1
|
Almyre C, Bounaix N, Godard F, Baris OR, Cayer AL, Sardin E, Bouhier M, Hoarau A, Dard L, Richard J, Bergeron V, Renaud A, Loaëc N, Gueguen N, Desquiret-Dumas V, Lelievre B, Inisan A, Panozzo C, Dujardin G, Blondel M, Rötig A, Paquis-Flucklinger V, Azoulay S, Bonnefoy N, Sellem CH, Delahodde A, Procaccio V, Tribouillard-Tanvier D. The copper ionophore disulfiram improves mitochondrial function in various yeast and human cellular models of mitochondrial diseases. Hum Mol Genet 2025:ddaf061. [PMID: 40298238 DOI: 10.1093/hmg/ddaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
The copper ionophore disulfiram (DSF) is commonly used to treat chronic alcoholism and has potential anti-cancer activity. Using a yeast-based screening assay of FDA-approved compounds, DSF was herein identified for its ability to improve oxidative phosphorylation-dependent growth of various yeast models of mitochondrial diseases caused by a wide range of defects in ATP synthase, complexes III and IV, cardiolipin remodeling, maintenance and translation of the mitochondrial genome. This compound also showed beneficial effects in cells derived from patients suffering from Barth or MELAS syndromes, two mitochondrial diseases associated respectively with a lack in cardiolipin remodeling and protein synthesis inside the organelle. We provide evidence that the rescuing activity of DSF results from its ability to transport copper ions across biological membranes. Indeed, other copper ionophores (pyrithione and elesclomol) and supplementation of the growth media with copper ions had also beneficial effects in yeast and human cells with dysfunctional mitochondria. Our data suggest that the copper-dependent rescuing activity in these cells results from a better capacity to assemble cytochrome c oxidase. Altogether, our findings hold promise for the development of new therapeutic strategies for mitochondrial disorders.
Collapse
Affiliation(s)
- Claire Almyre
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Nolwenn Bounaix
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - François Godard
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Olivier R Baris
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | | | - Elodie Sardin
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Marine Bouhier
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Anaïs Hoarau
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Laetitia Dard
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux F-33000, France
| | - Jérémy Richard
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | | | - Aurélie Renaud
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Nadege Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Naïg Gueguen
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Valérie Desquiret-Dumas
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Bénédicte Lelievre
- Department of Pharmacology and Toxicology, University Hospital, University of Angers, IRF (Infections Respiratoires Fongiques) Angers 49933, France
| | - Aurore Inisan
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | - Cristina Panozzo
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Paris F-75005, France
| | - Genevève Dujardin
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Agnes Rötig
- Université Paris Cité, Imagine Institute, Genetics of Mitochondrial Diseases, INSERM UMR 1163, Paris, France
| | | | - Stéphane Azoulay
- Université Côte d'Azur, CNRS UMR 7272, ICN, Nice F-06108, France
| | - Nathalie Bonnefoy
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Carole H Sellem
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Agnès Delahodde
- Université Paris Saclay, CEA, CNRS, I2BC, Gif-sur-Yvette F-91190, France
| | - Vincent Procaccio
- Univ Angers, CHU Angers, INSERM1083, CNRS6015, MITOVASC, MITOLAB, SFR ICAT, Angers F-49000, France
| | | |
Collapse
|
2
|
Henke M, Prigione A, Schuelke M. Disease models of Leigh syndrome: From yeast to organoids. J Inherit Metab Dis 2024; 47:1292-1321. [PMID: 39385390 PMCID: PMC11586605 DOI: 10.1002/jimd.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.
Collapse
Affiliation(s)
- Marie‐Thérèse Henke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical FacultyHeinrich Heine UniversityDuesseldorfGermany
| | - Markus Schuelke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
3
|
Zuttion S, Senger B, Panja C, Friant S, Kucharczyk R, Becker HD. Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 2024; 706:75-95. [PMID: 39455235 DOI: 10.1016/bs.mie.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Even if a myriad of approaches has been developed to identify the subcellular localization of a protein, the easiest and fastest way remains to fuse the protein to Green Fluorescent Protein (GFP) and visualize its location using fluorescence microscopy. However, this strategy is not well suited to visualize the organellar pools of proteins that are simultaneously localized both in the cytosol and in organelles because the GFP signal of a cytosolic pool of the protein (cytosolic echoform) will inevitably mask or overlay the GFP signal of the organellar pool of the protein (organellar echoform). To solve this issue, we engineered a dedicated yeast strain expressing a Bi-Genomic Mitochondrial-Split-GFP. This split-GFP is bi-genomic because the first ten ß-strands of GFP (GFPß1-10) are encoded by the mitochondrial genome and translated by mitoribosomes whereas the remaining ß-strand of GFP (GFPß11) is fused to the protein of interest encoded by the nucleus and expressed by cytosolic ribosomes. Consequently, if the GFPß11-tagged protein localizes into mitochondria, GFP will be reconstituted by self-assembly GFPß1-10 and GFPß11 thereby generating a GFP signal restricted to mitochondria and detectable by regular fluorescence microscopy. In addition, because mitochondrial translocases and import mechanisms are evolutionary well conserved, the BiG Mito-Split-GFP yeast strain can be used to probe mitochondrial importability of proteins regardless of their organismal origins and can thus serve to identify unsuspected mitochondrial echoforms readily from any organism.
Collapse
Affiliation(s)
- Solène Zuttion
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sylvie Friant
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France.
| |
Collapse
|
4
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
5
|
Schrott S, Osman C. Two mitochondrial HMG-box proteins, Cim1 and Abf2, antagonistically regulate mtDNA copy number in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:11813-11835. [PMID: 37850632 PMCID: PMC10681731 DOI: 10.1093/nar/gkad849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
The mitochondrial genome, mtDNA, is present in multiple copies in cells and encodes essential subunits of oxidative phosphorylation complexes. mtDNA levels have to change in response to metabolic demands and copy number alterations are implicated in various diseases. The mitochondrial HMG-box proteins Abf2 in yeast and TFAM in mammals are critical for mtDNA maintenance and packaging and have been linked to mtDNA copy number control. Here, we discover the previously unrecognized mitochondrial HMG-box protein Cim1 (copy number influence on mtDNA) in Saccharomyces cerevisiae, which exhibits metabolic state dependent mtDNA association. Surprisingly, in contrast to Abf2's supportive role in mtDNA maintenance, Cim1 negatively regulates mtDNA copy number. Cells lacking Cim1 display increased mtDNA levels and enhanced mitochondrial function, while Cim1 overexpression results in mtDNA loss. Intriguingly, Cim1 deletion alleviates mtDNA maintenance defects associated with loss of Abf2, while defects caused by Cim1 overexpression are mitigated by simultaneous overexpression of Abf2. Moreover, we find that the conserved LON protease Pim1 is essential to maintain low Cim1 levels, thereby preventing its accumulation and concomitant repressive effects on mtDNA. We propose a model in which the protein ratio of antagonistically acting Cim1 and Abf2 determines mtDNA copy number.
Collapse
Affiliation(s)
- Simon Schrott
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
6
|
Franco LVR, Su CH, Simas Teixeira L, Almeida Clarck Chagas J, Barros MH, Tzagoloff A. Allotopic expression of COX6 elucidates Atco-driven co-assembly of cytochrome oxidase and ATP synthase. Life Sci Alliance 2023; 6:e202301965. [PMID: 37604582 PMCID: PMC10442929 DOI: 10.26508/lsa.202301965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
7
|
Panja C, Niedzwiecka K, Baranowska E, Poznanski J, Kucharczyk R. Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 2023; 13:9972. [PMID: 37340059 DOI: 10.1038/s41598-023-36637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.
Collapse
Affiliation(s)
- Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
8
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, Poznanski J, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Dis Model Mech 2023; 16:307138. [PMID: 37083953 PMCID: PMC10151828 DOI: 10.1242/dmm.049783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023] Open
Abstract
The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Camille Charles
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Jarosław Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Jean-Paul di Rago
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
9
|
Mołoń M, Szlachcikowska D, Stępień K, Kielar P, Galiniak S. Two faces of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) - An antioxidant or a toxin? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119412. [PMID: 36529401 DOI: 10.1016/j.bbamcr.2022.119412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
2,2,6,6-Tetramethylpiperidine-1-oxyl, commonly known as TEMPO, is one of the compounds called nitroxides that are used in the chemical industry for synthesis of many organic compounds as well as for electrodes in all-organic radical batteries. Additionally, TEMPO is a widely used antioxidant in scientific studies. Technological progress and simultaneous care for the environment leads to resorting to new industrial methods which require the use of compounds that have not been fully tested for their impact on living organisms. Therefore, TEMPO may be an environmental pollutant and its effect on living organisms is not fully understood. The aim of our study was to determine the influence of TEMPO on the physiology, chronological lifespan and wide transcription changes of a eukaryotic model organism, namely the Saccharomyces cerevisiae yeast. For this purpose, we used the BY4741 wild-type and isogenic mutants with a disorder in the response to oxidative stress (sod1Δ, sod2Δ, yap1Δ) and repair of DNA damage (rad52Δ). We showed that supplementation with TEMPO inhibited the cell growth rate of all analyzed strains while simultaneously slowing down the aging of post-mitotic cells in the yeast population. In addition, TEMPO-treated yeast cells manifested a significantly increased level of metabolism in the wild-type and sod2Δ strains. TEMPO also displayed genoprotective effect by reducing the number of DNA double-strand breaks in cells. Here, we are the first to show the widespread effect of TEMPO on yeast. In conclusion, we have shown that, contrary to the commonly accepted notion, TEMPO has also a toxic effect, especially on active mitotic cells. We hypothesize that translation impairment or ribosome biogenesis disorder is likely to be considered secondary effects of TEMPO toxicity related to cell cycle arrest. Therefore, despite the growing interest in the use of this compound in the chemical industry, its toxic effect on the environment, especially biosphere, should be taken into account.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Rzeszów, Poland.
| | - Dominika Szlachcikowska
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Rzeszów, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | - Patrycja Kielar
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Rzeszów, Poland
| | - Sabina Galiniak
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland.
| |
Collapse
|
10
|
Flores-Mireles D, Camacho-Villasana Y, Pérez-Martínez X. The ARG8 m Reporter for the Study of Yeast Mitochondrial Translation. Methods Mol Biol 2023; 2661:281-301. [PMID: 37166643 DOI: 10.1007/978-1-0716-3171-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial translation is an intricate process involving both general and mRNA-specific factors. In addition, in the yeast Saccharomyces cerevisiae, translation of mitochondrial mRNAs is coupled to assembly of nascent polypeptides into the membrane. ARG8m is a reporter gene widely used to study the mechanisms of yeast mitochondrial translation. This reporter is a recodified gene that uses the mitochondrial genetic code and is inserted at the desired locus in the mitochondrial genome. After deletion of the endogenous nuclear gene, this reporter produces Arg8, an enzyme necessary for arginine biosynthesis. Since Arg8 is a soluble protein with no relation to oxidative phosphorylation, it is a reliable reporter to study mitochondrial mRNAs translation and dissect translation form assembly processes. In this chapter, we explain how to insert the ARG8m reporter in the desired spot in the mitochondrial DNA, how to analyze Arg8 synthesis inside mitochondria, and how to follow steady-state levels of the protein. We also explain how to use it to find spontaneous suppressors of translation defects.
Collapse
Affiliation(s)
- Daniel Flores-Mireles
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yolanda Camacho-Villasana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032 T > C. Hum Mol Genet 2022; 32:1313-1323. [PMID: 36434790 PMCID: PMC10077503 DOI: 10.1093/hmg/ddac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial DNA mutation m.9032 T > C was previously identified in patients presenting with NARP (Neuropathy Ataxia Retinitis Pigmentosa). Their clinical features had a maternal transmission and patient's cells showed a reduced oxidative phosphorylation capacity, elevated reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial inner membrane, providing evidence that m.9032 T > C is truly pathogenic. This mutation leads to replacement of a highly conserved leucine residue with proline at position 169 of ATP synthase subunit a (L169P). This protein and a ring of identical c-subunits (c-ring) move protons through the mitochondrial inner membrane coupled to ATP synthesis. We herein investigated the consequences of m.9032 T > C on ATP synthase in a strain of Saccharomyces cerevisiae with an equivalent mutation (L186P). The mutant enzyme assembled correctly but was mostly inactive as evidenced by a > 95% drop in the rate of mitochondrial ATP synthesis and absence of significant ATP-driven proton pumping across the mitochondrial membrane. Intragenic suppressors selected from L186P yeast restoring ATP synthase function to varying degrees (30-70%) were identified at the original mutation site (L186S) or in another position of the subunit a (H114Q, I118T). In light of atomic structures of yeast ATP synthase recently described, we conclude from these results that m.9032 T > C disrupts proton conduction between the external side of the membrane and the c-ring, and that H114Q and I118T enable protons to access the c-ring through a modified pathway.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Camille Charles
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Kachroo AH, Vandeloo M, Greco BM, Abdullah M. Humanized yeast to model human biology, disease and evolution. Dis Model Mech 2022; 15:275614. [PMID: 35661208 PMCID: PMC9194483 DOI: 10.1242/dmm.049309] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For decades, budding yeast, a single-cellular eukaryote, has provided remarkable insights into human biology. Yeast and humans share several thousand genes despite morphological and cellular differences and over a billion years of separate evolution. These genes encode critical cellular processes, the failure of which in humans results in disease. Although recent developments in genome engineering of mammalian cells permit genetic assays in human cell lines, there is still a need to develop biological reagents to study human disease variants in a high-throughput manner. Many protein-coding human genes can successfully substitute for their yeast equivalents and sustain yeast growth, thus opening up doors for developing direct assays of human gene function in a tractable system referred to as 'humanized yeast'. Humanized yeast permits the discovery of new human biology by measuring human protein activity in a simplified organismal context. This Review summarizes recent developments showing how humanized yeast can directly assay human gene function and explore variant effects at scale. Thus, by extending the 'awesome power of yeast genetics' to study human biology, humanizing yeast reinforces the high relevance of evolutionarily distant model organisms to explore human gene evolution, function and disease.
Collapse
|
13
|
Kabala AM, Binko K, Godard F, Charles C, Dautant A, Baranowska E, Skoczen N, Gombeau K, Bouhier M, Becker HD, Ackerman SH, Steinmetz LM, Tribouillard-Tanvier D, Kucharczyk R, di Rago JP. Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 2022; 220:iyac007. [PMID: 35100419 PMCID: PMC8893259 DOI: 10.1093/genetics/iyac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.
Collapse
Affiliation(s)
- Anna M Kabala
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krystyna Binko
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - François Godard
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Camille Charles
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Natalia Skoczen
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kewin Gombeau
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Hubert D Becker
- UPR ‘Architecture et Réactivité de l’ARN’, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Jean-Paul di Rago
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
14
|
Yang G, Zhao T, Lu S, Weng J, Zeng X. T1121G Point Mutation in the Mitochondrial Gene COX1 Suppresses a Null Mutation in ATP23 Required for the Assembly of Yeast Mitochondrial ATP Synthase. Int J Mol Sci 2022; 23:ijms23042327. [PMID: 35216443 PMCID: PMC8877559 DOI: 10.3390/ijms23042327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-encoded Atp23 was previously shown to have dual functions, including processing the yeast Atp6 precursor and assisting the assembly of yeast mitochondrial ATP synthase. However, it remains unknown whether there are genes functionally complementary to ATP23 to rescue atp23 null mutant. In the present paper, we screen and characterize three revertants of atp23 null mutant and reveal a T1121G point mutation in the mitochondrial gene COX1 coding sequence, which leads to Val374Gly mutation in Cox1, the suppressor in the revertants. This was verified further by the partial restoration of mitochondrial ATP synthase assembly in atp23 null mutant transformed with exogenous hybrid COX1 T1121G mutant plasmid. The predicted tertiary structure of the Cox1 p.Val374Gly mutation showed no obvious difference from wild-type Cox1. By further chase labeling with isotope [35S]-methionine, we found that the stability of Atp6 of ATP synthase increased in the revertants compared with the atp23 null mutant. Taking all the data together, we revealed that the T1121G point mutation of mitochondrial gene COX1 could partially restore the unassembly of mitochondrial ATP synthase in atp23 null mutant by increasing the stability of Atp6. Therefore, this study uncovers a gene that is partially functionally complementary to ATP23 to rescue ATP23 deficiency, broadening our understanding of the relationship between yeast the cytochrome c oxidase complex and mitochondrial ATP synthase complex.
Collapse
|
15
|
Tribouillard-Tanvier D, Dautant A, Godard F, Charles C, Panja C, di Rago JP, Kucharczyk R. Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules. Methods Mol Biol 2022; 2497:221-242. [PMID: 35771445 DOI: 10.1007/978-1-0716-2309-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.
Collapse
Affiliation(s)
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
Paprocki D, Winiewska-Szajewska M, Speina E, Kucharczyk R, Poznański J. 5,6-diiodo-1H-benzotriazole: new TBBt analogue that minutely affects mitochondrial activity. Sci Rep 2021; 11:23701. [PMID: 34880390 PMCID: PMC8654832 DOI: 10.1038/s41598-021-03136-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
4,5,6,7-Tetrabromo-1H-benzotriazole is widely used as the reference ATP-competitive inhibitor of protein kinase CK2. Herein, we study its new analogs: 5,6-diiodo- and 5,6-diiodo-4,7-dibromo-1H-benzotriazole. We used biophysical (MST, ITC) and biochemical (enzymatic assay) methods to describe the interactions of halogenated benzotriazoles with the catalytic subunit of human protein kinase CK2 (hCK2α). To trace the biological activity, we measured their cytotoxicity against four reference cancer cell lines and the effect on the mitochondrial inner membrane potential. The results obtained lead to the conclusion that iodinated compounds are an attractive alternative to brominated ones. One of them retains the cytotoxicity against selected cancer cell lines of the reference TBBt with a smaller side effect on mitochondrial activity. Both iodinated compounds are candidate leaders in the further development of CK2 inhibitors.
Collapse
Affiliation(s)
- Daniel Paprocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
17
|
Jakubke C, Roussou R, Maiser A, Schug C, Thoma F, Bunk R, Hörl D, Leonhardt H, Walter P, Klecker T, Osman C. Cristae-dependent quality control of the mitochondrial genome. SCIENCE ADVANCES 2021; 7:eabi8886. [PMID: 34516914 PMCID: PMC8442932 DOI: 10.1126/sciadv.abi8886] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 06/10/2023]
Abstract
Mitochondrial genomes (mtDNA) encode essential subunits of the mitochondrial respiratory chain. Mutations in mtDNA can cause a shortage in cellular energy supply, which can lead to numerous mitochondrial diseases. How cells secure mtDNA integrity over generations has remained unanswered. Here, we show that the single-celled yeast Saccharomyces cerevisiae can intracellularly distinguish between functional and defective mtDNA and promote generation of daughter cells with increasingly healthy mtDNA content. Purifying selection for functional mtDNA occurs in a continuous mitochondrial network and does not require mitochondrial fission but necessitates stable mitochondrial subdomains that depend on intact cristae morphology. Our findings support a model in which cristae-dependent proximity between mtDNA and the proteins it encodes creates a spatial “sphere of influence,” which links a lack of functional fitness to clearance of defective mtDNA.
Collapse
Affiliation(s)
- Christopher Jakubke
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Rodaria Roussou
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Andreas Maiser
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | | | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Raven Bunk
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - David Hörl
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
18
|
Franco LVR, Su CH, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase. Biol Chem 2021; 401:835-853. [PMID: 32142477 DOI: 10.1515/hsz-2020-0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brasil
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
19
|
Yang G, Ding Y, Shang X, Zhao T, Lu S, Tian J, Weng J, Zeng X. Atp23p and Atp10p coordinate to regulate the assembly of yeast mitochondrial ATP synthase. FASEB J 2021; 35:e21538. [PMID: 33956347 DOI: 10.1096/fj.202002475r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
Two chaperones, Atp23p and Atp10p, were previously shown to regulate the assembly of yeast mitochondrial ATP synthase, and extra expression of ATP23 was found to partially rescue an atp10 deletion mutant, by an unknown mechanism. Here, we identified that the residues 112-115 (LRDK) of Atp23p were required for its function in assisting assembly of the synthase, and demonstrated both functions of Atp23p, processing subunit 6 precursor and assisting assembly of the synthase, were required for the partial rescue of atp10 deletion mutant. By chasing labeling with isotope 35 S-methionine, we found the stability of subunit 6 of the synthase increased in atp10 null strain upon overexpression of ATP23. Further co-immunoprecipitation (Co-IP) and blue native PAGE experiments showed that Atp23p and Atp10p were physically associated with each other in wild type. Moreover, we revealed the expression level of Atp23p increased in atp10 null mutant compared with the wild type. Furthermore, we found that, after 72 hours growth, atp10 null mutant showed leaky growth on respiratory substrates, presence of low level of subunit 6 and partial recovery of oligomycin sensitivity of mitochondrial ATPase activity. Further characterization revealed the expression of Atp23p increased after 24 hours growth in the mutant. These results indicated, in atp10 null mutant, ATP10 deficiency could be partially complemented with increased expression of Atp23p by stabilizing some subunit 6 of the synthase. Taken together, this study revealed the two chaperones Atp23p and Atp10p coordinated to regulate the assembly of mitochondrial ATP synthase, which advanced our understanding of mechanism of assembly of yeast mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Guangying Yang
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Shang
- Medical College of Hebei University of Engineering, Handan, China
| | - Tong Zhao
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Lu
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Tian
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zeng
- Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Amai T, Tsuji T, Ueda M, Kuroda K. Development of a mito-CRISPR system for generating mitochondrial DNA-deleted strain in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:895-901. [PMID: 33580687 DOI: 10.1093/bbb/zbaa119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a "mito-CRISPR system" that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.
Collapse
Affiliation(s)
- Takamitsu Amai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomoka Tsuji
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Su X, Dautant A, Rak M, Godard F, Ezkurdia N, Bouhier M, Bietenhader M, Mueller DM, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 2021; 30:381-392. [PMID: 33600551 DOI: 10.1093/hmg/ddab043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.
Collapse
Affiliation(s)
- Xin Su
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Malgorzata Rak
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - François Godard
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Nahia Ezkurdia
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland
| | | | | |
Collapse
|
22
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
23
|
Ding Q, Kucharczyk R, Zhao W, Dautant A, Xu S, Niedzwiecka K, Su X, Giraud MF, Gombeau K, Zhang M, Xie H, Zeng C, Bouhier M, di Rago JP, Liu Z, Tribouillard-Tanvier D, Chen H. Case Report: Identification of a Novel Variant (m.8909T>C) of Human Mitochondrial ATP6 Gene and Its Functional Consequences on Yeast ATP Synthase. Life (Basel) 2020; 10:life10090215. [PMID: 32971864 PMCID: PMC7555451 DOI: 10.3390/life10090215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
With the advent of next generation sequencing, the list of mitochondrial DNA (mtDNA) mutations identified in patients rapidly and continuously expands. They are frequently found in a limited number of cases, sometimes a single individual (as with the case herein reported) and in heterogeneous genetic backgrounds (heteroplasmy), which makes it difficult to conclude about their pathogenicity and functional consequences. As an organism amenable to mitochondrial DNA manipulation, able to survive by fermentation to loss-of-function mtDNA mutations, and where heteroplasmy is unstable, Saccharomyces cerevisiae is an excellent model for investigating novel human mtDNA variants, in isolation and in a controlled genetic context. We herein report the identification of a novel variant in mitochondrial ATP6 gene, m.8909T>C. It was found in combination with the well-known pathogenic m.3243A>G mutation in mt-tRNALeu. We show that an equivalent of the m.8909T>C mutation compromises yeast adenosine tri-phosphate (ATP) synthase assembly/stability and reduces the rate of mitochondrial ATP synthesis by 20-30% compared to wild type yeast. Other previously reported ATP6 mutations with a well-established pathogenicity (like m.8993T>C and m.9176T>C) were shown to have similar effects on yeast ATP synthase. It can be inferred that alone the m.8909T>C variant has the potential to compromise human health.
Collapse
Affiliation(s)
- Qiuju Ding
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland; (R.K.); (K.N.)
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland; (R.K.); (K.N.)
| | - Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Marie-France Giraud
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
- Institut national de la santé et de la recherche médicale, 75000 Paris, France
- Correspondence: (D.T.-T.); (H.C.)
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
- Correspondence: (D.T.-T.); (H.C.)
| |
Collapse
|
24
|
Carraro M, Jones K, Sartori G, Schiavone M, Antonucci S, Kucharczyk R, di Rago JP, Franchin C, Arrigoni G, Forte M, Bernardi P. The Unique Cysteine of F-ATP Synthase OSCP Subunit Participates in Modulation of the Permeability Transition Pore. Cell Rep 2020; 32:108095. [DOI: 10.1016/j.celrep.2020.108095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
25
|
Su X, Dautant A, Godard F, Bouhier M, Zoladek T, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. Molecular Basis of the Pathogenic Mechanism Induced by the m.9191T>C Mutation in Mitochondrial ATP6 Gene. Int J Mol Sci 2020; 21:ijms21145083. [PMID: 32708436 PMCID: PMC7404254 DOI: 10.3390/ijms21145083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Probing the pathogenicity and functional consequences of mitochondrial DNA (mtDNA) mutations from patient’s cells and tissues is difficult due to genetic heteroplasmy (co-existence of wild type and mutated mtDNA in cells), occurrence of numerous mtDNA polymorphisms, and absence of methods for genetically transforming human mitochondria. Owing to its good fermenting capacity that enables survival to loss-of-function mtDNA mutations, its amenability to mitochondrial genome manipulation, and lack of heteroplasmy, Saccharomyces cerevisiae is an excellent model for studying and resolving the molecular bases of human diseases linked to mtDNA in a controlled genetic background. Using this model, we previously showed that a pathogenic mutation in mitochondrial ATP6 gene (m.9191T>C), that converts a highly conserved leucine residue into proline in human ATP synthase subunit a (aL222P), severely compromises the assembly of yeast ATP synthase and reduces by 90% the rate of mitochondrial ATP synthesis. Herein, we report the isolation of intragenic suppressors of this mutation. In light of recently described high resolution structures of ATP synthase, the results indicate that the m.9191T>C mutation disrupts a four α-helix bundle in subunit a and that the leucine residue it targets indirectly optimizes proton conduction through the membrane domain of ATP synthase.
Collapse
Affiliation(s)
- Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (T.Z.); (R.K.)
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (T.Z.); (R.K.)
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
- Correspondence:
| |
Collapse
|
26
|
Bader G, Enkler L, Araiso Y, Hemmerle M, Binko K, Baranowska E, De Craene JO, Ruer-Laventie J, Pieters J, Tribouillard-Tanvier D, Senger B, di Rago JP, Friant S, Kucharczyk R, Becker HD. Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP. eLife 2020; 9:56649. [PMID: 32657755 PMCID: PMC7358010 DOI: 10.7554/elife.56649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
Abstract
A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, but also from other organisms such as the human Argonaute 2 mitochondrial echoform.
Collapse
Affiliation(s)
- Gaétan Bader
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Ludovic Enkler
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Yuhei Araiso
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Marine Hemmerle
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Krystyna Binko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Johan-Owen De Craene
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Bruno Senger
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, Bordeaux, France
| | - Sylvie Friant
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Dominique Becker
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
27
|
Rzepnikowska W, Kaminska J, Kabzińska D, Binięda K, Kochański A. A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases. Int J Mol Sci 2020; 21:ijms21124277. [PMID: 32560077 PMCID: PMC7352270 DOI: 10.3390/ijms21124277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages and disadvantages of yeast as a model system in which to study CMT diseases. We show how this single-cell organism may be used to discriminate between pathogenic variants, to uncover the mechanism of pathogenesis, and to discover new therapies for CMT disease.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Katarzyna Binięda
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
- Correspondence:
| |
Collapse
|
28
|
Su X, Rak M, Tetaud E, Godard F, Sardin E, Bouhier M, Gombeau K, Caetano-Anollés D, Salin B, Chen H, di Rago JP, Tribouillard-Tanvier D. Deregulating mitochondrial metabolite and ion transport has beneficial effects in yeast and human cellular models for NARP syndrome. Hum Mol Genet 2020; 28:3792-3804. [PMID: 31276579 DOI: 10.1093/hmg/ddz160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/14/2022] Open
Abstract
The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.
Collapse
Affiliation(s)
- Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Malgorzata Rak
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Emmanuel Tetaud
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Elodie Sardin
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Derek Caetano-Anollés
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bénédicte Salin
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France.,INSERM, Paris, France
| |
Collapse
|
29
|
Franco LVR, Su CH, Burnett J, Teixeira LS, Tzagoloff A. Atco, a yeast mitochondrial complex of Atp9 and Cox6, is an assembly intermediate of the ATP synthase. PLoS One 2020; 15:e0233177. [PMID: 32413073 PMCID: PMC7228087 DOI: 10.1371/journal.pone.0233177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- Department of Microbiology, University of São Paulo, São Paulo, SP, Brazil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Julia Burnett
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Lorisa Simas Teixeira
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kucharczyk R, Dautant A, Gombeau K, Godard F, Tribouillard-Tanvier D, di Rago JP. The pathogenic MT-ATP6 m.8851T>C mutation prevents proton movements within the n-side hydrophilic cleft of the membrane domain of ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:562-572. [PMID: 31181185 DOI: 10.1016/j.bbabio.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/12/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022]
Abstract
Dozens of pathogenic mutations have been localized in the mitochondrial gene (MT-ATP6) that encodes the subunit a of ATP synthase. The subunit a together with a ring of identical subunits c moves protons across the mitochondrial inner membrane coupled to rotation of the subunit c-ring and ATP synthesis. One of these mutations, m.8851T>C, has been associated with bilateral striatal lesions of childhood (BSLC), a group of rare neurological disorders characterized by symmetric degeneration of the corpus striatum. It converts a highly conserved tryptophan residue into arginine at position 109 of subunit a (aW109R). We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aW126R) severely impairs by an unknown mechanism the functioning of ATP synthase without any visible assembly/stability defect. Herein we show that ATP synthase function was recovered to varying degree by replacing the mutant arginine residue 126 with methionine, lysine or glycine or by replacing with methionine an arginine residue present at position 169 of subunit a (aR169). In recently described atomic structures of yeast ATP synthase, aR169 is at the center of a hydrophilic cleft along which protons are transported from the subunit c-ring to the mitochondrial matrix, in the proximity of the two residues known from a long time to be essential to the activity of FO (aR176 and cE59). We provide evidence that the aW126R change is responsible for electrostatic and steric hindrance that enables aR169 to engage in a salt bridge with cE59. As a result, aR176 cannot interact properly with cE5 and ATP synthase fails to effectively move protons across the mitochondrial membrane. In addition to insight into the pathogenic mechanism induced by the m.8851T>C mutation, the present study brings interesting information about the role of specific residues of subunit a in the energy-transducing activity of ATP synthase.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France.
| |
Collapse
|
31
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
32
|
Li XL, Huang WL, Yang HH, Jiang RC, Sun F, Wang HC, Zhao J, Xu CH, Tan BC. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. THE NEW PHYTOLOGIST 2019; 221:896-907. [PMID: 30168136 DOI: 10.1111/nph.15425] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 05/02/2023]
Abstract
RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.
Collapse
Affiliation(s)
- Xiu-Lan Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Wen-Long Huang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Rui-Cheng Jiang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Jiao Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Chun-Hui Xu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
33
|
Li XC, Peris D, Hittinger CT, Sia EA, Fay JC. Mitochondria-encoded genes contribute to evolution of heat and cold tolerance in yeast. SCIENCE ADVANCES 2019; 5:eaav1848. [PMID: 30729162 PMCID: PMC6353624 DOI: 10.1126/sciadv.aav1848] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/13/2018] [Indexed: 05/30/2023]
Abstract
Genetic analysis of phenotypic differences between species is typically limited to interfertile species. Here, we conducted a genome-wide noncomplementation screen to identify genes that contribute to a major difference in thermal growth profile between two reproductively isolated yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum. The screen identified only a single nuclear-encoded gene with a moderate effect on heat tolerance, but, in contrast, revealed a large effect of mitochondrial DNA (mitotype) on both heat and cold tolerance. Recombinant mitotypes indicate that multiple genes contribute to thermal divergence, and we show that protein divergence in COX1 affects both heat and cold tolerance. Our results point to the yeast mitochondrial genome as an evolutionary hotspot for thermal divergence.
Collapse
Affiliation(s)
- Xueying C. Li
- Molecular Genetics and Genomics Program, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
- Center for Genome Sciences and System Biology, Washington University, St. Louis, MO 63110, USA
| | - David Peris
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Paterna, Valencia, Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Justin C. Fay
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
- Center for Genome Sciences and System Biology, Washington University, St. Louis, MO 63110, USA
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
34
|
Kucharczyk R, Dautant A, Godard F, Tribouillard-Tanvier D, di Rago JP. Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176 T>G mutation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:52-59. [PMID: 30414414 DOI: 10.1016/j.bbabio.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 01/10/2023]
Abstract
Protons are transported from the mitochondrial matrix to the intermembrane space of mitochondria during the transfer of electrons to oxygen and shuttled back to the matrix by the a subunit and a ring of identical c subunits across the membrane domain (FO) of ATP synthase, which is coupled to ATP synthesis. A mutation (m.9176 T > G) of the mitochondrial ATP6 gene that replaces an universally conserved leucine residue into arginine at amino acid position 217 of human subunit a (aL217R) has been associated to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) and MILS (Maternally Inherited Leigh's Syndrome) diseases. We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aL237R) severely impairs subunit a assembly/stability and decreases by >90% the rate of mitochondrial ATP synthesis. Herein we identified three spontaneous first-site intragenic suppressors (aR237M, aR237T and aR237S) that fully restore ATP synthase assembly. However, mitochondrial ATP synthesis rate was only partially recovered (40-50% vs wild type yeast). In light of recently described high-resolution yeast ATP synthase structures, the detrimental consequences of the aL237R change can be explained by steric and electrostatic hindrance with the universally conserved subunit a arginine residue (aR176) that is essential to FO activity. aL237 together with three other nearby hydrophobic residues have been proposed to prevent ion shortage between two physically separated hydrophilic pockets within the FO. Our results suggest that aL237 favors subunit c-ring rotation by optimizing electrostatic interaction between aR176 and an acidic residue in subunit c (cE59) known to be essential also to the activity of FO.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France..
| |
Collapse
|
35
|
Sreelatha A, Yee SS, Lopez VA, Park BC, Kinch LN, Pilch S, Servage KA, Zhang J, Jiou J, Karasiewicz-Urbańska M, Łobocka M, Grishin NV, Orth K, Kucharczyk R, Pawłowski K, Tomchick DR, Tagliabracci VS. Protein AMPylation by an Evolutionarily Conserved Pseudokinase. Cell 2018; 175:809-821.e19. [PMID: 30270044 DOI: 10.1016/j.cell.2018.08.046] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/19/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.
Collapse
Affiliation(s)
- Anju Sreelatha
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samantha S Yee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor A Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brenden C Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, Dallas, TX 75390, USA
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junmei Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Jiou
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw 02-776, Poland
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Krzysztof Pawłowski
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw 02-776, Poland
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
36
|
Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Sci Rep 2018; 8:13069. [PMID: 30166576 PMCID: PMC6117276 DOI: 10.1038/s41598-018-31558-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 11/09/2022] Open
Abstract
During fermentation, yeast cells encounter a number of stresses, including hyperosmolarity, high ethanol concentration, and high temperature. Previous deletome analysis in the yeast Saccharomyces cerevisiae has revealed that SOD1 gene encoding cytosolic Cu/Zn-superoxide dismutase (SOD), a major antioxidant enzyme, was required for tolerances to not only oxidative stress but also other stresses present during fermentation such as osmotic, ethanol, and heat stresses. It is therefore possible that these fermentation-associated stresses may also induce endogenous oxidative stress. In this study, we show that osmotic, ethanol, and heat stresses promoted generation of intracellular reactive oxygen species (ROS) such as superoxide anion in the cytosol through a mitochondria-independent mechanism. Consistent with this finding, cytosolic Cu/Zn-SOD, but not mitochondrial Mn-SOD, was required for protection against oxidative stress induced by these fermentation-associated stresses. Furthermore, supplementation of ROS scavengers such as N-acetyl-L-cysteine (NAC) alleviated oxidative stress induced during very high gravity (VHG) fermentation and enhanced fermentation performance at both normal and high temperatures. In addition, NAC also plays an important role in maintaining the Cu/Zn-SOD activity during VHG fermentation. These findings suggest the potential role of ROS scavengers for application in industrial-scale VHG ethanol fermentation.
Collapse
|
37
|
Skoczeń N, Dautant A, Binko K, Godard F, Bouhier M, Su X, Lasserre JP, Giraud MF, Tribouillard-Tanvier D, Chen H, di Rago JP, Kucharczyk R. Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:602-611. [PMID: 29778688 DOI: 10.1016/j.bbabio.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20-30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.
Collapse
Affiliation(s)
- Natalia Skoczeń
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Krystyna Binko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France
| | - François Godard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Marine Bouhier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Xin Su
- Nanjing University School of Medicine, Nanjing, Jiangsu, China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jean-Paul Lasserre
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Huimei Chen
- Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France.
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
38
|
de Taffin de Tilques M, Lasserre JP, Godard F, Sardin E, Bouhier M, Le Guedard M, Kucharczyk R, Petit PX, Testet E, di Rago JP, Tribouillard-Tanvier D. Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. ACTA ACUST UNITED AC 2018; 5:220-232. [PMID: 29796387 PMCID: PMC5961916 DOI: 10.15698/mic2018.05.629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-function mutations in the TAZ gene are responsible for the Barth syndrome (BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein synthesis, either chemically with the use of cycloheximide or by specific genetic mutations, fully restores biogenesis and the activity of the oxidative phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the defaults in CL were not suppressed, indicating that they are not primarily responsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa cells, as evidenced by the recovery of a good proliferative capacity. These findings reveal that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of BTHS. This in turn, identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Maxence de Taffin de Tilques
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Elodie Sardin
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Marina Le Guedard
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France.,LEB Aquitaine Transfert-ADERA, FR-33883 Villenave d'Ornon, Cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Patrice X Petit
- CNRS FR3636 Fédération de recherché en Neuroscience, Université Paris-Descartes, 45, rue des Saints-Pères, 75006 Paris, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| |
Collapse
|
39
|
de Taffin de Tilques M, Tribouillard-Tanvier D, Tétaud E, Testet E, di Rago JP, Lasserre JP. Overexpression of mitochondrial oxodicarboxylate carrier (ODC1) preserves oxidative phosphorylation in a yeast model of Barth syndrome. Dis Model Mech 2017; 10:439-450. [PMID: 28188263 PMCID: PMC5399564 DOI: 10.1242/dmm.027540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiolipin (CL) is a diglycerol phospholipid mostly found in mitochondria where it optimizes numerous processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase tafazzin. Loss-of-function mutations in this protein are responsible for Barth syndrome (BTHS), presumably because of a diminished OXPHOS capacity. Here, we show that overexpressing Odc1p, a conserved oxodicarboxylic acid carrier located in the mitochondrial inner membrane, fully restores oxidative phosphorylation in a yeast model (taz1Δ) of BTHS. The rescuing activity involves the recovery of normal expression of key components that sustain oxidative phosphorylation, including cytochrome c and electron transport chain complexes IV and III, which are strongly downregulated in taz1Δ yeast. Interestingly, overexpression of Odc1p was also shown previously to rescue yeast models of mitochondrial diseases caused by defects in the assembly of ATP synthase and by mutations in the MPV17 protein that result in hepatocerebral mitochondrial DNA depletion syndrome. These findings define the transport of oxodicarboxylic acids across the inner membrane as a potential therapeutic target for a large spectrum of mitochondrial diseases, including BTHS.
Collapse
Affiliation(s)
- Maxence de Taffin de Tilques
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Déborah Tribouillard-Tanvier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Emmanuel Tétaud
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Eric Testet
- Université de Bordeaux, Laboratoire de biogenèse membranaire, CNRS UMR 5200, INRA Bordeaux Aquitaine BP81, 33883 Villenave d'Ornon Cédex, France
| | - Jean-Paul di Rago
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| | - Jean-Paul Lasserre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux cedex 33077, France
| |
Collapse
|
40
|
Wen S, Niedzwiecka K, Zhao W, Xu S, Liang S, Zhu X, Xie H, Tribouillard-Tanvier D, Giraud MF, Zeng C, Dautant A, Kucharczyk R, Liu Z, di Rago JP, Chen H. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci Rep 2016; 6:36313. [PMID: 27812026 PMCID: PMC5095641 DOI: 10.1038/srep36313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Here we elucidated the pathogenesis of a 14-year-old Chinese female who initially developed an isolated nephropathy followed by a complex clinical presentation with brain and muscle problems, which indicated that the disease process was possibly due to a mitochondrial dysfunction. Careful evaluation of renal biopsy samples revealed a decreased staining of cells induced by COX and NADH dehydrogenase activities, and a strong fragmentation of the mitochondrial network. These anomalies were due to the presence of a mutation in the mitochondrial ATP6 gene, G8969>A. This mutation leads to replacement of a highly conserved serine residue at position 148 of the a-subunit of ATP synthase. Increasing the mutation load in cybrid cell lines was paralleled by the appearance of abnormal mitochondrial morphologies, diminished respiration and enhanced production of reactive oxygen species. An equivalent of the G8969>A mutation in yeast had dramatic consequences on ATP synthase, with a block in proton translocation. The mutation was particularly abundant (89%) in the kidney compared to blood and urine, which is likely the reason why this organ was affected first. Based on these findings, we suggest that nephrologists should pay more attention to the possibility of a mitochondrial dysfunction when evaluating patients suffering from kidney problems.
Collapse
Affiliation(s)
- Shuzhen Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France.,INSERM, Institut de Biochimie et Génétique Cellulaires, F-33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
41
|
Żurawik TM, Pomorski A, Belczyk-Ciesielska A, Goch G, Niedźwiedzka K, Kucharczyk R, Krężel A, Bal W. Revisiting Mitochondrial pH with an Improved Algorithm for Calibration of the Ratiometric 5(6)-carboxy-SNARF-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH. PLoS One 2016; 11:e0161353. [PMID: 27557123 PMCID: PMC4996429 DOI: 10.1371/journal.pone.0161353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022] Open
Abstract
Fluorescence measurements of pH and other analytes in the cell rely on accurate calibrations, but these have routinely used algorithms that inadequately describe the properties of indicators. Here, we have established a more accurate method for calibrating and analyzing data obtained using the ratiometric probe 5(6)-carboxy-SNARF-1. We tested the implications of novel approach to measurements of pH in yeast mitochondria, a compartment containing a small number of free H+ ions. Our findings demonstrate that 5(6)-carboxy-SNARF-1 interacts with H+ ions inside the mitochondria in an anticooperative manner (Hill coefficient n of 0.5) and the apparent pH inside the mitochondria is ~0.5 unit lower than had been generally assumed. This result, at odds with the current consensus on the mechanism of energy generation in the mitochondria, is in better agreement with theoretical considerations and warrants further studies of organellar pH.
Collapse
Affiliation(s)
- Tomasz Michał Żurawik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A, 50-383, Wrocław, Poland
| | | | - Grażyna Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Katarzyna Niedźwiedzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A, 50-383, Wrocław, Poland
- * E-mail: (AK); (WB)
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- * E-mail: (AK); (WB)
| |
Collapse
|
42
|
Miller N, Shi H, Zelikovich AS, Ma YC. Motor neuron mitochondrial dysfunction in spinal muscular atrophy. Hum Mol Genet 2016; 25:3395-3406. [PMID: 27488123 DOI: 10.1093/hmg/ddw262] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Aaron S Zelikovich
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Yong-Chao Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Niedzwiecka K, Kabala AM, Lasserre JP, Tribouillard-Tanvier D, Golik P, Dautant A, di Rago JP, Kucharczyk R. Yeast models of mutations in the mitochondrial ATP6 gene found in human cancer cells. Mitochondrion 2016; 29:7-17. [PMID: 27083309 DOI: 10.1016/j.mito.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/09/2023]
Abstract
Since the discovery of somatic mtDNA mutations in tumor cells, multiple studies have focused on establishing a causal relationship between those changes and alterations in energy metabolism, a hallmark of cancer cells. Yet the consequences of these mutations on mitochondrial function remain largely unknown. In this study, Saccharomyces cerevisiae has been used as a model to investigate the functional consequences of four cancer-associated missense mutations (8914C>A, 8932C>T, 8953A>G, 9131T>C) found in the mitochondrial MT-ATP6 gene. This gene encodes the a-subunit of F1FO-ATP synthase, which catalyzes the last steps of ATP production in mitochondria. Although the four studied mutations affected well-conserved residues of the a-subunit, only one of them (8932C>T) had a significant impact on mitochondrial function, due to a less efficient incorporation of the a-subunit into ATP synthase. Our findings indicate that these ATP6 genetic variants found in human tumors are neutral mitochondrial genome substitutions with a limited, if any, impact on the energetic function of mitochondria.
Collapse
Affiliation(s)
- Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Magdalena Kabala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Pawel Golik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
44
|
Rak M, Su CH, Xu JT, Azpiroz R, Singh AM, Tzagoloff A. Regulation of mitochondrial translation of the ATP8/ATP6 mRNA by Smt1p. Mol Biol Cell 2016; 27:919-29. [PMID: 26823015 PMCID: PMC4791136 DOI: 10.1091/mbc.e15-09-0642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/20/2016] [Indexed: 11/11/2022] Open
Abstract
Expression of the mitochondrial ATP6 and ATP8 genes of yeast is translationally regulated by F1 ATPase. Dmt1p represses ATP8/ATP6 mRNA translation. Dmt1p prevents the Atp22p translational activator from binding to the mRNA when F1 is limiting. F1 weakens the Dmt1–mRNA interaction, allowing Atp22p to activate translation. Expression of the mitochondrially encoded ATP6 and ATP8 genes is translationally regulated by F1 ATPase. We report a translational repressor (Smt1p) of the ATP6/8 mRNA that, when mutated, restores translation of the encoded Atp6p and Atp8p subunits of the ATP synthase. Heterozygous smt1 mutants fail to rescue the translation defect, indicating that the mutations are recessive. Smt1p is an intrinsic inner membrane protein, which, based on its sedimentation, has a native size twice that of the monomer. Affinity purification of tagged Smt1p followed by reverse transcription of the associated RNA and PCR amplification of the resultant cDNA with gene-specific primers demonstrated the presence in mitochondria of Smt1p-ATP8/ATP6 and Smt1p-COB mRNA complexes. These results indicate that Smt1p is likely to be involved in translational regulation of both mRNAs. Applying Occam’s principle, we favor a mechanistic model in which translation of the ATP8/ATP6 bicistronic mRNA is coupled to the availability of F1 for subsequent assembly of the Atp6p and Atp8p products into the ATP synthase. The mechanism of this regulatory pathway is proposed to entail a displacement of the repressor from the translationally mute Smt1-ATP8/ATP6 complex by F1, thereby permitting the Atp22p activator to interact with and promote translation of the mRNA.
Collapse
Affiliation(s)
- Malgorzata Rak
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Jonathan Tong Xu
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ricardo Azpiroz
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Angela Mohan Singh
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
45
|
Huang S, Han R, Zhuang Q, Du L, Jia H, Liu Y, Liu Y. New photostable naphthalimide-based fluorescent probe for mitochondrial imaging and tracking. Biosens Bioelectron 2015; 71:313-321. [PMID: 25930001 DOI: 10.1016/j.bios.2015.04.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022]
Abstract
Monitoring mitochondria morphological changes temporally and spatially exhibits significant importance for diagnosing, preventing and treating various diseases related to mitochondrial dysfunction. However, the application of commercially available mitochondria trackers is limited due to their poor photostability. To overcome these disadvantages, we designed and synthesized a mitochondria-localized fluorescent probe by conjugating 1,8-naphthalimide with triphenylphosphonium (i.e. NPA-TPP). The structure and characteristic of NPA-TPP was characterized by UV-vis, fluorescence spectroscopy, (1)HNMR, (13)CNMR, FTIR, MS, etc. The photostability and cell imaging were performed on the laser scanning confocal microscopy. Moreover, the cytotoxicity of NPA-TPP on cells was evaluated using (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results showed that NPA-TPP not only has high sensitivity and specificity to mitochondria, but also exhibits super-high photostability, negligible cytotoxicity and good water solubility. In short, NPA-TPP indicates great potential for targeting mitochondria and enables a real-time and long-term tracking mitochondrial dynamics changes.
Collapse
Affiliation(s)
- Saipeng Huang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China; Graduate School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rongcheng Han
- Research Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qianfen Zhuang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China.
| | - Hongying Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Yangping Liu
- School of Pharmacy, Tianjin Medical University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
46
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
47
|
Biolistic Transformation of Candida glabrata for Homoplasmic Mitochondrial Genome Transformants. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Di Noia MA, Todisco S, Cirigliano A, Rinaldi T, Agrimi G, Iacobazzi V, Palmieri F. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J Biol Chem 2014; 289:33137-48. [PMID: 25320081 DOI: 10.1074/jbc.m114.610808] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.
Collapse
Affiliation(s)
- Maria Antonietta Di Noia
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Department of Sciences, University of Basilicata, via N. Sauro 85, 85100 Potenza, Italy
| | - Simona Todisco
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Angela Cirigliano
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin," University of Rome La Sapienza, 00185 Rome, Italy, Associazione Gian Franco Lupo "Un Sorriso alla Vita," ASM Azienda Sanitaria Locale di Matera, via Montescaglioso 75100 Matera, Italy, and
| | - Teresa Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin," University of Rome La Sapienza, 00185 Rome, Italy
| | - Gennaro Agrimi
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Vito Iacobazzi
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy, Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
49
|
Interactions involved in grasping and locking of the inhibitory peptide IF1 by mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:761-72. [DOI: 10.1016/j.bbabio.2014.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 11/23/2022]
|
50
|
Abstract
The yeast cytochrome oxidase Cox3p assembly module is shown to consist of Cox3p, Cox4p, Cox7p, Cox13p, and accessory factor Rcf1p. The results support an assembly model in which three modules, each containing one of the three core subunits and a unique subset of nuclear-derived subunits, interact to form the holoenzyme. Yeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis. This suggests that Cox4p, which contacts Cox1p and Cox3p in the holoenzyme, can be incorporated into COX by two alternative pathways. In addition to subunits of COX, some Cox3p intermediates contain Rcf1p, a protein associated with the supercomplex that stabilizes the interaction of COX with the bc1 (ubiquinol-cytochrome c reductase) complex. Finally, our results indicate that although assembly of the Cox1p module is not contingent on the presence of Cox3p, the converse is not true, as none of the Cox3p subassemblies were detected in a mutant blocked in translation of Cox1p. These studies support our proposal that Cox3p and Cox1p are separate assembly modules with unique compositions of ancillary factors and subunits derived from the nuclear genome.
Collapse
Affiliation(s)
- Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | |
Collapse
|