N-glycans. The high degree of sulfation and fucosylation parallels the modifications observed previously on holothuroid glycosaminoglycans. Compatible with its phylogenetic position, H. atra not only expresses vertebrate motifs such as sulfo- and sialyl-Lewis A epitopes but displays a high degree of anionic substitution of its glycans, as observed in other marine invertebrates. Thus, as for other echinoderms, the phylum- and order-specific aspects of this species' N-glycosylation reveal both invertebrate- and vertebrate-like features.
Collapse
Affiliation(s)
- Jorick Vanbeselaere
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Chunsheng Jin
- Institute of Biomedicine, Sahlgrenska Academy, Göteborg University, 405 30 Göteborg, Sweden
| | - Barbara Eckmair
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
47
|
Zhu H, Aloor A, Ma C, Kondengaden SM, Wang PG. Mass Spectrometric Analysis of Protein Glycosylation. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1346.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- He Zhu
- These authors contributed equally
| | | | | | | | - Peng George Wang
- Current Address: Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
48
|
Miyazaki T, Miyashita R, Nakamura S, Ikegaya M, Kato T, Park EY. Biochemical characterization and mutational analysis of silkworm Bombyx mori β-1,4-N-acetylgalactosaminyltransferase and insight into the substrate specificity of β-1,4-galactosyltransferase family enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 115:103254. [PMID: 31655162 DOI: 10.1016/j.ibmb.2019.103254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Silkworm Bombyx mori is one of the insect hosts for recombinant protein production at academic and industrial levels. B. mori and other insect cells can produce mammalian proteins with proper posttranslational modifications, such as N-glycosylation, but the structures of N-glycans in B. mori are mainly high mannose- and paucimannose-type, while mammals also produce hybrid- and complex-type glycans. Recently, complex-type N-glycans whose structures are different from mammalian ones have been identified in some insect cell N-glycomes at very low levels compared with levels of high mannose- and paucimannose-type glycans. However, their functions and the enzymes involved in the biosynthesis of insect complex-type N-glycans are not clear, and complex-type N-glycans, except for N-acetylglucosamine-terminated glycans, are still not identified in the B. mori N-glycome. Here, we focused on the β-1,4-galactosyltransferase family (also known as glycosyltransferase family 7, GT7) that contains mammalian β-1,4-galactosyltransferase and insect β-1,4-N-acetylgalactosaminyltransferase. A gene for a GT7 protein (BmGalNAcT) from B. mori was cloned, expressed in a soluble form using a silkworm expression system, and the gene product showed strict β-1,4-N-acetylgalactosaminyltransferase activity but not β-1,4-galactosyltransferase activity. A mutation in Ile298 or Ile310, which are predicted to be located in the active site, reduced its glycosyltransferase activity, suggesting that these residues and the corresponding residues are responsible for substrate specificity of GT7. These results suggested that BmGalNAcT may be involved in the complex-type N-glycans, and moreover, bioinformatics analysis revealed that B. mori might have an extra gene for a GT7 enzyme with different specificity in addition to the known insect GT7 glycosyltransferases.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ryunosuke Miyashita
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shuntaro Nakamura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Marina Ikegaya
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
49
|
Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J 2019; 37:1-14. [DOI: 10.1007/s10719-019-09892-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
|
50
|
Gutiérrez-Cabrera AE, Zandberg WF, Zenteno E, Rodríguez MH, Espinoza B, Lowenberger C. Glycosylation on proteins of the intestine and perimicrovillar membrane of Triatoma (Meccus) pallidipennis, under different feeding conditions. INSECT SCIENCE 2019; 26:796-808. [PMID: 29446564 DOI: 10.1111/1744-7917.12579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, interacts with molecules in the midgut of its insect vector to multiply and reach the infective stage. Many studies suggest that the parasite binds to midgut-specific glycans. We identified several glycoproteins expressed in the intestine and perimicrovillar membrane (PMM) of Triatoma (Meccus) pallidipennis under different feeding conditions. In order to assess changes in protein-linked glycans, we performed lectin and immunoblot analyses on glycoprotein extracts from these intestinal tissues using well-characterized lectins, and an antibody, which collectively recognize a wide range of different glycans epitopes. We observed that the amount and composition of proteins and glycoproteins associated with different glycans structures changed over time in the intestines and PMM under different physiological conditions. PMM extracts contained a wide variety of glycoproteins with different sugar residues, including abundant high-mannose and complex sialylated glycans. We propose that these molecules could be involved in the process of parasite-vector interactions.
Collapse
Affiliation(s)
- Ana E Gutiérrez-Cabrera
- CONACyT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Edgar Zenteno
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, DF, Mexico
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, DF, Mexico
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|